JP2002088575A - Modified polyester fiber - Google Patents

Modified polyester fiber

Info

Publication number
JP2002088575A
JP2002088575A JP2000277907A JP2000277907A JP2002088575A JP 2002088575 A JP2002088575 A JP 2002088575A JP 2000277907 A JP2000277907 A JP 2000277907A JP 2000277907 A JP2000277907 A JP 2000277907A JP 2002088575 A JP2002088575 A JP 2002088575A
Authority
JP
Japan
Prior art keywords
polyester fiber
present
component
glycol
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000277907A
Other languages
Japanese (ja)
Inventor
Noboru Yamamoto
登 山本
Koji Hashimoto
浩二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000277907A priority Critical patent/JP2002088575A/en
Publication of JP2002088575A publication Critical patent/JP2002088575A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a basic dye-dyeable polyester fiber that has good dyeability, excellent color fastness to light, high yarn strength, excellent resistance to alkali and high dimensional stability. SOLUTION: The polyester fiber is made from a polyester modified by copolymerizing an isophthalic acid component bearing a metal sulfonate group and a glycol component with a molecular weight of 400-6,000, a polymerization degree of 80-100, and the following physical properties: (A) elongation (E) at break: 25<=E<=40%; (B) peak contraction stress (F): F<=0.22 cN/dtex; (C) contraction stress peak temperature (T): T>=130 deg.C; (D) optical birefringence (Δn): 0.10<=Δn<=0.14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は塩基性染料で染色す
ることのできる改質ポリエステル繊維に関するものであ
る。更に詳しくは染色性および染色物の耐光堅牢性が良
好で、糸強度が高く、耐アルカリ性に優れ、かつ寸法安
定性の良好な改質ポリエステル繊維に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a modified polyester fiber which can be dyed with a basic dye. More specifically, the present invention relates to a modified polyester fiber having good dyeing properties and light fastness of dyed products, high yarn strength, excellent alkali resistance, and good dimensional stability.

【0002】[0002]

【従来の技術】従来から塩基性染料可染型ポリエステル
繊維の製造方法として、金属スルホネート基を含有する
イソフタル酸成分、たとえば5-ナトリウムイソフタル酸
成分をポリエステル重縮合反応前に添加し、共重合させ
る方法が知られている(特公昭34-10497号公報)。
2. Description of the Related Art Conventionally, as a method for producing a dyeable polyester fiber of a basic dye, an isophthalic acid component containing a metal sulfonate group, for example, a 5-sodium isophthalic acid component is added and copolymerized before the polyester polycondensation reaction. A method is known (Japanese Patent Publication No. 34-10497).

【0003】しかしながら、染色性を満足なレベルに上
げるためには金属スルホネート基を含有するイソフタル
成分を多量に共重合させなければならず、イソフタル酸
成分による増粘作用を抑えるためポリマーの重合度を低
くする必要がある。しかしながらその結果、糸強度の低
下、耐アルカリ性の低下、耐光堅牢性の低下等の問題を
引き起こし、ポリエステル繊維の用途が限定されてい
た。これを解決するためにこれまで種々の方法が提案さ
れている。
However, in order to improve the dyeing property to a satisfactory level, a large amount of an isophthalic component containing a metal sulfonate group must be copolymerized. In order to suppress the thickening effect of the isophthalic acid component, the degree of polymerization of the polymer must be reduced. Must be lower. However, as a result, problems such as a decrease in yarn strength, a decrease in alkali resistance, and a decrease in light fastness have been caused, and the use of polyester fibers has been limited. Various methods have been proposed to solve this problem.

【0004】たとえば、特開昭57-210014号公報では、
イソフタル酸成分共重合系においてグリコール成分を共
重合させる方法が提案されている。しかしながらこれら
の方法では、耐アルカリ性、糸強度の点では効果がみら
れるものの、織物にしたときの寸法安定性に重大な問題
を残しており、また染色性も不十分であった。一般的
に、塩基性染料可染型ポリエステル繊維ではかさ高い成
分を共重合させているため延伸工程における繊維構造の
内部歪みが大きく、通常のポリエステル繊維と比べ寸法
安定性が悪く、特に従来2工程法で得られた塩基性染料
可染型繊維は熱処理後の寸法安定性に著しく乏しかっ
た。
For example, in Japanese Patent Application Laid-Open No. 57-210014,
A method of copolymerizing a glycol component in an isophthalic acid component copolymerization system has been proposed. However, although these methods are effective in terms of alkali resistance and yarn strength, they still have serious problems in dimensional stability when woven into a fabric, and have insufficient dyeing properties. Generally, basic dye-dyed polyester fibers have a large internal strain in the fiber structure during the drawing process due to the copolymerization of bulky components, resulting in poor dimensional stability compared to ordinary polyester fibers. The basic dye-dyeable fiber obtained by the method had extremely poor dimensional stability after heat treatment.

【0005】また、染色性改善の手法として、金属スル
ホネート基含有エステル成分の共重合比率を規定したポ
リマーを5000m/min以上の高速において紡糸することに
より機械的特性および染色性を改善する方法が提案され
ている(特開平6-116813号公報)が、記載されているよう
な高速紡糸法では耐アルカリ性が不十分である等の問題
がある。
Further, as a technique for improving dyeability, a method has been proposed in which a polymer having a prescribed copolymerization ratio of a metal sulfonate group-containing ester component is spun at a high speed of 5,000 m / min or more to improve mechanical properties and dyeability. However, the high-speed spinning method as described has problems such as insufficient alkali resistance.

【0006】[0006]

【発明が解決しようとする課題】本発明はかかる従来技
術の欠点を克服し、染色性および染色物の耐光堅牢性が
良好で、糸強度が高く、耐アルカリ性に優れ、かつ寸法
安定性の良好な塩基性染料可染型のポリエステル繊維を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention overcomes the drawbacks of the prior art, and has good dyeing properties and light fastness of dyed products, high yarn strength, excellent alkali resistance, and good dimensional stability. It is an object of the present invention to provide a basic dyeable polyester fiber.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、本発明は下記の構成からなる。
In order to solve the above-mentioned problems, the present invention has the following arrangement.

【0008】金属スルホネート基を含有するイソフタル
酸成分、分子量400〜6000のグリコール成分を共重合し
た改質ポリエステルからなるポリエステル繊維であっ
て、重合度が80〜100であり、かつ下記式を満足する改
質ポリエステル繊維。
A polyester fiber comprising a modified polyester obtained by copolymerizing an isophthalic acid component containing a metal sulfonate group and a glycol component having a molecular weight of 400 to 6000, and having a degree of polymerization of 80 to 100 and satisfying the following formula: Modified polyester fiber.

【0009】(A)伸度(E) 25≦E≦40% (B)ヒ゜ーク収縮応力(F) F≦0.22cN/dtex (C)収縮応力ヒ゜ーク温度(T) T≧130℃ (D)複屈折(Δn) 0.10≦Δn≦0.14(A) Elongation (E) 25 ≦ E ≦ 40% (B) Peak shrinkage stress (F) F ≦ 0.22 cN / dtex (C) Shrinkage stress peak temperature (T) T ≧ 130 ° C. (D) Refraction (Δn) 0.10 ≦ Δn ≦ 0.14

【0010】[0010]

【発明の実施の形態】以下に本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0011】本発明におけるポリエステルとは、エチレ
ングリコールを主たるグリコール成分とし、テレフタル
酸またはそのエステルを主たるジカルボン酸成分とする
ポリエステルを対象とする。
The polyester in the present invention refers to a polyester containing ethylene glycol as a main glycol component and terephthalic acid or an ester thereof as a main dicarboxylic acid component.

【0012】このジカルボン酸成分の一部をたとえばイ
ソフタル酸、ジフェニルジカルボン酸、ナフタレンジカ
ルボン酸、アジピン酸、セバシン酸、ドデカン二酸など
のジカルボン酸またはそのエステル、p-オキシ安息香
酸、p-βオキシエトキシ安息香酸などのオキシカルボン
酸またはそのエステルで置き換えても良い。
Part of the dicarboxylic acid component is a dicarboxylic acid such as isophthalic acid, diphenyldicarboxylic acid, naphthalenedicarboxylic acid, adipic acid, sebacic acid or dodecane diacid or an ester thereof, p-oxybenzoic acid, p-βoxy It may be replaced by an oxycarboxylic acid such as ethoxybenzoic acid or an ester thereof.

【0013】かかる原料からポリエステルを製造するに
は、たとえばテレフタル酸ジメチル、S成分、エチレン
グリコール、共重合すべきグリコール成分を混合してエ
ステル交換反応せしめてテレフタル酸およびS成分のグ
リコールエステルおよび、またはその低重合体を合成
し、次いで該生成物を常法により重合反応せしめ、本発
明のポリエステルを得る。
In order to produce a polyester from such a raw material, for example, dimethyl terephthalate, S component, ethylene glycol and a glycol component to be copolymerized are mixed and subjected to a transesterification reaction to obtain a glycol ester of terephthalic acid and S component and / or The low polymer is synthesized, and the product is subjected to a polymerization reaction by a conventional method to obtain the polyester of the present invention.

【0014】本発明を実施するポリエステルの合成にあ
たっては周知の触媒、着色防止剤、エーテル結合副生防
止剤、抗酸化剤、難燃剤などを適宜使用することができ
る。
In synthesizing the polyester for carrying out the present invention, well-known catalysts, color inhibitors, ether bond by-product inhibitors, antioxidants, flame retardants and the like can be appropriately used.

【0015】本発明においてS成分共重合系でグリコー
ル成分を共重合させることにより以下のことが可能とな
った。
In the present invention, the following can be achieved by copolymerizing the glycol component with the S component copolymerization system.

【0016】その一つはグリコール成分の共重合により
少ない成分の共重合量で満足できる染色性を得ることが
できた。これはグリコール成分がポリマ中のS成分の塩
基性染料に対する有効利用率をあげる働きがあるからで
ある。
One of them was that a satisfactory dyeing property could be obtained by copolymerization of a glycol component with a small amount of copolymerized component. This is because the glycol component has a function of increasing the effective utilization ratio of the S component in the polymer to the basic dye.

【0017】二つにはグリコール成分の共重合により、
S成分共重合系において同一溶融粘度で重合度の高いポ
リマーが得られたことである。これはグリコール成分が
S成分共重合系において重合度を下げることなくポリマ
ーの溶融粘度を下げる働き(減粘効果)があるからであ
る。 従って本発明に従えば、S成分共重合系でグリコ
ール成分を共重合することにより、特に高速において紡
糸可能な溶融粘度の範囲で満足できる染色性を有し、か
つ重合度80〜100の繊維が得られる。これはグリコール
成分の共重合によるS成分共重合量の減少による溶融粘
度の低下、グリコール成分共重合による溶融粘度の低下
があってはじめて得られるものである。
Secondly, by copolymerization of a glycol component,
This is because a polymer having the same melt viscosity and a high degree of polymerization was obtained in the S-component copolymer. This is the glycol component
This is because the S-component copolymer has a function of lowering the melt viscosity of the polymer without lowering the degree of polymerization (thickening effect). Therefore, according to the present invention, by copolymerizing the glycol component in the S component copolymerization system, having a satisfactory dyeability in the range of melt viscosity that can be spun, especially at high speed, and a fiber having a polymerization degree of 80 to 100 is obtained. can get. This is obtained only when there is a decrease in the melt viscosity due to a decrease in the copolymerization amount of the S component due to the copolymerization of the glycol component, and a decrease in the melt viscosity due to the copolymerization of the glycol component.

【0018】本発明においてS成分とは化1に示す通りの
化合物であり、具体的にはジメチル(5-ナトリウムスル
ホ)イソフタレート、ビス-2-ヒドロキシエチル(5-ナト
リウムスルホ)イソフタレート、ビス-4-ヒドロキシブチ
ル(5-ナトリウムスルホ)イソフタレート等が挙げられ
る。
In the present invention, the S component is a compound as shown in Chemical formula 1, and specifically, dimethyl (5-sodium sulfo) isophthalate, bis-2-hydroxyethyl (5-sodium sulfo) isophthalate, bis 4-hydroxybutyl (5-sodium sulfo) isophthalate and the like.

【0019】[0019]

【化1】 S成分は得られるポリエステルに対し1.3〜1.8モル%共重
合させることが好ましい。この範囲であれば、塩基性染
料と十分に反応して、より良好な染色性が得られ、また
S成分共重合による増粘作用を抑えられ、溶融粘度の上
昇なく安定した紡糸ができる。
Embedded image The S component is preferably copolymerized in an amount of 1.3 to 1.8 mol% with respect to the obtained polyester. If it is in this range, it will sufficiently react with the basic dye to obtain better dyeability, and
The thickening effect due to S component copolymerization is suppressed, and stable spinning can be performed without increasing the melt viscosity.

【0020】S成分の添加時期はポリエステルの製造反
応が完結するまでであればいつでもよいが、添加された
S成分が充分にポリエステル鎖中に共重合されることが
好ましい。そのため重縮合反応初期以前の段階で添加す
るのが好ましい。
The S component may be added at any time as long as the polyester production reaction is completed.
It is preferable that the S component is sufficiently copolymerized in the polyester chain. Therefore, it is preferable to add at the stage before the initial stage of the polycondensation reaction.

【0021】グリコール成分としては分子量が400〜600
0までのものが好ましい。分子量が400未満であると染色
性向上効果が小さく、かつグリコールの沸点が低いこと
に起因して重縮合反応中に系外へのグリコールの飛散が
生じ一定量共重合させることが困難となる。一方、分子
量が6000を超えたグリコール成分は、共重合したポリマ
ーの耐酸化分解性が悪化するとともに、グリコール成分
が均一に共重合し難いことから、染色性および得られる
繊維から作成した布帛の抗フロスティング性が低下す
る。なおグリコール成分の分子量は400〜2000がより好
ましい。
The glycol component has a molecular weight of 400 to 600.
Those up to 0 are preferred. When the molecular weight is less than 400, the effect of improving the dyeability is small, and the glycol has a low boiling point, so that glycol is scattered out of the system during the polycondensation reaction, making it difficult to copolymerize a certain amount. On the other hand, a glycol component having a molecular weight exceeding 6000 deteriorates the oxidative degradation resistance of the copolymerized polymer, and the glycol component is difficult to copolymerize uniformly. The frosting property is reduced. The molecular weight of the glycol component is more preferably from 400 to 2,000.

【0022】前記分子量400〜6000のグリコール成分の
代表例としては、式HO-(CH2-CH2-O)m-R-O-(CH2-CH2-O)n
-H(Rは炭素原子数3〜20の二価の脂肪族炭化水素基、フ
ェニル基、ビスフェニル基、ナフタレン基等の二価の芳
香族の炭化水素基、m、nは同一または異なる整数で1
≦m+n≦100である。)で示されるグリコール、ビスフェ
ノールA-エチレンオキサイド付加物および次式で示され
るポリアルキレングリコール等があげられる。
A typical example of the glycol component having a molecular weight of 400 to 6000 is represented by the formula HO- (CH 2 -CH 2 -O) mRO- (CH 2 -CH 2 -O) n
-H (R is a divalent aliphatic hydrocarbon group having 3 to 20 carbon atoms, a divalent aromatic hydrocarbon group such as a phenyl group, a bisphenyl group, a naphthalene group, and m and n are the same or different integers In 1
≦ m + n ≦ 100. ), A bisphenol A-ethylene oxide adduct, a polyalkylene glycol represented by the following formula, and the like.

【0023】A(CnH2nO)mH (AはClH2l+1またはOH、lは1
〜10、nは2〜5、mは3〜100)さらにグリコール成分とし
てはポリアルキレングリコールがより好ましい。これは
ポリアルキレングリコールの減粘効果が他のグリコール
より大きいため重合度80〜100の繊維を得るために必要
な重合度をもつポリマーを得るには他のグリコールより
有利なことによる。そしてポリアルキレングリコールと
しては、両末端にOH基を有するポリエチレングリコール
がより好ましい。これはアルキレンオキサイド単位が短
いほど、またグリコールをランダムに共重合するほど染
色性向上効果、減粘効果が大きいためである。
A (CnH2nO) mH (A is ClH2l + 1 or OH, l is 1
-10, n is 2-5, m is 3-100) Further, as the glycol component, polyalkylene glycol is more preferable. This is due to the fact that polyalkylene glycols are more advantageous than other glycols in obtaining a polymer having the required degree of polymerization to obtain fibers having a degree of polymerization of 80 to 100 because the viscosity reducing effect of polyalkylene glycol is larger than that of other glycols. As the polyalkylene glycol, polyethylene glycol having OH groups at both ends is more preferable. This is because the shorter the alkylene oxide unit and the more the glycol is copolymerized at random, the greater the effect of improving the dyeability and the effect of reducing the viscosity.

【0024】グリコール成分の共重合量は得られるポリ
エステルに対して0.5〜1.9重量%の範囲であることが好
ましい。この範囲であれば耐光堅牢性および耐酸化分解
性がより高く、かつ染色性のより良好なものが得られ
る。
The copolymerization amount of the glycol component is preferably in the range of 0.5 to 1.9% by weight based on the obtained polyester. Within this range, a product having higher light fastness and oxidation-decomposition resistance and better dyeability can be obtained.

【0025】グリコール成分の添加時期はポリエステル
の製造反応が完了するまでの任意の段階でよいが重縮合
反応初期以前の段階で添加するのが好ましい。添加に際
して前記S成分と同時に添加しても、また別々に任意の
順序で添加してもよい。
The glycol component can be added at any stage until the polyester production reaction is completed, but it is preferable to add the glycol component at a stage before the initial stage of the polycondensation reaction. During the addition, they may be added simultaneously with the S component, or may be added separately in any order.

【0026】本発明で得られる改質ポリエステル繊維の
重合度は80〜100とする必要がある。重合度が80未満で
あると本発明で目的とするポリエステル繊維の糸強度が
満足されるレベルではなく、重合度が100を越えると繊
維を得るために必要な重合度をもつポリマーの溶融粘度
が高くなりすぎて紡糸が困難となる。
The degree of polymerization of the modified polyester fiber obtained in the present invention must be 80 to 100. If the degree of polymerization is less than 80, the yarn strength of the polyester fiber aimed at the present invention is not at a level that satisfies, and if the degree of polymerization exceeds 100, the melt viscosity of the polymer having the degree of polymerization necessary to obtain the fiber is increased. It becomes too high and spinning becomes difficult.

【0027】重合度80〜100のポリエステル繊維を製造
するために必要な重合度をもつポリマーを得る方法とし
ては重縮合反応のみで得ても良いし、固相重縮合反応を
併用しても良い。この場合、通常紡糸時にポリマーを溶
融すると重合度が低下するので、本発明のポリエステル
繊維を得るためには、重合度が85〜105のポリマーを用
いる必要がある。
As a method for obtaining a polymer having a degree of polymerization necessary for producing a polyester fiber having a degree of polymerization of 80 to 100, it may be obtained only by a polycondensation reaction, or may be used in combination with a solid phase polycondensation reaction. . In this case, if the polymer is melted during spinning, the degree of polymerization is reduced. Therefore, in order to obtain the polyester fiber of the present invention, it is necessary to use a polymer having a degree of polymerization of 85 to 105.

【0028】本発明の塩基性染料可染ポリエステル繊維
はこのような組成のポリエステルからなり、かつ下記の
原糸物性を同時に満足する必要がある。
The basic dyeable polyester fiber of the present invention is required to be composed of a polyester having such a composition and satisfying the following physical properties of the yarn at the same time.

【0029】(A)伸度(E) 25≦E≦40% (B)ヒ゜ーク収縮応力(F) F≦0.22cN/dtex (C)収縮応力ヒ゜ーク温度(T) T≧130℃ (D)複屈折(Δn) 0.10≦Δn≦0.14 本発明の塩基性染料可染ポリエステル繊維を構成するフ
ィラメントの伸度(以下Eと称する)は25%以上、40%以下
とする必要がある。Eが25%未満のものは製織時の単糸切
れ当が多発し、製織性が劣る上、製織後の風合いが硬
い。逆にEが40%を越えるものは織物にした際の寸法安定
性が劣り、本発明の目的を達成できない。
(A) Elongation (E) 25 ≦ E ≦ 40% (B) Peak shrinkage stress (F) F ≦ 0.22 cN / dtex (C) Shrinkage stress peak temperature (T) T ≧ 130 ° C. (D) Refraction (Δn) 0.10 ≦ Δn ≦ 0.14 The elongation (hereinafter referred to as E) of the filament constituting the basic dyeable polyester fiber of the present invention must be 25% or more and 40% or less. When E is less than 25%, single yarn breakage during weaving occurs frequently, resulting in poor weaving properties and a hard texture after weaving. Conversely, when E exceeds 40%, the dimensional stability of the woven fabric is poor, and the object of the present invention cannot be achieved.

【0030】次に複屈折(以下Δnと称する)は0.10以
上、0.14以下にする必要がある。Δnが0.10未満では繊
維の糸強度、耐アルカリ性が低く本発明の目的を達成で
きず、また耐光堅牢性についても満足するレベルのもの
は得られない。Δnが0.14を超すと、製織後の風合いが
硬くなり、染色性についても満足するレベルのものが得
られない。
Next, the birefringence (hereinafter referred to as Δn) needs to be 0.10 or more and 0.14 or less. When Δn is less than 0.10, the yarn strength and alkali resistance of the fiber are low and the object of the present invention cannot be achieved, and a satisfactory level of light fastness cannot be obtained. If Δn exceeds 0.14, the texture after weaving becomes hard, and a satisfactory level of dyeability cannot be obtained.

【0031】次にピーク収縮応力、収縮応力ピーク温度
(以下F、Tと称する)は製織後の特性に大きな影響を及
ぼす。Fは0.22cN/dtex以下に、Tは130℃以上にする必要
がある。Fが0.22cN/dtexを超えるものは寸法安定性が乏
しく本発明の目的を達成できない。またTが130℃未満で
は得られる織物の風合いが硬くなり、特にアルカリ処理
を施した後の風合いがないことから薄地織物用途等には
不向きなものとなる。
Next, the peak shrinkage stress and the shrinkage stress peak temperature (hereinafter referred to as F and T) greatly affect the properties after weaving. F needs to be 0.22cN / dtex or less and T needs to be 130 ° C or more. When F exceeds 0.22 cN / dtex, the dimensional stability is poor and the object of the present invention cannot be achieved. When T is less than 130 ° C., the texture of the obtained woven fabric becomes hard, and since there is no texture particularly after the alkali treatment, it is unsuitable for use in thin fabrics.

【0032】次に本発明の塩基性染料可染ポリエステル
繊維の製造方法の実施の一形態を図1に示す。本発明の
塩基性染料可染ポリエステル繊維は前記特定組成のポリ
エステル繊維を溶融紡糸、冷却後、1500m/min以上の速
度でガラス転移点±40℃に加熱した加熱引取ローラー3
に引取り、その後一旦巻き取ることなく加熱引取ローラ
ー3と100℃以上に加熱した加熱延伸ローラー4との間で
延伸し、加熱延伸ローラー4で熱処理する直接紡糸延伸
法によって得ることができ、生産性の点で好ましい。こ
の場合、前述した寸法安定性を得るためには、引取速度
を1500m/min以上とするのが好ましい。引取速度が1500m
/min以上であれば複屈折Δnを0.10〜0.14の範囲とし良
好な染色性が得られ、かつピーク収縮応力が0.22cN/dte
x以下となり製織後の寸法安定性がよいものが得られ
る。
Next, one embodiment of the method for producing a basic dyeable polyester fiber of the present invention is shown in FIG. The basic dye-dyeable polyester fiber of the present invention is a polyester fiber having the above specific composition, which is melt-spun, cooled, and heated to a glass transition temperature ± 40 ° C. at a speed of 1500 m / min or more.
It can be obtained by a direct spinning drawing method in which the film is stretched between the heating take-up roller 3 and the heat drawing roller 4 heated to 100 ° C. or higher without being wound once, and then heat-treated with the heating drawing roller 4. It is preferable in terms of properties. In this case, in order to obtain the dimensional stability described above, it is preferable that the take-off speed is 1500 m / min or more. Pickup speed 1500m
/ min or more, the birefringence Δn is in the range of 0.10 to 0.14, good dyeability is obtained, and the peak shrinkage stress is 0.22 cN / dte
x or less and good dimensional stability after weaving can be obtained.

【0033】本発明において繊維とは長繊維とそれを含
む織編物等の繊維製品を指す。本発明による繊維はアル
カリ減量加工しても機械特性の低下、染色性の低下はほ
とんど見られない上に、寸法安定性も優れている。この
点で本発明は従来考えられなかった効果を著しく奏する
のである。
In the present invention, the term "fiber" refers to a long fiber and a fiber product such as a woven or knitted fabric containing the same. The fiber according to the present invention shows almost no decrease in mechanical properties and dyeability even after alkali reduction processing, and also has excellent dimensional stability. In this regard, the present invention has a remarkable effect which has not been considered before.

【0034】本発明の繊維は単一素材としてはもちろ
ん、他の異種繊維との組み合わせによる混紡糸、混繊
糸、加工糸、さらに異種繊維よりなる糸との混織物にお
いても優れた染色性を発揮する。
The fiber of the present invention has excellent dyeing properties not only as a single material, but also as a blended yarn, a mixed fiber, a processed yarn, and a mixed fabric with a yarn composed of different types of fibers. Demonstrate.

【0035】本発明の用途は、特にスポーツウエア、婦
人衣料用の薄地織物等に好適である。
The use of the present invention is particularly suitable for sportswear, thin fabrics for women's clothing, and the like.

【0036】[0036]

【実施例】以下、実施例を挙げて本発明を詳述するが、
これら実施例によって本発明の範囲が限定されるもので
はない。なお、実施例中の各特性値は次の方法により求
めた。
Hereinafter, the present invention will be described in detail with reference to Examples.
These examples do not limit the scope of the present invention. In addition, each characteristic value in an Example was calculated | required by the following method.

【0037】(1)重合度 得られた糸について、試料0.5gをo-クレゾール10mlに溶
解し、完全溶解後冷却してからクロロホルム3mlを加
え、NaOHのメタノール溶液にて電位差滴定を行い、単位
重量あたりの末端基数を求め、次式により重合度を算出
した。
(1) Degree of polymerization With respect to the obtained yarn, 0.5 g of a sample was dissolved in 10 ml of o-cresol, and after complete dissolution, cooled, 3 ml of chloroform was added, and a potentiometric titration was performed with a methanol solution of NaOH. The number of terminal groups per weight was determined, and the degree of polymerization was calculated by the following equation.

【0038】重合度 = [2×106]/[末端基数(コ/106g)×
ホ゜リマーの平均分子量] (2)収縮応力測定 試長10cm(ループ実長20cm)を作り、測定把持部に糸条
を把持させ、昇温速度300℃/120sec、初期荷重:26cN/d
texで行い、収縮応力が一番高い温度を示す温度をTと
し、その時の応力をFとする。
Degree of polymerization = [2 × 10 6 ] / [Number of terminal groups (co / 10 6 g) ×
Average molecular weight of polymer] (2) Shrinkage stress measurement Make a test length 10cm (actual loop length 20cm), hold the yarn in the measurement gripping part, heating rate 300 ° C / 120sec, initial load: 26cN / d
The temperature at which the shrinkage stress is the highest is T, and the stress at that time is F.

【0039】(3)複屈折 偏光顕微鏡により単糸のレターデーションと光路長を測
定し、複屈折を算出した。
(3) Birefringence The retardation and optical path length of a single yarn were measured with a polarizing microscope, and the birefringence was calculated.

【0040】(4)染色性 評価すべきフィラメント糸から得られた筒編み地をマラ
カイトグリーン(商標名 関東化学製)5%owf、酢酸0.5m
l/l、酢酸ソーダ水0.2g/lからなる浴比1:100の120℃の
熱水溶液中で60分間染色を行う。次いで、この筒編み地
を引き上げた後の染色残液中の染料浸度を測定し、筒編
み地の染料吸尽率を求めた。○○、○が本発明の目標レ
ベルである。
(4) Dyeability The knitted fabric obtained from the filament yarn to be evaluated was treated with malachite green (trade name, manufactured by Kanto Chemical Co., Ltd.) 5% owf, acetic acid 0.5 m
Dyeing is carried out for 60 minutes in a hot aqueous solution at 120 ° C. in a bath ratio of 1: 100 consisting of l / l and sodium acetate water 0.2 g / l. Next, the degree of dye immersion in the residual dyeing solution after lifting the tubular knitted fabric was measured, and the dye exhaustion rate of the tubular knitted fabric was determined. ○ and ○ are target levels of the present invention.

【0041】 ○○:吸尽率60以上 ○:吸尽率50以上、60未満 ×:吸尽率50未満 (5)耐光堅牢性 評価すべきフィラメント糸から得られた筒編み地をEstr
ol Blue N-3RL(商標名 住友化学製)1.5owf、酢酸0.5m
l/l、酢酸ソーダ0.15g/l、からなる浴比1:100の120℃の
水溶液中にて60分間染色を行った後、常法に従いハイド
ロサルファイト2g/l、NaOH 2g/l、サンデットG-900 2g/
lからなる80℃の水溶液中で20分間還元洗浄を行い水洗
乾燥する。この染色した筒編み地を、フェードメータ
(スガ試験機)を用いてJIS-L1044に準じて光退色さ
せ、ブルースケール基準で測定する。4級以上が本発明
の目標レベルである。
○: Exhaustion rate of 60 or more :: Exhaustion rate of 50 or more, less than 60 ×: Exhaustion rate of less than 50 (5) Light fastness The tubular knitted fabric obtained from the filament yarn to be evaluated was Estr.
ol Blue N-3RL (trade name of Sumitomo Chemical) 1.5owf, acetic acid 0.5m
l / l, 0.15 g / l of sodium acetate, after dyeing for 60 minutes in an aqueous solution of 120 ° C. at a bath ratio of 1: 100, followed by hydrosulfite 2 g / l, NaOH 2 g / l, sandet according to a conventional method. G-900 2g /
The substrate is subjected to reduction washing in an aqueous solution of 80 ° C. for 20 minutes, washed with water and dried. The dyed tubular knitted fabric is subjected to photobleaching using a fade meter (Suga Test Machine) in accordance with JIS-L1044, and measured on a blue scale basis. Grade 4 or higher is the target level of the present invention.

【0042】(6)耐アルカリ性 NaOH 4%水溶液中で温度95℃の条件で糸を処理し、減量
率20%のときの糸強力特性を求めた。○が本発明の目標
レベルである。
(6) Alkali Resistance The yarn was treated in a 4% aqueous NaOH solution at a temperature of 95 ° C., and the yarn strength characteristics at a weight loss rate of 20% were determined. ○ is the target level of the present invention.

【0043】 ○○:強度2.1cN/dtex以上 ○:強度1.8cN/dtex以上、2.1cN/dtex未満 ×:強度1.8cN/dtex未満 (7)寸法安定性 塩基性染料可染性ポリエステル原糸を打ち込み幅92cm、
織密度31本/cmで打ち込み、平織り生機にした後、熱処
理((1)100℃精錬、(2)135℃染色、(3)160℃熱セット)
し、収縮率を測定した。○が本発明の目標レベルであ
る。
○: strength of 2.1 cN / dtex or more :: strength of 1.8 cN / dtex or more and less than 2.1 cN / dtex ×: strength of less than 1.8 cN / dtex (7) Dimensional stability Basic dyeability Driving polyester yarn 92cm wide,
After weaving at a woven density of 31 yarns / cm and making it into a plain weave, heat treatment ((1) 100 ° C refining, (2) 135 ° C dyeing, (3) 160 ° C heat set)
Then, the shrinkage was measured. ○ is the target level of the present invention.

【0044】 ○○:収縮率7%未満 ○:収縮率7%以上、8%未満 ×:収縮率8%以上 実施例1〜12、比較例1〜5 添加共重合するジメチル(5-ナトリウムスルホ)イソフタ
レートの量、添加グリコール化合物を表1に示すように
変更して得られたポリマーを、紡糸温度295℃で溶融紡
糸し、冷却後、2500m/minで90℃に加熱した加熱引取ロ
ーラーに引き取り、その後一旦巻き取ることなく、加熱
引取ローラーと135℃に加熱した加熱延伸ローラーとの
間で2.0倍に延伸し、加熱延伸ローラーで熱処理するこ
とにより84デシテックス36フィラメントの延伸糸を得
た。この原糸の物性、染色性、耐光堅牢性、耐アルカリ
性、寸法安定性の判定結果を表1に示した。
○: Shrinkage ratio of less than 7% :: Shrinkage ratio of 7% or more and less than 8% X: Shrinkage ratio of 8% or more Examples 1 to 12, Comparative Examples 1 to 5 Dimethyl (5-sodium sulfo) to be added and copolymerized ) The polymer obtained by changing the amount of isophthalate and the added glycol compound as shown in Table 1 was melt-spun at a spinning temperature of 295 ° C., cooled, and then heated at 2500 m / min to a heating take-off roller heated to 90 ° C. After drawing, the film was stretched 2.0 times between the heating take-up roller and the heat drawing roller heated to 135 ° C. without being wound once, and heat-treated with the heating drawing roller to obtain a drawn yarn of 84 decitex 36 filaments. Table 1 shows the determination results of physical properties, dyeing properties, light fastness, alkali resistance and dimensional stability of this yarn.

【0045】本発明の要件を満足する実施例1〜12は染
色性、耐光堅牢性、耐アルカリ性、寸法安定性がいずれ
も良好であった。
Examples 1 to 12 satisfying the requirements of the present invention were all excellent in dyeability, light fastness, alkali resistance and dimensional stability.

【0046】これに対し、添加グリコール化合物の分子
量が本発明の範囲から外れる比較例1〜3では染色性が悪
く本発明の効果が発揮されない。
On the other hand, in Comparative Examples 1 to 3 in which the molecular weight of the added glycol compound is out of the range of the present invention, the dyeability is poor and the effect of the present invention is not exhibited.

【0047】また、重合度が本発明の範囲外である比較
例4、5では耐アルカリ性が不満足なレベルであった。
In Comparative Examples 4 and 5, where the degree of polymerization was out of the range of the present invention, the alkali resistance was at an unsatisfactory level.

【0048】[0048]

【表1】 実施例13〜15、比較例6 実施例2に示す組成の改質ポリマーを紡糸温度295℃で
溶融紡糸し、冷却後、1000〜3000m/minで90℃に加熱し
た加熱引取ローラーに引き取り、その後一旦巻き取るこ
となく、加熱引取ローラーと135℃に加熱した加熱延伸
ローラーとの間で延伸し、加熱延伸ローラーで熱処理す
ることにより84デシテックス36フィラメントの延伸糸を
得た。この原糸の物性、染色性、耐光堅牢性、耐アルカ
リ性、寸法安定性の判定結果を表2に示した。
[Table 1] Examples 13 to 15 and Comparative Example 6 A modified polymer having the composition shown in Example 2 was melt-spun at a spinning temperature of 295 ° C, and after cooling, was taken up by a heating take-up roller heated to 90 ° C at 1000 to 3000 m / min. The film was stretched between a heating take-off roller and a heat stretching roller heated to 135 ° C. without being once wound, and heat-treated with the heating stretching roller to obtain a drawn yarn of 84 decitex 36 filaments. Table 2 shows the results of determination of the physical properties, dyeing properties, light fastness, alkali resistance, and dimensional stability of this yarn.

【0049】本発明の要件を満足する実施例13〜15は染
色性、耐光堅牢性、耐アルカリ性、寸法安定性がいずれ
も良好であった。
Examples 13 to 15 satisfying the requirements of the present invention were all excellent in dyeability, light fastness, alkali resistance and dimensional stability.

【0050】これに対し、比較例6ではピーク収縮応力
が0.22cN/dtexを超えてしまい製織後の寸法安定性が著
しく悪く、本発明の目的を達成できない。
On the other hand, in Comparative Example 6, the peak shrinkage stress exceeded 0.22 cN / dtex, and the dimensional stability after weaving was extremely poor, so that the object of the present invention could not be achieved.

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【発明の効果】染色性および染色物の耐光堅牢性が良好
で、糸強度が高く、耐アルカリ性に優れ、かつ寸法安定
性の良好な塩基性染料可染型のポリエステル繊維を提供
することができる。
According to the present invention, it is possible to provide a basic dye dyeable polyester fiber having good dyeing properties and light fastness of dyed products, high yarn strength, excellent alkali resistance, and good dimensional stability. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造方法の具体例を示す図面であ
る。
FIG. 1 is a drawing showing a specific example of a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1:紡糸パック 2:油剤付与装置 3、6:交絡付与装置 4:加熱引取ローラー 5:加熱延伸ローラー 7:巻取機 1: spinning pack 2: oil application device 3, 6: entanglement application device 4: heated take-up roller 5: heated draw roller 7: winder

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】金属スルホネート基を含有するイソフタル
酸成分、分子量400〜6000のグリコール成分を共重合し
た改質ポリエステルからなるポリエステル繊維であっ
て、重合度が80〜100であり、かつ下記式を満足する改
質ポリエステル繊維。 (A)伸度(E) 25≦E≦40% (B)ヒ゜ーク収縮応力(F) F≦0.22cN/dtex (C)収縮応力ヒ゜ーク温度(T) T≧130℃ (D)複屈折(Δn) 0.10≦Δn≦0.14
1. A polyester fiber comprising a modified polyester obtained by copolymerizing an isophthalic acid component containing a metal sulfonate group and a glycol component having a molecular weight of 400 to 6000, having a degree of polymerization of 80 to 100 and the following formula: Satisfied modified polyester fiber. (A) Elongation (E) 25 ≦ E ≦ 40% (B) Peak shrinkage stress (F) F ≦ 0.22cN / dtex (C) Shrinkage stress peak temperature (T) T ≧ 130 ° C (D) Birefringence (Δn ) 0.10 ≦ Δn ≦ 0.14
【請求項2】金属スルホネート基を含有するイソフタル
酸成分を1.3〜1.8モル%、分子量400〜6000のグリコール
成分を0.5〜1.9重量%共重合したことを特徴とする請求
項1記載の改質ポリエステル繊維。
2. The modified polyester according to claim 1, wherein 1.3 to 1.8 mol% of an isophthalic acid component containing a metal sulfonate group and 0.5 to 1.9% by weight of a glycol component having a molecular weight of 400 to 6000 are copolymerized. fiber.
【請求項3】分子量400〜6000のグリコール成分が下式
で示されるポリアルキレングリコールであることを特徴
とする請求項1または2記載の改質ポリエステル繊維。 A(CnH2nO)mH (AはClH2l+1OまたはOH、lは1〜10、nは2
〜5、mは3〜100)
3. The modified polyester fiber according to claim 1, wherein the glycol component having a molecular weight of 400 to 6000 is a polyalkylene glycol represented by the following formula. A (C n H 2n O) m H (A is C l H 2l + 1 O or OH, l is 1 to 10, n is 2
~ 5, m is 3 ~ 100)
JP2000277907A 2000-09-13 2000-09-13 Modified polyester fiber Pending JP2002088575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000277907A JP2002088575A (en) 2000-09-13 2000-09-13 Modified polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000277907A JP2002088575A (en) 2000-09-13 2000-09-13 Modified polyester fiber

Publications (1)

Publication Number Publication Date
JP2002088575A true JP2002088575A (en) 2002-03-27

Family

ID=18763155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000277907A Pending JP2002088575A (en) 2000-09-13 2000-09-13 Modified polyester fiber

Country Status (1)

Country Link
JP (1) JP2002088575A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210014A (en) * 1981-06-16 1982-12-23 Toray Ind Inc Modified polyester fiber
JPS5926521A (en) * 1982-07-09 1984-02-10 Toray Ind Inc Modified polyester fiber and preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210014A (en) * 1981-06-16 1982-12-23 Toray Ind Inc Modified polyester fiber
JPS5926521A (en) * 1982-07-09 1984-02-10 Toray Ind Inc Modified polyester fiber and preparation thereof

Similar Documents

Publication Publication Date Title
US5567796A (en) Polyester fiber
EP0724030B1 (en) A hygroscopic fiber containing a hygroscopic polyester copolymer
JP2002038333A (en) Polyester fiber having high dye-affinity
JP2008223148A (en) Method for producing ultra fine false-twisted yarn dyeable with cation dye at atmospheric pressure
JP3215714B2 (en) Easy-dying polyester fiber
JP2002088575A (en) Modified polyester fiber
KR970001080B1 (en) Process for producing a woven or knitted fabric having a high elasticity
JPH1193020A (en) Cation dyeable polyester yarn and its production
JP2002020930A (en) Polyester highly shrinkable fiber
JPH10331032A (en) Copolyester improved in heat resistance and hydrolysis resistance to alkali and highly shrinkable fiber comprising the same
JPH08269820A (en) Easily dyeable modified polyester fiber and its production
JP2010255128A (en) Circular knitted fabric and fiber product
KR20180108248A (en) Polyester twisted composite yarn having excellent color development property and shrinkage, fabric comprising thereof, and manufacturing method thereof
JP2503989B2 (en) Modified polyester fiber
JP3069426B2 (en) Method for producing cationic dyeable polyester false twisted yarn
JP2011021287A (en) Deep-colorable sheath-core type conjugated fiber
JP2002201530A (en) Polyester conjugate fiber for stretchable woven or knitted fabric and method for producing the same
JPH0892816A (en) Modified polyester fiber
KR910005544B1 (en) Manufacturing process of modified polyester fiber
JP3796053B2 (en) Crimpable composite fiber
JP3004695B2 (en) Polyester different shrinkage yarn
JP2023184004A (en) polyester fiber
JPH111823A (en) Polyester fiber and dyed product of its mixed fiber fabric
JPH07173741A (en) Production of woven fabric
JP2011137274A (en) Normal pressure cation-dyeable polyester multifilament

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Effective date: 20100608

Free format text: JAPANESE INTERMEDIATE CODE: A02