JP2002083563A - Scanning electron microscope - Google Patents

Scanning electron microscope

Info

Publication number
JP2002083563A
JP2002083563A JP2000274993A JP2000274993A JP2002083563A JP 2002083563 A JP2002083563 A JP 2002083563A JP 2000274993 A JP2000274993 A JP 2000274993A JP 2000274993 A JP2000274993 A JP 2000274993A JP 2002083563 A JP2002083563 A JP 2002083563A
Authority
JP
Japan
Prior art keywords
electron
electrons
reflected
electron microscope
scanning electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000274993A
Other languages
Japanese (ja)
Other versions
JP4613405B2 (en
Inventor
Noriaki Arai
紀明 荒井
Mitsugi Sato
佐藤  貢
Toshiro Kubo
俊郎 久保
Naomasa Suzuki
直正 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000274993A priority Critical patent/JP4613405B2/en
Publication of JP2002083563A publication Critical patent/JP2002083563A/en
Application granted granted Critical
Publication of JP4613405B2 publication Critical patent/JP4613405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a TTL-mode scanning electron microscope capable of giving high resolution to a secondary electron image and effectively providing a reflected electron image with good contrast. SOLUTION: In order not to impair the yield of reflected electrons, the angle of rotation of the reflected electrons by a magnetic field of an objective lens is considered in terms of the energy of reflected electrons, thereby disposing a detector in such a position that the reflected electrons can be captured in as wide an energy range as possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は試料上に電子線を走
査して、電子線の走査領域から発生する二次電子および
反射電子を検出して、該試料表面の形状を画像化する走
査型電子顕微鏡に関するものであり、二次電子や反射電
子を対物レンズよりも上方に配置した検出器にて信号を
得るTTL (Through The Lens)方式の走査型電子顕微
鏡にて、試料上で発生した二次電子を完全に分離した反
射電子のみの情報を効率良く得ることができ、試料表面
の帯電による影響を受け難く、かつ請求項2記載の該第
一の検出器を複数個用いることにより、異なった方向か
ら信号を取得し、該試料表面の微小な凹凸の立体的な観
察を可能とする技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning type which scans a sample with an electron beam, detects secondary electrons and reflected electrons generated from a scanning region of the electron beam, and images the shape of the sample surface. The present invention relates to an electron microscope, in which a TTL (Through The Lens) type scanning electron microscope, which obtains a signal with a detector in which secondary electrons and reflected electrons are arranged above an objective lens, is generated on a sample. It is possible to efficiently obtain the information of only the reflected electrons in which the secondary electrons are completely separated, and it is hardly affected by the charging of the sample surface. The present invention relates to a technique for acquiring signals from different directions and enabling three-dimensional observation of minute irregularities on the sample surface.

【0002】[0002]

【従来の技術】TTL方式の走査型電子顕微鏡におい
て、試料に試料から発生した二次電子を電子源方向に加
速するような電圧が印加されていない場合には、一次電
子線の照射によって生じたエネルギーの小さい二次電子
は電界,磁界を組み合わせた速度分離器であるウィーン
フィルタを用いることで、該一次電子の軌道に作用する
こと無く、該二次電子の軌道のみを曲げて、検出器に直
接もしくは間接的に該二次電子を導くことも可能である
が、リターディング法のように試料に電圧を印加して、
対物レンズ下面と該試料表面との間に一次電子線を減速
させるような急峻な減速電界を発生させる場合には、該
試料表面から出射した二次電子は逆に、電子源方向に加
速され、大きいエネルギーを持つことになる。このた
め、ウィーンフィルタにて二次電子の軌道を変化させる
ためには、電界,磁界を発生するための電圧,電流も大
きなものとなり、ウィーンフィルタのサイズが大きくな
り、電気回路の負荷も大きくなるために実用的ではな
い。もともと大きなエネルギーをもつ反射電子の場合も
同じであるが、このような場合には、該一次電子の軌道
上に該一次電子が通過できる穴を開けた適当な大きさの
反射板を設け、二次電子および反射電子を該反射板に衝
突させて、該反射板上で二次電子を発生させ、このエネ
ルギーの小さい二次電子をウィーンフィルタにて検出器
に導くことは行われているが、二次電子と反射電子を分
離することは不可能である。このため、電子源方向に向
かってくる二次電子を減速して追い返す阻止電圧をウィ
ーンフィルタの試料側入口に設けたメッシュ状の電極に
印加し、該阻止電圧印加部を透過した、該阻止電圧と試
料印加電圧との電位差で決まる電位障壁より大きい運動
エネルギーをもつ反射電子を反射板で二次電子に変換し
た後に該ウィーンフィルタで検出器に導くことで二次電
子と反射電子を分離することが従来技術である。
2. Description of the Related Art In a TTL scanning electron microscope, when a voltage that accelerates secondary electrons generated from a sample in the direction of an electron source is not applied to the sample, it is caused by irradiation of a primary electron beam. Secondary electrons with low energy use a Wien filter, which is a velocity separator that combines an electric field and a magnetic field, to bend only the trajectory of the secondary electron without affecting the trajectory of the primary electron. It is possible to directly or indirectly guide the secondary electrons, but by applying a voltage to the sample as in the retarding method,
When generating a steep decelerating electric field between the lower surface of the objective lens and the surface of the sample to decelerate the primary electron beam, the secondary electrons emitted from the surface of the sample are conversely accelerated in the direction of the electron source, It will have a large energy. Therefore, in order to change the trajectory of the secondary electrons in the Wien filter, the voltage and current for generating an electric field and a magnetic field also become large, so that the size of the Wien filter increases and the load on the electric circuit also increases. Not practical for. The same applies to the case of a reflected electron having a large energy, but in such a case, a reflector having an appropriate size with a hole through which the primary electron can pass is provided on the trajectory of the primary electron, and It is performed to collide secondary electrons and reflected electrons with the reflector to generate secondary electrons on the reflector, and to guide the secondary electrons having a smaller energy to a detector with a Wien filter. It is impossible to separate secondary electrons from reflected electrons. For this reason, a blocking voltage applied to the mesh-shaped electrode provided at the sample-side entrance of the Wien filter is applied to the mesh-shaped electrode provided at the sample-side entrance of the Wien filter by decelerating and repulsing secondary electrons coming toward the electron source. Separating secondary electrons from reflected electrons by converting reflected electrons with kinetic energy larger than the potential barrier determined by the potential difference between the applied voltage and the sample into secondary electrons with a reflector, and guiding the electrons to the detector with the Wien filter Is the prior art.

【0003】[0003]

【発明が解決しようとする課題】従来技術に示したよう
に、TTL方式の走査型電子顕微鏡において、ウィーン
フィルタおよび阻止電圧により反射電子と二次電子を分
離した後に反射電子を反射板に衝突させ、反射板から発
生した二次電子を検出器に導く方法では、該フィルタ内
に配置した反射板から見込む試料上の一次電子線照射領
域への立体角が大きくなく、試料面からの仰角が大きい
反射電子しか得ることしか出来ないために、反射電子の
検出効率は低くなり、さらに試料表面の凹凸形状による
コントラストが低い信号しか得ることができず、凹凸形
状の立体的な情報を得ることができない。よって、高分
解能観察が可能で、コントラストの良い反射電子像を得
ることが課題である。
As shown in the prior art, in a TTL scanning electron microscope, reflected electrons and secondary electrons are separated by a Wien filter and a blocking voltage, and then the reflected electrons collide with a reflecting plate. In the method in which the secondary electrons generated from the reflection plate are guided to the detector, the solid angle to the primary electron beam irradiation area on the sample viewed from the reflection plate disposed in the filter is not large, and the elevation angle from the sample surface is large. Since only backscattered electrons can be obtained, the efficiency of detecting backscattered electrons is low, and furthermore, only signals having low contrast due to the unevenness of the sample surface can be obtained, and three-dimensional information of the unevenness cannot be obtained. . Therefore, it is an issue to obtain a reflected electron image with high contrast that enables high-resolution observation.

【0004】[0004]

【課題を解決するための手段】反射電子は電子源から放
出されて試料に照射される一次電子線が試料表面との相
互作用によってエネルギーを授受して、後方散乱された
ものであって、弾性散乱したものであれば、一次電子線
の入射エネルギーが保存される。一方、二次電子の持つ
エネルギーは通常50eV以下であり、反射電子に比べ
てかなり小さい。まず第一に反射電子のエネルギー分布
は一次電子線の入射エネルギーにも依存するが、弾性散
乱がピークとなり、その量は二次電子に比べてかなり少
ないが、反射電子のエネルギー分布を全体的に見れば一
次電子線のエネルギーよりも小さいエネルギー範囲にブ
ロードに分布し、それらをエネルギーについて積分した
量は二次電子に劣らない。よって、試料から放出された
反射電子の対物レンズの磁場による回転角を異なるエネ
ルギーをもつ反射電子について考慮し、なるべく広いエ
ネルギー範囲内で反射電子を捕らえられる位置に検出器
を配置することで、反射電子の収量を損なわずに済む。
該対物レンズの磁極を含む磁路の一部に電圧を印加した
り、試料に一次電子線に対するリターディング電圧を印
加した系であっても、二次電子のように試料面からの出
射エネルギーが小さい場合には対物レンズの磁場に補足
され、かつ磁路の一部に印加された電圧やリターディン
グ電圧により電子源方向に加速されるため、該二次電子
の試料面からの出射角度は著しく変更を受ける。一方、
反射電子は試料面からの出射エネルギーが大きいため、
試料面からの出射仰角が小さければ、試料面と平行な方
向の速度成分も大きく、反射電子の場合には、磁場によ
り磁極の中心軸回りの回転はするものの、出射仰角に近
い角度にて電子源方向に進行し、散乱角度の異なる反射
電子の相対的な角度分布は出射仰角を反映すると考えら
れる。よって磁路の一部に印加された電圧やリターディ
ング電圧の印加によって、二次電子と反射電子の軌道は
大きく異なることから、検出器の電子検出面が磁極を見
込み、磁極の中心軸から角度を持たせて斜めに配置する
ことによって、従来技術では得られなかった二次電子の
混入が実質上ない反射電子像が得られ、出射仰角が小さ
い反射電子をも捕らえることが出来るため、従来技術よ
りも反射電子の検出効率が良く、試料表面の凹凸形状が
陰影を持った画像として得られる。つまり、反射電子の
対物レンズの磁場による回転角が2πn(nは整数)前
後である場合は、検出器を配置した側は明るく、その対
向側は暗い像が得られる。第二に反射電子の放出角度分
布についてであるが、cosine lawとして知られているよ
うに、試料に垂直に入射した一次電子線の散乱確率は反
射電子の散乱角度(試料からの仰角)が大きくなる程高
くなる。しかし、対物レンズ上方には一次電子線および
二次電子を通過させるために、ある程度の大きさを確保
して通過口を設けねばならないので、試料からの仰角が
大きい反射電子については該通過口を通過してしまい、
請求項2記載の第一の検出器では検出することが出来な
い。反射電子の検出収量を上げるためには、該通過口を
通過しない角度で散乱された反射電子のほとんどを取り
込み可能な位置に検出器を配置する必要がある。また、
該通過口は二次電子が完全に通過することのできる最小
の穴径とし、さらに該通過口を有する部材を、反射電子
を二次電子に変換する反射板として利用し、該通過口を
通過しない角度で散乱された反射電子を該反射板に衝突
させる様に配置し、さらに該反射板は二次電子発生率の
高い材料もしくは構造として、該通過口を通過して検出
できない分の収量を補うようにする。ただし、ある程度
の分解能を確保するために試料にリターディング電圧を
印加した系においては、該磁路の一部に一次電子線を加
速するような電圧を印加すると、例え反射電子であって
も試料から電子源方向へ大きく加速されるため、請求項
2.記載の第一の検出器での収量は大きく減少する。よ
って、リターディング法を用いたTTL方式の走査型電
子顕微鏡においては、反射電子像を得る必要のある場合
には該磁路の一部には、収量を損なわない程度の電圧し
か印加しない様にし、観察条件によって該磁路の一部に
印加する電圧を切替える必要がある。
A reflected electron is a backscattered electron which is emitted from an electron source and irradiated to a sample by receiving and receiving energy by interaction with a surface of the sample. If it is scattered, the incident energy of the primary electron beam is preserved. On the other hand, the energy of secondary electrons is usually 50 eV or less, which is considerably smaller than that of reflected electrons. First of all, the energy distribution of reflected electrons also depends on the incident energy of the primary electron beam, but elastic scattering peaks and the amount is much smaller than that of secondary electrons. It can be seen that they are broadly distributed in an energy range smaller than the energy of the primary electron beam, and the amount of integrating them over energy is not inferior to that of secondary electrons. Therefore, considering the angle of rotation of the reflected electrons emitted from the sample by the magnetic field of the objective lens with respect to the reflected electrons having different energies, by arranging the detector at a position where the reflected electrons can be captured within a wide energy range as much as possible, The electron yield does not suffer.
Even in a system in which a voltage is applied to a part of a magnetic path including a magnetic pole of the objective lens or a retarding voltage for a primary electron beam is applied to a sample, the energy emitted from the sample surface as in the case of secondary electrons is reduced. When the secondary electrons are small, they are captured by the magnetic field of the objective lens and accelerated in the direction of the electron source by the voltage or retarding voltage applied to a part of the magnetic path. Receive changes. on the other hand,
Reflected electrons have a large output energy from the sample surface,
If the exit elevation angle from the sample surface is small, the velocity component in the direction parallel to the sample surface is large.In the case of reflected electrons, although the electron rotates around the central axis of the magnetic pole due to the magnetic field, the electrons are at an angle close to the exit elevation angle. It is considered that the relative angular distribution of the reflected electrons traveling toward the source and having different scattering angles reflects the exit elevation angle. Therefore, the trajectories of secondary electrons and reflected electrons differ greatly depending on the voltage applied to part of the magnetic path or the application of the retarding voltage. By obliquely arranging the reflected electrons, it is possible to obtain a backscattered electron image substantially free from the mixing of secondary electrons, which can not be obtained by the prior art, and it is possible to capture the backscattered electrons having a small exit elevation angle. The detection efficiency of the reflected electrons is higher than that of the sample, and the unevenness of the sample surface is obtained as an image having a shadow. That is, when the rotation angle of the reflected electrons due to the magnetic field of the objective lens is about 2πn (n is an integer), a bright image is obtained on the side where the detector is arranged, and a dark image is obtained on the opposite side. The second is the emission angle distribution of reflected electrons. As is known as the cosine law, the scattering probability of a primary electron beam that is perpendicularly incident on a sample has a large scattering angle of reflected electrons (the elevation angle from the sample). It will be higher. However, in order to allow the primary electron beam and the secondary electrons to pass through the objective lens, a certain size must be secured and a passage opening must be provided. Have passed,
No detection is possible with the first detector according to claim 2. In order to increase the detection yield of the backscattered electrons, it is necessary to arrange the detector at a position where most of the backscattered electrons scattered at an angle that does not pass through the passage opening can be taken in. Also,
The passage opening has a minimum hole diameter through which secondary electrons can completely pass, and the member having the passage opening is used as a reflector for converting reflected electrons into secondary electrons, and passes through the passage opening. The reflected electrons scattered at an angle not to strike the reflector, and the reflector is made of a material or a structure having a high secondary electron generation rate. Make up for it. However, in a system in which a retarding voltage is applied to the sample in order to ensure a certain level of resolution, applying a voltage that accelerates the primary electron beam to a part of the magnetic path will cause the sample to be reflected even if it is reflected electrons. Since the electron beam is greatly accelerated from the electron source toward the electron source, claim 2. The yield at the described first detector is greatly reduced. Therefore, in the scanning electron microscope of the TTL system using the retarding method, when it is necessary to obtain a reflected electron image, only a voltage that does not impair the yield is applied to a part of the magnetic path. It is necessary to switch the voltage applied to a part of the magnetic path depending on the observation conditions.

【0005】[0005]

【発明の実施の形態】本発明の実施形態は図1のようで
あり、引出電極(21)に高電圧電源(23)により電圧
を印加することによって電子源(22)から出射した一次
電子線(20)は真空雰囲気とした鏡体内を通り、レンズ
系で収束された後に試料(1)に入射する。本発明の走
査型電子顕微鏡においては、φ300mm程度の大径のウ
ェーハをも観察することを目的としていることから、T
TL方式を採用する。また、TTL方式でありながら、
二次電子と反射電子を分離して効率良く反射電子を検出
し、かつ複数の反射電子検出器にて観察箇所の立体的な
観察を実現する必要がある。また、二次電子による高分
解能観察を実現するために該試料(1)には高電圧電源
(2)によって負の電圧(リターディング電圧)を印加
するリターディング法を採用する。よって、リターディ
ング電圧によって電子源方向に加速されたエネルギーの
高い二次電子は〔従来の技術〕に記したように反射板と
ウィーンフィルタによって検出器に導くようにし、該一
次電子線(20)の試料上での後方散乱により発生した
反射電子については〔課題を解決するための手段〕に記
した方法にて反射板および検出器を配置する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention is as shown in FIG. 1, in which a primary electron beam emitted from an electron source (22) by applying a voltage to an extraction electrode (21) by a high voltage power supply (23). (20) passes through the mirror body in a vacuum atmosphere, and is incident on the sample (1) after being converged by the lens system. The scanning electron microscope of the present invention aims at observing even a large diameter wafer of about φ300 mm.
The TL method is adopted. Also, despite the TTL method,
It is necessary to separate the secondary electrons and the reflected electrons to efficiently detect the reflected electrons, and to realize a three-dimensional observation of the observation place by using a plurality of reflected electron detectors. Further, in order to realize high-resolution observation by secondary electrons, a retarding method in which a negative voltage (retarding voltage) is applied to the sample (1) by a high-voltage power supply (2) is adopted. Therefore, the secondary electrons having high energy accelerated in the direction of the electron source by the retarding voltage are guided to the detector by the reflector and the Wien filter as described in [Prior Art]. For reflected electrons generated by backscattering on the sample, a reflector and a detector are arranged by the method described in [Means for Solving the Problems].

【0006】本発明の実施の形態の構成においては反射
板1(9)の形状や反射電子検出器1(11)および反
射電子検出器2(12)の配置を最適化し、リターディ
ング電圧は一定値とし、試料に入射する該一次電子線
(20)のエネルギー(入射エネルギー)は該電子源
(22)に該高電圧電源(23)にてリターディング電
圧から該一次電子線(20)が試料に入射するエネルギ
ー分の電圧を引いた負の電圧を印加することで、該一次
電子線(20)のエネルギーを変化させても試料から放
出される二次電子の軌道(17)および反射電子の収量
を大きく変化させない制御が可能となる。
In the configuration of the embodiment of the present invention, the shape of the reflector 1 (9) and the arrangement of the backscattered electron detectors 1 (11) and 2 (12) are optimized, and the retarding voltage is constant. The energy (incident energy) of the primary electron beam (20) incident on the sample is determined by the electron source (22) from the retarding voltage of the high-voltage power supply (23) from the primary electron beam (20). By applying a negative voltage obtained by subtracting the voltage of the energy incident on the primary electron beam (20), the trajectory (17) of the secondary electrons emitted from the sample and the reflected electron Control that does not greatly change the yield becomes possible.

【0007】これらのことから、本発明の実施の形態と
しては、該電子源(22)から放出された一次電子線
(20)はレンズ系(28)で収束され、ウィーンフィ
ルタであるE×Bフィルタ2(19),E×Bフィルタ
1(18)を通過し、電子線偏向手段(10)にてX,
Y方向に走査され、反射板1(9)を通過して、最終的
に対物レンズにて試料上に収束される。対物レンズは磁
路下部(3),磁場発生用の電磁コイルを含む磁路上部
(4),電圧印加磁路(5),該電圧印加磁路(5)と
該磁路上部(4)を絶縁するための絶縁碍子(6)から
成る。該電圧印加磁路(5)には高電圧電源(27)に
より正の電圧(以下ブースティング電圧)を印加すること
ができ、対物レンズ中で該一次電子線(20)を加速さ
せ、強励磁にて対物レンズを使用することにより、対物
レンズの収差の低減とともに高分解能化ができる。ま
た、試料上の一次電子線が照射された箇所で発生した二
次電子および反射電子を検出する手段としては〔課題を
解決するための手段〕に記したように、反射電子は対物
レンズの磁場により回転作用を受けながら電子源方向に
向かうが、種々の電子光学系のパラメータから決定され
る反射電子の軌道を、予め計算機シミュレーションにて
解析された電磁場中での反射電子の軌道、例えば反射電
子軌道1(7),反射電子軌道2(8)に基づき反射電
子の収量が十分得られるように反射板1(9)および反
射電子検出器1(11),反射電子検出器2(12)を
最適位置に配置する。なお、反射電子検出器1(1
1),反射電子検出器2(12)は反射電子のエネルギ
ーを光に変換するシンチレータを電子検出体とし、該シ
ンチレータにて発生した光をライトガイドにより光電子
増倍管に導き、該光電子増倍管の出力を電気的に増幅す
るアンプからの信号を最終的に出力するタイプである
が、半導体検出器や二次電子増倍管により直接試料から
の電子を電気的に出力するタイプのものでも構わない。
なお、本実施例では反射電子検出器を二本用い、180
°対向して磁極を見込むように斜めに配置しているが、
この位置は電子ビームの横(X)走査方向に対して垂直
方向に伸びる凹もしくは凸の配線パターンの側面の左右
一方から出射した反射電子を二本のうちの一本の検出器
にて捕らえ、かつ反射電子の収量を十分得られる位置と
している。配線パターンの右側,左側はそれぞれ、該反
射電子検出器の二本の内一方に一対一に対応しているた
め、該反射電子検出器を切替えて用いることにより配線
パターンの左右それぞれに陰影の付いた立体的な反射電
子像を得ることができる。さらに、該反射電子検出器を
三本以上用いて多方向から反射電子を検出し、反射電子
の収量を上げると共に、立体的な反射電子像を得ること
も可能である。
From these facts, according to the embodiment of the present invention, the primary electron beam (20) emitted from the electron source (22) is converged by the lens system (28) and becomes a Wien filter E × B. After passing through the filter 2 (19) and the E × B filter 1 (18), X,
It is scanned in the Y direction, passes through the reflector 1 (9), and is finally converged on the sample by the objective lens. The objective lens includes a lower magnetic path (3), an upper magnetic path including an electromagnetic coil for generating a magnetic field (4), a voltage applying magnetic path (5), the voltage applying magnetic path (5) and the upper magnetic path (4). It consists of an insulator (6) for insulation. A positive voltage (hereinafter referred to as a boosting voltage) can be applied to the voltage applying magnetic path (5) by a high-voltage power supply (27), and the primary electron beam (20) is accelerated in the objective lens, and strong excitation is performed. By using the objective lens in the above, it is possible to reduce the aberration of the objective lens and increase the resolution. As means for detecting secondary electrons and reflected electrons generated at the place where the primary electron beam is irradiated on the sample, as described in [Means for Solving the Problems], reflected electrons are generated by the magnetic field of the objective lens. The trajectory of the backscattered electrons in the electromagnetic field analyzed in advance by a computer simulation, such as the backscattered electrons The reflecting plate 1 (9), the backscattered electron detector 1 (11), and the backscattered electron detector 2 (12) are so arranged that a sufficient yield of backscattered electrons can be obtained based on the orbit 1 (7) and the backscattered electron orbit 2 (8). Place it at the optimal position. The backscattered electron detector 1 (1
1) The backscattered electron detector 2 (12) uses a scintillator for converting the energy of the backscattered electrons into light as an electron detector, guides the light generated by the scintillator to a photomultiplier tube by a light guide, and A type that finally outputs the signal from the amplifier that electrically amplifies the output of the tube, but a type that electrically outputs electrons directly from the sample by using a semiconductor detector or a secondary electron multiplier. I do not care.
In this embodiment, two backscattered electron detectors are used and 180
° It is arranged diagonally so as to look at the magnetic poles facing each other,
This position captures reflected electrons emitted from one of the right and left sides of the concave or convex wiring pattern extending in the direction perpendicular to the horizontal (X) scanning direction of the electron beam by one of the two detectors. In addition, the position is set so that a sufficient yield of reflected electrons can be obtained. Since each of the right and left sides of the wiring pattern corresponds to one of the two backscattered electron detectors on a one-to-one basis, the left and right wiring patterns are shaded by switching the backscattered electron detector. A three-dimensional reflected electron image can be obtained. Further, it is possible to detect reflected electrons from multiple directions by using three or more reflected electron detectors, to increase the yield of reflected electrons, and to obtain a three-dimensional reflected electron image.

【0008】該反射板1(9)は該反射電子軌道1
(7)のように衝突した反射電子が該反射板1(9)上
で二次電子を生成し、該二次電子が該反射電子検出器1
(11)、および反射電子検出器2(12)にて検出さ
れるように、該シンチレータに印加された電圧による電
界が該反射板1(9)に作用する位置に置かれ、かつ該
反射板1(9)に衝突する反射電子によって発生した二
次電子が複数回該反射板1(9)表面に衝突して雪崩式
に二次電子の数が増加するように、反射電子の衝突面を
図2の如く階段状に加工してある。さらに図3,図4の
ように、該反射板1(9)の表面をサンドブラスト処理
により凹凸を設けて、前記同様の効果を得たり、該反射
板1(9)の表面に金めっきを施すことによって反射電
子による二次電子の発生効率を高めて、結果的に反射電
子の収量を増やすこともできる。なお、金めっきの他に
二次電子発生率の高い物質、例えばベリリウウム合金を
めっき、もしくは蒸着したり、該反射板(9)自体の材
料とすることも可能である。また、該反射板1(9)の
形状の特徴として、電子線の通過する穴部の直径は、試
料(1)で生じた二次電子はリターディング電圧により
二次電子軌道(17)のようにある程度の広がりをもっ
て電子源方向に加速さるが、この二次電子全てが完全に
通過することのできる最小の寸法になっており、試料表
面からの仰角が大きい角度で出射した反射電子は該穴を
通過して電子源方向に向かうが、その損失は最小限に押
さえられている。それ以外の反射電子は該反射板1
(9)に衝突後、反射電子検出器1(11)および反射
電子検出器2(12)にて検出されるため、前述したよ
うに二次電子の混入が実質上ない反射電子により試料表
面の立体的な観察が可能となる。
The reflection plate 1 (9) is connected to the reflected electron orbit 1
The reflected electrons that collide as shown in (7) generate secondary electrons on the reflector 1 (9), and the secondary electrons are reflected by the reflected electron detector 1 (9).
(11) and an electric field by a voltage applied to the scintillator acts on the reflector 1 (9) as detected by the backscattered electron detector 2 (12); The collision surface of the reflected electrons is changed so that the secondary electrons generated by the reflected electrons colliding with 1 (9) collide with the surface of the reflector 1 (9) several times and the number of secondary electrons increases in an avalanche manner. It is processed in a step shape as shown in FIG. Further, as shown in FIGS. 3 and 4, the surface of the reflector 1 (9) is provided with irregularities by sandblasting to obtain the same effect as described above, or the surface of the reflector 1 (9) is plated with gold. As a result, the generation efficiency of secondary electrons due to reflected electrons can be increased, and as a result, the yield of reflected electrons can be increased. In addition to the gold plating, a substance having a high secondary electron generation rate, for example, a beryllium alloy can be plated or vapor-deposited, or can be used as the material of the reflection plate (9) itself. As a characteristic of the shape of the reflector 1 (9), the diameter of the hole through which the electron beam passes is such that the secondary electrons generated in the sample (1) are caused by the retarding voltage as shown in the secondary electron trajectory (17). The secondary electrons are accelerated in the direction of the electron source with a certain degree of spread, but the size of the secondary electrons is the minimum size that can completely pass through, and the reflected electrons emitted from the sample surface at a large elevation angle To the electron source, but the loss is minimized. The other reflected electrons are
After the collision with (9), the reflected electrons are detected by the backscattered electron detector 1 (11) and the backscattered electron detector 2 (12). Three-dimensional observation becomes possible.

【0009】該二次電子は該反射板1(9)を通過した
後、電子線偏向手段(10)を通過し、E×Bフィルタ
1(18)およびE×Bフィルタ2(19)に設けられ
た反射板にてエネルギーの低い二次電子に変換されて、
二次電子軌道1(15)および二次電子軌道2(16)
のように二次電子検出器1(13)および二次電子検出
器2(14)で検出される。なお、二次電子検出器1
(13)および二次電子検出器2(14)の構造は該反
射電子検出器1(11)、該反射電子検出器2(12)
のそれと同じである。
After passing through the reflector 1 (9), the secondary electrons pass through the electron beam deflecting means (10) and are provided in the E × B filter 1 (18) and the E × B filter 2 (19). Is converted to low-energy secondary electrons by the reflector,
Secondary electron orbit 1 (15) and secondary electron orbit 2 (16)
Are detected by the secondary electron detector 1 (13) and the secondary electron detector 2 (14). The secondary electron detector 1
(13) and the structure of the secondary electron detector 2 (14) are the reflected electron detector 1 (11) and the reflected electron detector 2 (12).
It is the same as that of

【0010】一方、分解能を向上させて試料を観察する
必要のある場合には該電圧印加磁路(5)に正の電圧
(ブースティング電圧)を印加する。この場合には、試
料上の一次電子線が照射された箇所で発生した反射電子
はブースティング電圧により電子源方向に加速されるた
め、試料表面からの仰角が大きくない角度で出射した反
射電子は〔課題を解決するための手段〕に述べたよう
に、反射電子軌道1(7),反射電子軌道2(8)のよ
うな軌道ではなくなるため、反射板1(9)に衝突する
電子数も減少し、該反射電子検出器1(11)および反射
電子検出器2(12)での収量も減少する。よって、高分
解能観察を行う場合や反射電子像を得る場合にはブース
ティング電圧は印加しない様にするが、元来、反射電子
はその発生メカニズムからして、高い空間分解能で試料
表面の形状を反映することが出来ないため、高分解能観
察は二次電子像にて行うことが適切であり、反射電子像
を得る必要性は無い。ただし、本発明の実施の形態にお
いては、E×Bフィルタ1(18)とE×Bフィルタ2
(19)の間に電圧の印加できるメッシュ状の電極を挿
入し、〔従来の技術〕で述べた反射電子と二次電子の分
離方法も実施できるようになっている。また、電圧印加
磁路(5)は磁路上部(4)を構成する部材との絶縁を
行う必要が有るため、該磁路上部(4)との結合はアル
ミナ製の絶縁碍子(6)を介して行う。よって、該電圧印
加磁路(5)と磁路上部(4)は磁性体として一体とな
っていないために、両部材の隙間からは磁場が漏れ出
す。この漏れ磁場に起因して、該一次電子線(20)の
通過する軸上にも磁場が発生する。この軸上磁場が磁極
で発生する磁場強度に対して無視できないような大きさ
であると、電子光学系として最適な条件が得られなくな
るため、漏れ磁場の強度を抑える必要がある。図1に示
したような構造であっても、漏れ磁場は磁極での軸上磁
場に対して約1/50程度と小さいが、図2に示したよ
うな構造とすることで、該磁路上部(4)から突き出し
た、該電圧印加磁路(5)の上部の張り出し部分(50)か
ら、該電圧印加磁路(5)への磁束の流入効率が上がり、
漏れ磁場の磁路の結合部周辺への染み出しを小さくする
ことができ、結果的に光軸上での漏れ磁場をさらに半分
程度に減少させることが可能である。さらに、漏洩磁場
シールド(51)を設けることで、電子線偏向手段(1
0)上方の漏洩磁場を減少させることもできる。
On the other hand, when it is necessary to observe the sample with improved resolution, a positive voltage (boosting voltage) is applied to the voltage application magnetic path (5). In this case, the reflected electrons generated at the position where the primary electron beam is irradiated on the sample are accelerated toward the electron source by the boosting voltage. As described in [Means for Solving the Problems], since the trajectory is no longer the same as the reflected electron trajectory 1 (7) and the reflected electron trajectory 2 (8), the number of electrons colliding with the reflector 1 (9) is also reduced. The yield in the backscattered electron detector 1 (11) and the backscattered electron detector 2 (12) also decreases. Therefore, when performing high-resolution observation or obtaining a backscattered electron image, the boosting voltage should not be applied. Since it cannot be reflected, it is appropriate to perform high-resolution observation with a secondary electron image, and there is no need to obtain a reflected electron image. However, in the embodiment of the present invention, the E × B filter 1 (18) and the E × B filter 2
A mesh-like electrode to which a voltage can be applied is inserted between (19), so that the method of separating reflected electrons and secondary electrons described in [Prior Art] can be performed. Further, since it is necessary to insulate the voltage applying magnetic path (5) from members constituting the magnetic path upper part (4), the coupling with the magnetic path upper part (4) is performed by using an alumina insulator (6). Do through. Therefore, since the voltage applying magnetic path (5) and the upper part of the magnetic path (4) are not integrated as a magnetic material, a magnetic field leaks from a gap between both members. Due to this leakage magnetic field, a magnetic field is also generated on the axis through which the primary electron beam (20) passes. If the on-axis magnetic field has a magnitude that cannot be ignored with respect to the magnetic field intensity generated at the magnetic pole, optimal conditions for the electron optical system cannot be obtained, and therefore, it is necessary to suppress the intensity of the leakage magnetic field. Even with the structure as shown in FIG. 1, the leakage magnetic field is as small as about 1/50 of the on-axis magnetic field at the magnetic pole. However, the structure as shown in FIG. From the projecting portion (50) of the upper part of the voltage applying magnetic path (5) protruding from the part (4), the efficiency of inflow of magnetic flux into the voltage applying magnetic path (5) increases,
The leakage of the leakage magnetic field to the vicinity of the joint of the magnetic path can be reduced, and as a result, the leakage magnetic field on the optical axis can be further reduced to about half. Further, by providing the leakage magnetic field shield (51), the electron beam deflection means (1) is provided.
0) The upper stray magnetic field can also be reduced.

【0011】以上述べた発明の実施の形態にて、種々の
特徴ある像観察が可能となるが、反射電子検出器1(1
1),反射電子検出器2(12),二次電子検出器1
(13),二次電子検出器2(14)の各検出器は電子線
偏向手段(10)を駆動する走査信号に同期した試料よ
り発生した電子を直接、もしくは間接的に検出して増幅
後に電気信号に変換するものであり、本信号は画像処理
装置(24)によって、CRTや液晶モニタのような画
像表示装置(26)に出力される。各検出器では各々、
二次電子,反射電子,エネルギー分別された二次電子な
らびに反射電子などの特徴のある信号を得ることがで
き、画像表示制御装置(25)にて各検出器を任意に切
替えられる。図5に示したように配線層間に異物(3
5)が存在し、二次電子像(32)では異物や配線のコ
ントラストが同じように見え、異物が上部配線層(3
3)と下部配線層(34)の層間にあるのか表面にある
のか判別しにくい場合は、検出器を反射電子検出器(図
5では縦パターンの右側に位置する検出器)とすること
により、試料表面のみのコントラストが強調され、上部
配線層(36)が陰影のついた反射電子像(37)とし
て得られるため、異物が配線層間にあることが判別でき
る。また、しみ状の異物(41)が試料表面にあるにも
かかわらず、上部配線層(39)とのコントラストの差
異がないため、二次電子像(38)では該上部配線層
(39)にあるのか下部配線層(40)の間にあるのか
判別がつかないような場合には、検出器を反射電子検出
器(図6では縦パターンの右側に位置する検出器)とし
て反射電子像(42)を得ることによって表面のわずか
な凹凸を検出し、陰影のついたしみ状の異物(44)の
姿が得られるため、異物が上部配線層(43)の上に存
在すると断定することが可能となる。なお、本発明の実
施の形態では、像上右方向に配置されている反射電子検
出器1(11)では試料上観察箇所の凸部側面の右側お
よび下側が明、凹部側面の左側および上側が明となり、
反射電子検出器2(12)では試料上観察箇所の凸部側
面の左側および上側が明、凹部側面の右側および下側が
明となるため、該反射電子検出器1(11)および反射
電子検出器2(12)で得られた像を比較することによ
って異物や配線パターンの凹凸形状を判別することが出
来る。また、図7に示したように照射した電子線によっ
て帯電しやすい試料では、二次電子像は観察領域が形状
を反映したコントラストがつかない二次電子像(45)
となる場合がある。このような場合には、該画像表示制
御装置(25)によって検出器を切替えることによって
反射電子像(46)を得ることで、試料表面の帯電によ
る影響を受けにくい像観察が可能となる。本発明の実施
の形態においては、反射電子像では前述したように形状
の微妙な凹凸形状が像上で陰影をもって見え(図7では
像右側に位置する検出器)、また反射電子では組成によ
るコントラストも期待できるために、二次電子像ではチ
ャージアップにより判別のつきにくかった配線構造(4
7)も該配線構造(47)周辺との構造および組成の違
いによりコントラストが得られる。
In the embodiment of the invention described above, various characteristic images can be observed, but the backscattered electron detector 1 (1
1), backscattered electron detector 2 (12), secondary electron detector 1
(13) Each detector of the secondary electron detector 2 (14) directly or indirectly detects electrons generated from a sample synchronized with a scanning signal for driving the electron beam deflecting means (10), and after amplification, This signal is converted into an electric signal, and this signal is output to an image display device (26) such as a CRT or a liquid crystal monitor by an image processing device (24). In each detector,
Characteristic signals such as secondary electrons, reflected electrons, energy-separated secondary electrons, and reflected electrons can be obtained, and each detector can be arbitrarily switched by the image display control device (25). As shown in FIG. 5, foreign matter (3
5), the contrast of foreign matter and wiring looks the same in the secondary electron image (32), and the foreign matter appears in the upper wiring layer (3).
When it is difficult to determine whether the detector is located between the layer 3) and the lower wiring layer (34) or on the surface, the detector is a backscattered electron detector (a detector located on the right side of the vertical pattern in FIG. 5). Since the contrast of only the sample surface is enhanced and the upper wiring layer (36) is obtained as a shaded reflected electron image (37), it is possible to determine that a foreign substance exists between the wiring layers. Further, despite the presence of the stain-like foreign matter (41) on the sample surface, there is no difference in contrast with the upper wiring layer (39). If it is difficult to determine whether the detector is located between the lower wiring layer (40) and the lower wiring layer (40), the reflected electron image (42) is set as a backscattered electron detector (a detector located on the right side of the vertical pattern in FIG. ) To detect slight irregularities on the surface and obtain the appearance of a foreign matter (44) in the form of a shaded shade, so that it can be determined that the foreign matter exists on the upper wiring layer (43). Becomes In the embodiment of the present invention, in the backscattered electron detector 1 (11) arranged rightward on the image, the right side and the lower side of the convex side of the observation point on the sample are clear, and the left side and the upper side of the concave side are the same. It becomes clear,
In the backscattered electron detector 2 (12), the left side and the upper side of the convex side of the observation point on the sample are bright, and the right side and the lower side of the concave side are bright, so that the backscattered electron detector 1 (11) and the backscattered electron detector By comparing the images obtained in 2 (12), it is possible to determine the foreign matter and the uneven shape of the wiring pattern. As shown in FIG. 7, in the case of a sample which is easily charged by the irradiated electron beam, the secondary electron image is a secondary electron image (45) in which the observation region reflects the shape and has no contrast.
It may be. In such a case, the reflected electron image (46) is obtained by switching the detector by the image display control device (25), so that the image observation that is hardly affected by the charging of the sample surface can be performed. In the embodiment of the present invention, in the backscattered electron image, as described above, a fine uneven shape is seen as a shadow on the image (a detector located on the right side of the image in FIG. 7). In the secondary electron image, the wiring structure (4
7) also provides contrast due to the difference in structure and composition from the periphery of the wiring structure (47).

【0012】本発明の実施の形態においては前述したよ
うに反射電子検出器の電子検出体はシンチレータを用い
ており、該シンチレータには正の電圧を印加して反射電
子軌道1(7),反射電子軌道2(8)のような軌道で
試料より入射してくる反射電子および反射板1(9)に
て発生した二次電子をシンチレータに引き込むと同時に
加速して衝突させる。この引き込み電界は一次電子線
(20)の軌道にわずかながら漏れ出し、該一次電子線
(20)の軌道を曲げる可能性が有る。左右の反射電子
検出器の一方の電圧を調整し、左右の漏れ出した電場の
バランスをとることで該一次電子線(20)の軌道への
影響を無くすることは可能であるが、図8に示したよう
に該反射板1(9)の試料側開口部に該反射板1(9)
と同電位とした金属製シールド(48)を設けることに
よって、該一次電子線(20)とシンチレータの間に静
電シールドを作り、確実に引き込み電界を該一次電子線
(20)軌道から遮蔽することが可能となる。該金属製シ
ールド(48)は図10に示したように金属製メッシュ
(49)から構成されており、電界のシールド効果を持
たせると共に該反射電子軌道1(7)、反射電子軌道2
(8)の如く入射してくる反射電子はメッシュを透過し
て、直接反射電子検出器に入射するか、該反射板1
(9)に衝突して二次電子を発生させる。メッシュのフ
レームに衝突する反射電子もあるが、衝突箇所で二次電
子を発生させて、この二次電子は反射電子検出器からの
電界に補足されて最終的に反射電子検出器で検出される
ため、結果的に反射電子の収量を損なうことはない。
In the embodiment of the present invention, as described above, a scintillator is used as the electron detector of the backscattered electron detector, and a positive voltage is applied to the scintillator so that the backscattered electron trajectory 1 (7) The reflected electrons incident from the sample in the orbit such as the electron orbit 2 (8) and the secondary electrons generated in the reflector 1 (9) are drawn into the scintillator and simultaneously accelerated and collide. This drawn electric field slightly leaks into the trajectory of the primary electron beam (20), and there is a possibility that the trajectory of the primary electron beam (20) is bent. It is possible to eliminate the influence on the trajectory of the primary electron beam (20) by adjusting the voltage of one of the left and right backscattered electron detectors and balancing the left and right leaked electric fields. As shown in (1), the reflection plate 1 (9) is placed at the sample side opening of the reflection plate 1 (9).
By providing a metal shield (48) having the same potential as that of the primary electron beam (20), an electrostatic shield is created between the primary electron beam (20) and the scintillator, and the electric field is reliably drawn and the primary electron beam is applied.
(20) It is possible to shield from the orbit. The metal shield (48) is made of a metal mesh (49) as shown in FIG. 10, and has a shielding effect of an electric field and has the reflected electron trajectory 1 (7) and the reflected electron trajectory 2
The reflected electrons entering as shown in (8) pass through the mesh and directly enter the backscattered electron detector, or the reflection plate 1
Collision with (9) generates secondary electrons. Although some backscattered electrons collide with the mesh frame, secondary electrons are generated at the collision point, and these secondary electrons are captured by the electric field from the backscattered electron detector and finally detected by the backscattered electron detector As a result, the yield of reflected electrons is not impaired.

【0013】以上が本発明を実施した形態についての説
明である。
The above is the description of the embodiment of the present invention.

【0014】[0014]

【発明の効果】TTL方式の走査型電子顕微鏡におい
て、対物レンズと試料との間に検出器を配置する必要が
無いため、ワーキングディスタンスを短くすることがで
き、電子ビームの収束開き角を大きくとれるために、装
置の高分解能化が可能となる。また、試料に電子ビーム
を減速させる電圧を印加するリターディング法を採用し
ても、反射電子と二次電子を分離することができ、反射
電子を二次電子に変換する反射板を設けたり、該反射板
や磁路の電子通過孔の大きさや形状および請求項2.記
載の第一の検出器の配置を最適化することで反射電子の
収量を損なうこと無く、コントラストの良い反射電子像
が得られる。よって、リターディング法を用いない場合
に比べて高分解能観察が可能であり、分解能に関して裕
度が持てることから、分解能を犠牲にして焦点深度を深
くすることも出来る。また、磁路には観察条件毎にあら
かじめ設定した電圧を印加することが出来るので、反射
電子を必要とする場合には磁路には電圧を印加しない
か、印加しても低電圧とし、逆に磁路に一次電子線を加
速する電圧を印加することで二次電子による高分解能観
察が可能となる。さらに、請求項2.記載の検出器を各
々任意に切替えて二次電子像と反射電子像を取得するこ
とができ、これらの画像を画像処理装置にて合成した
り、各画像の特徴量を抽出して比較することで観察箇所
の立体的な構造を知ることも可能であり、異物や欠陥部
の構造や配置から、異物や欠陥の発生に関して半導体デ
バイスの製作工程の内、どこに問題が有るのか知見を得
ることも可能となる。
In the TTL scanning electron microscope, there is no need to dispose a detector between the objective lens and the sample, so that the working distance can be shortened and the convergence angle of the electron beam can be increased. Therefore, the resolution of the device can be increased. Also, even if a retarding method of applying a voltage to decelerate the electron beam to the sample is employed, reflected electrons and secondary electrons can be separated, and a reflecting plate for converting reflected electrons to secondary electrons is provided. 1. The size and shape of the electron passing holes of the reflector and the magnetic path, and claim 2. By optimizing the arrangement of the first detector described above, a reflected electron image with good contrast can be obtained without impairing the yield of backscattered electrons. Therefore, high-resolution observation is possible as compared with the case where the retarding method is not used, and since there is a margin regarding the resolution, the depth of focus can be increased at the expense of the resolution. In addition, since a voltage set in advance for each observation condition can be applied to the magnetic path, when a reflected electron is required, no voltage is applied to the magnetic path, or even if it is applied, a low voltage is applied. By applying a voltage for accelerating the primary electron beam to the magnetic path, high-resolution observation by secondary electrons becomes possible. Further, claim 2. A secondary electron image and a reflected electron image can be obtained by arbitrarily switching the described detectors, and these images can be synthesized by an image processing device, or a feature amount of each image can be extracted and compared. It is also possible to know the three-dimensional structure of the observation point by using, and from the structure and arrangement of foreign matter and defect parts, it is also possible to obtain information about where there is a problem in the semiconductor device manufacturing process regarding the occurrence of foreign matter and defects It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実現する走査型電子顕微鏡の構成図。FIG. 1 is a configuration diagram of a scanning electron microscope realizing the present invention.

【図2】請求項3および請求項4記載の電圧を印加する
磁極を含む磁路と、その他の対物レンズを構成する部材
との結合部の断面図。
FIG. 2 is a cross-sectional view of a coupling portion between a magnetic path including a magnetic pole for applying a voltage according to claim 3 and a member forming another objective lens.

【図3】請求項13記載の反射電子を二次電子に変換す
る部材の断面図。
FIG. 3 is a sectional view of a member for converting reflected electrons into secondary electrons according to claim 13;

【図4】請求項14記載の反射電子を二次電子に変換す
る部材の断面図。
FIG. 4 is a sectional view of a member for converting reflected electrons into secondary electrons according to claim 14;

【図5】請求項15記載の反射電子を二次電子に変換す
る部材の断面図。
FIG. 5 is a sectional view of a member for converting reflected electrons into secondary electrons according to claim 15;

【図6】本発明の効果として、異物が配線層間にある場
合の二次電子像(左)と反射電子像(右)の模式図。
FIG. 6 is a schematic diagram of a secondary electron image (left) and a reflected electron image (right) when a foreign substance exists between wiring layers as an effect of the present invention.

【図7】本発明の効果として、厚みが薄い、又はしみ状
の異物が表面にあるのか層間にあるのか判別がつきにく
い二次電子像(左)に対して、反射電子像(右)で立体
的な観察を行うことでわずかな凹凸を検出し、異物が表
面にあることが判別できることを説明した模式図。
FIG. 7 is an effect of the present invention, in which it is difficult to determine whether a thin or stain-like foreign substance is present on the surface or between layers, whereas a reflected electron image (right) is used for the secondary electron image (left). FIG. 9 is a schematic diagram illustrating that three-dimensional observation detects slight irregularities and can determine that a foreign substance is present on the surface.

【図8】本発明の効果として、試料表面の帯電により二
次電子像(左)ではコントラストが得られない場合に反
射電子で表面構造の(ここではセル構造)の立体的な観
察を行うことで、帯電の影響を受けにくく、凹凸形状が
判別できる反射電子像(右)が得られることを説明する
模式図。
FIG. 8 shows that the effect of the present invention is to perform three-dimensional observation of the surface structure (here, the cell structure) with reflected electrons when no contrast is obtained in the secondary electron image (left) due to charging of the sample surface. FIG. 4 is a schematic diagram for explaining that a reflected electron image (right) that is hardly affected by charging and whose uneven shape can be determined is obtained.

【図9】請求項16記載の金属製シールドの配置図。FIG. 9 is a layout view of the metal shield according to claim 16.

【図10】請求項16記載の金属製シールドの正面図お
よび断面図。
FIG. 10 is a front view and a sectional view of the metal shield according to claim 16;

【符号の説明】[Explanation of symbols]

1…試料(ウェーハ)、2…負の高電圧電源、3…磁路
下部、4…磁路上部、5…電圧印加磁路、6…絶縁碍
子、7…反射電子軌道1、8…反射電子軌道2、9…反
射板、10…電子線偏向手段、11…反射電子検出器
1、12…反射電子検出器2、13…二次電子検出器
1、14…二次電子検出器2、15…二次電子軌道1、
16…二次電子軌道2、17…二次電子軌道、18…E
×Bフィルタ1、19…E×Bフィルタ2、20…一次
電子線、21…引出電極、22…電子源、23…電子銃
用高電圧電源、24…画像処理装置、25…画像表示制
御装置、26…画像表示装置、27…正の高電圧電源、
28…レンズ系、29…階段状の段差、30…サンドブ
ラスト面、31…金めっき面、32…配線層間に異物が
ある時の二次電子像の例、33…上部配線層、34…下
部配線層、35…異物、36…上部配線層、37…配線
層間に異物がある時の反射電子像の例、38…配線層間
にしみ状の異物がある時の二次電子像の例、39…上部
配線層、40…下部配線層、41…しみ状の異物、42
…配線層間にしみ状の異物がある時の反射電子像の例、
43…上部配線層、44…陰影のついたしみ状の異物、
45…試料の帯電により、コントラストのついていない
二次電子像の例、46…試料の帯電の影響を受けにくい
反射電子像の例、47…配線構造、48…金属製シール
ド、49…金属製メッシュ、50…磁路結合部の張り出
し、51…漏洩磁場シールド。
DESCRIPTION OF SYMBOLS 1 ... Sample (wafer), 2 ... Negative high voltage power supply, 3 ... Lower magnetic path, 4 ... Upper magnetic path, 5 ... Magnetic path applied, 6 ... Insulator, 7 ... Reflected electron trajectory 1, 8 ... Reflected electrons Tracks 2, 9 ... Reflector plate, 10 ... Electron beam deflecting means, 11 ... Reflected electron detector 1, 12 ... Reflected electron detector 2, 13 ... Secondary electron detector 1, 14 ... Secondary electron detector 2,15 ... Secondary electron orbit 1,
16: secondary electron orbit 2, 17 ... secondary electron orbit, 18 ... E
× B filters 1, 19: E × B filters 2, 20: primary electron beam, 21: extraction electrode, 22: electron source, 23: high voltage power supply for electron gun, 24: image processing device, 25: image display control device .. 26 image display device 27 positive high voltage power supply
Reference numeral 28 denotes a lens system, 29 denotes a step-like step, 30 denotes a sandblast surface, 31 denotes a gold plated surface, 32 denotes an example of a secondary electron image when there is a foreign substance between wiring layers, 33 denotes an upper wiring layer, and 34 denotes a lower wiring. Layers, 35: foreign matter, 36: upper wiring layer, 37: example of reflected electron image when foreign matter exists between wiring layers, 38: example of secondary electron image when stain-like foreign matter exists between wiring layers, 39 ... Upper wiring layer, 40... Lower wiring layer, 41.
... Example of backscattered electron image when stained foreign matter exists between wiring layers
43: upper wiring layer, 44: stained foreign matter having a shadow,
45: an example of a secondary electron image having no contrast due to charging of the sample; 46: an example of a reflected electron image which is not easily affected by the charging of the sample; 47: wiring structure; 48: metal shield; 49: metal mesh , 50: overhang of the magnetic path coupling portion, 51: leakage magnetic field shield.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 俊郎 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器グループ内 (72)発明者 鈴木 直正 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器グループ内 Fターム(参考) 2G001 AA03 BA07 BA15 CA03 GA01 GA06 GA09 GA10 GA13 HA13 JA11 JA13 5C033 DD04 DD09 DE06 NN01 NN02 NP01 NP05 NP06 UU02 UU04 UU05 UU06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiro Kubo 882-mo, Oita-shi, Hitachinaka-shi, Ibaraki Prefecture Within the Hitachi Measuring Instruments Group (72) Inventor Naomasa Suzuki 882-mo, Oita-shi, Hitachinaka-shi, Ibaraki, Ltd. 2G001 AA03 BA07 BA15 CA03 GA01 GA06 GA09 GA10 GA13 HA13 JA11 JA13 5C033 DD04 DD09 DE06 NN01 NN02 NP01 NP05 NP06 UU02 UU04 UU05 UU06

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】反射電子と二次電子を同一の、もしくは別
個の検出器で検出する方式の走査型電子顕微鏡におい
て、反射電子を検出する必要がある時と、ない時とで磁
路に、もしくは磁路から絶縁されて磁極部分に配置した
電極に、印加する電圧を変化させることを特徴とした走
査型電子顕微鏡。
1. A scanning electron microscope in which reflected electrons and secondary electrons are detected by the same or separate detectors. Alternatively, a scanning electron microscope characterized in that a voltage applied to an electrode which is insulated from a magnetic path and disposed on a magnetic pole portion is changed.
【請求項2】電子源から放出された一次電子線を拡大,
縮小するレンズ系と、該一次電子線を二次元的に走査し
て試料面上に該電子線を照射する電子線偏向手段と、最
終的に該一次電子線を試料上に収束させるレンズである
対物レンズの中心に開けられた電子線通路を通過する、
該試料面上で発生した二次電子や反射電子を電気信号に
変える複数の検出手段と、走査方向と走査速度に同期し
て該検出手段で得られた複数の信号を各々画像として出
力する手段と、該検出手段は該電子源と該試料に印加さ
れる電圧との電位差で該一次電子線の該試料照射エネル
ギーを制御する手段と、該対物レンズの磁極を含む磁路
の一部に電圧を印加することができる手段と、電子検出
面が該電子線偏向手段および該対物レンズとの間に配置
し、該対物レンズの磁極の電子線通路を臨む立体角内に
該電子検出面に直接入射する反射電子の軌道が含有され
る位置に置かれ、主に反射電子が部材に衝突した際に発
生する二次電子、もしくは反射電子を直接取り込む一つ
以上の第一の検出器と、該電子線偏向手段の上方に配置
され、主に該電子線偏向手段上方へ通過した二次電子を
直接、もしくは該二次電子が部材に衝突した際に発生す
る二次電子を取り込む二つ以上の第二の検出器とを具備
する走査型電子顕微鏡において、該第一の検出器を用い
て二次電子の混入が実質上ない反射電子、第二の検出器
を用いて二次電子の信号を得ることによって該一次電子
線照射領域の情報を得る場合には、電圧印加可能な該対
物レンズの磁極を含む磁路の一部には電圧を印加しない
様にし、反射電子による情報を必要とせず、該第二の検
出器を用い、主に二次電子の情報を検出して該試料面上
の高分解能観察を行う場合には、該一次電子線の該対物
レンズによる収差を低減するために、該対物レンズの磁
極を含む磁路の一部に該一次電子線の該対物レンズの通
過エネルギーが高くなるように、かつ試料上に試料から
発生した反射電子や二次電子を電子源方向に加速する電
界が該試料上に作用するように電圧を印加し、情報取得
条件によって該対物レンズの磁極を含む磁路の一部に印
加する電圧を切替えることを特徴とする走査型電子顕微
鏡。
2. The method according to claim 1, wherein the primary electron beam emitted from the electron source is expanded.
A lens system for reducing, an electron beam deflecting means for two-dimensionally scanning the primary electron beam to irradiate the sample surface with the electron beam, and a lens for finally converging the primary electron beam on the sample. Passing through an electron beam path opened in the center of the objective lens,
A plurality of detecting means for converting secondary electrons or reflected electrons generated on the sample surface into electric signals, and means for outputting a plurality of signals obtained by the detecting means as images in synchronization with a scanning direction and a scanning speed, respectively Means for controlling the sample irradiation energy of the primary electron beam by a potential difference between the electron source and a voltage applied to the sample; and a voltage applied to a part of a magnetic path including a magnetic pole of the objective lens. And an electron detecting surface is disposed between the electron beam deflecting means and the objective lens, and directly on the electron detecting surface within a solid angle facing the electron beam path of the magnetic pole of the objective lens. One or more first detectors, which are placed at positions containing the trajectories of incident reflected electrons, and which directly take in secondary electrons, or reflected electrons, mainly generated when the reflected electrons collide with the member; It is located above the electron beam deflecting means and mainly In a scanning electron microscope comprising two or more second detectors that directly take in secondary electrons that have passed over the deflecting means or take in secondary electrons generated when the secondary electrons collide with a member, In the case where information of the primary electron beam irradiation area is obtained by obtaining a signal of a secondary electron using the second detector using reflected electrons substantially free from mixing of secondary electrons using the first detector. Does not apply a voltage to a part of a magnetic path including a magnetic pole of the objective lens to which a voltage can be applied, does not require information by reflected electrons, uses the second detector, and mainly uses secondary electrons. When the high resolution observation on the sample surface is performed by detecting the information of the objective lens, in order to reduce the aberration of the primary electron beam due to the objective lens, the primary electron beam is partially provided in a magnetic path including a magnetic pole of the objective lens. Make sure that the energy of the primary electron beam passing through the objective lens is high. A voltage is applied on the sample so that an electric field for accelerating reflected electrons and secondary electrons generated from the sample in the direction of the electron source acts on the sample, and one of the magnetic paths including the magnetic poles of the objective lens is obtained depending on information acquisition conditions. A scanning electron microscope characterized by switching a voltage applied to a part.
【請求項3】請求項1もしくは請求項2記載の走査型電
子顕微鏡において、電圧を印加することのできる対物レ
ンズの磁極、もしくは電圧を印加することのできる電極
に近接する対物レンズの磁極を構成する磁路と、対物レ
ンズを構成する他の磁路との結合部における漏洩磁場
が、該対物レンズのレンズ間隙によるレンズ磁場に、実
質的に影響を及ぼさないように、該結合部の形状を構成
すると共に、該結合部の上方に磁場シールド部材を配置
したことを特徴とする走査型電子顕微鏡。
3. The scanning electron microscope according to claim 1, wherein a magnetic pole of the objective lens to which a voltage can be applied or a magnetic pole of the objective lens close to the electrode to which a voltage can be applied. The shape of the coupling part is set so that the leakage magnetic field at the coupling part between the magnetic path and the other magnetic path constituting the objective lens does not substantially affect the lens magnetic field due to the lens gap of the objective lens. A scanning electron microscope, comprising: a magnetic field shield member disposed above the coupling portion.
【請求項4】請求項3記載の走査型電子顕微鏡におい
て、該対物レンズの磁極を含む磁路と、該対物レンズを
構成する他の磁路との間の隙間には、絶縁物が挿入され
ていることを特徴とする走査型電子顕微鏡。
4. The scanning electron microscope according to claim 3, wherein an insulator is inserted into a gap between a magnetic path including a magnetic pole of the objective lens and another magnetic path forming the objective lens. A scanning electron microscope characterized in that:
【請求項5】請求項2から請求項4記載の走査型電子顕
微鏡において、一次電子線の試料照射エネルギーを、該
試料に印加する電圧を常に一定とし、該電子源に印加す
る電圧を変化させることで制御することを特徴とする走
査型電子顕微鏡。
5. A scanning electron microscope according to claim 2, wherein the irradiation energy of the primary electron beam to the sample is kept constant, the voltage applied to the sample is always constant, and the voltage applied to the electron source is changed. Scanning electron microscope, characterized in that the scanning electron microscope is controlled by:
【請求項6】請求項5記載の走査型電子顕微鏡におい
て、該対物レンズの磁極を含む磁路の一部に電圧を印加
せず、二次電子の混入が実質上ない反射電子の信号を検
出することで試料表面の帯電の影響を受けにくい画像を
得ることを特徴とする走査型電子顕微鏡。
6. A scanning electron microscope according to claim 5, wherein a voltage is not applied to a part of a magnetic path including a magnetic pole of said objective lens, and a reflected electron signal substantially free of secondary electrons is detected. A scanning electron microscope characterized by obtaining an image that is not easily affected by charging of the sample surface by performing the above.
【請求項7】請求項5記載の走査型電子顕微鏡におい
て、該対物レンズの磁極を含む磁路の一部に電圧を印加
せず、請求項2記載の第一の検出器に切替えることによ
って二次電子の混入が実質上ない反射電子の信号を検出
することで試料表面の凹凸形状を陰影のついた画像とし
て得ることを特徴とする走査型電子顕微鏡。
7. A scanning electron microscope according to claim 5, wherein a voltage is not applied to a part of a magnetic path including a magnetic pole of said objective lens, and switching to the first detector according to claim 2 is performed. A scanning electron microscope characterized in that an uneven shape of a sample surface is obtained as a shaded image by detecting a signal of a reflected electron having substantially no mixing of secondary electrons.
【請求項8】請求項6および7記載の走査型電子顕微鏡
において、二次電子像では試料の帯電により試料表面形
状のコントラストが得られにくい場合において、反射電
子信号と二次電子信号による試料上の同一部分の画像を
比較することにより、二次電子像では試料表面形状のコ
ントラストが得られにくい部分の凹凸形状を確認する機
能を有することを特徴とする走査型電子顕微鏡。
8. A scanning electron microscope according to claim 6, wherein in the case where it is difficult to obtain a contrast of the sample surface shape due to the charging of the sample in the secondary electron image, the reflected electron signal and the secondary electron signal are used on the sample. A scanning electron microscope having a function of confirming the uneven shape of a portion where it is difficult to obtain a contrast of a sample surface shape in a secondary electron image by comparing images of the same portion.
【請求項9】請求項6〜8記載の走査型電子顕微鏡にお
いて、試料としてメモリーやロジックなどを構成する多
層膜間配線を有する半導体ウェーハを用いる場合、一次
電子の照射による試料の帯電により、二層間以上の配線
のプロファイルが二次電子像として得られ、かつ該二次
電子像上に配線の欠陥や異物の存在が確認できる場合
に、任意に該第一の検出器に切替えることによって反射
電子像を取得することで、試料表面のみの情報を選択的
に観察することができ、両者の画像を比較することによ
り、該欠陥や異物が試料表面にあるのか層間にあるのか
区別する機能を有することを特徴とする走査型電子顕微
鏡。
9. A scanning electron microscope according to claim 6, wherein when a semiconductor wafer having a wiring between multilayer films constituting a memory or a logic is used as a sample, the sample is charged by irradiation of primary electrons. If the profile of the wiring above the interlayer is obtained as a secondary electron image and the presence of a defect or foreign matter on the wiring can be confirmed on the secondary electron image, the reflected electron can be arbitrarily switched to the first detector. By acquiring an image, it is possible to selectively observe only information on the sample surface, and by comparing both images, it has a function of distinguishing whether the defect or foreign matter is on the sample surface or between the layers. A scanning electron microscope characterized by the above-mentioned.
【請求項10】請求項9記載の走査型電子顕微鏡におい
て、オリエンテーションフラットやVノッチを手前とし
た状態をウェーハの基準方向とした時に基準方向に対し
て右に配置した反射電子検出器によって得られる陰影の
ついた像と、基準方向に対して左に配置した反射電子検
出器によって得られる陰影のついた像とを比較すること
によって試料上観察箇所の凹凸判定が可能である走査型
電子顕微鏡。
10. A scanning electron microscope according to claim 9, wherein a reflection electron detector disposed on the right side with respect to the reference direction when the state in which the orientation flat or the V notch is in front is set as the reference direction of the wafer. A scanning electron microscope capable of judging unevenness of an observation point on a sample by comparing a shaded image with a shaded image obtained by a backscattered electron detector arranged to the left with respect to a reference direction.
【請求項11】請求項2〜8いずれかに記載の走査型電
子顕微鏡において、反射電子を衝突させて二次電子を発
生させる部材は、金属であり、該電子線偏向手段の下方
に位置し、反射電子の衝突領域が該第一の検出器の電子
を捕獲するための電界が作用する範囲で該電子検出面の
位置より下方となるように置かれていることを特徴とす
る走査型電子顕微鏡。
11. A scanning electron microscope according to claim 2, wherein the member that collides reflected electrons to generate secondary electrons is metal, and is located below the electron beam deflecting means. Wherein the collision area of the reflected electrons is located below the position of the electron detection surface within a range in which an electric field for capturing the electrons of the first detector acts. microscope.
【請求項12】請求項11記載の走査型電子顕微鏡にお
いて、反射電子を衝突させて二次電子を発生させる部材
は、該対物レンズの磁極の中心軸と一致し、該磁極方向
に先細りとなった円錐形状であることを特徴とした走査
型電子顕微鏡。
12. A scanning electron microscope according to claim 11, wherein the member that collides the reflected electrons to generate secondary electrons coincides with the center axis of the magnetic pole of the objective lens and tapers in the direction of the magnetic pole. A scanning electron microscope characterized by a conical shape.
【請求項13】請求項12記載の走査型電子顕微鏡にお
いて、反射電子を衝突させて二次電子を発生させる部材
の反射電子衝突領域は円錐の中心軸に関して対称である
円形の溝を階段状に配置し、二次電子発生効率を高めた
ものであることを特徴とする走査型電子顕微鏡。
13. A scanning electron microscope according to claim 12, wherein the reflected electron collision region of the member for generating the secondary electrons by colliding the reflected electrons has a stepped circular groove which is symmetric with respect to the central axis of the cone. A scanning electron microscope, wherein the scanning electron microscope is arranged to increase secondary electron generation efficiency.
【請求項14】請求項12記載の走査型電子顕微鏡にお
いて、反射電子を衝突させて二次電子を発生させる部材
の反射電子衝突領域は、該部材の表面を処理して凹凸を
作り、二次電子発生効率を高めたものであることを特徴
とする走査型電子顕微鏡。
14. A scanning electron microscope according to claim 12, wherein a reflected electron collision region of a member which collides reflected electrons to generate secondary electrons is formed by treating the surface of said member to form irregularities. A scanning electron microscope wherein electron generation efficiency is enhanced.
【請求項15】請求項12〜14のいずれかに記載の走
査型電子顕微鏡において、反射電子を衝突させて二次電
子を発生させる部材の反射電子衝突領域は、二次電子発
生率の高い物質のめっきを施してあることを特徴とする
走査型電子顕微鏡。
15. A scanning electron microscope according to claim 12, wherein a member having a high secondary electron generation rate is a reflected electron collision region of a member that collides reflected electrons to generate secondary electrons. A scanning electron microscope characterized by being plated.
【請求項16】請求項12〜15のいずれかに記載の走
査型電子顕微鏡において、該第一の検出器の電子検出面
からの複数の強度の異なる漏洩電場が該一次電子線の軌
道を変化させないように、該漏洩電場が該一次電子線通
路に漏れ出すことを防止する目的で、該反射電子を衝突
させて二次電子を発生させる部材の先端部に、反射電子
が通過できるメッシュ状の金属製シールドを具備するこ
とを特徴とした走査型電子顕微鏡。
16. The scanning electron microscope according to claim 12, wherein a plurality of leaked electric fields having different intensities from the electron detection surface of the first detector change the trajectory of the primary electron beam. In order to prevent the leaked electric field from leaking into the primary electron beam passage so as not to cause the reflected electron to collide with the tip of a member that generates the secondary electron by colliding the reflected electron, a mesh-shaped member through which the reflected electron can pass. A scanning electron microscope comprising a metal shield.
JP2000274993A 2000-09-06 2000-09-06 Scanning electron microscope Expired - Lifetime JP4613405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000274993A JP4613405B2 (en) 2000-09-06 2000-09-06 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000274993A JP4613405B2 (en) 2000-09-06 2000-09-06 Scanning electron microscope

Publications (2)

Publication Number Publication Date
JP2002083563A true JP2002083563A (en) 2002-03-22
JP4613405B2 JP4613405B2 (en) 2011-01-19

Family

ID=18760682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000274993A Expired - Lifetime JP4613405B2 (en) 2000-09-06 2000-09-06 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JP4613405B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228999A (en) * 2005-02-18 2006-08-31 Hitachi High-Technologies Corp Method and device for inspection by charged particle beam
JP2006286685A (en) * 2005-03-31 2006-10-19 Renesas Technology Corp Method of manufacturing semiconductor integrated circuit device
JP2008123891A (en) * 2006-11-14 2008-05-29 Hitachi High-Technologies Corp Charged beam device and its lens body
JP2008159574A (en) * 2006-11-27 2008-07-10 Hitachi High-Technologies Corp Scanning electron microscope
US7462828B2 (en) 2005-04-28 2008-12-09 Hitachi High-Technologies Corporation Inspection method and inspection system using charged particle beam
US7504626B2 (en) 2006-02-15 2009-03-17 Hitachi High-Technologies Corporation Scanning electron microscope and apparatus for detecting defect
JP2009259444A (en) * 2008-04-14 2009-11-05 Hitachi High-Technologies Corp Electron particle beam application apparatus permitting high-resolution and high-contrast observation
US8188428B2 (en) 2006-11-17 2012-05-29 Hitachi High-Technologies Corporation Scanning electron microscope
JP2012186177A (en) * 2012-06-18 2012-09-27 Hitachi High-Technologies Corp Electron beam application device
JP2012230902A (en) * 2011-04-26 2012-11-22 Fei Co In-column detector for particle-optical column
JP2012531710A (en) * 2009-06-24 2012-12-10 カール ツァイス エヌティーエス エルエルシー Charged particle detector
JP2013120650A (en) * 2011-12-06 2013-06-17 Hitachi High-Technologies Corp Scanning electron microscope and secondary electron detection method
JP2013138024A (en) * 2013-03-13 2013-07-11 Hitachi High-Technologies Corp Charged particle beam device
JP2014160678A (en) * 2014-05-12 2014-09-04 Hitachi High-Technologies Corp Charged particle beam device
KR20170097750A (en) * 2015-03-20 2017-08-28 가부시키가이샤 히다치 하이테크놀로지즈 Electron-beam pattern inspection system
CN114284124A (en) * 2021-02-02 2022-04-05 湖州超群电子科技有限公司 Electron beam irradiation enhancing device and using method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264149A (en) * 1995-03-27 1996-10-11 Horon:Kk Secondary electron detecting apparatus for scanning electron microscope
JPH09171791A (en) * 1995-10-19 1997-06-30 Hitachi Ltd Scanning type electron microscope
JPH10294074A (en) * 1997-04-18 1998-11-04 Hitachi Ltd Scanning electron microscope
JPH11111211A (en) * 1997-10-07 1999-04-23 Jeol Ltd Scanning electron microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264149A (en) * 1995-03-27 1996-10-11 Horon:Kk Secondary electron detecting apparatus for scanning electron microscope
JPH09171791A (en) * 1995-10-19 1997-06-30 Hitachi Ltd Scanning type electron microscope
JPH10294074A (en) * 1997-04-18 1998-11-04 Hitachi Ltd Scanning electron microscope
JPH11111211A (en) * 1997-10-07 1999-04-23 Jeol Ltd Scanning electron microscope

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228999A (en) * 2005-02-18 2006-08-31 Hitachi High-Technologies Corp Method and device for inspection by charged particle beam
JP4695909B2 (en) * 2005-03-31 2011-06-08 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor integrated circuit device
JP2006286685A (en) * 2005-03-31 2006-10-19 Renesas Technology Corp Method of manufacturing semiconductor integrated circuit device
US8153969B2 (en) 2005-04-28 2012-04-10 Hitachi High-Technologies Corporation Inspection method and inspection system using charged particle beam
US7462828B2 (en) 2005-04-28 2008-12-09 Hitachi High-Technologies Corporation Inspection method and inspection system using charged particle beam
US7504626B2 (en) 2006-02-15 2009-03-17 Hitachi High-Technologies Corporation Scanning electron microscope and apparatus for detecting defect
JP2008123891A (en) * 2006-11-14 2008-05-29 Hitachi High-Technologies Corp Charged beam device and its lens body
US8188428B2 (en) 2006-11-17 2012-05-29 Hitachi High-Technologies Corporation Scanning electron microscope
JP2008159574A (en) * 2006-11-27 2008-07-10 Hitachi High-Technologies Corp Scanning electron microscope
JP2009259444A (en) * 2008-04-14 2009-11-05 Hitachi High-Technologies Corp Electron particle beam application apparatus permitting high-resolution and high-contrast observation
US8389935B2 (en) 2008-04-14 2013-03-05 Hitachi High-Technologies Corporation Charged particle beam apparatus permitting high-resolution and high-contrast observation
US9159533B2 (en) 2008-04-14 2015-10-13 Hitachi High-Technologies Corporation Charged particle beam apparatus permitting high-resolution and high-contrast observation
US8785890B2 (en) 2008-04-14 2014-07-22 Hitachi High-Technologies Corporation Charged particle beam apparatus permitting high-resolution and high-contrast observation
US9000396B2 (en) 2009-06-24 2015-04-07 Carl Zeiss Microscopy, Llc Charged particle detectors
JP2012531710A (en) * 2009-06-24 2012-12-10 カール ツァイス エヌティーエス エルエルシー Charged particle detector
JP2012230902A (en) * 2011-04-26 2012-11-22 Fei Co In-column detector for particle-optical column
JP2013120650A (en) * 2011-12-06 2013-06-17 Hitachi High-Technologies Corp Scanning electron microscope and secondary electron detection method
JP2012186177A (en) * 2012-06-18 2012-09-27 Hitachi High-Technologies Corp Electron beam application device
JP2013138024A (en) * 2013-03-13 2013-07-11 Hitachi High-Technologies Corp Charged particle beam device
JP2014160678A (en) * 2014-05-12 2014-09-04 Hitachi High-Technologies Corp Charged particle beam device
KR20170097750A (en) * 2015-03-20 2017-08-28 가부시키가이샤 히다치 하이테크놀로지즈 Electron-beam pattern inspection system
KR101987726B1 (en) * 2015-03-20 2019-06-11 가부시키가이샤 히다치 하이테크놀로지즈 Electron-beam pattern inspection system
CN114284124A (en) * 2021-02-02 2022-04-05 湖州超群电子科技有限公司 Electron beam irradiation enhancing device and using method thereof

Also Published As

Publication number Publication date
JP4613405B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
US11562881B2 (en) Charged particle beam system
JP4302316B2 (en) Scanning electron microscope
US6555815B2 (en) Apparatus and method for examining specimen with a charged particle beam
JP4069624B2 (en) Scanning electron microscope
JP5554764B2 (en) Electron beam equipment
JP4613405B2 (en) Scanning electron microscope
JP2000200579A (en) Scanning electron microscope
JP6736756B2 (en) Charged particle beam device
JP2008186689A (en) Scanning electron microscope
US6555819B1 (en) Scanning electron microscope
US7947953B2 (en) Charged particle detection apparatus and detection method
JP6880209B2 (en) Scanning electron microscope
CN116190184A (en) Scanning electron microscope objective lens system and scanning focusing method
JP6312387B2 (en) Particle beam device and method of operating particle beam device
JP4913854B2 (en) Charged particle detection apparatus and detection method
US7394069B1 (en) Large-field scanning of charged particles
JP3432091B2 (en) Scanning electron microscope
JP2002025492A (en) Method and apparatus for imaging sample using low profile electron detector for charged particle beam imaging system containing electrostatic mirror
WO2001003145A1 (en) Apparatus and method for examining specimen with a charged particle beam
EP0969494A1 (en) Apparatus and method for examining specimen with a charged particle beam
JP2006140162A (en) Method of forming testpiece image
KR100711198B1 (en) Scanning electron microscope
JP2003500821A (en) Apparatus and method for secondary electron emission microscope with double beam
JP2000011939A (en) Charged particle beam apparatus and inspection method for semiconductor device
JP2013064675A (en) Inspection apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

R151 Written notification of patent or utility model registration

Ref document number: 4613405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

EXPY Cancellation because of completion of term