JP2002093425A - Catalyst for air cell and manufacturing method thereof - Google Patents

Catalyst for air cell and manufacturing method thereof

Info

Publication number
JP2002093425A
JP2002093425A JP2000280317A JP2000280317A JP2002093425A JP 2002093425 A JP2002093425 A JP 2002093425A JP 2000280317 A JP2000280317 A JP 2000280317A JP 2000280317 A JP2000280317 A JP 2000280317A JP 2002093425 A JP2002093425 A JP 2002093425A
Authority
JP
Japan
Prior art keywords
manganese
catalyst
solution
air
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000280317A
Other languages
Japanese (ja)
Inventor
Nobuharu Koshiba
信晴 小柴
Kenichi Nakatsu
研一 仲津
Tatsuya Nakamura
龍哉 中村
Mitsuaki Hataya
光昭 畑谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Panasonic Holdings Corp
Original Assignee
Toda Kogyo Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp, Matsushita Electric Industrial Co Ltd filed Critical Toda Kogyo Corp
Priority to JP2000280317A priority Critical patent/JP2002093425A/en
Publication of JP2002093425A publication Critical patent/JP2002093425A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst producing an electrode which generates improved maintaining voltage with a large current of order of 10 mA/cm2, by improving MnOx (x=4/3 to 8/5). SOLUTION: As the catalyst, MnOx (x=4/3 to 8/5) having an average particle size <=100 nm, obtained by thermally treating a complete solid solution of γ-Mn2O3 and γ-Mn3O4 in ultrafine particle synthesized by a solution method is used. A water solution of manganese salt and an excessive alkaline water solution are reacted to obtain a manganese hydroxide suspension, which is heated at 40 to 80 deg.C, and manganese ions are oxidized by blowing air into the suspension. Thus, the complete solid solution of γ-Mn2O3 and γ-Mn3O4 in ultrafine particles having an average particle size <=100 nm. Then, this complete solid solution is thermally treated at 350 to 500 deg.C to obtain manganese oxide represented in a formula MnOx (x=4/3 to 8/5) in ultrafine particles having average particle size <= primary particle 100 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気(酸素)燃料
電池、ボタン型空気電池などに用いられる空気極及びそ
の触媒の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air electrode used for an air (oxygen) fuel cell, a button type air cell, and the like, and a method for producing a catalyst thereof.

【0002】[0002]

【従来の技術】従来、空気電池の触媒物質としては種々
のものが検討されている。白金族元素や銀などの貴金属
を活性炭やカーボンブラックに析出させたもの、活性炭
と金属酸化物とを混合させたもの、さらには金属フタロ
シアニンとカーボン粉末との混合物あるいはそれらの熱
処理品など数多く検討されている。一般に白金族元素や
銀などの触媒効果は大きいのであるが、ボタン型空気電
池のような一次電池では、空気極の再生使用は困難なこ
とから、上記のような貴金属触媒はたいへん高価なもの
となる。このため安価な触媒の一つとしてマンガン酸化
物が過去から試みられている。その中でも特公平3−6
9145号公報に見られるように、Mn58は比較的す
ぐれたマンガン酸化物触媒として実用化されている。
2. Description of the Related Art Conventionally, various catalyst materials for air batteries have been studied. Numerous studies have been conducted on such materials as precious metals such as platinum group elements and silver deposited on activated carbon or carbon black, mixtures of activated carbon and metal oxides, and mixtures of metal phthalocyanine and carbon powder or heat-treated products thereof. ing. In general, the catalytic effect of platinum group elements and silver is large, but in primary batteries such as button-type air batteries, it is difficult to recycle the air electrode, so the precious metal catalysts described above are very expensive. Become. For this reason, manganese oxide has been tried as one of the inexpensive catalysts in the past. Above all, 3-6
As seen in 9145, Mn 5 O 8 has been put to practical use as a relatively excellent manganese oxide catalyst.

【0003】[0003]

【発明が解決しようとする課題】Mn58触媒は、単独
組成では存在しにくい、Mn34 などが混晶した形態
をとり、MnOx(x=4/3〜8/5)と表される。
そして、このマンガン触媒は、一般的には活性炭および
撥水材と混合して用いられる。このMnOx(x=4/
3〜8/5)触媒を用いた電極は、取り出せる電流が1
0mA/cm2のオーダーと大きい。しかし、分極も大
きく、維持電圧が低下してしまい、昨今の高性能な電子
機器の電源としては必ずしも満足すべきものではなかっ
た。本発明は、このMnOx(x=4/3〜8/5)を
改良し、さらに10mA/cm2のオーダーの大電流で
維持電圧の向上した電極を与える触媒を提供することを
目的とする。
The Mn 5 O 8 catalyst takes the form of a mixed crystal of Mn 3 O 4 and the like, which is unlikely to exist in a single composition, and has a MnO x (x = 4/3 to 8/5). expressed.
This manganese catalyst is generally used in a mixture with activated carbon and a water-repellent material. This MnO x (x = 4 /
3-8 / 5) An electrode using a catalyst has a drawable current of 1
It is as large as 0 mA / cm 2 . However, the polarization is large, and the maintenance voltage is lowered, so that it has not always been satisfactory as a power source of a recent high-performance electronic device. An object of the present invention is to provide a catalyst which improves MnO x (x = 4/3 to 8/5) and further provides an electrode having an improved maintenance voltage at a large current of the order of 10 mA / cm 2. .

【0004】[0004]

【課題を解決するための手段】本発明は、溶液法で合成
した超微粒子状のγ−Mn23とγ−Mn34の全率固
溶体を熱処理することにより得た平均粒子径100nm
以下のMnOx(x=4/3〜8/5)を触媒として用
いるものである。すなわち、本発明の空気電池用触媒
は、主に式MnOx(x=4/3〜8/5)で表される
マンガン酸化物からなり、その一次粒子の平均粒径が1
00nm以下の超微粒子であることを特徴とする。超微
粒子の前記マンガン酸化物は、活性炭またはアセチレン
ブラックなどのカーボンの粒子に担持されていることが
好ましい。
Means for Solving the Problems The present invention is directed to an ultrafine particulate γ-Mn 2 O 3 and γ-Mn 3 O 4 solid solution synthesized by a solution method, the average particle diameter of which is 100 nm.
The following MnO x (x = 4/3 to 8/5) is used as a catalyst. That is, the catalyst for an air battery of the present invention mainly comprises a manganese oxide represented by the formula MnO x (x = 4/3 to 8/5), and the primary particles have an average particle size of 1
It is characterized by being ultrafine particles of not more than 00 nm. The ultrafine manganese oxide is preferably supported on carbon particles such as activated carbon or acetylene black.

【0005】本発明の空気電池用触媒の製造方法は、γ
−Mn23とγ−Mn34の全率固溶体を350〜50
0℃の温度で熱処理することにより、主に式Mn58
表されるマンガン酸化物MnOx(x=4/3〜8/
5)からなり、その一次粒子の平均粒径が100nm以
下の超微粒子を得る工程を有することを特徴とする。こ
こにおいて、前記熱処理の雰囲気は空気または酸素雰囲
気であるのが好ましい。前記のγ−Mn23とγ−Mn
34の全率固溶体は、マンガン塩の水溶液と過剰のアル
カリ水溶液を反応させて水酸化マンガン懸濁液を得る工
程、および得られた水酸化マンガン懸濁液を40〜80
℃に加熱し、この懸濁液中に空気を吹き込んでマンガン
イオンを酸化する工程により、平均粒子径が100nm
以下の超微粒子状のものとして得ることができる。ま
た、このようにして得られる本発明のMnOx(x=4
/3〜8/5)は製造直後においてはMn58が主体で
あるが、アルカリ液などに浸潤して放置すると、Mn3
4にかなり移行する場合がある。
The method for producing a catalyst for an air battery according to the present invention comprises the steps of:
-Mn 2 O 3 and γ-Mn 3 O 4 at 350-50
By heat treatment at a temperature of 0 ° C., predominantly manganese oxide MnO x represented by the formula Mn 5 O 8 (x = 4 / 3~8 /
5), wherein a step of obtaining ultrafine particles having an average primary particle diameter of 100 nm or less is provided. Here, the atmosphere for the heat treatment is preferably an air or oxygen atmosphere. Γ-Mn 2 O 3 and γ-Mn
The total solid solution of 3 O 4 is obtained by reacting an aqueous solution of a manganese salt with an excess of an aqueous alkali solution to obtain a manganese hydroxide suspension;
° C, and air was blown into the suspension to oxidize manganese ions.
It can be obtained as the following ultrafine particles. The MnO x (x = 4) of the present invention thus obtained.
/ 3-8 / 5) is immediately after preparation are principal Mn 5 O 8, when left infiltrating alkali solution, Mn 3
There may be a significant shift to O 4 .

【0006】[0006]

【発明の実施の形態】Mn58自体は、特公平3−69
145号公報で開示され、公知である。これまでの製造
法によると、得られるMn58の形状は針状で、短径、
長径ともにμmオーダーであり、nmオーダーの超微粒
子のサイズのものは存在しなかった。本発明のMnOx
(x=4/3〜8/5)は、図1に示すように、TEM
(透過型電子顕微鏡)撮影では粒状の形状が観察され、
その一次粒子の大きさは平均粒径は50nmより小さ
く、バラツキを考慮しても、100nm以下である。ま
た、比表面積は平均30m2/g以上と大きく、バラツ
キを考慮しても20m2/g以上である。nmオーダー
の超微粒子になるとそのもののもつ本質的な特性が変わ
ってしまうと言われることがあるが、この場合にはMn
x(x=4/3〜8/5)の比表面積を大きく向上さ
せることができ、効率よく触媒作用を発揮させることが
できる。また、併用する活性炭の大きさは通常数μmか
ら数100μm程度と大きいので、一個一個の活性炭粒
子の表面層を覆うようにMnOx(x=4/3〜8/
5)を担持させることが可能となる。このような方法を
とると、導電性のほとんどないMnOx(x=4/3〜
8/5)であってもかなりの部分が活性炭に接触してい
るので、導電性が良好となり、触媒効果をいっそう引き
出すことができる。このようにMnOx(x=4/3〜
8/5)を担持させた活性炭粒子をフッ素樹脂粒子と混
練して極板とされた状態では、緻密な固体−液体−気体
の3相界面が形成されやすくなり、極板全体において触
媒機能を有効に発揮させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Mn 5 O 8 itself is
No. 145, which is publicly known. According to the conventional manufacturing method, the shape of the obtained Mn 5 O 8 is acicular, short diameter,
Both major diameters were on the order of μm, and there were no ultrafine particles on the order of nm. MnO x of the present invention
(X = 4/3 to 8/5), as shown in FIG.
(Transmission electron microscope) In photographing, a granular shape is observed,
The size of the primary particles has an average particle size of less than 50 nm, and is 100 nm or less even when variations are considered. Further, the specific surface area is as large as 30 m 2 / g or more on average, and is 20 m 2 / g or more even when variations are considered. It is sometimes said that the ultra-fine particles of the order of nanometers change the essential characteristics of the ultrafine particles.
The specific surface area of O x (x = 4/3 to 8/5) can be greatly improved, and the catalytic action can be efficiently exhibited. Further, the size of the activated carbon used in combination is usually as large as several μm to several hundred μm, so that MnO x (x = 4/3 to 8 /
5) can be carried. According to such a method, MnO x having almost no conductivity (x = 4 / 3−
Even in the case of (8/5), since a considerable part is in contact with the activated carbon, the conductivity becomes good, and the catalytic effect can be further brought out. Thus, MnO x (x = 4 / 3-
In the state where the activated carbon particles carrying 8/5) are kneaded with the fluororesin particles to form an electrode, a dense solid-liquid-gas three-phase interface is easily formed, and the entire electrode plate has a catalytic function. It can be used effectively.

【0007】具体的な電気化学特性としては、触媒活性
点の大幅な増加により、大電流が取り出しやすくなり、
従来では10mA/cm2しか取り出せなかったのに対
して、数10mA/cm2オーダーで取り出せるように
なる。さらには数mA/cm2の放電であっても維持電
圧を向上させることができる。ボタン型空気亜鉛電池に
おいては、通常正極ケースに小さな孔をあけておき、そ
こから空気が電池内に取り入れられる。電池内に取り入
れられた空気中の酸素は、空気極の触媒によってイオン
化され、エネルギーに変換される。この種の空気電池
は、通常使用されるまでシール紙によって空気取り入れ
口が閉鎖され、空気が電池内に流入しないようになって
いる。このようなシール状態では、触媒は活性化されて
おらず、電圧も1V以下と低い状態となっている。そし
て、シール紙を剥がすことによって、空気が流入し、触
媒が活性化されることによって電池電圧も上昇し、1.
4V台にまで達する。電池電圧が1.4V付近になって
はじめて使用可能となる。このように電池電圧が所定値
に到達するまでのスピードが問題であり、早ければ早い
ほどよい。この電圧の立ち上がり速度についても、本発
明の触媒によれば、活性点の増加により早めることがで
きることがわかった。
As specific electrochemical characteristics, a large increase in the number of catalytic active sites makes it easier to extract a large current.
Conventionally, only 10 mA / cm 2 could be taken out, but it can be taken out in the order of several tens mA / cm 2 . Further, the sustain voltage can be improved even with a discharge of several mA / cm 2 . In a button-type zinc-air battery, a small hole is usually formed in the positive electrode case, and air is taken into the battery from the hole. Oxygen in the air taken into the battery is ionized by the catalyst of the air electrode and converted into energy. In this type of air battery, the air intake is closed by a seal paper until it is normally used so that air does not flow into the battery. In such a sealed state, the catalyst is not activated and the voltage is as low as 1 V or less. Then, by peeling off the seal paper, air flows in, and the catalyst is activated, so that the battery voltage also increases.
It reaches the 4V level. It can be used only when the battery voltage is around 1.4V. Thus, the speed at which the battery voltage reaches the predetermined value is a problem, and the faster the better, the better. According to the catalyst of the present invention, it was also found that the rising speed of the voltage can be increased by increasing the active points.

【0008】本発明の超微粒子状のMnOx(x=4/
3〜8/5)を製造する方法としては、まず、マンガン
塩の水溶液と過剰のアルカリ水溶液の反応によって水酸
化マンガン懸濁液を得る。次に、この水酸化マンガン懸
濁液を40〜80℃に加熱し、この懸濁液中に空気を吹
き込むことによって、マンガンイオンを酸化し、平均粒
子径が100nm以下の超微粒子状のγ−Mn23とγ
−Mn34の全率固溶体を得る。前記の水酸化マンガン
懸濁液を加熱する温度が40℃未満であると、他の化合
物や粒子の大きなものが生成し、超微粒子にならない。
また、加熱温度が80℃を越えると、他の化合物が生成
する。次に、上記で得られた全率固溶体を酸素雰囲気も
しくは空気雰囲気中において、350〜500℃の温度
で熱処理することによって超微粒子状のMnOx(x=
4/3〜8/5)を得ることができる。熱処理の時間
は、1時間程度でもよいが、2時間以上であることが好
ましい。しかし、熱処理を長時間実施しても効果は変わ
らない。
The ultrafine MnO x (x = 4 /
As a method for producing 3-8 / 5), first, a manganese hydroxide suspension is obtained by reacting an aqueous solution of a manganese salt with an excess aqueous alkali solution. Next, the manganese hydroxide suspension is heated to 40 to 80 ° C., and air is blown into the suspension to oxidize manganese ions, and to obtain ultrafine γ-particles having an average particle diameter of 100 nm or less. Mn 2 O 3 and γ
Obtaining a complete solid solution of -mn 3 O 4. If the temperature at which the manganese hydroxide suspension is heated is lower than 40 ° C., other compounds and large particles are generated, and the particles do not become ultrafine particles.
When the heating temperature exceeds 80 ° C., other compounds are formed. Next, the solid solution obtained above is heat-treated at a temperature of 350 to 500 ° C. in an oxygen atmosphere or an air atmosphere to form ultrafine MnO x (x =
4/3 to 8/5) can be obtained. The heat treatment time may be about 1 hour, but is preferably 2 hours or more. However, the effect does not change even if the heat treatment is performed for a long time.

【0009】ここに用いるマンガン塩としては、硫酸マ
ンガン、塩化マンガン、あるいは硝酸マンガンなどを用
いることができる。また、アルカリ水溶液としては、水
酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、あ
るいは炭酸カリウムの水溶液などを用いることができ
る。このように水熱法による超微粒子状のγ−Mn23
とγ−Mn34の全率固溶体の合成、およびγ−Mn2
3とγ−Mn34の全率固溶体の適切な熱処理によっ
てはじめて超微粒子状のMnOx(x=4/3〜8/
5)が生成される。これまでこのような生成法はなく、
本発明者らがはじめて明らかにしたものである。なお、
本発明のMnOx(x=4/3〜8/5)の同定につい
ては、特公平3−69145号公報と同じくX線回折
像、および透過型電子顕微鏡写真によってその特徴を確
認することができる。
As the manganese salt used here, manganese sulfate, manganese chloride, manganese nitrate or the like can be used. As the alkaline aqueous solution, an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, or the like can be used. As described above, ultrafine γ-Mn 2 O 3 by the hydrothermal method is used.
Of a total solid solution of γ-Mn 3 O 4 and γ-Mn 2
Only by appropriate heat treatment of a solid solution of the total percentage of O 3 and γ-Mn 3 O 4 , MnO x (x = 4/3 to 8 /
5) is generated. There is no such generation method so far,
This has been clarified for the first time by the present inventors. In addition,
Regarding the identification of MnO x (x = 4/3 to 8/5) of the present invention, its characteristics can be confirmed by an X-ray diffraction image and a transmission electron micrograph as in Japanese Patent Publication No. 3-69145. .

【0010】[0010]

【実施例】以下、本発明の実施例について説明する。 《実施例1》まず、硫酸マンガンの水溶液に過剰の水酸
化ナトリウム水溶液を添加し、十分熟成することによっ
て、アルカリ性の水酸化マンガン懸濁液を得た。これを
50±5℃に加熱し、さらにこの懸濁液中に空気を吹き
込むことによって、マンガンイオンを酸化し、超微粒子
状のγ−Mn23とγ−Mn34の全率固溶体を合成し
た。そして、これを洗浄、乾燥した後、430℃の高温
にて、酸素雰囲気中5時間熱処理することによって、本
発明の超微粒子状のMnOx(x=4/3〜8/5)を
得た。図1は上記のようにして得た超微粒子状のMnO
x(x=4/3〜8/5)の透過型電子顕微鏡写真(T
EM)である。一次粒子の大きさが30〜50nmで分
布していることがよくわかる。
Embodiments of the present invention will be described below. Example 1 First, an excess aqueous solution of sodium hydroxide was added to an aqueous solution of manganese sulfate, and the mixture was aged sufficiently to obtain an alkaline manganese hydroxide suspension. This is heated to 50 ± 5 ° C., and air is further blown into the suspension to oxidize manganese ions, thereby forming a solid solution of ultrafine particles of γ-Mn 2 O 3 and γ-Mn 3 O 4. Was synthesized. Then, after washing and drying, heat treatment was performed at a high temperature of 430 ° C. in an oxygen atmosphere for 5 hours to obtain ultrafine MnO x (x = 4/3 to 8/5) of the present invention. . FIG. 1 shows the ultrafine MnO obtained as described above.
x (x = 4/3 to 8/5) transmission electron micrograph (T
EM). It can be clearly seen that the size of the primary particles is distributed at 30 to 50 nm.

【0011】このMnOx(x=4/3〜8/5)の3
0重量部に、活性炭20重量部、カーボンブラック20
重量部、及びポリ4フッ化エチレンの水性ディスパージ
ョンを固形分として30重量部を混合し、攪拌練合し
た。これを径0.1mmの金属ニッケル線からなる40
メッシュのスクリーンに充填して厚さ0.3mmの触媒
シートを得た。これを300℃にて30分間熱処理をし
てポリ4フッ化エチレンを焼結し、撥水性を強化した。
この触媒シートを直径22.6mmの円板に打ち抜き触
媒層とした。ただし、この場合の有効に働く触媒層の直
径は20mmである。この触媒層1の片面に、これと同
じ大きさで厚さ0.2mmの多孔性ポリ4フッ化エチレ
ン膜からなる撥水膜2を張り合わせて空気極3とした。
The MnO x (x = 4/3 to 8/5) 3
0 parts by weight, activated carbon 20 parts by weight, carbon black 20
Parts by weight and 30 parts by weight of an aqueous dispersion of polytetrafluoroethylene as a solid content were mixed and kneaded with stirring. This is made of a metal nickel wire having a diameter of 0.1 mm.
The resultant was filled in a mesh screen to obtain a catalyst sheet having a thickness of 0.3 mm. This was heat-treated at 300 ° C. for 30 minutes to sinter the polytetrafluoroethylene to enhance the water repellency.
This catalyst sheet was punched into a disk having a diameter of 22.6 mm to form a catalyst layer. However, the diameter of the catalyst layer that works effectively in this case is 20 mm. A water-repellent film 2 made of a porous polytetrafluoroethylene film having the same size and a thickness of 0.2 mm was attached to one surface of the catalyst layer 1 to form an air electrode 3.

【0012】図2は、この空気極3を備えた直径23.
0mm、高さ3.0mmのボタン型空気亜鉛電池を示
す。正極端子を兼ねるニッケルめっきした鋼製のケース
6の底部には、ポリビニルアルコール系合成繊維からな
る不織布9、空気極3および微孔性のセパレータ5が挿
入されている。一方、ガスケット8を周縁に組み合わせ
た負極端子を兼ねる封口板7内に、亜鉛粉末を主とする
負極4を充填し、これを前記のケースに組み合わせ、ケ
ース6の開口部をガスケット8の上面周縁部に折曲する
ことにより、密閉された電池が構成されている。なお、
電解液には水酸化カリウム水溶液を用いた。ケース6の
底に設けた空気取り入れ用の孔6aは、ケース6の底面
に張り付けたシール紙10により密封されている。この
電池をAとする。
FIG. 2 is a view showing a 23.degree.
1 shows a button-type zinc-air battery with a height of 0 mm and a height of 3.0 mm. At the bottom of a nickel-plated steel case 6 also serving as a positive electrode terminal, a nonwoven fabric 9 made of polyvinyl alcohol-based synthetic fiber, an air electrode 3 and a microporous separator 5 are inserted. On the other hand, a sealing plate 7 also serving as a negative electrode terminal in which a gasket 8 is combined with a peripheral edge is filled with a negative electrode 4 mainly composed of zinc powder, and this is combined with the case described above. The sealed battery is formed by bending the battery. In addition,
An aqueous solution of potassium hydroxide was used as an electrolyte. The air intake hole 6 a provided at the bottom of the case 6 is sealed with a seal paper 10 attached to the bottom of the case 6. This battery is designated as A.

【0013】《実施例2》粉末処理機(ホソカワミクロ
ン社製のメカノフージョンシステムAMS)を用い、実
施例1と同じ超微粒子状のMnOx(x=4/3〜8/
5)を活性炭粒子の表面に被覆させた。図3は、MnO
x(x=4/3〜8/5)を被覆した活性炭粒子を模式
的に示す。活性炭粒子11の大きさは数μmのオーダー
に対し、被覆したMnOx(x=4/3〜8/5)12
の層の厚さは数100〜300nmであった。この触媒
を用いた他は実施例1と同様にして電池Bを作製した。
Example 2 Using a powder processing machine (Mechano-Fusion System AMS manufactured by Hosokawa Micron Co., Ltd.), the same ultrafine MnO x (x = 4/3 to 8 /) as in Example 1 was used.
5) was coated on the surface of the activated carbon particles. FIG. 3 shows MnO
The activated carbon particles coated with x (x = 4/3 to 8/5) are schematically shown. The size of the activated carbon particles 11 is on the order of several μm, and the coated MnO x (x = 4/3 to 8/5) 12
The thickness of the layer was several hundreds to 300 nm. A battery B was produced in the same manner as in Example 1 except that this catalyst was used.

【0014】《比較例》比較のためγ−MnOOHを窒
素雰囲気中400℃で熱処理して得た短径1〜3μm、
長径5〜15μmの針状のMn58を用いた他は実施例
1と同様にして電池Zを作製した。
<< Comparative Example >> For comparison, a minor axis of 1-3 μm obtained by heat-treating γ-MnOOH in a nitrogen atmosphere at 400 ° C.
A battery was fabricated Z except for using the needle-like Mn 5 O 8 major axis 5~15μm in the same manner as in Example 1.

【0015】これらの電池について、触媒の有効面積に
対し、5mA/cm2、および10mA/cm2となるよ
うに放電電流値を設定して連続定電流放電試験を実施し
た。放電1時間後における維持電圧を比較した。その結
果を表1に示した。本発明の電池AおよびBは、比較例
の電池Zに比べ、維持電圧がかなり向上している。特
に、電池Bは維持電圧が高い。電池で比較した場合、他
の要因も影響するので、一般的には電極の差は現れにく
い。空気極の単極でモデルセルを構成して比較すると、
さらに顕著に差が出ると思われる。
With respect to these batteries, a continuous constant current discharge test was performed by setting a discharge current value so as to be 5 mA / cm 2 and 10 mA / cm 2 with respect to the effective area of the catalyst. One hour after the discharge, the sustain voltage was compared. The results are shown in Table 1. The batteries A and B of the present invention have a significantly higher maintenance voltage than the battery Z of the comparative example. In particular, battery B has a high maintenance voltage. When compared with batteries, other factors also influence, so that differences in electrodes are generally less likely to appear. Comparing the model cell with a single pole of the air electrode,
It is likely that there will be a marked difference.

【0016】[0016]

【表1】 [Table 1]

【0017】次に、シール紙を剥がしたときの電圧の立
ち上がり速度を比較した。この結果を図4に示す。図4
から明らかなように、本発明の電池は、比較例よりかな
り電圧の立ち上がりが早くなっている。特に電池Bが早
い。これは従来に比べ、触媒の活性点が大幅に増加して
いるためと考えられる。
Next, the rising speed of the voltage when the seal paper was peeled was compared. The result is shown in FIG. FIG.
As is clear from the above, the battery of the present invention has a much faster voltage rise than the comparative example. In particular, the battery B is fast. This is presumably because the active sites of the catalyst have been significantly increased as compared with the conventional case.

【0018】上記の実施例においては、MnOx(x=
4/3〜8/5)を合成する材料としてマンガン塩、お
よびアルカリ水溶液などは各一種類のみを示したが、必
ずしもこれらに限られることはなく、前記に上げた他の
材料を用いることができる。また、γ−Mn23とγ−
Mn34の全率固溶体の熱処理温度も430℃に限られ
ることはなく、350℃から500℃までの範囲で変更
できる。MnOx(x=4/3〜8/5)を活性炭へ担
持させるのに、メカノフージョン法によって活性炭粒子
のほぼ全表面にMnOx(x=4/3〜8/5)を被覆
させたが、例えば、界面活性剤などを用いて粒子同志の
表面親和力を高めて、MnOx(x=4/3〜8/5)
を活性炭粒子に被覆させるなどにより担持させることが
できる。
In the above embodiment, MnO x (x =
As materials for synthesizing 4/3 to 8/5), only one kind of each of the manganese salt and the alkaline aqueous solution is shown, but it is not necessarily limited to these, and other materials mentioned above may be used. it can. Further, γ-Mn 2 O 3 and γ-
The heat treatment temperature of the solid solution of Mn 3 O 4 is not limited to 430 ° C., but can be changed in the range of 350 ° C. to 500 ° C. To support MnO x (x = 4/3 to 8/5) on activated carbon, almost all surfaces of activated carbon particles were coated with MnO x (x = 4/3 to 8/5) by the mechanofusion method. For example, by using a surfactant or the like to increase the surface affinity between particles, MnO x (x = 4/3 to 8/5)
Can be supported by coating activated carbon particles.

【0019】[0019]

【発明の効果】以上のように本発明によれば、超微粒子
状のMnOx(x=4/3〜8/5)を触媒として用い
ることにより、大電流特性に優れるボタン型空気亜鉛電
池を提供することができる。本発明の触媒は、ボタン型
空気亜鉛電池に限らず、燃料電池など空気極を備える電
気化学電池にすべて適用可能である。
As described above, according to the present invention, by using ultrafine MnO x (x = 4/3 to 8/5) as a catalyst, a button-type air zinc battery excellent in large current characteristics can be obtained. Can be provided. The catalyst of the present invention is applicable not only to button-type zinc-air batteries but also to all electrochemical cells having an air electrode such as fuel cells.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の超微粒子状のMnOx(x=
4/3〜8/5)の透過型電子顕微鏡写真を示す。
FIG. 1 is a diagram showing an example of ultrafine MnO x (x =
4/3 to 8/5) shows a transmission electron micrograph.

【図2】本発明の実施例におけるボタン型空気亜鉛電池
の縦断面図である。
FIG. 2 is a vertical sectional view of a button-type zinc-air battery according to an embodiment of the present invention.

【図3】本発明の実施例において超微粒子状のMnOx
(x=4/3〜8/5)を被覆した活性炭粒子の断面を
模式的に示すモデル図である。
FIG. 3 shows an example of ultrafine MnO x in an embodiment of the present invention.
It is a model figure showing typically a section of activated carbon particles which covered (x = 4 / 3-8 / 5).

【図4】シール紙を剥がした時の空気電池の電圧立ち上
がり特性を比較した図である。
FIG. 4 is a diagram comparing the voltage rise characteristics of the air battery when the seal paper is peeled off.

【符号の説明】[Explanation of symbols]

1 触媒層 2 撥水膜 3 空気極 4 負極 5 セパレータ 6 ケース 6a 空気取り入れ用孔 7 封口板 8 ガスケット 9 吸水性紙 10 シール紙 11 活性炭粒子 12 超微粒子MnOx(x=4/3〜8/5)DESCRIPTION OF SYMBOLS 1 Catalyst layer 2 Water-repellent film 3 Air electrode 4 Negative electrode 5 Separator 6 Case 6a Air intake hole 7 Sealing plate 8 Gasket 9 Water-absorbing paper 10 Seal paper 11 Activated carbon particles 12 Ultrafine particles MnO x (x = 4/3 to 8 / 5)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仲津 研一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 中村 龍哉 広島県大竹市明治新開1丁目4番 戸田工 業株式会社創造センター内 (72)発明者 畑谷 光昭 山口県小野田市新沖1丁目1番1号 戸田 工業株式会社小野田開発センター内 Fターム(参考) 5H018 AA01 AA10 AS03 BB01 BB13 BB16 BB17 CC06 DD08 EE07 EE08 EE12 HH01 HH08 5H032 AA01 AS03 AS12 BB02 BB06 BB07 CC13 EE01 EE02 EE03 EE15 EE20 HH04 HH06  ──────────────────────────────────────────────────の Continuing on the front page (72) Kenichi Nakatsu 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Tatsuya Nakamura 1-4-4 Meijishinkai, Otake City, Hiroshima Prefecture Toda Kogyo Inside the company creation center (72) Inventor Mitsuaki Hataya 1-1-1, Shinoki, Onoda-shi, Yamaguchi Prefecture Toda Kogyo Co., Ltd. Onoda Development Center F-term (reference) HH08 5H032 AA01 AS03 AS12 BB02 BB06 BB07 CC13 EE01 EE02 EE03 EE15 EE20 HH04 HH06

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 主に式MnOx(x=4/3〜8/5)
で表されるマンガン酸化物からなり、その一次粒子の平
均粒径が100nm以下の超微粒子であることを特徴と
する空気電池用触媒。
1. Mainly of the formula MnO x (x = 4/3 to 8/5)
Wherein the average particle size of primary particles of the manganese oxide is ultrafine particles of 100 nm or less.
【請求項2】 超微粒子の前記マンガン酸化物が活性炭
またはカーボンの粒子に担持されている請求項1記載の
空気電池用触媒。
2. The catalyst for an air battery according to claim 1, wherein the manganese oxide in ultrafine particles is supported on activated carbon or carbon particles.
【請求項3】 γ−Mn23とγ−Mn34の全率固溶
体を350〜500℃の温度で熱処理することにより、
主に式MnOx(x=4/3〜8/5)で表されるマン
ガン酸化物からなり、その一次粒子の平均粒径が100
nm以下の超微粒子を得る工程を有することを特徴とす
る空気電池用触媒の製造方法。
3. A heat treatment of a solid solution of γ-Mn 2 O 3 and γ-Mn 3 O 4 at a temperature of 350 to 500 ° C.
It is mainly composed of a manganese oxide represented by the formula MnO x (x = 4/3 to 8/5), and its primary particles have an average particle diameter of 100.
A method for producing a catalyst for an air battery, comprising a step of obtaining ultrafine particles having a diameter of not more than nm.
【請求項4】 前記熱処理の雰囲気が空気または酸素雰
囲気である請求項3記載の空気電池用触媒の製造方法。
4. The method for producing an air battery catalyst according to claim 3, wherein the atmosphere for the heat treatment is an air or oxygen atmosphere.
【請求項5】 マンガン塩の水溶液と過剰のアルカリ水
溶液を反応させて水酸化マンガン懸濁液を得る工程、お
よび得られた水酸化マンガン懸濁液を40〜80℃に加
熱し、この懸濁液中に空気を吹き込んでマンガンイオン
を酸化し、平均粒子径が100nm以下の超微粒子状の
γ−Mn23とγ−Mn34の全率固溶体を得る工程を
有する請求項3記載の空気電池用触媒の製造方法。
5. A step of reacting an aqueous solution of a manganese salt with an excess aqueous alkali solution to obtain a manganese hydroxide suspension, and heating the obtained manganese hydroxide suspension to 40 to 80 ° C. 4. A step of blowing air into the liquid to oxidize manganese ions to obtain an ultrafine γ-Mn 2 O 3 and γ-Mn 3 O 4 solid solution having an average particle diameter of 100 nm or less. Of producing a catalyst for an air battery.
【請求項6】 マンガン塩が硫酸マンガン、塩化マンガ
ン、および硝酸マンガンからなる群より選ばれる請求項
5記載の空気電池用触媒の製造方法。
6. The method for producing a catalyst for an air battery according to claim 5, wherein the manganese salt is selected from the group consisting of manganese sulfate, manganese chloride, and manganese nitrate.
【請求項7】 アルカリ水溶液が水酸化ナトリウム、水
酸化カリウム、炭酸ナトリウム、および炭酸カリウムか
らなる群より選ばれる少なくとも1種の化合物の水溶液
である請求項5記載の空気電池用触媒の製造方法。
7. The method according to claim 5, wherein the aqueous alkaline solution is an aqueous solution of at least one compound selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate.
JP2000280317A 2000-09-14 2000-09-14 Catalyst for air cell and manufacturing method thereof Pending JP2002093425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000280317A JP2002093425A (en) 2000-09-14 2000-09-14 Catalyst for air cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000280317A JP2002093425A (en) 2000-09-14 2000-09-14 Catalyst for air cell and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2002093425A true JP2002093425A (en) 2002-03-29

Family

ID=18765179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000280317A Pending JP2002093425A (en) 2000-09-14 2000-09-14 Catalyst for air cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2002093425A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462373B2 (en) 2005-12-21 2008-12-09 Panasonic Corporation Method for producing manganese oxide nanoparticle dispersed material and electrode
JP2009080937A (en) * 2007-09-25 2009-04-16 Toyota Central R&D Labs Inc Air battery
JP2018014258A (en) * 2016-07-21 2018-01-25 シャープ株式会社 Air electrode material, air electrode, metal-air battery, and fuel cell
JP2020161341A (en) * 2019-03-27 2020-10-01 国立大学法人九州工業大学 Manganese oxide/conductive carrier composite and usage thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462373B2 (en) 2005-12-21 2008-12-09 Panasonic Corporation Method for producing manganese oxide nanoparticle dispersed material and electrode
JPWO2007072739A1 (en) * 2005-12-21 2009-05-28 パナソニック株式会社 Manganese oxide nanoparticle dispersion material and electrode manufacturing method
JP2009080937A (en) * 2007-09-25 2009-04-16 Toyota Central R&D Labs Inc Air battery
JP2018014258A (en) * 2016-07-21 2018-01-25 シャープ株式会社 Air electrode material, air electrode, metal-air battery, and fuel cell
CN107645024A (en) * 2016-07-21 2018-01-30 夏普株式会社 Air pole material, air pole, metal-air battery and fuel cell
JP2020161341A (en) * 2019-03-27 2020-10-01 国立大学法人九州工業大学 Manganese oxide/conductive carrier composite and usage thereof
JP7260092B2 (en) 2019-03-27 2023-04-18 国立大学法人九州工業大学 Manganese oxide/conductive carrier composite and use thereof

Similar Documents

Publication Publication Date Title
JP5061458B2 (en) Anode material for non-aqueous electrolyte secondary battery and method for producing the same
KR101647198B1 (en) Heat treatment method for reducing remaining lithium cathode active materials and lithiumsecondary battery using the same, and preparation method thereof
US20030173548A1 (en) Manganese oxide based catalyst and electrode for alkaline electrochemical system and method of its production
JPS59171468A (en) Air pole and manufacture of its catalyzer
KR101395361B1 (en) Method of producing Manganese Oxide nano-wire
JP2003092114A (en) Electrode catalyst body for fuel cell and its manufacturing method
US10770722B2 (en) Method for preparing silicon nanocomposite dispersion using plasma, and anode active material and lithium secondary battery using same
US11489159B2 (en) Method for producing a graphene oxide-based compound for an air electrode of a metal-air battery and associated compound
JPS61158667A (en) Nickel electrode for alkaline battery
JP2003157857A (en) Electrode catalyst body for fuel cell, air electrode for fuel cell using it, and evaluating method of its catalystic activity
JPH11167919A (en) Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usage
JPH111324A (en) Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material
CN110237847B (en) Electrocatalyst, electrode, and preparation method and application thereof
JP3578887B2 (en) Paste type nickel electrode
JP2002093425A (en) Catalyst for air cell and manufacturing method thereof
WO2018006826A1 (en) Composite material wherein manganese oxide surface is coated with metal compound, and preparation method for composite material
Xie et al. Preparation and Electrochemical Characteristics of MnOx–CoTMPP∕ BP Composite Catalyst for Oxygen Reduction Reaction in Alkaline Solution
JP3382646B2 (en) Oxygen catalyst electrode and air battery using it
JPH09147866A (en) Nickel electrode active material and nickel electrode using its nickel electrode active material
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JPH07257928A (en) Electrolytic production of manganese dioxide from carbon-manganese oxide composite dispersed bath and application to active material for positive electrode of alkali cell
JPH09190827A (en) Air electrode for air battery
CN117509733B (en) ZnMoO3/C microsphere with intrinsic Zn defect core-shell structure and preparation method and application thereof
JPH11273671A (en) Unsintered positive electrode for alkaline storage battery and alkaline storage battery using the same
JPH0261096B2 (en)