JP2002096080A - Supercritical water reaction apparatus - Google Patents

Supercritical water reaction apparatus

Info

Publication number
JP2002096080A
JP2002096080A JP2000286400A JP2000286400A JP2002096080A JP 2002096080 A JP2002096080 A JP 2002096080A JP 2000286400 A JP2000286400 A JP 2000286400A JP 2000286400 A JP2000286400 A JP 2000286400A JP 2002096080 A JP2002096080 A JP 2002096080A
Authority
JP
Japan
Prior art keywords
liquid
supercritical water
reactor
organic solvent
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000286400A
Other languages
Japanese (ja)
Inventor
Tomoyuki Iwamori
智之 岩森
Akira Suzuki
明 鈴木
Tokuyuki Anjo
徳幸 安生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2000286400A priority Critical patent/JP2002096080A/en
Publication of JP2002096080A publication Critical patent/JP2002096080A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treating Waste Gases (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a supercritical water reaction apparatus which makes treatment stability higher when organic matters, more preferably PCBs are subjected to supercritical water oxidation treatment. SOLUTION: The supercritical water reaction apparatus 10 has a post- treatment device 36 of supercritical water reaction on the downstream of a gas-liquid separator 20. The post-treatment device 36 has an adsorbing means 42 and 44 which adsorb the PCBs in the gaseous component and liquid component separated by the gas-liquid separator 20, organic solvent supplying means 46 and 48 which supply organic solvents to the adsorbers, a waste organic solvent feeding means 50 and 52 which feed the waste organic solvents flowing out of the adsorbers into a reactor 12 and a sequence controller 54 for the adsorbers. The sequence controller performs sequence control by controlling the automatic stop valves around the adsorbers 42 and 44 in such a manner that either of the respective adsorbers 42 and 44 is maintained at the adsorption process step and the other is maintained at the desorption process step during the operation of the supercritical water reaction apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機物を超臨界水
反応によって処理する超臨界水反応装置に関し、更に詳
細には、不測のプロセス条件変化が生じても、処理液中
の有機物の残存濃度が確実に許容濃度以下になるように
する後処理手段を設けた超臨界水反応装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical water reactor for treating an organic substance by a supercritical water reaction, and more particularly, to a residual concentration of an organic substance in a treatment liquid even when an unexpected change in process conditions occurs. The present invention relates to a supercritical water reactor provided with a post-treatment means for ensuring that the concentration is below the allowable concentration.

【0002】[0002]

【従来の技術】環境問題に対する認識の高まりと共に、
有機物の酸化分解能力の高い超臨界水反応を利用して、
環境汚染物質を分解、無害化する試みが注目されてい
る。すなわち、超臨界水の高い反応性を利用した超臨界
水反応により、従来技術では分解することが難しかった
有害な難分解性の有機物、例えば、PCB(ポリ塩素化
ビフェニル)、ダイオキシン、有機塩素系溶剤等を分解
して、二酸化炭素、窒素、水、無機塩などの無害な生成
物に転化する試みである。
2. Description of the Related Art With increasing awareness of environmental issues,
Utilizing supercritical water reaction with high oxidative decomposition ability of organic matter,
Attempts to decompose and detoxify environmental pollutants have attracted attention. That is, harmful hardly decomposable organic substances, such as PCB (polychlorinated biphenyl), dioxin, and organic chlorinated compounds, which were difficult to decompose in the prior art by supercritical water reaction utilizing high reactivity of supercritical water. This is an attempt to decompose a solvent or the like and convert it into harmless products such as carbon dioxide, nitrogen, water, and inorganic salts.

【0003】超臨界水反応装置とは、超臨界水の高い反
応性を利用して有機物を分解する装置であって、例え
ば、難分解性の有害な有機物を分解して無害な二酸化炭
素と水に転化したり、難分解性の高分子化合物を分解し
て有用な低分子化合物に転化したりするために、現在、
その実用化が盛んに研究されている。超臨界水とは、超
臨界状態にある水、即ち、水の臨界点を越えた状態にあ
る水を言い、詳しくは、374.1℃以上の温度で、か
つ22.04MPa以上の圧力下にある状態の水を言
う。超臨界水は、有機物を溶解する溶解能が高く、有機
化合物に多い非極性物質をも完全に溶解することができ
る一方、逆に、金属、塩等の無機物に対する溶解能は著
しく低い。また、超臨界水は、酸素や窒素などの気体と
任意の割合で混合して単一相を構成することができる。
[0003] A supercritical water reactor is a device that decomposes organic substances by using high reactivity of supercritical water. For example, harmless carbon dioxide and water are decomposed by decomposing hard-to-decompose harmful organic substances. In order to decompose hard-to-decompose high-molecular compounds and convert them into useful low-molecular compounds,
Its practical application is being actively studied. Supercritical water refers to water that is in a supercritical state, that is, water that is in a state beyond the critical point of water, and specifically, at a temperature of 374.1 ° C. or more and a pressure of 22.04 MPa or more. A state of water. Supercritical water has a high ability to dissolve organic substances and can completely dissolve non-polar substances, which are abundant in organic compounds, but has a very low ability to dissolve inorganic substances such as metals and salts. Further, the supercritical water can be mixed with a gas such as oxygen or nitrogen at an arbitrary ratio to form a single phase.

【0004】ここで、図2を参照して、超臨界水反応装
置の基本的な構成を説明する。図2は従来の超臨界水反
応装置の構成を示すフローシートである。従来の超臨界
水反応装置60は、有機塩素化合物を含む被処理液を超
臨界水の存在下で超臨界水反応により処理する装置であ
って、図2に示すように、超臨界水反応を行う反応器と
して、縦型の耐圧密閉型反応器62を備え、反応器62
から処理液を流出させる処理液管64に、順次、処理液
を冷却する冷却器66、反応器62内の圧力を制御する
圧力制御弁68、及び、処理液をガスと液体とに気液分
離する気液分離器70を備えている。尚、縦型反応容器
に代えて、パイプ状のチューブラー反応器が使用される
こともある。
Here, the basic configuration of the supercritical water reactor will be described with reference to FIG. FIG. 2 is a flow sheet showing the configuration of a conventional supercritical water reactor. The conventional supercritical water reactor 60 is a device for treating a liquid to be treated containing an organic chlorine compound by a supercritical water reaction in the presence of supercritical water. As shown in FIG. A vertical pressure-resistant closed reactor 62 is provided as a reactor to be used.
A cooling liquid 66 for cooling the processing liquid, a pressure control valve 68 for controlling the pressure in the reactor 62, and a gas-liquid separation of the processing liquid into a gas and a liquid. The gas-liquid separator 70 is provided. In addition, a tubular tubular reactor may be used instead of the vertical reaction vessel.

【0005】超臨界水反応装置60は、超臨界水反応に
供する反応物を反応器62に供給する供給系統として、
被処理液ポンプ74と、空気圧縮機76とを備え、被処
理液管78を介して有機塩素化合物を含む被処理液を反
応器62に送入し、かつ、被処理液管78に接続された
空気送入管80を介して酸化剤として空気を被処理液と
共に反応器62に送入する。また、超臨界水反応を維持
するために、補給水管86を介して被処理液管78に補
給水を加える。
[0005] The supercritical water reactor 60 has a supply system for supplying a reactant to be used for the supercritical water reaction to a reactor 62.
A processing liquid pump 74 and an air compressor 76 are provided. A processing liquid containing an organic chlorine compound is fed into the reactor 62 via a processing liquid pipe 78, and is connected to the processing liquid pipe 78. Air as an oxidant is fed into the reactor 62 together with the liquid to be treated through the air inlet pipe 80. Further, in order to maintain the supercritical water reaction, make-up water is added to the liquid tube 78 through the make-up water tube 86.

【0006】なお、被処理液と処理液とを熱交換させて
処理液を冷却するとともに被処理液を昇温して熱回収を
図る熱交換器(図示せず)を冷却器66の上流の処理液
管64に、又は被処理液を予熱する予熱器を反応器62
の上流の被処理液管78に設けることもある。また、反
応器62から出た直後の処理液管64に中和急冷部82
を設け、注入管84から処理液にアルカリ水溶液を流入
して、中和するとともに急冷する。更には、反応器62
の下部に亜臨界水領域を設け、反応器62内で生じた無
機塩類を亜臨界水領域に沈降させ、除去する機構を設け
ることもある。
A heat exchanger (not shown) for exchanging heat between the liquid to be processed and the processing liquid to cool the processing liquid and raise the temperature of the liquid to be processed to recover heat is provided upstream of the cooler 66. A preheating device for preheating the liquid to be processed is provided in the reactor
May be provided in the liquid pipe 78 to be processed, which is located upstream of the pipe. Further, a neutralizing and quenching unit 82 is added to the processing liquid tube 64 immediately after it exits from the reactor 62.
And an alkaline aqueous solution flows into the processing liquid from the injection pipe 84 to neutralize and rapidly cool. Further, the reactor 62
In some cases, a subcritical water region is provided at the bottom of the reactor, and a mechanism is provided to settle and remove inorganic salts generated in the reactor 62 in the subcritical water region.

【0007】[0007]

【発明が解決しようとする課題】ところで、PCB等の
有害な有機塩素化合物を処理する際に、遵守すべき重要
な処理条件は、処理液中に含まれる残存有機塩素化合物
濃度が確実に許容濃度以下になっていることである。例
えば、PCBの場合、許容濃度は0.003mg/lで
あって、PCB濃度が0.003mg/lを越える処理
液を外部に流出させることは、一時的な流出であって
も、厳禁されている。つまり、PCB濃度が0.003
mg/lを越える処理液は再処理が必要となる。以下、
PCBの処理を例にして説明する。
When treating harmful organic chlorine compounds such as PCBs, the important processing conditions to be observed are that the concentration of the residual organic chlorine compound contained in the processing solution must be an allowable concentration. It is as follows. For example, in the case of PCB, the permissible concentration is 0.003 mg / l, and it is strictly prohibited to flow out a processing solution having a PCB concentration exceeding 0.003 mg / l even to a temporary outflow. I have. That is, when the PCB concentration is 0.003
Processing solutions exceeding mg / l require reprocessing. Less than,
A description will be given of an example of PCB processing.

【0008】PCBを処理した後、処理液中のPCB濃
度は、通常、公定法で定められている溶媒抽出−GC−
ECD法で測定される。溶媒抽出−GC−ECD法によ
る測定では、一つの処理液試料のPCB濃度測定に2か
ら3日を要する。従って、PCB濃度を測定し、その測
定結果が0.003mg/l以下であることが確認され
るまで、処理液を外部に流出させることができないの
で、例えば超臨界水反応装置から流出する処理液を複数
のタンクに順次貯留し、貯留した処理液のPCB濃度が
0.003mg/l以下と確認した後に放流するなどの
措置が必要となる。しかし、これでは、処理液を貯留す
るタンクが複数必要になり、広い設置面積が必要とな
る。
[0008] After treating the PCB, the concentration of the PCB in the treatment solution is usually determined by the solvent extraction-GC-
It is measured by the ECD method. In the measurement by the solvent extraction-GC-ECD method, it takes 2 to 3 days to measure the PCB concentration of one processing solution sample. Therefore, the treatment liquid cannot be discharged to the outside until the PCB concentration is measured and the measurement result is confirmed to be 0.003 mg / l or less. For example, the treatment liquid flowing out of the supercritical water reactor Are sequentially stored in a plurality of tanks, and after the PCB concentration of the stored processing solution is confirmed to be 0.003 mg / l or less, it is necessary to take measures such as discharging. However, this requires a plurality of tanks for storing the processing liquid, and thus requires a large installation area.

【0009】ところで、超臨界水反応装置を使ったPC
Bの処理では、所定の条件で超臨界水反応を持続させる
ことにより、超臨界水反応装置から流出する処理液中の
PCB濃度は確実に0.003mg/l以下になってお
り、また、所定の条件で超臨界水反応を持続させること
ができるように種々の制御手段、及び安全手段によって
万全な方策が施されている。しかし、自明のことではあ
るが、現実のプロセッシングの世界では、実験室的規
模、商業的又は工業的規模の別なく、万全であるという
ことは殆ど有り得ないことである。そこで、「処理液中
のPCB濃度を0.003mg/l以下にすることが絶
対である」PCB処理では、上記の認識に基づいて、処
理の前提条件、例えば被処理液の性状等が大幅に変動し
ても、処理液中のPCB濃度が確実に0.003mg/
l以下になるように超臨界水反応装置の処理安定性を今
以上に高める努力が、強く求められている。
By the way, a PC using a supercritical water reactor
In the treatment of B, by maintaining the supercritical water reaction under predetermined conditions, the PCB concentration in the processing liquid flowing out of the supercritical water reactor is surely reduced to 0.003 mg / l or less. Various measures have been taken by various control means and safety means so that the supercritical water reaction can be maintained under the following conditions. However, it is self-evident that in the real world of processing, it is almost impossible to be flawless, on a laboratory scale, commercial or industrial scale. Therefore, in the PCB processing, “the PCB concentration in the processing liquid is absolutely required to be 0.003 mg / l or less”, the preconditions of the processing, for example, the properties of the liquid to be processed, are greatly reduced based on the above recognition. Even if it fluctuates, the PCB concentration in the processing solution is surely 0.003 mg /
There is a strong demand for efforts to further increase the processing stability of the supercritical water reactor so as to be 1 or less.

【0010】そこで、本発明の目的は、PCBのような
有害な有機物を超臨界水酸化処理するに際して、処理安
定性をより高めた超臨界水反応装置を提供することであ
る。
Accordingly, an object of the present invention is to provide a supercritical water reactor having a higher processing stability when harmful organic substances such as PCBs are subjected to supercritical water oxidation treatment.

【0011】[0011]

【課題を解決するための手段】本発明者は、有害な有機
物の濃度を確実に許容値以下にするには、処理液中に残
存する有機物を確実に除去する手段を超臨界水反応装置
の後処理装置として設けることがより安全であると考え
た。そして、種々の除去方法を実験した結果、活性炭等
の吸着剤を使った吸着作用により処理液から残存有機物
を除去することが、より確実な除去方法であることを見
い出した。
In order to ensure that the concentration of harmful organic substances does not exceed the allowable value, the present inventor has proposed a means for reliably removing organic substances remaining in the processing solution of the supercritical water reactor. It was considered safer to provide it as a post-processing device. As a result of experiments on various removal methods, it has been found that removing residual organic substances from the treatment liquid by an adsorption action using an adsorbent such as activated carbon is a more reliable removal method.

【0012】また、有機物を吸着した吸着剤を処理する
方法も研究した。一般に活性炭などの吸着剤は、有機物
の吸着により吸着活性が低下したときには、高温加熱処
理等による再生処理を施して、吸着活性を回復させ、再
利用したり、焼却処分される。吸着剤の焼却処分に際
し、吸着剤がPCB等の有機塩素化合物を吸着している
ときには、焼却処分によってダイオキシンなどの有害な
物質が生成する恐れがある。そのため、従来は、PCB
等の有機塩素化合物を吸着した吸着剤は、倉庫等に厳重
に保管されている。しかし、これでは、蓄積する一方で
あって、完全な解決とは言えない。そこで、本発明者
は、吸着剤に吸着した有機塩素化合物を脱着させ、脱着
させた有機塩素化合物を被処理液と合わせて超臨界水反
応させることを着想し、実験を重ねて、本発明を発明す
るに至った。
Further, a method of treating an adsorbent having adsorbed an organic substance was also studied. In general, when the adsorption activity of an adsorbent such as activated carbon decreases due to the adsorption of organic substances, a regeneration treatment such as a high-temperature heating treatment is performed to recover the adsorption activity, and the adsorbent is reused or incinerated. When the adsorbent adsorbs an organic chlorine compound such as PCB at the time of incineration of the adsorbent, harmful substances such as dioxin may be generated by the incineration. Therefore, conventionally, PCB
The adsorbent which has adsorbed the organic chlorine compound such as is strictly stored in a warehouse or the like. However, this is only an accumulation and not a complete solution. Therefore, the inventor of the present invention conceived of desorbing an organochlorine compound adsorbed on an adsorbent and performing a supercritical water reaction with the desorbed organochlorine compound together with a liquid to be treated, and repeated experiments to achieve the present invention. Invented.

【0013】上記目的を達成するために、上述の知見に
基づいて、本発明に係る超臨界水反応装置は、超臨界水
を収容する反応器を備え、有機物を含有する被処理液を
反応器内の超臨界水中に送入し、酸化剤により有機物を
酸化分解し、有機物の含有率が所定値以下の処理液を流
出させる超臨界水反応装置であって、後処理装置とし
て、処理液を流出させる処理液管に設けられ、処理液と
接触して処理液中の残存有機物を吸着する吸着剤層を有
する吸着手段と、有機溶媒を吸着剤層に流入させ、吸着
剤層を通過させつつ、吸着剤に吸着した有機物を脱着さ
せ、有機物を含む廃有機溶媒として吸着剤層から流出さ
せる有機溶媒供給手段と、廃有機溶媒を被処理液に混合
して、反応器に送入させる廃有機溶媒送入手段とを備え
ていることを特徴としている。本発明では、後処理装置
を気液分離器の上流の処理液管、例えば冷却器と気液分
離器の間の処理液管に設けることができる。
In order to achieve the above object, based on the above-mentioned findings, a supercritical water reactor according to the present invention includes a reactor containing supercritical water, and converts a liquid to be treated containing an organic substance into a reactor. A supercritical water reactor that is fed into supercritical water in the reactor, oxidizes and decomposes organic substances by an oxidizing agent, and discharges a processing liquid having an organic substance content of a predetermined value or less. An adsorbing means having an adsorbent layer provided on the processing liquid pipe to be discharged and adsorbing residual organic matter in the processing liquid in contact with the processing liquid, and allowing the organic solvent to flow into the adsorbent layer while passing through the adsorbent layer An organic solvent supply means for desorbing an organic substance adsorbed on the adsorbent and flowing out of the adsorbent layer as a waste organic solvent containing the organic substance, and a waste organic solvent mixed with the liquid to be treated and sent to the reactor. Solvent feeding means. To have. In the present invention, the post-processing device can be provided in the processing liquid pipe upstream of the gas-liquid separator, for example, in the processing liquid pipe between the cooler and the gas-liquid separator.

【0014】また、気液分離器の下流に後処理装置を設
けるときには、本発明に係る超臨界水反応装置は、超臨
界水を収容する反応器を備え、有機物を含有する被処理
液を反応器内の超臨界水中に送入し、酸化剤により有機
物を酸化分解し、有機物の含有率が所定値以下の処理液
を流出させる超臨界水反応装置であって、後処理装置と
して、処理液管に接続された気液分離器で気液分離され
た処理液の液体成分及び気体成分を流出させる液体流出
管及び気体流出管にそれぞれ設けられ、処理液の液体成
分又は気体成分に接触して残存有機物を吸着する吸着剤
層を有する吸着手段と、有機溶媒を吸着剤層に流入さ
せ、吸着剤層を通過させつつ、吸着剤に吸着した有機物
を脱着させ、有機物を含む廃有機溶媒として吸着剤層か
ら流出させる有機溶媒供給手段と、廃有機溶媒を被処理
液に混合して、反応器に送入させる廃有機溶媒送入手段
とを備えていることを特徴としている。
When a post-treatment device is provided downstream of the gas-liquid separator, the supercritical water reactor according to the present invention includes a reactor for containing supercritical water, and reacts a liquid to be treated containing organic substances. A supercritical water reactor that is fed into supercritical water in a vessel, oxidizes and decomposes organic substances with an oxidizing agent, and discharges a processing liquid having a content of organic substances equal to or lower than a predetermined value. A liquid outlet and a gas outlet are provided respectively for the liquid component and the gas component of the processing liquid separated by the gas-liquid separator connected to the pipe, and are in contact with the liquid component or the gas component of the processing liquid. An adsorption means having an adsorbent layer for adsorbing residual organic substances, and an organic solvent flowing into the adsorbent layer and, while passing through the adsorbent layer, desorbing the organic substances adsorbed on the adsorbent and adsorbing as a waste organic solvent containing organic substances Organic solution flowing out of the agent layer Supply means, the waste organic solvents by mixing the liquid to be treated is characterized by comprising a waste organic solvent infeed means causes fed into a reactor.

【0015】本発明で使用する吸着剤は、有機物の種類
によって異なるが、例えばPCBの場合には、活性炭、
ウレタン系吸着剤等が好ましい。また、吸着剤からPC
Bを脱着させる有機溶媒は、メタノール、エタノール等
の低級アルコール、ノルマルヘキサン等の飽和炭化水素
化合物、アセトニトリル、トリクレン、パークレン等の
有機塩素化合物、硫化炭素等である。
The adsorbent used in the present invention varies depending on the type of organic matter. For example, in the case of PCB, activated carbon,
Urethane adsorbents are preferred. Also, PC from adsorbent
Examples of the organic solvent for desorbing B include lower alcohols such as methanol and ethanol, saturated hydrocarbon compounds such as normal hexane, organic chlorine compounds such as acetonitrile, trichlene and perchrene, and carbon sulfide.

【0016】本発明の好適な実施態様では、吸着手段
が、個々に有機溶媒供給手段及び廃有機溶媒送入手段を
有し、かつ処理液中の有機物を吸着する吸着工程及び吸
着剤から有機物を脱着させる脱着工程を独立して行うよ
うに、処理液管に並列に設けられた複数個の吸着器とし
て構成され、超臨界水反応装置の運転中、少なくとも1
個の吸着器が吸着工程に維持され、他の吸着器の少なく
ともいずれかが吸着剤から有機物を脱着させる脱着工程
に維持されているようにシーケンス制御する制御装置を
備えている。
In a preferred embodiment of the present invention, the adsorbing means has an organic solvent supplying means and a waste organic solvent feeding means, respectively, and the organic substance is adsorbed from the adsorbing step and the adsorbent for adsorbing the organic substance in the treatment liquid. It is configured as a plurality of adsorbers provided in parallel with the processing liquid pipe so that the desorption step for desorption is performed independently, and at least one adsorber is provided during operation of the supercritical water reactor.
A control device is provided for performing sequence control such that the individual adsorbers are maintained in the adsorption step, and at least one of the other adsorbers is maintained in the desorption step of desorbing organic substances from the adsorbent.

【0017】また、処理液中、処理液の液体成分中、及
び処理液の気体成分中の少なくともいずれかの残存有機
物の濃度を分析する分析計を備え、分析計で使用した廃
液を廃有機溶媒送入手段によって反応器に送入するよう
にすることもできる。分析計には、公定の溶媒抽出−G
C−ECD法に加えて、特開平11−344477号公
報に開示されている固相抽出法を適用したものがある。
固相抽出法では、固相吸着剤を充填したカラムに処理液
を通液し、次いで、洗浄して分析目的物質以外の物質を
脱離させ、最後に分析目的物質を溶出させて分析に供す
る方法である。この固相抽出方法を処理液のPCB濃度
分析に用いることにより、公定の溶媒抽出法に比較し
て、分析時間を大幅に、例えば1〜2時間にまで短縮す
ることができる。
Further, an analyzer is provided for analyzing the concentration of at least one of the remaining organic substances in the processing solution, the liquid component of the processing solution, and the gas component of the processing solution, and the waste liquid used in the analyzer is used as a waste organic solvent. It can also be made to feed into a reactor by feeding means. The analyzer contains the official solvent extraction -G
In addition to the C-ECD method, there is a method to which a solid phase extraction method disclosed in Japanese Patent Application Laid-Open No. H11-344377 is applied.
In the solid-phase extraction method, a treatment liquid is passed through a column packed with a solid-phase adsorbent, then washed to remove substances other than the target substance, and finally the target substance is eluted for analysis. Is the way. By using this solid phase extraction method for analyzing the PCB concentration of the processing solution, the analysis time can be significantly reduced, for example, to 1 to 2 hours, as compared with the official solvent extraction method.

【0018】[0018]

【発明の実施の形態】以下に、添付図面を参照し、実施
形態例を挙げて本発明の実施の形態を具体的かつ詳細に
説明する。実施形態例 本実施形態例は、本発明に係る超臨界水反応装置の実施
形態の一例であって、図1は本実施形態例の超臨界水反
応装置の構成を示すフローシートである。本実施形態例
の超臨界水反応装置10は、超臨界水の存在下で超臨界
水反応により主としてPCBを含む被処理液を処理する
装置であって、図1に示すように、超臨界水反応を行う
反応器として、縦型の耐圧密閉型反応器12を備え、反
応器12から処理液を流出させる処理液管14に、順
次、処理液を冷却する冷却器16、反応器12内の圧力
を制御する圧力制御弁18、及び、処理液をガス成分と
液体成分とに気液分離する気液分離器20を備えてい
る。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Embodiment This embodiment is an example of an embodiment of a supercritical water reactor according to the present invention, and FIG. 1 is a flow sheet showing a configuration of a supercritical water reactor of this embodiment. The supercritical water reactor 10 of the present embodiment is an apparatus for treating a liquid to be treated mainly containing PCB by a supercritical water reaction in the presence of supercritical water, and as shown in FIG. As a reactor for carrying out the reaction, a vertical pressure-resistant closed type reactor 12 is provided, and a processing solution pipe 14 through which the processing solution flows out from the reactor 12, a cooling device 16 for sequentially cooling the processing solution, and a cooling device 16 in the reactor 12. The apparatus includes a pressure control valve 18 for controlling the pressure, and a gas-liquid separator 20 for gas-liquid separation of the processing liquid into a gas component and a liquid component.

【0019】超臨界水反応装置10は、超臨界水反応に
供する反応物を反応器12に供給する供給系統として、
インバータ制御又はストローク制御によって吐出量の調
節が可能な被処理液ポンプ24と、空気圧縮機28とを
備えて、被処理液管22を介してPCBと水とを混合し
てエマルションとした被処理液を反応器12に送入し、
かつ、空気送入管26及び被処理液管22を介して酸化
剤として空気を被処理液と共に反応器12に送入する。
図示しないが、PCB貯槽のPCBと水とを混合・分解
してエマルションを生成するエマルション形成手段があ
り、該手段によって生成したエマルションを貯留するエ
マルション・タンクがあり、このエマルション・タンク
に被処理液管22の一端を連通している。更に、超臨界
水反応装置10は、反応器12から出た直後の処理液管
14に中和急冷部30を備え、注入管31から処理液に
アルカリ水溶液を注入して処理液を温度450℃以下、
好ましくは350℃以下に中和急冷するようになってい
る。
The supercritical water reactor 10 has a supply system for supplying a reactant to be used for the supercritical water reaction to the reactor 12.
A processing target liquid pump 24 whose discharge amount can be adjusted by inverter control or stroke control, and an air compressor 28 are provided. The processing target liquid is mixed with PCB and water through a processing target liquid pipe 22 to form an emulsion. The liquid is fed into the reactor 12,
In addition, air as an oxidant is fed into the reactor 12 together with the liquid to be treated through the air inlet pipe 26 and the liquid pipe 22 to be treated.
Although not shown, there is an emulsion forming means for mixing and decomposing the PCB and water in the PCB storage tank to form an emulsion, and an emulsion tank for storing the emulsion formed by the means is provided. One end of the tube 22 communicates. Further, the supercritical water reactor 10 is provided with a neutralization quenching unit 30 in the processing liquid pipe 14 immediately after exiting from the reactor 12, and an alkaline aqueous solution is injected into the processing liquid from the injection pipe 31 to bring the processing liquid to a temperature of 450 ° C. Less than,
Preferably, it is neutralized and rapidly cooled to 350 ° C. or less.

【0020】また、超臨界水反応装置10は、被処理液
の送入流量を調整することにより、反応器12内の反応
温度を例えば550℃に制御する温度制御装置32を備
えている。温度制御装置32は、反応器12内の温度を
計測する温度計34を有し、温度計34の温度に基づい
て被処理液ポンプ24の吐出量を調節して被処理液の出
口温度を調整して、反応温度を550℃以上650℃以
下の範囲の設定温度に制御する。超臨界水反応装置10
では、反応温度を従来の反応温度より高い550℃以上
650℃以下の範囲に設定することにより、処理液中の
PCB濃度が0.003mg/l以下になるように、被
処理液を処理することができる。
The supercritical water reactor 10 is provided with a temperature controller 32 for controlling the reaction temperature in the reactor 12 to, for example, 550 ° C. by adjusting the flow rate of the liquid to be treated. The temperature control device 32 has a thermometer 34 for measuring the temperature inside the reactor 12, and adjusts the discharge amount of the liquid to be treated pump 24 based on the temperature of the thermometer 34 to adjust the outlet temperature of the liquid to be treated. Then, the reaction temperature is controlled to a set temperature in a range of 550 ° C. or more and 650 ° C. or less. Supercritical water reactor 10
Then, by setting the reaction temperature in the range of 550 ° C. or more and 650 ° C. or less, which is higher than the conventional reaction temperature, the liquid to be treated is treated so that the PCB concentration in the treatment liquid becomes 0.003 mg / l or less. Can be.

【0021】また、超臨界水反応装置10は、気液分離
器20の下流に超臨界水反応の後処理装置36を備えて
いる。後処置装置36は、気液分離器20で分離された
ガス成分及び液体成分中のPCBを吸着する吸着手段
と、吸着器に有機溶媒を供給する有機溶媒供給手段と、
吸着器から流出した廃有機溶媒を反応器12に送入する
廃有機溶媒送入手段と、シーケンス制御装置とを有す
る。吸着手段は、気液分離器20の上部及び下部に接続
されたガス流出管38及び液体流出管40に、それぞ
れ、並列に接続された2個の吸着器42A、B及び2個
の吸着器44A、Bから構成される。
Further, the supercritical water reactor 10 has a post-treatment device 36 for the supercritical water reaction downstream of the gas-liquid separator 20. The post-treatment device 36 includes an adsorption unit that adsorbs the PCB in the gas component and the liquid component separated by the gas-liquid separator 20, an organic solvent supply unit that supplies an organic solvent to the adsorber,
It has a waste organic solvent feeding means for feeding the waste organic solvent flowing out of the adsorber to the reactor 12, and a sequence control device. The adsorbing means includes two adsorbers 42A and 42B and two adsorbers 44A connected in parallel to the gas outlet pipe 38 and the liquid outlet pipe 40 connected to the upper and lower parts of the gas-liquid separator 20, respectively. , B.

【0022】吸着器42A、B及び吸着器44A、Bの
各々には、それぞれ、有機溶媒供給手段として、有機溶
媒を供給する有機溶媒管46A、B及び48A、Bが、
また廃有機溶媒送入手段として、廃有機溶媒管50A、
B及び52A、Bが接続されている。廃有機溶媒管50
A、B及び52A、Bは、合流して廃有機溶媒管50と
なって、水とエマルションを生成する前のPCB貯槽5
7に接続されている。
In each of the adsorbers 42A, B and the adsorbers 44A, B, organic solvent pipes 46A, B and 48A, B for supplying an organic solvent are provided as organic solvent supply means, respectively.
Further, as a waste organic solvent feeding means, a waste organic solvent pipe 50A,
B and 52A, B are connected. Waste organic solvent pipe 50
A and B and 52A and B are combined into a waste organic solvent pipe 50, and the PCB storage tank 5 before producing water and an emulsion.
7 is connected.

【0023】吸着器42A、Bの入口管及び出口管、吸
着器44A、Bの入口管及び出口管、有機溶媒管46
A、B及び48A、B、並びに廃有機溶媒管50A、B
及び52A、Bには、それぞれ、シーケンス制御装置5
4によって開閉する自動開閉弁が設けてある。シーケン
ス制御装置54は、吸着器42A、Bの入口管及び出口
管、有機溶媒管46A、B、並びに廃有機溶媒管50
A、Bに設けた自動開閉弁を制御して、超臨界水反応装
置10の運転中、吸着器42A、Bのいずれか一方が吸
着工程に維持され、他方が脱着工程に維持されているよ
うにシーケンス制御する。また、シーケンス制御装置5
4は、吸着器44A、Bの入口管及び出口管、有機溶媒
管48A、B及び廃有機溶媒管52A、Bに設けた自動
開閉弁を制御して、超臨界水反応装置10の運転中、吸
着器44A、Bのいずれか一方が吸着工程に維持され、
他方が脱着工程に維持されているようにシーケンス制御
する。
The inlet and outlet pipes of the adsorbers 42A and 42B, the inlet and outlet pipes of the adsorbers 44A and 44B, and the organic solvent pipe 46
A, B and 48A, B and waste organic solvent tubes 50A, B
And 52A and 52B respectively include the sequence controller 5
An automatic on-off valve that opens and closes according to 4 is provided. The sequence control device 54 includes an inlet pipe and an outlet pipe of the adsorbers 42A, B, the organic solvent pipes 46A, B, and a waste organic solvent pipe 50.
By controlling the automatic opening / closing valves provided in A and B, during operation of the supercritical water reactor 10, one of the adsorbers 42A and B is maintained in the adsorption step, and the other is maintained in the desorption step. Sequence control. In addition, the sequence control device 5
4 controls the automatic on / off valves provided on the inlet pipe and the outlet pipe of the adsorbers 44A, B, the organic solvent pipes 48A, B and the waste organic solvent pipes 52A, B, during the operation of the supercritical water reactor 10, One of the adsorbers 44A, B is maintained in the adsorption step,
Sequence control is performed so that the other is maintained in the desorption process.

【0024】また、吸着器42、44の上流及び下流に
は、PCB濃度を測定するために、前述の固相抽出法に
よる分析計56A〜Dが設けてある。そして、図示しな
いが、分析計56A〜Dで使用した廃液を廃有機溶媒管
50あるいは別配管を用いて、PCB貯槽に接続されて
いる。
Further, upstream and downstream of the adsorbers 42 and 44, analyzers 56A to 56D by the above-described solid phase extraction method are provided for measuring the PCB concentration. Although not shown, the waste liquid used in the analyzers 56A to 56D is connected to the PCB storage tank using the waste organic solvent pipe 50 or another pipe.

【0025】本実施形態例では、分析計56A、CがP
CB濃度を分析するのに要する時間、例えば2時間の間
に吸着器42、44を流れる処理液のガス成分及び液体
成分にそれぞれ含まれる推定最大PCB量を吸着できる
量の吸着剤を吸着器42、44に充填する。これによ
り、予測できない条件変動により、万一、反応器12か
ら流出する処理液のPCB濃度が0.003mg/lを
越える事態になっても、吸着器42、44によりPCB
が完全に吸着、除去されるので、外部に流出するガス成
分及び液体成分中のPCB濃度が0.003mg/lを
越えるようなことにはならない。尚、分析計56B、D
は最終流出ガスあるいは流出液のPCB濃度のモニター
用である。
In this embodiment, the analyzers 56A and 56A are P
The amount of adsorbent capable of adsorbing the estimated maximum PCB amount contained in the gas component and the liquid component of the processing liquid flowing through the adsorbers 42 and 44 during the time required for analyzing the CB concentration, for example, two hours, is set in the adsorber 42 , 44. Thus, even if the PCB concentration of the processing solution flowing out of the reactor 12 exceeds 0.003 mg / l due to unpredictable condition fluctuation, the PCBs are adsorbed by the adsorbers 42 and 44.
Is completely adsorbed and removed, so that the PCB concentration in the gas component and the liquid component flowing out does not exceed 0.003 mg / l. The analyzer 56B, D
Is for monitoring the PCB concentration of the final effluent gas or effluent.

【0026】更には、吸着器42、44の吸着剤層から
脱着させたPCBを含む廃有機溶媒は、PCB貯槽を介
して反応器12で再処理されるので、PCBが吸着剤と
共に外部に流出するようなことは生じない。また、吸着
剤中のPCBが有機溶媒によって脱着されているので、
吸着剤にはPCBが含まれていない。よって、吸着剤の
能力が低下した際においても、吸着剤を焼却処分するこ
とができる。
Furthermore, the waste organic solvent containing PCB desorbed from the adsorbent layers of the adsorbers 42 and 44 is reprocessed in the reactor 12 via the PCB storage tank, so that the PCB flows out together with the adsorbent to the outside. It does not happen. Also, since the PCB in the adsorbent has been desorbed by the organic solvent,
The adsorbent does not contain PCB. Therefore, even when the capacity of the adsorbent decreases, the adsorbent can be incinerated.

【0027】本実施形態例では、後処理装置36を気液
分離器20の下流に設けているが、これに限らず、気液
分離器20の上流、例えば冷却器16と圧力制御弁18
との間に設けることもできる。この場合には、ガス成分
中のPCBを吸着する吸着器42及びそれに関する有機
溶媒関係の設備は必要なく、吸着器44A、B、及び吸
着器44A、Bに有機溶媒を供給する手段、及び吸着器
44A、Bから流出した廃有機溶媒を反応器12に送入
する手段のみを設けることになるので、吸着器の数を少
なくして、コストを低下させることができる。
In this embodiment, the post-processing device 36 is provided downstream of the gas-liquid separator 20. However, the present invention is not limited to this. For example, the cooling device 16 and the pressure control valve 18 are provided upstream of the gas-liquid separator 20.
Can also be provided between. In this case, there is no need for the adsorber 42 for adsorbing the PCB in the gas component and the related equipment related to the organic solvent, and a means for supplying the organic solvent to the adsorbers 44A and 44B and the adsorbers 44A and 44B. Since only means for feeding the waste organic solvent flowing out of the reactors 44A and 44B to the reactor 12 is provided, the number of adsorbers can be reduced and the cost can be reduced.

【0028】また、本実施形態例のように、複数個の吸
着器を並列に設けて、シーケンス制御することは、必ず
しも必要ではなく、吸着器の吸着容量を十分に大きくし
ておくことにより、例えば分析計56の所要分析時間中
に流れる処理液に含まれる推定最大PCB量を吸着でき
る吸着容量にしておくことにより、1個の吸着器のみを
設けても良い。つまり、常時は、処理液のPCB濃度が
0.003mg/l以下であって、極めて低濃度である
から、吸着器が十分に大きな吸着容量を有する限り、超
臨界水反応装置の運転中に吸着剤の活性が低下するよう
なことは生じないからである。
It is not always necessary to perform a sequence control by providing a plurality of adsorbers in parallel as in the present embodiment, and it is possible to increase the adsorbing capacity of the adsorber by making it sufficiently large. For example, only one adsorber may be provided by setting an adsorption capacity capable of adsorbing the estimated maximum PCB amount contained in the processing solution flowing during the required analysis time of the analyzer 56. That is, the concentration of PCB in the processing solution is always 0.003 mg / l or less, which is extremely low. Therefore, as long as the adsorber has a sufficiently large adsorption capacity, adsorption during the operation of the supercritical water reactor is performed. This is because the activity of the agent does not decrease.

【0029】[0029]

【発明の効果】本発明によれば、処理液と接触して処理
液中の残存有機物を吸着する吸着剤層を有する吸着手段
と、有機溶媒を吸着剤層に流入させ、吸着剤層を通過さ
せた後、有機物を含む廃有機溶媒として流出させる有機
溶媒供給手段と、廃有機溶媒を被処理液に混合して、反
応器に送入させる廃有機溶媒送入手段とを超臨界水反応
装置に備える。本発明では、吸着手段により有機物を完
全に吸着、除去することができるので、例えばPCB等
を超臨界水酸化処理するような場合、安全性をより向上
させることができる。
According to the present invention, an adsorbing means having an adsorbent layer for adsorbing residual organic matter in the processing liquid by contacting the processing liquid, an organic solvent flowing into the adsorbent layer, and passing through the adsorbent layer After that, a supercritical water reactor is provided with an organic solvent supply means for flowing out as a waste organic solvent containing organic matter, and a waste organic solvent supply means for mixing the waste organic solvent with the liquid to be treated and feeding the mixture into the reactor. Prepare for. In the present invention, since the organic substance can be completely adsorbed and removed by the adsorbing means, the safety can be further improved when, for example, PCB or the like is subjected to supercritical hydroxylation treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例の超臨界水反応装置の構成を示すフ
ローシートである。
FIG. 1 is a flow sheet showing a configuration of a supercritical water reactor of an embodiment.

【図2】従来の超臨界水反応装置の構成を示すフローシ
ートである。
FIG. 2 is a flow sheet showing a configuration of a conventional supercritical water reactor.

【符号の説明】[Explanation of symbols]

10 実施形態例の超臨界水反応装置 12 反応器 14 処理液管 16 冷却器 18 圧力制御弁 20 気液分離器 22 被処理液管 24 被処理液ポンプ 26 空気送入管 28 空気圧縮機 30 中和急冷部 31 注入管 32 温度制御装置 34 温度計 36 後処理装置 38 ガス流出管 40 液体流出管 42、44 吸着器 46、48 有機溶媒管 50、52 廃有機溶媒管 54 シーケンス制御装置 56 分析計 57 PCB貯槽 60 従来の超臨界水反応装置 62 反応器 64 処理液管 66 冷却器 68 圧力制御弁 70 気液分離器 74 被処理液ポンプ 76 空気圧縮機 78 被処理液管 80 空気送入管 82 中和急冷部 84 注入管 86 補給水管 Reference Signs List 10 Supercritical water reactor of embodiment example 12 Reactor 14 Treatment liquid pipe 16 Cooler 18 Pressure control valve 20 Gas-liquid separator 22 Liquid pipe to be treated 24 Liquid pump to be treated 26 Air inlet pipe 28 Air compressor 30 Medium Warm quenching unit 31 Injection pipe 32 Temperature controller 34 Thermometer 36 Post-processing device 38 Gas outlet pipe 40 Liquid outlet pipe 42, 44 Adsorber 46, 48 Organic solvent pipe 50, 52 Waste organic solvent pipe 54 Sequence controller 56 Analyzer 57 PCB storage tank 60 Conventional supercritical water reactor 62 Reactor 64 Processing liquid pipe 66 Cooler 68 Pressure control valve 70 Gas-liquid separator 74 Liquid pump to be processed 76 Air compressor 78 Liquid pipe to be processed 80 Air inlet pipe 82 Neutralizing and quenching section 84 Injection pipe 86 Make-up water pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/58 C07B 37/06 C07B 35/06 B01D 53/34 ZAB 37/06 134E (72)発明者 安生 徳幸 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 4D002 AA21 AC10 BA04 BA05 CA07 CA13 DA41 DA57 EA01 EA04 EA07 GA03 GB06 HA01 4D024 AA10 AB11 BA02 BA17 CA01 DA01 DA03 DA04 DA05 DA07 DA08 DB20 DB23 DB28 4D038 AA08 AB14 BA02 BA04 BA06 BB01 BB05 BB06 BB13 BB16 4D050 AA12 AB19 BB01 BB20 BC01 BC02 BD02 BD03 BD06 BD08 CA06 CA13 CA20 4H006 AA05 AC13 AC24 BE30 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/58 C07B 37/06 C07B 35/06 B01D 53/34 ZAB 37/06 134E (72) Inventor Yasuko 1-8-2 Shinsuna 1-chome, Koto-ku, Tokyo F-term (reference) in Organo Corporation 4D002 AA21 AC10 BA04 BA05 CA07 CA13 DA41 DA57 EA01 EA04 EA07 GA03 GB06 HA01 4D024 AA10 AB11 BA02 BA17 CA01 DA01 DA03 DA04 DA05 DA07 DA08 DB20 DB23 DB28 4D038 AA08 AB14 BA02 BA04 BA06 BB01 BB05 BB06 BB13 BB16 4D050 AA12 AB19 BB01 BB20 BC01 BC02 BD02 BD03 BD06 BD08 CA06 CA13 CA20 4H006 AA05 AC13 AC24 BE30

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 超臨界水を収容する反応器を備え、有機
物を含有する被処理液を反応器内の超臨界水中に送入
し、酸化剤により有機物を酸化分解し、有機物の含有率
が所定値以下の処理液を流出させる超臨界水反応装置で
あって、後処理装置として、 処理液を流出させる処理液管に設けられ、処理液と接触
して処理液中の残存有機物を吸着する吸着剤層を有する
吸着手段と、 有機溶媒を吸着剤層に流入させ、吸着剤層を通過させ
て、吸着剤に吸着した有機物を脱着させ、有機物を含む
廃有機溶媒として吸着剤層から流出させる有機溶媒供給
手段と、 廃有機溶媒を被処理液に混合して、反応器に送入させる
廃有機溶媒送入手段とを備えていることを特徴とする超
臨界水反応装置。
1. A reactor containing supercritical water is provided, a liquid to be treated containing an organic substance is fed into supercritical water in the reactor, and the organic substance is oxidized and decomposed by an oxidizing agent. A supercritical water reactor that discharges a processing liquid of a predetermined value or less, and is provided as a post-processing device in a processing liquid pipe through which the processing liquid flows, and contacts with the processing liquid to adsorb remaining organic substances in the processing liquid. An adsorption means having an adsorbent layer; an organic solvent flowing into the adsorbent layer, passing through the adsorbent layer, desorbing organic substances adsorbed on the adsorbent, and flowing out of the adsorbent layer as a waste organic solvent containing organic substances. A supercritical water reactor, comprising: an organic solvent supply means; and a waste organic solvent feeding means for mixing a waste organic solvent with a liquid to be treated and feeding the mixed liquid into a reactor.
【請求項2】 吸着手段が、個々に有機溶媒供給手段及
び廃有機溶媒送入手段を有し、かつ処理液中の有機物を
吸着する吸着工程及び吸着剤から有機物を脱着させる脱
着工程を独立して行うように、処理液管に並列に設けら
れた複数個の吸着器として構成され、 超臨界水反応装置の運転中、少なくとも1個の吸着器が
吸着工程に維持され、他の吸着器の少なくともいずれか
が吸着剤から有機物を脱着させる脱着工程に維持されて
いるようにシーケンス制御する制御装置を備えているこ
とを特徴とする請求項1に記載の超臨界水反応装置。
2. The adsorption means has an organic solvent supply means and a waste organic solvent supply means, respectively, and independently performs an adsorption step for adsorbing organic substances in a treatment liquid and a desorption step for desorbing organic substances from an adsorbent. The supercritical water reactor is configured so that at least one adsorber is maintained in the adsorption step during operation of the supercritical water reactor, 2. The supercritical water reactor according to claim 1, further comprising a control device for performing sequence control so that at least one of them is maintained in a desorption step of desorbing organic substances from the adsorbent.
【請求項3】 超臨界水を収容する反応器を備え、有機
物を含有する被処理液を反応器内の超臨界水中に送入
し、酸化剤により有機物を酸化分解し、有機物の含有率
が所定値以下の処理液を流出させる超臨界水反応装置で
あって、後処理装置として、 処理液管に接続された気液分離器で気液分離された処理
液の液体成分及び気体成分を流出させる液体流出管及び
気体流出管にそれぞれ設けられ、処理液の液体成分又は
気体成分に接触して残存有機物を吸着する吸着剤層を有
する吸着手段と、 有機溶媒を吸着剤層に流入させ、吸着剤層を通過させ
て、吸着剤に吸着した有機物を脱着させ、有機物を含む
廃有機溶媒として吸着剤層から流出させる有機溶媒供給
手段と、 廃有機溶媒を被処理液に混合して、反応器に送入させる
廃有機溶媒送入手段とを備えていることを特徴とする超
臨界水反応装置。
3. A reactor containing supercritical water is provided, and a liquid to be treated containing organic substances is fed into supercritical water in the reactor, and the organic substances are oxidized and decomposed by an oxidizing agent. A supercritical water reactor that discharges a processing liquid of a predetermined value or less, and as a post-processing device, discharges the liquid and gas components of the processing liquid separated by a gas-liquid separator connected to the processing liquid pipe. Adsorbing means having an adsorbent layer provided on the liquid outflow pipe and the gas outflow pipe to be in contact with the liquid component or the gas component of the processing liquid to adsorb the remaining organic matter, and the organic solvent is introduced into the adsorbent layer to adsorb An organic solvent supply means for allowing the organic matter adsorbed on the adsorbent to pass through the agent layer and desorbing the organic matter from the adsorbent layer as a waste organic solvent containing the organic matter; Waste organic solvent feeding means A supercritical water reactor comprising:
【請求項4】 吸着手段が、個々に有機溶媒供給手段及
び廃有機溶媒送入手段を有し、かつ処理液中の有機物を
吸着する吸着工程及び吸着剤から有機物を脱着させる脱
着工程を独立して行うように、液体流出管及び気体流出
管にそれぞれ並列に設けられた複数個の吸着器として構
成され、 超臨界水反応装置の運転中、少なくとも1個の吸着器が
吸着工程に維持され、他の吸着器の少なくともいずれか
が吸着剤から有機物を脱着させる脱着工程に維持されて
いるようにシーケンス制御する制御装置を備えているこ
とを特徴とする請求項3に記載の超臨界水反応装置。
4. The adsorption means has an organic solvent supply means and a waste organic solvent supply means, respectively, and independently performs an adsorption step for adsorbing organic substances in the treatment liquid and a desorption step for desorbing organic substances from the adsorbent. As a plurality of adsorbers provided in parallel to the liquid outlet pipe and the gas outlet pipe, respectively, at least one adsorber is maintained in the adsorption step during operation of the supercritical water reactor, 4. The supercritical water reactor according to claim 3, wherein at least one of the other adsorbers is provided with a controller for performing sequence control so as to be maintained in a desorption step of desorbing organic substances from the adsorbent. .
【請求項5】 処理液中、処理液の液体成分中、及び処
理液の気体成分中の少なくともいずれかの残存有機物の
濃度を分析する分析計を備え、 分析計で使用した廃液を廃有機溶媒送入手段によって反
応器に送入するようにしたことを特徴とする請求項1か
ら4のうちのいずれか1項に記載の超臨界水反応装置。
5. An analyzer for analyzing the concentration of at least one of remaining organic substances in a processing solution, a liquid component of the processing solution, and a gas component of the processing solution, wherein a waste liquid used in the analyzer is used as a waste organic solvent. The supercritical water reactor according to any one of claims 1 to 4, wherein the reactor is fed into the reactor by feeding means.
JP2000286400A 2000-09-21 2000-09-21 Supercritical water reaction apparatus Pending JP2002096080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000286400A JP2002096080A (en) 2000-09-21 2000-09-21 Supercritical water reaction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000286400A JP2002096080A (en) 2000-09-21 2000-09-21 Supercritical water reaction apparatus

Publications (1)

Publication Number Publication Date
JP2002096080A true JP2002096080A (en) 2002-04-02

Family

ID=18770323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000286400A Pending JP2002096080A (en) 2000-09-21 2000-09-21 Supercritical water reaction apparatus

Country Status (1)

Country Link
JP (1) JP2002096080A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057278A (en) * 2020-08-03 2022-02-18 中国石油化工股份有限公司 Waste alkali liquid treatment device and method
CN114921257A (en) * 2022-07-14 2022-08-19 太原理工大学 Method for improving quality of oil shale pyrolysis oil through deep pyrolysis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057278A (en) * 2020-08-03 2022-02-18 中国石油化工股份有限公司 Waste alkali liquid treatment device and method
CN114057278B (en) * 2020-08-03 2022-09-20 中国石油化工股份有限公司 Waste alkali liquid treatment device and method
CN114921257A (en) * 2022-07-14 2022-08-19 太原理工大学 Method for improving quality of oil shale pyrolysis oil through deep pyrolysis
CN114921257B (en) * 2022-07-14 2022-11-01 太原理工大学 Method for improving quality of oil shale pyrolysis oil through deep pyrolysis

Similar Documents

Publication Publication Date Title
CA1166654A (en) Method of pcb disposal and apparatus therefor
NO301706B1 (en) Process for treating contaminated water with ozone
US5602297A (en) Multistage double closed-loop process for waste decontamination
JP2009056380A (en) Method for discharging, recovering and treating volatile organic compound, and method and apparatus for cleaning the inside of tank container
JP2002096080A (en) Supercritical water reaction apparatus
JP3649572B2 (en) PCB decomposition method and PCB decomposition apparatus
JPH0952015A (en) Solvent treatment apparatus and method therefor
JP2008029967A (en) Method and apparatus for treating contaminants
Ghaly et al. Aromatic compounds degradation in water by using ozone and AOPS. A comparative study. O-Nitrotoluene as a model substrate
GB2295101A (en) Process for the removal of halogenated organic compounds from air streams
KR100827568B1 (en) Apparatus for recovering volatile organic compounds
JP2000140576A (en) System for making fluorogas-containing mixture harmless
AU2022207105A1 (en) Hydrothermal system for treatment of adsorbent regeneration byproducts
JP2001321785A (en) Method for treating dioxins in liquid
JP2004098014A (en) Method for treating gas containing volatile organic compound
KR20120085463A (en) Purification method for contaminated soil using subcritical water
AU2020202765A1 (en) Decontamination Process
JP2002306948A (en) Method for discharging gas from reactor
JP2003073305A (en) Device for hydrothermal reaction
JP3686778B2 (en) Operation method of supercritical water reactor
JPH09314155A (en) Method and apparatus for oxidizing supercritical water
Van Craeynest et al. Removal of trichloroethylene from waste gases via the peroxone process
JP2001047070A (en) Supercritical water reaction apparatus
JP2014108408A (en) Dehydration treatment apparatus for pcb contaminated sludge or residues, and pcb processing system using the same
JP2002233746A (en) Supercritical water reaction device