JP2002085083A - Method for producing metabolic product using microorganism - Google Patents

Method for producing metabolic product using microorganism

Info

Publication number
JP2002085083A
JP2002085083A JP2001202716A JP2001202716A JP2002085083A JP 2002085083 A JP2002085083 A JP 2002085083A JP 2001202716 A JP2001202716 A JP 2001202716A JP 2001202716 A JP2001202716 A JP 2001202716A JP 2002085083 A JP2002085083 A JP 2002085083A
Authority
JP
Japan
Prior art keywords
lactis
lactococcus lactis
lactic acid
microorganism
lactococcus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001202716A
Other languages
Japanese (ja)
Inventor
Fumiaki Ishizaki
文彬 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001202716A priority Critical patent/JP2002085083A/en
Publication of JP2002085083A publication Critical patent/JP2002085083A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new method that permits continuously producing a metabolic product such as L-lactic acid by microorganisms. SOLUTION: This method for producing a metabolic product is characterized by the step of biologically making a raw material supplied react biologically with a living microorganism having the maximal activity at a constant density in a reaction system by the microorganisms.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、L-乳酸、
エタノールおよび/またはバクテリオシン等の有用物質
を、微生物を用いた発酵法によって高効率で製造する方
法に関するものである。
TECHNICAL FIELD The invention of this application relates to L-lactic acid,
The present invention relates to a method for producing a useful substance such as ethanol and / or bacteriocin with high efficiency by a fermentation method using a microorganism.

【0002】[0002]

【従来の技術とその課題】嫌気性菌は好気性菌と異な
り、代謝や増殖のためのエネルギー獲得に電子伝達系を
利用するので、電子受容体としての有機酸やアルコール
など代謝生産物の蓄積を伴うことが知られている。ま
た、CO2の発生は、嫌気的脱炭酸に限られ、好気性菌に
見られるような有機物の完全酸化によるCO2発生とは根
本的に異なる。この特徴から、嫌気性菌を用いる生化学
反応は環境へのCO2負荷を低減し、反応熱の発生を少な
くするので、環境調和型バイオプロセスとして有利であ
る。
2. Description of the Related Art Anaerobic bacteria, unlike aerobic bacteria, use an electron transfer system to obtain energy for metabolism and growth. Therefore, accumulation of metabolites such as organic acids and alcohols as electron acceptors. It is known to involve. In addition, the generation of CO 2 is limited to anaerobic decarboxylation, and is fundamentally different from the generation of CO 2 due to the complete oxidation of organic substances found in aerobic bacteria. From this feature, a biochemical reaction using an anaerobic bacterium is advantageous as an eco-friendly bioprocess because it reduces the CO 2 load on the environment and reduces the generation of heat of reaction.

【0003】一方、石油化学産業の代表である合成プラ
スチックは、堅牢なるがゆえの問題が生じており、環境
にやさしい生分解性を持つプラスチックの開発が求めら
れている。たとえばポリ乳酸はその目的にかなう有望な
開発商品である。だが、合成に用いる原料は光学異性体
の選択性があってL-乳酸に限られる。石油化学で生産さ
れる乳酸は当然ながらDL-体であるため、ポリ乳酸の原
料にはならない。ポリ乳酸を工業化するには、光学異性
体選択性がある発酵法による高純度L-乳酸の実用的な技
術開発が待望されている。
On the other hand, synthetic plastics, which are representatives of the petrochemical industry, have problems due to their robustness, and there is a need for the development of environmentally friendly plastics having biodegradability. For example, polylactic acid is a promising product developed for that purpose. However, the raw materials used for the synthesis are limited to L-lactic acid due to the selectivity of optical isomers. Lactic acid produced in petrochemicals is naturally a DL-form, so it is not a raw material for polylactic acid. In order to industrialize polylactic acid, practical development of high-purity L-lactic acid by fermentation with optical isomer selectivity is expected.

【0004】以上のような観点から、L-乳酸の発酵法に
より製造が考慮されるが、発酵プロセスを決定する要素
は生産性をいかに大きくするかが最も重要である。その
ためには、連続発酵技術の開発が必要である。連続発酵
は、一部の好気性菌ではすでに確立された技術である。
とくに菌体生産を目的とした連続発酵技術は、比増殖速
度μと基質フィード速度のパラメータである希釈率(di
lution rate=D)を同調させることで、定常状態が形
成されることが明らかになっている。また基質フィード
のタイミングを検出する方法も培養液溶存酸素、DOを指
標とする方法や、pHの変化でタイミングをはかる方法が
よく知られており、すでに広く使われている。しかしな
がら、このような技術開発が進んでいるにも関わらず、
連続培養は、好気性菌であっても、増殖連動型(growth
associated)の発酵の一部で実用化されているにすぎ
ず、グルタミン酸発酵や抗生物質生産などの非増殖連動
型(non-growth associated)の発酵では、依然として
回分発酵や流加培養が用いられている。
[0004] From the above viewpoints, production by L-lactic acid fermentation is considered, and the most important factor in determining the fermentation process is how to increase the productivity. For that purpose, it is necessary to develop continuous fermentation technology. Continuous fermentation is an established technique for some aerobic bacteria.
In particular, continuous fermentation technology for the purpose of cell production is based on the dilution rate (di
It has been shown that tuning the lution rate = D) forms a steady state. Methods for detecting the timing of substrate feed are also well known, including methods using dissolved oxygen and DO in the culture medium as indicators, and methods for measuring the timing by changing pH. However, despite the development of such technology,
In continuous culture, even for aerobic bacteria, growth-linked
associated), and non-growth associated fermentation such as glutamate fermentation and antibiotic production still uses batch fermentation and fed-batch culture. I have.

【0005】嫌気性菌は、増殖に酸素を必要としないこ
とから連続発酵の手段として固定化菌体を用いる方法が
検討されてきた。エタノール生産細菌Zymomonas属菌や
アセトン・ブタノール発酵菌Clostridium属菌では盛ん
に包括固定化法による連続発酵型バイオリアクアーが検
討されたが、いずれも実用に耐える評価は得られていな
い。その理由は主として2つある。1には、固定化に用
いる光硬化樹脂などのコストが高いこと、2には、固定
化された菌の一部が固定床中で失活するため発酵速度が
減衰する上、新しい菌との入れ替えも困難であることで
ある。これらの問題の解決は現在も全く目処が立ってい
ない。また、嫌気性菌による連続発酵も検討されてい
て、特に乳酸発酵では高密度菌体濃度によるケモスタッ
ト(chemostat)で、非常に高い生産性(100 g/L以上の
菌体濃度で最大60 g/1hの乳酸生産性を得た例もある)
が報告されている。しかし、これらの報告は菌濃度の制
御や比乳酸生産速度で代表される活性維持、工業化では
最も重要な残糖濃度の制御などが全くなされておらず、
実用化からはほど遠いものである。
Since anaerobic bacteria do not require oxygen for growth, methods using immobilized cells have been studied as a means of continuous fermentation. For the ethanol-producing bacteria Zymomonas sp. And Clostridium sp. Fermented acetone-butanol, continuous fermentation-type bioreactors by the entrapment immobilization method have been actively studied, but none of them has been evaluated to be practical. There are mainly two reasons. The first is that the cost of the photo-curing resin used for immobilization is high, and the second is that some of the immobilized bacteria are inactivated in the fixed bed, so that the fermentation rate is reduced and new bacteria are used. It is also difficult to replace. The resolution of these problems has yet to be determined. In addition, continuous fermentation with anaerobic bacteria has been studied. Particularly in lactic acid fermentation, chemostat with a high cell density has a very high productivity (up to 60 g / l at a cell concentration of 100 g / L or more). (In some cases, lactic acid productivity of 1h was obtained.)
Have been reported. However, these reports do not control the concentration of bacteria, maintain the activity represented by the specific lactic acid production rate, nor control the concentration of residual sugar, which is the most important in industrialization, at all.
It is far from practical use.

【0006】このような事情から、この出願の発明者
は、自然界から分離したL-体のみを選択的に生産するホ
モ乳酸菌を用いて、連続培養技術を開発してきた。L-乳
酸発酵で、生産性を低下させている原因は2つある。1
つは、生産蓄積する乳酸濃度が高くなると顕著になる生
産物阻害である。このため、乳酸濃度が30 g/Lを越える
と急激な発酵速度の低下が起こり、発酵は事実上停止し
てしまう。その2は発明者らが不稔性細胞生成(steril
ecell formation)と定義している失活菌の生成であ
る。乳酸菌のみならず、Zymomonas属菌やClostridium属
菌などの嫌気性菌は一般に好気性菌では対数増殖期に相
当する増殖初期でも、一定の比率で増殖能を失った菌が
生成する。このため、嫌気性菌の培養は低い菌濃度で頭
打ちとなる。このことも嫌気性菌による発酵の生産性が
高くならない本質的な原因を作っている。
[0006] Under such circumstances, the inventor of the present application has developed a continuous culture technique using homolactic bacteria that selectively produce only the L-form isolated from the natural world. L-lactic acid fermentation reduces productivity for two reasons. 1
One is product inhibition that becomes more pronounced as the concentration of lactic acid produced and accumulated increases. For this reason, when the lactic acid concentration exceeds 30 g / L, the fermentation rate drops sharply, and the fermentation is practically stopped. The second is that the inventors generated sterile cells (steril
ecell formation). In general, not only lactic acid bacteria but also anaerobic bacteria such as genus Zymomonas and genus Clostridium generally form aerobic bacteria that lose their growth ability at a constant rate even in the initial stage of growth corresponding to the logarithmic growth phase. Therefore, cultivation of anaerobic bacteria reaches a plateau at a low bacterial concentration. This also constitutes an essential reason why the productivity of fermentation by anaerobic bacteria does not increase.

【0007】そこで、生成してくる乳酸を逐次電気透析
によって培養系外に取り除いて生産物阻害を軽減する電
気透析培養を行ったところ、その効果は確認できたが、
この方法では、菌の失活対策や、糖濃度の管理などがで
きず、培養は不安定で実用に耐えるものではなかった。
一方、cross flow UF(限外ろ過)膜を組み込んで培養
液を循環し菌濃度を増加させた培養系の高密度化を検討
した。しかし、この培養法ではろ液の抜き出しの制御が
不可能で、安定した成績は得られなかった。
[0007] Therefore, when the electrodialysis culture for reducing the product inhibition by removing the generated lactic acid outside the culture system by sequential electrodialysis was performed, the effect was confirmed.
With this method, it was not possible to take measures against inactivation of the bacteria or control the sugar concentration, and the culture was unstable and was not practical.
On the other hand, we investigated the densification of a culture system that incorporated a cross flow UF (ultrafiltration) membrane and circulated the culture solution to increase the bacterial concentration. However, with this culture method, it was impossible to control the removal of the filtrate, and stable results were not obtained.

【0008】さらにまた、培養環境に存在するほとんど
の微生物は、乳酸ラセマーゼを有しているか、乳酸ラセ
ミ体を代謝生産するので、たとえL−乳酸だけしか生産
しないホモL−乳酸菌を用いて発酵しても、雑菌汚染を
引き起こせばたちまちL−乳酸の純度が低下し、目的と
する高純度のL−乳酸の製造は困難となる。また、連続
発酵で長時間培養系を稼働させるとなれば、雑菌汚染の
危険はさらに大きくなる。
Furthermore, most microorganisms existing in a culture environment have lactic acid racemase or metabolize and produce racemic lactic acid. Therefore, fermentation using homo-L-lactic acid bacteria that produce only L-lactic acid is possible. Even so, if contamination with various bacteria is caused, the purity of L-lactic acid immediately decreases, and it becomes difficult to produce the desired high-purity L-lactic acid. In addition, if the culture system is operated for a long time in continuous fermentation, the danger of bacterial contamination is further increased.

【0009】この出願の発明は、以上のとおりの従来の
技術と、この出願の発明者による検討を踏まえてなされ
たものであって、L-乳酸などの微生物による代謝反応生
産物を連続的に生産することを可能とする新しい方法を
提供することを課題としている。
The invention of this application has been made in view of the above-mentioned conventional technology and the study by the inventor of this application, and is intended to continuously produce a metabolic reaction product of a microorganism such as L-lactic acid. The task is to provide a new method that enables production.

【0010】また、この出願の発明は、雑菌汚染を回避
して、高純度のL−乳酸を効率的に製造する方法を提供
することを課題としている。
Another object of the present invention is to provide a method for efficiently producing high-purity L-lactic acid while avoiding bacterial contamination.

【0011】[0011]

【課題を解決するための手段】この出願の発明は、上記
のとおりの課題を解決すること、すなわち、L-乳酸など
の代謝生産物の効率よい生産を目的として、菌体を固定
化することなく培養系内から増殖能を失った活性の弱い
菌、発酵能の劣化した増殖能の衰えた菌を取り除き、常
にフレッシュで活性の強い菌だけを滞留させて連続的に
生産することを可能とする。
Means for Solving the Problems The present invention solves the above-mentioned problems, that is, to immobilize cells for the purpose of efficiently producing metabolites such as L-lactic acid. It is possible to remove bacteria that have lost growth ability and that have weak growth ability with reduced fermentation ability from the culture system, and keep fresh and highly active bacteria at all times to produce continuously. I do.

【0012】そのために、この出願の発明は、微生物に
よる反応系において、最大活性の微生物を一定の濃度で
生存させて、供給される原料物質と生物的に反応させて
代謝生産物を製造することを特徴とする微生物を用いた
代謝生産物の製造方法を提供する。
[0012] For this purpose, the invention of this application is to produce a metabolite by allowing a microorganism having the highest activity to survive at a certain concentration and reacting biologically with a supplied raw material in a reaction system using the microorganism. And a method for producing a metabolite using a microorganism.

【0013】この発明方法の一つの態様は、反応系にお
いて、所定の上限値と下限値の範囲内にpH値を制御する
こと、および濁度を一定に制御することで微生物の最大
活性を維持すること、さらに具体的には、pHの上限値と
下限値との差を0.1以下とすることである。
One aspect of the method of the present invention is to maintain the maximum activity of a microorganism by controlling the pH value within a predetermined upper limit and lower limit, and controlling the turbidity constant in a reaction system. More specifically, the difference between the upper limit value and the lower limit value of pH is set to 0.1 or less.

【0014】この発明方法の別の態様は、反応系から不
活性の菌を流出させることである。この発明方法のさら
に別の態様においては、微生物はホモ型L-乳酸発酵菌で
あり、微生物の代謝生産物はL-乳酸である。
Another embodiment of the method of the present invention is to elute inactive bacteria from the reaction system. In yet another embodiment of the method of the present invention, the microorganism is a homozygous L-lactic acid fermenter and the metabolite of the microorganism is L-lactic acid.

【0015】この発明方法のさらにまた別の態様におい
ては、微生物はアルコール生産菌であり、微生物の代謝
生産物がアルコール類である。この発明方法のまたさら
に別の態様においては、微生物がバクテリオシン生産ホ
モ型L-乳酸発酵菌であり、微生物の代謝生産物はL-乳酸
および/またはバクテリオシンである。バクテリオシン
は、具体的にはナイシンAまたはナイシンZであることを
好ましい態様としている。また、バクテリオシンがナイ
シンAの場合の微生物がLactococcus lactis NCDO497、L
actococcus lactis NCDO2111、Lactococcus lactis NIZ
O R5、Lactococcus lactis INRA1、Lactococcus lactis
INRA2、Lactococcus lactis INRA3、Lactococcus lact
is INRA4、Lactococcus lactisINRA5、Lactococcus lac
tis INRA6、Lactococcus lactis NP4G、Lactococcus la
ctis NZI、Lactococcus lactis SI、またはLactococcus
lactis ILC13であること、バクテリオシンZである場合
の微生物が、Lactococcus lactis IO-1(JCM7638)、La
ctococcus lactis subsp.lactis A. Ishizaki Chizuka
(JCM 11180)、 Lactococcus lactis subsp.lactis A. I
shizaki Yasaka 5B (JCM 11181)、Lactococcus lactis
subsp.lactis A. Ishizaki Yasaka 7B (JCM 11181)、La
ctococcuslactis subsp.lactis A. Ishizaki Yasaka 8B
(JCM 11181)、Lactococcus lactis subsp.lactis A. I
shizaki Yasaka 9B (JCM 11181)、Lactococcus lactis
NIZO22186、Lactococcus lactis NIZO N9、Lactococcus
lactis ATCC 7962、Lactococcus lactis NCDO2597、La
ctococcus lactis NCDO2091、Lactococcus lactisNCK40
0、Lactococcus lactis LJN80、Lactococcus lactis IL
C11、Lactococcuslactis ILC19、Lactococcus lactis I
LC126、Lactococcus lactis ILCSL5、またはLactococcu
s lactis ILCSL20であることをそれぞれ好ましい態様と
している。
[0015] In still another embodiment of the method of the present invention, the microorganism is an alcohol-producing bacterium and the metabolite of the microorganism is an alcohol. In still another embodiment of the method of the present invention, wherein the microorganism is a bacteriocin-producing homozygous L-lactic acid-fermenting bacterium, and the metabolite of the microorganism is L-lactic acid and / or bacteriocin. In a preferred embodiment, the bacteriocin is specifically nisin A or nisin Z. When the bacteriocin is nisin A, the microorganism is Lactococcus lactis NCDO497, L
actococcus lactis NCDO2111, Lactococcus lactis NIZ
O R5, Lactococcus lactis INRA1, Lactococcus lactis
INRA2, Lactococcus lactis INRA3, Lactococcus lact
is INRA4, Lactococcus lactisINRA5, Lactococcus lac
tis INRA6, Lactococcus lactis NP4G, Lactococcus la
ctis NZI, Lactococcus lactis SI, or Lactococcus
Lactococcus lactis IO-1 (JCM7638), Lactobacco lactis IO-1 (JCM7638)
ctococcus lactis subsp.lactis A. Ishizaki Chizuka
(JCM 11180), Lactococcus lactis subsp.lactis A. I
shizaki Yasaka 5B (JCM 11181), Lactococcus lactis
subsp.lactis A. Ishizaki Yasaka 7B (JCM 11181), La
ctococcuslactis subsp.lactis A. Ishizaki Yasaka 8B
(JCM 11181), Lactococcus lactis subsp.lactis A. I
shizaki Yasaka 9B (JCM 11181), Lactococcus lactis
NIZO22186, Lactococcus lactis NIZO N9, Lactococcus
lactis ATCC 7962, Lactococcus lactis NCDO2597, La
ctococcus lactis NCDO2091, Lactococcus lactis NCK40
0, Lactococcus lactis LJN80, Lactococcus lactis IL
C11, Lactococcus lactis ILC19, Lactococcus lactis I
LC126, Lactococcus lactis ILCSL5, or Lactococcu
s lactis ILCSL20 is a preferred embodiment.

【0016】すなわち、この出願の発明者は、上記の方
法、特にpH上限(upper limit for substrate feed)と下
限(lower limit for alkaline feed) の2点制御で、か
つその2点の設定間隔を極力小さく制御する方法が菌の
失活を防ぎ、増殖を活発にし、糖消費速度を促進する大
きな効果を生み出すことを見出し、この発明を完成して
いる。なお、1点制御でもそのオフセット幅が上記2点
の制御幅と同一になる場合も同様の結果が得られること
があるので、このような場合も2点制御に含まれる。
In other words, the inventor of the present application uses the above method, in particular, two-point control of the upper limit (upper limit for substrate feed) and the lower limit (lower limit for alkaline feed), and sets the set interval between the two points as much as possible. The inventors have found that a small control method prevents the inactivation of bacteria, activates the growth, and produces a great effect of promoting the rate of sugar consumption, thereby completing the present invention. Note that the same result may be obtained when the offset width is the same as the control width of the two points in the one-point control, and such a case is also included in the two-point control.

【0017】実際、この出願の発明においては、コンピ
ューターを用いたDDCによって、Lactococcus lactis IO
-1(JCM7638)の培養では、この菌のグルコース培地に
おける最大比増殖速度μmax=1.25h-1とほぼ同じ希釈率
D=1.1h-1でもwash-outが起こらないという結果を得て
いる。このような高い希釈率で培養すれば、希釈効果に
よって培養系内の乳酸濃度が低下して、電気透析培養に
よる阻害軽減効果に劣らぬ効果が得られている。pH−de
pendent法だけでなく、残糖濃度の制御を工業的に行う
ためには、pH dependent feedにレーザー濁度計によるf
eed back controlを組み込んだturbidostatを組み合わ
せることがさらに有効である。これによって、高いdilu
tion rateを維持しながら、高い比糖消費速度と比乳酸
生産速度を保つことができ、結果として安定した高速・
高効率連続発酵が可能で、残糖濃度も低いレベルに安定
して維持することができる。
In fact, according to the invention of this application, DDC using a computer provided Lactococcus lactis IO
In the culture of -1 (JCM7638), the results show that no wash-out occurs even at a dilution rate D = 1.1 h-1 which is almost the same as the maximum specific growth rate μmax = 1.25 h-1 of this bacterium in a glucose medium. By culturing at such a high dilution rate, the concentration of lactic acid in the culture system decreases due to the dilution effect, and an effect not inferior to the inhibition reducing effect of electrodialysis culture is obtained. pH-de
In addition to the pendent method, in order to industrially control the residual sugar concentration, it is necessary to use a laser turbidity meter for pH dependent feed.
It is more effective to combine turbidostat with eed back control. This allows for high dilu
A high specific sugar consumption rate and a specific lactic acid production rate can be maintained while maintaining the
High efficiency continuous fermentation is possible, and the residual sugar concentration can be stably maintained at a low level.

【0018】またこの発明の製造方法では、前記の態様
に示したように、バクテリオシン生産ホモ型L-乳酸発酵
菌を用いてバクテリオシン(抗菌性ペプチド)を蓄積さ
せながらL−乳酸の発酵を行う。バクテリオシンの高濃
度の蓄積によって、培養系に進入する雑菌を死滅させ、
L−乳酸の純度を低下させることなく、高純度のL−乳
酸の製造が可能となる。実際に、バクテリオシン(ナイ
シンZ)を生産するホモL−乳酸菌であるLactococcus l
actis IO-1(JCM7638)等を用いた培養系では、回分法
に比べて3-5倍の濃度のIナイシンZが蓄積し、長時間に
渡って雑菌汚染が発生せず、高純度のL−乳酸を大量に
製造することが可能である。さらに、このようなバクテ
リオシン生産ホモ型L-乳酸発酵菌を用いた培養系は、バ
クテリオシンの大量製造にも有効である。
Further, in the production method of the present invention, as described in the above embodiment, fermentation of L-lactic acid while accumulating bacteriocin (antimicrobial peptide) using bacteriocin-producing homozygous L-lactic acid fermenting bacteria. Do. The accumulation of high concentrations of bacteriocin kills bacteria entering the culture system,
High-purity L-lactic acid can be produced without lowering the purity of L-lactic acid. In fact, Lactococcus l, a homo L-lactic acid bacterium that produces bacteriocin (Nisin Z),
In the culture system using actis IO-1 (JCM7638) or the like, I-Nisin Z is accumulated at a concentration 3 to 5 times that of the batch method, and no bacterial contamination occurs over a long period of time. -It is possible to produce lactic acid in large quantities. Furthermore, a culture system using such a bacteriocin-producing homozygous L-lactic acid fermentation bacterium is also effective for mass production of bacteriocin.

【0019】[0019]

【発明の実施の形態】この出願の発明については、微生
物による代謝生産物の生成反応は各種であってもよく、
たとえば代謝生産物がアルコール類、L−乳酸および/
またはバクテリオシン等の各種のものであってよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the invention of this application, the reaction of producing a metabolite by a microorganism may be various,
For example, if the metabolites are alcohols, L-lactic acid and / or
Alternatively, various substances such as bacteriocin may be used.

【0020】L-乳酸の生成について、以下のようにさら
に説明することができる。ホモL−乳酸菌によってブド
ウ糖からL−乳酸をほぼ100%の転換率で生産する菌を
培養するものとする。主発酵槽には必ずpH電極、on-lin
e濁度測定装置をセットして、pHおよびODがonlineで正
確に測定できるようにする。たとえばレーザー濁度計な
どは最も優れた濁度測定装置である。pH制御法はpH上限
で基質フィード、pH下限でアルカリフィードを行うもの
で、フィード液としては、pH制御のためのアルカル液、
濁度制御のための水、および基質補充のための糖を主成
分とする基質フィード液の3種を用いる。また、菌体を
濃縮するため発酵槽外部循環型のホローファイバー型限
外ろ過膜を設置する。これらの液を輸送し流量制御する
ためのポンプが必要である。全体の装置構成をたとえば
図1として例示することができる。図中の符号は次のも
のを示している。
The production of L-lactic acid can be further explained as follows. Bacteria that produce L-lactic acid from glucose with homo L-lactic acid bacteria at a conversion rate of almost 100% shall be cultured. PH electrode, on-lin
e Set up a turbidity measurement device so that pH and OD can be accurately measured online. For example, a laser turbidity meter is the most excellent turbidity measuring device. In the pH control method, substrate feed is performed at the upper limit of pH and alkali feed is performed at the lower limit of pH.
Water for controlling turbidity and a substrate feed solution containing sugar as a main component for replenishing the substrate are used. In addition, a hollow fiber type ultrafiltration membrane of a fermenter external circulation type is installed to concentrate the cells. A pump for transporting these liquids and controlling the flow rate is required. The entire apparatus configuration can be exemplified as, for example, FIG. The reference numerals in the figure indicate the following.

【0021】[0021]

【表1】 [Table 1]

【0022】たとえば次表For example, the following table

【0023】[0023]

【表2】 [Table 2]

【0024】に見られるように、この出願の発明の方法
によるLactococcus lactis IO-1(JMC7368)のL−乳酸
連続発酵では、D=0.5h-1からD=1.1h-1の間におい
て、菌の再生率は約5%程度に留まっており、また、こ
のような高い希釈率で運転されているにもかかわらず、
菌の実比増殖速度μは低い値を示している。このような
特殊な培養システムの成立は世界で最初にみいだされ確
立されたものである。このことから、この培養系は、菌
を固定化していないにもかかわらず、低い菌再生率で、
実質的には固定化菌体法とほとんど変わらない培養プロ
セスが形成されていることを示している。すなわち、こ
の発明の方法は、失活した分だけ菌体が再生され、活性
の極めて高い菌体を固定化することなく永続的に利用す
る連続発酵法であり、先に述べた包括固定化法の諸問題
を解決し、嫌気性菌による培養の最も合理的なプロセス
となっている。
As can be seen in L-lactic acid continuous fermentation of Lactococcus lactis IO-1 (JMC7368) according to the method of the invention of this application, the bacterium was isolated between D = 0.5 h-1 and D = 1.1 h-1. Regeneration rate is about 5%, and despite operating at such a high dilution rate,
The actual specific growth rate μ of the bacteria shows a low value. The establishment of such a special culture system was first found and established in the world. From this, this culture system has a low bacterial regeneration rate despite the immobilization of bacteria,
This indicates that a culture process that is substantially the same as the immobilized cell method has been formed. That is, the method of the present invention is a continuous fermentation method in which cells are regenerated only by the amount of inactivation and cells with extremely high activity are permanently used without being immobilized. Has become the most rational process of anaerobic cultivation.

【0025】かくして、世界にも例のない包括固定化法
にかわる嫌気性菌の新しい培養法としてこの出願の発明
が提供される。この発明の製造方法は、例えば、L−乳
酸を製造する場合には、Lactococcuslactis属に属する
公知の菌株を用いて実施することができる。また、アル
コール類を製造する場合には、エタノール生産細菌Zymo
monas属菌やアセトン・ブタノール発酵菌Clostridium属
菌等の公知の菌株を用いて実施することができる。
Thus, the invention of this application is provided as a new method for culturing anaerobic bacteria, which is an alternative to the globally immobilized immobilization method. For example, when producing L-lactic acid, the production method of the present invention can be carried out using a known strain belonging to the genus Lactococcus lactis. When producing alcohols, ethanol-producing bacteria Zymo
It can be carried out using known strains such as monas spp. and acetone / butanol fermentation bacteria Clostridium sp.

【0026】さらにまた、この発明の方法は、バクテリ
オシン生産ホモ型L−乳酸発酵菌を用いることによっ
て、高濃度のバクテリオシンの蓄積により長時間に渡っ
て高純度のL−乳酸の生産をも可能とする。
Furthermore, the method of the present invention can produce high-purity L-lactic acid for a long time by accumulating a high concentration of bacteriocin by using a bacteriocin-producing homozygous L-lactic acid fermenting bacterium. Make it possible.

【0027】バクテリオシン生産ホモ型L−乳酸発酵菌
は、ナイシンA生産菌として、Lactococcus lactisに属
するNCDO497、NCDO2111、NIZO R5、INRA1、INRA2、INRA
3、INRA4、INRA5、INRA6、NP4G、NZI、SIまたはILC13を
使用することができ、バクテリオシンZ生産菌として
は、Lactococcus lactis IO-1(JCM7638)、Lactococcu
slactis subsp.lactis A. Ishizaki Chizuka (JCM 1118
0)、Lactococcus lactissubsp.lactis A. Ishizaki Yas
aka 5B (JCM 11181)、Lactococcus lactis subsp.lacti
s A. Ishizaki Yasaka 7B (JCM 11181)、Lactococcus l
actis subsp.lactis A. Ishizaki Yasaka 8B (JCM 1118
1)、Lactococcus lactis subsp.lactis A. Ishizaki Ya
saka 9B (JCM 11181)、およびLactococcus lactisに属
するNIZO22186、NIZO N9、ATCC 7962、NCDO2597、NCDO2
091、NCK400、LJN80、ILC11、ILC19、ILC126、ILCSL5ま
たはILCSL20を使用することができる。
The bacteriocin-producing homozygous L-lactic acid-fermenting bacteria are nisin A-producing bacteria belonging to Lactococcus lactis, NCDO497, NCDO2111, NIZO R5, INRA1, INRA2, INRA.
3, INRA4, INRA5, INRA6, NP4G, NZI, SI or ILC13 can be used. As bacteriocin Z-producing bacteria, Lactococcus lactis IO-1 (JCM7638), Lactococcu
slactis subsp.lactis A. Ishizaki Chizuka (JCM 1118
0), Lactococcus lactissubsp.lactis A. Ishizaki Yas
aka 5B (JCM 11181), Lactococcus lactis subsp.lacti
s A. Ishizaki Yasaka 7B (JCM 11181), Lactococcus l
actis subsp.lactis A. Ishizaki Yasaka 8B (JCM 1118
1), Lactococcus lactis subsp.lactis A. Ishizaki Ya
saka 9B (JCM 11181), and NIZO22186, NIZO N9, ATCC 7962, NCDO2597, NCDO2 belonging to Lactococcus lactis
091, NCK400, LJN80, ILC11, ILC19, ILC126, ILCSL5 or ILCSL20 can be used.

【0028】これらの菌株のうち、括弧内にJCM番号が
付されているものは、この出願の発明者らが独自に分離
した菌株であり、分譲可能な状態で「理化学研究所微生
物系統保存施設」に寄託されている。また、Lactococcu
s lactis NCDO497がナイシンA生産菌であることは当該
技術分野において広く認められており、多くの先行技術
文献が存在する。その他の菌株がそれぞれナイシンAお
よびナイシンZ生産菌であることは文献(J. Appl. Envi
ron. Mictrobiol. 59(1):214, 1993)によって公知であ
る。これらの公知菌株は、それぞれ文献の著者等から入
手可能であり、またそれぞれの寄託機関(NCDOやATCC
等)から分譲可能である。
Among these strains, those with a JCM number in parentheses are strains independently isolated by the inventors of the present application, and are available in a separable state from the “RIKEN Microbial Strain Storage Facility”. Has been deposited. Also, Lactococcu
It is widely accepted in the art that s lactis NCDO497 is a nisin A producing bacterium, and there are many prior art documents. The other strains are nisin A and nisin Z-producing bacteria, respectively, according to the literature (J. Appl. Envi.
ron. Mictrobiol. 59 (1): 214, 1993). These known strains are available from the authors of the literature, respectively, and are also available from their respective depository institutions (NCDO and ATCC).
Etc.).

【0029】以下に実施例を示し、この発明の方法につ
いてさらに詳細かつ具体的に説明するが、この発明は以
下の例によって限定されるものではない。
The following examples illustrate the method of the present invention in more detail and specifically, but the present invention is not limited to the following examples.

【0030】[0030]

【実施例】実施例1 使用菌は発明者が独自に分離したLactococcus lactis I
O-1(JCM7638)を使用した。種菌は-85℃の凍結保存菌
をTGC培地に植菌し静置培養したものを用いた。これを
グルコース3%、酵母エキス0.5%、ポリペプトン0.5
%、NaCl 1%からなる培地100 mlをErlenmyer Flaskに
分注して120℃5分autoclave滅菌したものに接種して12
時間培養したものをシードとした。乳酸発酵に用いた培
養装置は図1に示す通りである。主発酵槽は全容1リッ
ターのガラス製ジャーで、内部にマグネットスターラー
の攪拌機を設置し約400 rpmの回転数でゆっくり攪拌し
ている。ジャー全体をwater bathに浸け、37℃の温水を
循環して温度を制御する。ジャーにpH測定用複合ガラス
電極を装着し、pH meter(東亜電波製)で測定し、その
測定値をRS232にてコンピューターに転送し、自作プロ
グラムによってpH上限、下限の2点制御を行った。連続
運転に入れば、pH上限で基質フィールドを行い、pH下限
でアルカリ(NaOH)フィールドを行う。また、ジャーに
はプロセスオンライン濁度計プローブを設置し、その出
力をDDC controller(Model LA-300エーエスアール)に
入力し、ジャーの濁度制御を行うシステムを構築した。
ジャーから培養液を抜き出し、cross flow型限外ろ過膜
(MICROZA PSP103、旭化成)を用いて培養液を循環し、
微生物の濃縮を行うとともに、ろ過膜外側から除菌液を
抜き出して、乳酸液を取り出す。一方、濁度コントロー
ルのシステムとしては、殺菌した水をフィードし、培養
液(含菌液)を抜き出す。このとき、水の供給と培養液
の抜き出しはペリスタティックポンプによって同調させ
た。
Example 1 The bacterium used was Lactococcus lactis I, which was isolated by the inventor.
O-1 (JCM7638) was used. The inoculum used was a cryopreserved bacterium at −85 ° C. inoculated in a TGC medium, and the culture was allowed to stand. This is made up of glucose 3%, yeast extract 0.5%, polypeptone 0.5
% And NaCl 1% in 100 ml of medium, dispensed into Erlenmyer Flask, inoculated in autoclave sterilized at 120 ° C for 5 minutes,
After culturing for a time, the seed was used. The culture apparatus used for lactic acid fermentation is as shown in FIG. The main fermenter is a glass jar with a total volume of 1 liter. A magnetic stirrer stirrer is installed inside the jar, and the mixture is slowly stirred at about 400 rpm. The entire jar is immersed in a water bath, and the temperature is controlled by circulating hot water at 37 ° C. A composite glass electrode for pH measurement was attached to the jar, measured with a pH meter (manufactured by Toa Denpa), the measured value was transferred to a computer by RS232, and two points of upper limit and lower limit of pH were controlled by a self-made program. In continuous operation, the substrate field is performed at the upper pH limit, and the alkali (NaOH) field is performed at the lower pH limit. In addition, a process online turbidity meter probe was installed in the jar, and the output was input to a DDC controller (Model LA-300 ASR) to construct a turbidity control system for the jar.
Extract the culture from the jar and circulate the culture using a cross flow ultrafiltration membrane (MICROZA PSP103, Asahi Kasei)
While concentrating the microorganisms, the bacteria-free solution is extracted from the outside of the filtration membrane, and the lactic acid solution is extracted. On the other hand, as a turbidity control system, sterilized water is fed and a culture solution (bacterial solution) is extracted. At this time, the supply of water and the extraction of the culture solution were synchronized by a peristatic pump.

【0031】連結培養では、3種類の液を供給し、2種
類の液の抜き出しを行う。すなわち、pH上限において基
質の糖を含むフィード液を、pH下限においてpH制御のた
めのアルカリ液(1 M-NaOH)を添加する。このとき、フ
ィード液もアルカリ液もジャーに供給時はペリスタティ
ックポンプによって限外ろ過膜外側から除菌液を抜き出
してジャーの液量を一定に保つ。また濁度制御のため
に、上述したように、水を供給し、培養液を抜き出す
が、これもジャーの液量を一定に保つようにペリスタテ
ィックポンプを用いる。
In the ligation culture, three kinds of liquids are supplied, and two kinds of liquids are extracted. That is, a feed solution containing a saccharide as a substrate is added at an upper pH limit, and an alkali solution (1 M-NaOH) for pH control is added at a lower pH limit. At this time, when both the feed solution and the alkaline solution are supplied to the jar, the disinfecting solution is withdrawn from the outside of the ultrafiltration membrane using a peristatic pump, and the amount of the jar solution is kept constant. As described above, water is supplied and the culture solution is extracted for turbidity control. A peristatic pump is also used to keep the volume of the jar constant.

【0032】培養はグルコース5%、酵母エキス1%、
ポリペプトン1%の組成のもの400mlにシード20 mlを植
菌してpH 6.0を維持するようにアルカリフィードする培
養でスタートする。約12時間後、培地の残糖濃度がほと
んど0となった時点で上下限2点制御(pH 6.1の上限で
アルカリフィード、pH6.0の下限で基質フィードを行
う)の連続基質フィード(フィード液はグルコース35 g
/L、酵母エキス1.0%、ポリペプトン1.0%)に切り替え
ると同時に、培養液を循環して細胞濃度を上昇させる。
濁度制御で細胞濃度一定となったら、残糖、乳酸濃度が
一定に維持されるようになる定常状態を形成させる。図
2は、乳酸濃度を25 g/Lで一定にした場合の結果を例示
したものである。菌体細胞濃度5 g/Lでdilution rate
0.5h-1で定常状態を形成した場合、乳酸生産性13.5 g/1
h、流出液糖濃度(残糖濃度)0.25 g/Lであった。この
ときの細胞抜きだし量は全菌量の5%で0.25 g/hであっ
た。また菌の乳酸発酵活性を示す比乳酸生産速度は3.3
g/ghであった。得られたL−乳酸の光学純度は99.8%で
あった。
The culture was performed with glucose 5%, yeast extract 1%,
The culture is started by inoculating 400 ml of a 1% polypeptone composition with 20 ml of a seed and feeding alkaline to maintain pH 6.0. Approximately 12 hours later, when the residual sugar concentration of the medium becomes almost zero, the continuous substrate feed (feed solution) with upper and lower two-point control (alkaline feed at the upper limit of pH 6.1 and substrate feed at the lower limit of pH 6.0) Is 35 g of glucose
/ L, yeast extract 1.0%, polypeptone 1.0%) at the same time as circulating the culture to increase the cell concentration.
When the cell concentration becomes constant by turbidity control, a steady state in which the residual sugar and lactic acid concentrations are kept constant is formed. FIG. 2 illustrates the results when the lactic acid concentration was kept constant at 25 g / L. Dilution rate at a cell concentration of 5 g / L
When a steady state is formed at 0.5 h -1 , lactic acid productivity is 13.5 g / 1
h, The effluent sugar concentration (residual sugar concentration) was 0.25 g / L. At this time, the cell extraction amount was 0.25 g / h at 5% of the total bacterial amount. The specific lactic acid production rate, which indicates the lactic acid fermentation activity of the bacteria, is 3.3
g / gh. The optical purity of the obtained L-lactic acid was 99.8%.

【0033】また、連続発酵において毎12時間おきに培
養液を無菌的にサンプリングし、それを滅菌水で数段階
に希釈後その100μlをグルコース含有完全培地(CMG)
のプレートに展開し、37℃で24時間培養し、生育してく
るコロニーを監察した。その結果、雑菌汚染は全く監察
されなかった。さらに、連続発酵状態での培養液のナイ
シンZ濃度は、同一菌を同じ培地で回分培養した場合の
ナイシンZ濃度3,500 AU/mlに比べ5倍に達していた。 実施例2 使用菌株は実施例1と同じくLactococcus lactis IO-1
(JCM7638)で、保存株のrefresh、シードの調製は実施
例1の通りである。培養装置は実施例1と同じで図1に
示した通りである。
In the continuous fermentation, the culture solution is aseptically sampled every 12 hours, diluted with sterile water in several steps, and 100 μl of the diluted solution is added to a complete medium containing glucose (CMG).
Were developed and cultured at 37 ° C. for 24 hours, and the growing colonies were monitored. As a result, no bacterial contamination was monitored. Furthermore, the nisin Z concentration of the culture solution in the continuous fermentation state was 5 times as high as the nisin Z concentration of 3,500 AU / ml when the same bacteria were batch-cultured in the same medium. Example 2 The strain used was Lactococcus lactis IO-1 as in Example 1.
In (JCM7638), the refreshing of the stock and the preparation of the seed are as in Example 1. The culturing apparatus is the same as in Example 1 and is as shown in FIG.

【0034】培地に用いるブドウ糖はサゴヤシデンプン
酵素糖化液を用いた。サゴヤシデンプン(マレーシアサ
ラワク大より入手)乾物換算で300 gを水1リッターに
懸濁させた。pH 6.5に調整後Bacillus subtilis由来の
耐熱性アミラーゼ(液化酵素Klaistase T5 大和化成、
5,000u/g)を0.2%(v/v)添加し、95℃で2時間酵素反
応し糊化させた後130℃で10分加熱処理して酵素を失活
させた。Klaistase T5を0.1%(v/v)添加し再び95℃で
1時間処理し液化反応を終了した。冷却後ph 5.5に調整
し、Rhizopus delemar由来のグルコアミラーゼ(糖化酵
素Glucozyme 天野製薬、4,200U/g)をデンプン1 g当た
り8 U添加し、50℃で24時間糖化反応を行った。糖化反
応後Glucose analyzerによって得られたグルコースを求
めたところ、1 gの乾物デンプンから1.05 gのグルコー
スが得られた。
The glucose used for the culture medium was a saccharified starch saccharified solution. 300 g of sago palm starch (obtained from Sarawak University, Malaysia) in terms of dry matter was suspended in 1 liter of water. After adjusting to pH 6.5, heat-resistant amylase derived from Bacillus subtilis (liquefied enzyme Klaistase T5 Daiwa Kasei,
(5,000 u / g) was added at 0.2% (v / v) and gelatinized by enzymatic reaction at 95 ° C. for 2 hours, followed by heat treatment at 130 ° C. for 10 minutes to inactivate the enzyme. 0.1% (v / v) of Klaistase T5 was added, and the mixture was again treated at 95 ° C. for 1 hour to complete the liquefaction reaction. After cooling, the pH was adjusted to 5.5, glucoamylase derived from Rhizopus delemar (saccharifying enzyme Glucozyme Amano Pharmaceutical, 4,200 U / g) was added at 8 U per 1 g of starch, and saccharification was carried out at 50 ° C. for 24 hours. After the saccharification reaction, the glucose obtained by a Glucose analyzer was determined. As a result, 1.05 g of glucose was obtained from 1 g of the dry starch.

【0035】この実施例2においては、シード培養まで
の培地は実施例1と全く同じである。主発酵用培地は、
上記サゴヤシデンプン糖化液グルコース換算で50 gを計
量し、これに大豆フレーク酸加水分解物0.5%(v/v)、
天然ゴムラテックス分離母液乾燥粉末(natural rubber
serum powder:NRSP)0.5%(v/v)、となるよう添加し
て1リットルとしオートクレーブ殺菌したものを用い
た。また基質フィード液もサゴヤシデンプン糖化液グル
コース換算で50 g/Lとなるよう調整して用いた。実施例
1と同じようにシードを添加して回分培養で培養を立ち
上げ、残糖濃度がほとんど0になった時点で培養液のリ
サイクル、濁度制御による細胞濃度の制御、pH2点制御
(pH6.1の上限でアルカリフィード、pH6.0の下限で基質
フィードで行う)による連続基質フィード(サゴヤシデ
ンプン糖化液グルコース50 g/L、大豆フレーク酸加水分
解物0.5%(v/v)、NRSP 0.5%)を行った。菌濃度10 g
/L、dilution rate 0.75h-1で定常状態に達し、そのと
きの乳酸生産性は31.5 g/Lh、流出液の残糖濃度は0.3 g
/Lであった。細胞抜きだし量は全菌量の3%で0.35 g/h
であった。また菌の乳酸発酵活性を示す比乳酸生産速度
は3.15 g/ghであった。得られたL−乳酸の光学純度は9
9.8%であった。
In Example 2, the medium up to seed culture is exactly the same as in Example 1. The main fermentation medium is
The sago palm starch saccharified liquid 50 g was weighed in terms of glucose, and the soybean flake acid hydrolyzate 0.5% (v / v),
Natural rubber latex separated mother liquor dry powder
Serum powder: NRSP) was added to a concentration of 0.5% (v / v) to make 1 liter and used after autoclaving. The substrate feed solution was also adjusted so as to be 50 g / L in terms of glucose of sago palm starch saccharified solution. In the same manner as in Example 1, the seeds were added, and the culture was started by batch culture. When the residual sugar concentration became almost zero, the culture solution was recycled, the cell concentration was controlled by controlling turbidity, and the pH was controlled at two points (pH 6). Continuous feed with an alkaline feed at the upper limit of 0.1 and a substrate feed at the lower limit of pH 6.0 (sago palm starch saccharified liquid glucose 50 g / L, soybean flake acid hydrolyzate 0.5% (v / v), NRSP 0.5 %). Bacteria concentration 10 g
/ L, reached steady state at a dilution rate of 0.75h- 1 , lactic acid productivity at that time was 31.5 g / Lh, and residual sugar concentration in the effluent was 0.3 g
/ L. Cell extraction volume is 0.35 g / h at 3% of the total bacterial mass
Met. The specific lactic acid production rate showing the lactic acid fermentation activity of the bacteria was 3.15 g / gh. The optical purity of the obtained L-lactic acid is 9
It was 9.8%.

【0036】図3は、菌体濃度10 g/Lで一定とした場合
のL−乳酸連続生産の希釈率と反応器内乳酸濃度との関
係を例示した図である。また、実施例1と同様の雑菌汚
染試験を実施したが、全培養期間に渡って雑菌汚染は認
められなかった。さらに、連続発酵状態での培養液のナ
イシンZ濃度は回分培養法の約3.5倍であった。 実施例3 使用菌株は実施例1と同じくLactococcus lactis IO-1
(JCM7638)で、保存株のrefresh、シードの調製、およ
び培養装置(図1)は実施例1と同一とした。
FIG. 3 is a diagram illustrating the relationship between the dilution ratio of continuous production of L-lactic acid and the concentration of lactic acid in the reactor when the cell concentration is constant at 10 g / L. A germ contamination test was performed in the same manner as in Example 1, but no germ contamination was observed over the entire culture period. Furthermore, the nisin Z concentration of the culture solution in the continuous fermentation state was about 3.5 times that of the batch culture method. Example 3 The strain used was Lactococcus lactis IO-1 as in Example 1.
In (JCM7638), the refreshing of the stock, preparation of seed, and culturing apparatus (FIG. 1) were the same as those in Example 1.

【0037】培地に用いるブドウ糖はコーンスターチ(c
orn starch)酵素糖化液を用いた。コーンスターチ乾物
換算で300 gを水1リッターに懸濁させた。pH 6.5に調
整後Bacillus licheniformis由来の耐熱性アミラーゼ
(液化酵素Thermamyl Novo Nordisk, 120 KNU/g)を0.1
%(v/v)添加し、90℃で2時間酵素反応し糊化させた
後130℃で10分加熱処理して酵素を失活させた。冷却後p
H 5.5に調整し、Aspergillusniger由来のグルコアミラ
ーゼとBacillus acidpullulyticum由来のプルラナーゼ
の混合酵素(糖化酵素Dextroyme Nove Nordisk, 225AGU
/g)をデンプン1g当たり4 U添加し、50℃で24時間糖
化反応を行った。糖化反応後Glucose analyzerによって
得られたグルコースを求めたところ、1gの乾物デンプ
ンから1.05 gのグルコースが得られた。
The glucose used for the medium is corn starch (c
orn starch) An enzyme saccharified solution was used. 300 g of corn starch in terms of dry matter was suspended in 1 liter of water. After adjusting to pH 6.5, 0.1 g of thermostable amylase derived from Bacillus licheniformis (liquefaction enzyme Thermomyl Novo Nordisk, 120 KNU / g) was added.
% (V / v), enzymatically reacted at 90 ° C. for 2 hours to gelatinize, and then heat-treated at 130 ° C. for 10 minutes to inactivate the enzyme. After cooling p
Adjusted to 5.5, a mixed enzyme of glucoamylase from Aspergillusniger and pullulanase from Bacillus acidpullulyticum (Dextroyme Nove Nordisk, 225AGU
/ g) was added at 4 U per 1 g of starch, and saccharification was carried out at 50 ° C for 24 hours. After the saccharification reaction, glucose obtained by a Glucose analyzer was determined, and 1.05 g of glucose was obtained from 1 g of dry starch.

【0038】この実施例3においては、シード培養まで
の培地は実施例1と全く同じである。主発酵用培地は、
上記コーンスターチ糖化液グルコース換算で50 gを計量
し、これに粉末CSL(コーン・スティープ・リカー、庄
野澱粉製)を1%となるよう添加して1リッターとしオ
ートクレーブ殺菌したものを用いた。また基質フィード
液もコーンスターチ糖化液グルコース換算で35 g/Lとな
るよう調整して用いた。実施例1と同じようにシードを
添加して回分培養で培養を立ち上げ、残糖濃度がほとん
ど0になった時点で培養液のリサイクル、濁度制御によ
る細胞濃度の制御、pH2点制御(pH 6.1の上限でアルカ
リフィード、pH 6.0の下限で基質フィードで行う)によ
る連続基質フィード(コーンスターチ糖化液グルコース
50 g/L、CSL 1%)を行った。菌濃度12 g/L、dilution
rate 1.1/hで定常状態に達し、そのときの乳酸生産性は
36 g/Lh、流出液の残糖濃度は2.5 g/Lであった。細胞抜
きだし量は全菌量の2%で0.2 g/hであった。また菌の
乳酸発酵活性を示す比乳酸生産速度は3.0 g/ghであっ
た。得られたL−乳酸の光学純度は99.8%であった。
In the third embodiment, the medium up to seed culture is exactly the same as in the first embodiment. The main fermentation medium is
The above corn starch saccharified solution was weighed in an amount of 50 g in terms of glucose, and powdered CSL (corn steep liquor, manufactured by Shono Starch) was added to 1% to make 1 liter, and the mixture was sterilized by autoclave. The substrate feed solution was also adjusted so as to be 35 g / L in corn starch saccharified solution glucose equivalent. In the same manner as in Example 1, the seed was added, and the culture was started by batch culture. When the residual sugar concentration was almost zero, the culture solution was recycled, the cell concentration was controlled by controlling the turbidity, and the pH was controlled at two points (pH 2). Continuous substrate feed (glucose of corn starch saccharified solution) with alkaline feed at the upper limit of 6.1 and substrate feed at the lower limit of pH 6.0
50 g / L, CSL 1%). Bacteria concentration 12 g / L, dilution
A steady state is reached at a rate of 1.1 / h, and the lactic acid productivity at that time is
The residual sugar concentration in the effluent was 36 g / Lh, and the residual sugar concentration was 2.5 g / L. The cell extraction amount was 0.2 g / h at 2% of the total bacterial amount. The specific lactic acid production rate showing the lactic acid fermentation activity of the bacteria was 3.0 g / gh. The optical purity of the obtained L-lactic acid was 99.8%.

【0039】また、実施例1と同様の雑菌汚染試験を実
施したが、全培養期間に渡って雑菌汚染は認められなか
った。さらに、連続発酵状態での培養液のナイシンZ濃
度は回分培養法の約3.5倍であった。 実施例4 使用菌はZymomonas mobilis NRRLB-14023を使用した。
種菌は-85℃の凍結保存菌をYM培地に植菌し静置培養し
たものを用いた。これをグルコース100 g、酵母エキス1
0 g、KH2PO4 1 g、(NH42SO4 1 g、Mg(SO4)・7H2O 0.
5 gを1Lの脱イオン水に溶解した培地100 mlをErlenmyer
Flaskに分注して120℃5分autoclave滅菌したものに接
種して約8時間培養したものをシードとした。エタノー
ル発酵に用いた培養装置は図1に示すものと同じであ
る。すなわち、主発酵槽は全容約1リッターのガラス製
ジャーで、内部マグネットスターラーのかくはん機を設
置し約400 rpmの回転数でゆっくり撹拌している。ジャ
ー全体をwater bathに浸け、37℃の温水を循環して温度
を制御する。ジャーにpH測定用複合ガラス電極を装着
し、pH meter(東亜電波製)で測定し、その測定値RS23
2にてコンピューターに転送し、自作プログラムによっ
てpH上限、下限の2点制御を行った。連続運転に入れ
ば、pH上限で基質フィードを行い、pH下限でアルカリ
(NaOH)フィードを行う。また、ジャーにはプロセスオ
ンライン濁度計プローブを設置し、その出力をDDC cont
roller(Model LA-300エーエスアール)に入力、ジャー
の濁度制御を行うシステムを構築した。ジャーから培養
液を抜き出し、cross flow型限外ろ過膜(MICROZA PSP1
03、旭化成)を用いて培養液を循環し、微生物の濃縮を
行うとともに、ろ過膜外側から除菌液を抜き出して、乳
酸液を取り出す。一方、濁度コントロールのシステムと
しては、殺酸した水をフィードし、培養液(含菌液)を
抜き出す。このとき、水の供給と培養液の抜き出しはペ
リスタティックポンプによって同調させた。
In addition, the same bacterial contamination test as in Example 1 was conducted, but no bacterial contamination was observed over the entire culture period. Furthermore, the nisin Z concentration of the culture solution in the continuous fermentation state was about 3.5 times that of the batch culture method. Example 4 The used bacterium was Zymomonas mobilis NRRLB-14023.
The inoculum used was a cryopreserved bacterium at −85 ° C. inoculated in a YM medium, and the culture was allowed to stand. 100 g of glucose, yeast extract 1
0 g, KH 2 PO 4 1 g, (NH 4 ) 2 SO 4 1 g, Mg (SO 4 ) ・ 7H 2 O 0.
100 ml of a medium prepared by dissolving 5 g in 1 L of deionized water
The seeds were dispensed into Flasks, inoculated into autoclave sterilized at 120 ° C for 5 minutes, and cultured for about 8 hours. The culture device used for ethanol fermentation is the same as that shown in FIG. That is, the main fermenter is a glass jar having a total volume of about 1 liter, and is equipped with a stirrer with an internal magnetic stirrer and is slowly stirred at a rotation speed of about 400 rpm. The entire jar is immersed in a water bath, and the temperature is controlled by circulating hot water at 37 ° C. Attach a composite glass electrode for pH measurement to the jar and measure with a pH meter (manufactured by Toa Denpa).
The data was transferred to the computer in step 2, and two-point control of the upper limit and lower limit of pH was performed by a self-made program. When the continuous operation is started, the substrate is fed at the upper pH limit and the alkali (NaOH) feed is performed at the lower pH limit. Also, a process online turbidity probe is installed in the jar, and the output is DDC cont.
A system to control the turbidity of the jar by inputting to the roller (Model LA-300 ASR) was constructed. Extract the culture solution from the jar and use a cross flow type ultrafiltration membrane (MICROZA PSP1
03, Asahi Kasei), circulate the culture solution, concentrate the microorganisms, extract the disinfecting solution from the outside of the filtration membrane, and remove the lactic acid solution. On the other hand, as a turbidity control system, acidified water is fed, and a culture solution (bacteria-containing solution) is extracted. At this time, the supply of water and the extraction of the culture solution were synchronized by a peristatic pump.

【0040】連結培養では、3種類の液を供給し、2種
類の液の抜き出しを行う。すなわち、pH上限において基
質の糖を含むフィード液を、pH下限においてpH制御のた
めのアルカリ液(1 M-NaOH)を添加する。このとき、フ
ィード液もアルカリ液もジャーに供給時はペリスタティ
ックポンプによって限外ろ過膜外側から除菌液を抜き出
してジャーの液量を一定に保つ。また濁度制御のため
に、上述したように、水を供給し、培養液を抜き出す
が、これもジャーの液量を一定に保つようにペリスタテ
ィックポンプを用いる。
In the ligation culture, three kinds of liquids are supplied, and two kinds of liquids are extracted. That is, a feed solution containing a saccharide as a substrate is added at an upper pH limit, and an alkali solution (1 M-NaOH) for pH control is added at a lower pH limit. At this time, when both the feed solution and the alkaline solution are supplied to the jar, the disinfecting solution is withdrawn from the outside of the ultrafiltration membrane using a peristatic pump, and the amount of the jar solution is kept constant. As described above, water is supplied and the culture solution is extracted for turbidity control. A peristatic pump is also used to keep the volume of the jar constant.

【0041】主発酵培養はシードと同一組成、すなわち
グルコース10%、酵母エキス1%、KH2PO4 0.1%、(N
H4)2SO4 0.1%、Mg(SO4)・7H2O 0.05gの培地400 mlに
シード20 mlを植菌してpH5.5を維持するようにアルカリ
フィードする培養でスタートする。約8時間後、培地の
残糖濃度がほとんど0となった時点で上下限2点制御
(pH 5.55の上限でアルカリフィード、pH 5.50の下限で
基質フィードを行う)の連続基質フィード(フィード液
は水1L中グルコース35 g、酵母エキス10 g、KH2PO 4 1
g、(NH4)2SO4 1g、Mg(SO4)・7H2O 0.05 g)に切り替え
ると同時に、培養液を循環して細胞濃度を上昇させる。
濁度制御で細胞濃度一定となったら、残糖、乳酸濃度が
一定に維持されるようになる定常状態を形成させる。
The main fermentation culture has the same composition as the seed, ie
Glucose 10%, Yeast extract 1%, KHTwoPOFour 0.1%, (N
HFour)TwoSOFour 0.1%, Mg (SOFour) ・ 7HTwoO in 400 ml of 0.05 g medium
Inoculate 20 ml of seed to maintain pH 5.5
Start with a feed culture. After about 8 hours,
Two-point upper and lower limit control when the residual sugar concentration becomes almost 0
(Alkaline feed at pH 5.55 upper limit, pH 5.50 lower limit
Continuous substrate feed (feed solution)
Is glucose 35 g, yeast extract 10 g, KHTwoPO Four 1
g, (NHFour)TwoSOFour 1g, Mg (SOFour) ・ 7HTwoO 0.05 g)
At the same time, the culture is circulated to increase the cell concentration.
When the cell concentration becomes constant by turbidity control, the residual sugar and lactic acid
A steady state is formed that will be maintained constant.

【0042】細胞濃度7.5 g/L、dilution rate 0.7h-1
で定常状態を形成し、エタノール生産速度26.25 g/hL、
流出液糖濃度(残糖濃度)0.25 g/Lを得た。このときの
細胞抜きだし量は全菌量の5%で0.26 g/hであった。 実施例5 使用菌株は、ホモL−乳酸発酵菌であり、かつナイシン
A生産菌であるLactococcus lactis NCDO497であり、保
存株のrefresh、シードの調製は実施例1の通りであ
る。培養装置は実施例1と同じで図1に示した通りであ
る。
Cell concentration 7.5 g / L, dilution rate 0.7h -1
At a steady state with an ethanol production rate of 26.25 g / hL,
The effluent sugar concentration (residual sugar concentration) was 0.25 g / L. At this time, the cell extraction amount was 0.26 g / h at 5% of the total bacterial amount. Example 5 The strain used was a homo-L-lactic acid fermentation bacterium and nisin
Lactococcus lactis NCDO497, which is an A-producing bacterium. The stock is refreshed and the seed is prepared as in Example 1. The culturing apparatus is the same as in Example 1 and is as shown in FIG.

【0043】培地に用いるブドウ糖はサゴヤシデンプン
酵素糖化液を用いた。サゴヤシデンプン(マレーシアサ
ラワク大より入手)乾物換算で300 gを水1リッターに
懸濁させた。pH 6.5に調整後Bacillus subtilis由来の
耐熱性アミラーゼ(液化酵素Klaistase T5 大和化成、
5,000u/g)を0.2%(v/v)添加し、95℃で2時間酵素反
応し糊化させた後130℃で10分加熱処理して酵素を失活
させた。Klaistase T5を0.1%(v/v)添加し再び95℃で
1時間処理し液化反応を終了した。冷却後ph 5.5に調整
し、Rhizopus delemar由来のグルコアミラーゼ(糖化酵
素Glucozyme 天野製薬、4,200U/g)をデンプン1 g当た
り8 U添加し、50℃で24時間糖化反応を行った。糖化反
応後Glucose analyzerによって得られたグルコースを求
めたところ、1 gの乾物デンプンから1.05 gのグルコー
スが得られた。
The glucose used for the medium was a saccharified sago palm starch saccharified solution. 300 g of sago palm starch (obtained from Sarawak University, Malaysia) in terms of dry matter was suspended in 1 liter of water. After adjusting to pH 6.5, heat-resistant amylase derived from Bacillus subtilis (liquefied enzyme Klaistase T5 Daiwa Kasei,
(5,000 u / g) was added at 0.2% (v / v) and gelatinized by enzymatic reaction at 95 ° C. for 2 hours, followed by heat treatment at 130 ° C. for 10 minutes to inactivate the enzyme. 0.1% (v / v) of Klaistase T5 was added, and the mixture was again treated at 95 ° C. for 1 hour to complete the liquefaction reaction. After cooling, the pH was adjusted to 5.5, glucoamylase derived from Rhizopus delemar (saccharifying enzyme Glucozyme Amano Pharmaceutical, 4,200 U / g) was added at 8 U per 1 g of starch, and saccharification was carried out at 50 ° C. for 24 hours. After the saccharification reaction, the glucose obtained by a Glucose analyzer was determined. As a result, 1.05 g of glucose was obtained from 1 g of the dry starch.

【0044】この実施例5においては、シード培養まで
の培地は実施例1と全く同じである。主発酵用培地は、
上記サゴヤシデンプン糖化液グルコース換算で50 gを計
量し、これに大豆フレーク酸加水分解物0.5%(v/v)、
天然ゴムラテックス分離母液乾燥粉末(natural rubber
serum powder:NRSP)0.5%(v/v)、となるよう添加し
て1リットルとしオートクレーブ殺菌したものを用い
た。また基質フィード液もサゴヤシデンプン糖化液グル
コース換算で53 g/Lとなるよう調整して用いた。実施例
1と同じようにシードを添加して回分培養で培養を立ち
上げ、残糖濃度がほとんど0になった時点で培養液のリ
サイクル、濁度制御による細胞濃度の制御、pH2点制御
(pH6.1の上限でアルカリフィード、pH6.0の下限で基質
フィードで行う)による連続基質フィード(基質フィー
ド液組成:サゴヤシデンプン糖化液グルコース53 g/L、
大豆フレーク酸加水分解物5 ml/L、NRSP 7 ml/L)を行
った。菌濃度7 g/L、dilution rate 0.8 L/hで定常状態
に達し、以後215時間に渡って安定して連続発酵が継続
できた。得られたL−乳酸は4.13 kg、光学純度は99.9
%であった。
In this Example 5, the medium up to seed culture is exactly the same as in Example 1. The main fermentation medium is
The sago palm starch saccharified liquid 50 g was weighed in terms of glucose, and the soybean flake acid hydrolyzate 0.5% (v / v),
Natural rubber latex separated mother liquor dry powder
Serum powder: NRSP) was added to a concentration of 0.5% (v / v) to make 1 liter and used after autoclaving. The substrate feed solution was also adjusted to be 53 g / L in terms of glucose of sago palm starch saccharified solution. In the same manner as in Example 1, the seeds were added, and the culture was started by batch culture. When the residual sugar concentration became almost zero, the culture solution was recycled, the cell concentration was controlled by controlling turbidity, and the pH was controlled at two points (pH 6). Substrate feed (substrate feed solution composition: sago palm starch saccharified solution glucose 53 g / L, with alkaline feed at the upper limit of .1 and substrate feed at the lower limit of pH 6.0)
Soybean flake acid hydrolyzate 5 ml / L, NRSP 7 ml / L). Steady state was reached at a bacterial concentration of 7 g / L and a dilution rate of 0.8 L / h, and continuous fermentation could be continued stably for 215 hours thereafter. The obtained L-lactic acid was 4.13 kg, and the optical purity was 99.9.
%Met.

【0045】また、実施例1と同様の雑菌汚染試験を実
施したが、全培養期間に渡って雑菌汚染は認められなか
った。さらに、連続発酵状態での培養液のナイシンA濃
度は、この菌を同一培地で回分培養した時のナイシンA
濃度の約4倍の活性を有していた。 実施例6 使用菌株は、この出願の発明者らが独自に分離したLact
ococcus lactis subsp. lactis A. Ishizaki Chizuka
(JCM11180)である。この菌株はホモL−乳酸発酵菌で
あり、かつナイシZ産生菌である。保存株のrefresh、シ
ードの調製、および培養装置(図1)は実施例1と同一
とした。
In addition, a germ contamination test was conducted in the same manner as in Example 1, but no germ contamination was observed over the entire culture period. Furthermore, the nisin A concentration of the culture solution in the continuous fermentation state was determined by the nisin A concentration when this bacterium was batch-cultured in the same medium.
It had about four times the activity of the concentration. Example 6 The strain used was Lact, which was independently isolated by the inventors of this application.
ococcus lactis subsp.lactis A. Ishizaki Chizuka
(JCM11180). This strain is a homo-L-lactic acid fermentation bacterium and a Nishi Z-producing bacterium. Refresh of the stock, preparation of seed, and culture apparatus (FIG. 1) were the same as in Example 1.

【0046】培地に用いるブドウ糖はコーンスターチ(c
orn starch)酵素糖化液を用いた。コーンスターチ乾物
換算で300 gを水1リッターに懸濁させた。pH 6.5に調
整後Bacillus licheniformis由来の耐熱性アミラーゼ
(液化酵素Thermamyl Novo Nordisk, 120 KNU/g)を0.1
%(v/v)添加し、90℃で2時間酵素反応し糊化させた
後130℃で10分加熱処理して酵素を失活させた。冷却後p
H 5.5に調整し、Aspergillusniger由来のグルコアミラ
ーゼとBacillus acidpullulyticum由来のプルラナーゼ
の混合酵素(糖化酵素Dextroyme Nove Nordisk, 225AGU
/g)をデンプン1g当たり4 U添加し、50℃で24時間糖
化反応を行った。糖化反応後Glucose analyzerによって
得られたグルコースを求めたところ、1gの乾物デンプ
ンから1.05 gのグルコースが得られた。
The glucose used for the medium is corn starch (c
orn starch) An enzyme saccharified solution was used. 300 g of corn starch in terms of dry matter was suspended in 1 liter of water. After adjusting to pH 6.5, 0.1 g of thermostable amylase derived from Bacillus licheniformis (liquefaction enzyme Thermomyl Novo Nordisk, 120 KNU / g) was added.
% (V / v), enzymatically reacted at 90 ° C. for 2 hours to gelatinize, and then heat-treated at 130 ° C. for 10 minutes to inactivate the enzyme. After cooling p
Adjusted to 5.5, a mixed enzyme of glucoamylase from Aspergillusniger and pullulanase from Bacillus acidpullulyticum (Dextroyme Nove Nordisk, 225AGU
/ g) was added at 4 U per 1 g of starch, and saccharification was carried out at 50 ° C for 24 hours. After the saccharification reaction, glucose obtained by a Glucose analyzer was determined, and 1.05 g of glucose was obtained from 1 g of dry starch.

【0047】この実施例6においては、シード培養まで
の培地は実施例1と全く同じである。主発酵用培地は、
上記コーンスターチ糖化液グルコース換算で50 gを計量
し、これに粉末CSL(コーン・スティープ・リカー、庄
野澱粉製)を1%となるよう添加して1リッターとしオ
ートクレーブ殺菌したものを用いた。また基質フィード
液もコーンスターチ糖化液グルコース換算で35 g/Lとな
るよう調整して用いた。実施例1と同じようにシードを
添加して回分培養で培養を立ち上げ、残糖濃度がほとん
ど0になった時点で培養液のリサイクル、濁度制御によ
る細胞濃度の制御、pH2点制御(pH 6.1の上限でアルカ
リフィード、pH 6.0の下限で基質フィードで行う)によ
る連続基質フィード(コーンスターチ糖化液グルコース
53 g/L、CSL 1g/L)を行った。菌濃度6 g/L、dilution
rate 0.7 L/hで定常状態に達し、連続培養を150時間継
続した。得られたL−乳酸は2.15 kg、光学純度は99.8%
であった。
In this Example 6, the medium up to seed culture is exactly the same as in Example 1. The main fermentation medium is
The above corn starch saccharified solution was weighed in an amount of 50 g in terms of glucose, and powdered CSL (corn steep liquor, manufactured by Shono Starch) was added to a concentration of 1% to make 1 liter, and the mixture was subjected to autoclave sterilization. The substrate feed solution was also adjusted so as to be 35 g / L in terms of corn starch saccharified solution glucose. In the same manner as in Example 1, the seed was added, and the culture was started by batch culture. When the residual sugar concentration was almost zero, the culture solution was recycled, the cell concentration was controlled by controlling the turbidity, and the pH was controlled at two points (pH 2). Continuous substrate feed (glucose of corn starch saccharified solution) with alkaline feed at the upper limit of 6.1 and substrate feed at the lower limit of pH 6.0
53 g / L, CSL 1 g / L). Bacteria concentration 6 g / L, dilution
A steady state was reached at a rate of 0.7 L / h, and continuous culture was continued for 150 hours. The obtained L-lactic acid was 2.15 kg, and the optical purity was 99.8%
Met.

【0048】また、実施例1と同様の雑菌汚染試験を実
施したが、全培養期間に渡って雑菌汚染は認められなか
った。さらに、連続発酵状態での培養液のナイシンZ濃
度は回分培養法の約3倍に達していた。
In addition, a germ contamination test was carried out in the same manner as in Example 1, but no germ contamination was observed over the entire culture period. Furthermore, the nisin Z concentration of the culture solution in the continuous fermentation state reached about three times that of the batch culture method.

【0049】[0049]

【発明の効果】この出願の発明の方法により菌体を固定
化しない微生物を永続的に使用することができるように
なり、1.0h-1以上という(驚異的な)高希釈率による連
続生産が可能で、このために反応系内の乳酸が低くな
り、乳酸による阻害が生じないため、高い生産性を維持
できる。しかも菌の活性が強いため、反応系内の糖のく
いきりが良好で、そのため残糖濃度も低く保たれるた
め、原料の無駄も小さく押さえられる。この結果L−乳
酸30 g/Lh以上の高い生産性が得られる。これは100 Kl
の反応槽で年間2万トンのL−乳酸の生産が可能である
ことを示すもので、高い生産性を誇る工業型発酵の代表
であるL−グルタミン酸発酵の約20倍の生産性である。
またアルコール生産菌を培養すれば、エタノール等を連
続大量製造することも可能である。
According to the method of the present invention, microorganisms that do not immobilize cells can be used permanently, and continuous production with a (surprising) high dilution rate of 1.0 h -1 or more can be achieved. As a result, lactic acid in the reaction system becomes low and no inhibition by lactic acid occurs, so that high productivity can be maintained. In addition, since the bacterium has a high activity, the sugar in the reaction system is well pumped, and the residual sugar concentration is kept low, so that waste of raw materials can be reduced. As a result, high productivity of 30 g / Lh or more of L-lactic acid can be obtained. This is 100 Kl
This indicates that it is possible to produce 20,000 tons of L-lactic acid annually in the above reaction tank, and the productivity is about 20 times that of L-glutamic acid fermentation, which is a representative of industrial fermentation boasting high productivity.
If alcohol-producing bacteria are cultured, ethanol and the like can be produced continuously and in large quantities.

【0050】さらに、ナイシンA、Z等のバクテリオシン
生産L−乳酸菌をこの発明の培養系に用いることによっ
て、回分培養の3〜5倍濃度ものバクテリオシンを蓄積さ
せることが可能となり、バクテリオシンの大量培養が可
能となるばかりか、雑菌汚染を回避して高純度のL−乳
酸を製造することも可能となる。
Furthermore, by using bacteriocin-producing L-lactic acid bacteria such as nisin A and Z in the culture system of the present invention, it is possible to accumulate bacteriocin in a concentration 3 to 5 times that of batch culture. Not only large-scale cultivation is possible, but also high-purity L-lactic acid can be produced while avoiding various bacterial contamination.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のための装置を例示した構成図であ
る。
FIG. 1 is a configuration diagram illustrating an apparatus for the present invention.

【図2】乳酸濃度一定の反応器でL−乳酸を連続生産す
る場合の希釈率とL−乳酸生産性との関係を示した図で
ある。
FIG. 2 is a diagram showing a relationship between a dilution ratio and L-lactic acid productivity when L-lactic acid is continuously produced in a reactor having a constant lactic acid concentration.

【図3】菌体濃度10 g/LにおけるL−乳酸連続生産の希
釈率と反応器内乳酸濃度の関係を示した図である。
FIG. 3 is a graph showing the relationship between the dilution ratio of continuous production of L-lactic acid and the concentration of lactic acid in a reactor at a cell concentration of 10 g / L.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) //(C12N 1/20 (C12N 1/20 A C12R 1:01) C12R 1:01) Fターム(参考) 4B064 AC03 AD33 AG01 CA02 CC01 CC06 CC07 CC09 CC10 CC15 CC30 CD09 CD20 CD22 DA01 DA10 4B065 AA01X AC15 BB15 BB24 BB27 BB29 BC02 BC03 BC09 BC11 BC13 BC17 BC50 CA06 CA10 CA24 CA34 CA41 CA43 CA44 CA60 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) // (C12N 1/20 (C12N 1/20 A C12R 1:01) C12R 1:01) F term (Reference) 4B064 AC03 AD33 AG01 CA02 CC01 CC06 CC07 CC09 CC10 CC15 CC30 CD09 CD20 CD22 DA01 DA10 4B065 AA01X AC15 BB15 BB24 BB27 BB29 BC02 BC03 BC09 BC11 BC13 BC17 BC50 CA06 CA10 CA24 CA34 CA41 CA43 CA44 CA60

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 微生物による反応系において、最大活性
の微生物を一定の濃度で生存させて、供給される原料物
質と生物的に反応させて代謝生産物を製造することを特
徴とする微生物を用いた代謝生産物の製造方法。
In a reaction system using microorganisms, a microorganism characterized by producing a metabolite by causing a microorganism having the highest activity to survive at a certain concentration and biologically reacting with a supplied raw material. Method of producing metabolites.
【請求項2】 反応系において、所定の上限値と下限値
の範囲内にpH値を制御すること、および濁度を一定に制
御することで微生物の最大活性を維持する請求項1の製
造方法。
2. The method according to claim 1, wherein in the reaction system, the maximum activity of the microorganism is maintained by controlling the pH value within a range between a predetermined upper limit and a lower limit, and controlling the turbidity constant. .
【請求項3】 pHの上限値と下限値との差を0.1以下と
する請求項2の製造方法。
3. The method according to claim 2, wherein the difference between the upper limit value and the lower limit value of the pH is 0.1 or less.
【請求項4】 反応系から不活性の菌を流出させる請求
項1ないし3のいずれかの製造方法。
4. The production method according to claim 1, wherein inactive bacteria are discharged from the reaction system.
【請求項5】 微生物がホモ型L-乳酸発酵菌であり、微
生物の代謝生産物がL-乳酸である請求項1ないし4のい
ずれかの製造方法。
5. The method according to claim 1, wherein the microorganism is a homozygous L-lactic acid fermentation bacterium, and the metabolite of the microorganism is L-lactic acid.
【請求項6】 微生物がアルコール産生菌であり、微生
物の代謝生産物がアルコール類である請求項1ないし4
のいずれかの製造方法。
6. The microorganism according to claim 1, wherein the microorganism is an alcohol-producing bacterium and the metabolite of the microorganism is an alcohol.
Manufacturing method.
【請求項7】 微生物がバクテリオシン生産ホモ型L-乳
酸発酵菌であり、微生物の代謝生産物がL-乳酸および/
またはバクテリオシンである請求項1ないし4のいずれ
かの製造方法。
7. The microorganism is a bacteriocin-producing homozygous L-lactic acid-fermenting bacterium, and the metabolite of the microorganism is L-lactic acid and / or L-lactic acid.
5. The method according to claim 1, wherein the method is bacteriocin.
【請求項8】 バクテリオシンがナイシンAである請求
項7の製造方法。
8. The method according to claim 7, wherein the bacteriocin is nisin A.
【請求項9】 バクテリオシンがナイシンZである請求
項7の製造方法。
9. The method according to claim 7, wherein the bacteriocin is nisin Z.
【請求項10】 バクテリオシン生産ホモ型L-乳酸発酵
菌が、Lactococcuslactis NCDO497、Lactococcus lacti
s NCDO2111、Lactococcus lactis NIZO R5、Lactococcu
s lactis INRA1、Lactococcus lactis INRA2、Lactococ
cus lactisINRA3、Lactococcus lactis INRA4、Lactoco
ccus lactis INRA5、Lactococcuslactis INRA6、Lactoc
occus lactis NP4G、Lactococcus lactis NZI、Lactoco
ccus lactis SI、またはLactococcus lactis ILC13であ
る請求項8の製造方法。
10. The bacteriocin-producing homologous L-lactic acid fermenting bacterium may be Lactococcus lactis NCDO497, Lactococcus lacti.
s NCDO2111, Lactococcus lactis NIZO R5, Lactococcu
s lactis INRA1, Lactococcus lactis INRA2, Lactococ
cus lactisINRA3, Lactococcus lactis INRA4, Lactoco
ccus lactis INRA5, Lactococcus lactis INRA6, Lactoc
occus lactis NP4G, Lactococcus lactis NZI, Lactoco
9. The method according to claim 8, which is ccus lactis SI or Lactococcus lactis ILC13.
【請求項11】 バクテリオシン生産ホモ型L-乳酸発酵
菌が、Lactococcuslactis IO-1(JCM7638)、Lactococc
us lactis subsp.lactis A. Ishizaki Chizuka (JCM 11
180)、 Lactococcus lactis subsp.lactis A. Ishizaki
Yasaka 5B(JCM 11181)、Lactococcus lactis subsp.la
ctis A. Ishizaki Yasaka 7B (JCM11181)、Lactococcus
lactis subsp.lactis A. Ishizaki Yasaka 8B (JCM 11
181)、Lactococcus lactis subsp.lactis A. Ishizaki
Yasaka 9B (JCM 11181)、Lactococcus lactis NIZO2218
6、Lactococcus lactis NIZO N9、Lactococcus lactis
ATCC 7962、Lactococcus lactis NCDO2597、Lactococcu
s lactis NCDO2091、Lactococcus lactis NCK400、Lact
ococcus lactis LJN80、Lactococcus lactisILC11、Lac
tococcus lactis ILC19、Lactococcus lactis ILC126、
Lactococcuslactis ILCSL5、またはLactococcus lactis
ILCSL20である請求項9の製造方法。
11. A bacteriocin-producing homologous L-lactic acid-fermenting bacterium, comprising Lactococcus lactis IO-1 (JCM7638), Lactococc
us lactis subsp.lactis A. Ishizaki Chizuka (JCM 11
180), Lactococcus lactis subsp.lactis A. Ishizaki
Yasaka 5B (JCM 11181), Lactococcus lactis subsp.la
ctis A. Ishizaki Yasaka 7B (JCM11181), Lactococcus
lactis subsp.lactis A. Ishizaki Yasaka 8B (JCM 11
181), Lactococcus lactis subsp.lactis A. Ishizaki
Yasaka 9B (JCM 11181), Lactococcus lactis NIZO2218
6, Lactococcus lactis NIZO N9, Lactococcus lactis
ATCC 7962, Lactococcus lactis NCDO2597, Lactococcu
s lactis NCDO2091, Lactococcus lactis NCK400, Lact
ococcus lactis LJN80, Lactococcus lactis ILC11, Lac
tococcus lactis ILC19, Lactococcus lactis ILC126,
Lactococcus lactis ILCSL5 or Lactococcus lactis
The production method according to claim 9, which is ILCSL20.
JP2001202716A 2000-07-10 2001-07-03 Method for producing metabolic product using microorganism Pending JP2002085083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001202716A JP2002085083A (en) 2000-07-10 2001-07-03 Method for producing metabolic product using microorganism

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-209140 2000-07-10
JP2000209140 2000-07-10
JP2001202716A JP2002085083A (en) 2000-07-10 2001-07-03 Method for producing metabolic product using microorganism

Publications (1)

Publication Number Publication Date
JP2002085083A true JP2002085083A (en) 2002-03-26

Family

ID=26595757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001202716A Pending JP2002085083A (en) 2000-07-10 2001-07-03 Method for producing metabolic product using microorganism

Country Status (1)

Country Link
JP (1) JP2002085083A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357575A (en) * 2003-06-04 2004-12-24 Daikin Ind Ltd Circulating culture method for microorganism
JP2006262770A (en) * 2005-03-24 2006-10-05 Ueda Holdings:Kk Lactic acid, polylactic acid and biodegradable plastic
JP2008131931A (en) * 2006-11-01 2008-06-12 Toray Ind Inc Method for producing lactic acid by continuous fermentation
JP2008263945A (en) * 2007-03-28 2008-11-06 Toray Ind Inc Method for producing lactic acid by continuous fermentation
JP2013150599A (en) * 2011-12-27 2013-08-08 Nihon Univ Fermentation method for coculturing antimicrobial substance-producing microorganism and fermentation microorganism

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357575A (en) * 2003-06-04 2004-12-24 Daikin Ind Ltd Circulating culture method for microorganism
JP2006262770A (en) * 2005-03-24 2006-10-05 Ueda Holdings:Kk Lactic acid, polylactic acid and biodegradable plastic
JP2008131931A (en) * 2006-11-01 2008-06-12 Toray Ind Inc Method for producing lactic acid by continuous fermentation
JP2008263945A (en) * 2007-03-28 2008-11-06 Toray Ind Inc Method for producing lactic acid by continuous fermentation
JP2013150599A (en) * 2011-12-27 2013-08-08 Nihon Univ Fermentation method for coculturing antimicrobial substance-producing microorganism and fermentation microorganism

Similar Documents

Publication Publication Date Title
Jiang et al. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses
Tay et al. Production of L (+)‐lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor
Yang et al. Continuous propionate production from whey permeate using a novel fibrous bed bioreactor
Ding et al. L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies
Wee et al. Biotechnological production of lactic acid and its recent applications
Norton et al. Kinetic study of continuous whey permeate fermentation by immobilized Lactobacillus helveticus for lactic acid production
Kwon et al. Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor
John et al. Simultaneous saccharification and fermentation of cassava bagasse for L-(+)-lactic acid production using Lactobacilli
Abdel-Rahman et al. Improved lactic acid productivity by an open repeated batch fermentation system using Enterococcus mundtii QU 25
Yang et al. A novel recycle batch immobilized cell bioreactor for propionate production from whey lactose
Mukhopadhyay et al. Production of gluconic acid from whey by free and immobilized Aspergillus niger
Xu et al. Enhanced poly (γ-glutamic acid) fermentation by Bacillus subtilis NX-2 immobilized in an aerobic plant fibrous-bed bioreactor
Vidra et al. Lactic acid production from cane molasses
Talabardon et al. Anaerobic thermophilic fermentation for acetic acid production from milk permeate
Reddy et al. Homofermentative production of optically pure l-lactic acid from sucrose and mixed sugars by batch fermentation of Enterococcus faecalis RKY1
Thitiprasert et al. A homofermentative Bacillus sp. BC-001 and its performance as a potential L-lactate industrial strain
Bai et al. Ammonium lactate production by Lactobacillus lactis BME5-18M in pH-controlled fed-batch fermentations
Sampaio et al. Bioconversion of D-xylose to xylitol by Debaryomyces hansenii UFV-170: product formation versus growth
Bezirci et al. Propionic acid production via two-step sequential repeated batch fermentations on whey and flour
Sung et al. Co-production of biomass and metabolites by cell retention culture of Leuconostoc citreum
JP2002085083A (en) Method for producing metabolic product using microorganism
Mostafa Production of acetic acid and glycerol from salted and dried whey in a membrane cell recycle bioreactor
Anastassiadis et al. Process optimization of continuous gluconic acid fermentation by isolated yeast‐like strains of Aureobasidium pullulans
JP3958089B2 (en) Continuous culture of anaerobic bacteria
Srinivasan et al. Continuous culture in the fermentation industry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020701

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060620

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060818