JP2002081745A - Expansion absorption material and freezing damage prevention apparatus - Google Patents

Expansion absorption material and freezing damage prevention apparatus

Info

Publication number
JP2002081745A
JP2002081745A JP2000265622A JP2000265622A JP2002081745A JP 2002081745 A JP2002081745 A JP 2002081745A JP 2000265622 A JP2000265622 A JP 2000265622A JP 2000265622 A JP2000265622 A JP 2000265622A JP 2002081745 A JP2002081745 A JP 2002081745A
Authority
JP
Japan
Prior art keywords
expansion
water
freezing
absorption material
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000265622A
Other languages
Japanese (ja)
Inventor
Akihito Hachiya
秋仁 蜂矢
Itsushi Suzuki
伊津士 鈴木
Ichiro Watabe
一朗 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITOKU RUBBER KK
Nippo Ltd
Rinnai Corp
Original Assignee
MITOKU RUBBER KK
Nippo Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITOKU RUBBER KK, Nippo Ltd, Rinnai Corp filed Critical MITOKU RUBBER KK
Priority to JP2000265622A priority Critical patent/JP2002081745A/en
Publication of JP2002081745A publication Critical patent/JP2002081745A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the difficulties with the prior art in which although there is known a prior art technique where closed-cell sponge is disposed on a water passage, it loses a property to absorb volume expansion by repetitive freezing because of its being easily damaged, and the sponge is crushed in a high water pressure region to which tap water is supplied and hence can be not used. SOLUTION: There is disposed an expansion absorption material 21 in a secondary chamber 13 of a water pressure responsive apparatus 6, which material is obtained by molding many capsules capable of changing in their volumes in an elastically deformable rubber material. The capsule is a particle having a diameter of substantially 10 to 300 μm where gas such as inactive gas is covered with a hardened film such as resin, and the amount of absorption of volume expansion and hardness thereof can be freely adjusted depending upon a mixing rate of the capsule, the size of the expansion absorption material 21, and material quality of the rubber material. Upon freezing the volume is expanded owing to water changing to ice to compress the expansion absorption material 21. Hereby, many capsules encapsulated in the expansion absorption material 21 are contracted to contact the expansion absorption material, and hence absorb volume expansion of the water (ice) to prevent freezing damage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水の凍結による器
具類の破損を防止する膨張吸収材および凍結破損防止装
置に関するもので、水圧応動装置、水電磁弁、バイパス
バルブ等、水が凍結可能な広い分野に適用可能なもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an expansion-absorbing material for preventing breakage of instruments due to freezing of water and a device for preventing freezing damage, and is capable of freezing water such as a water pressure responsive device, a water solenoid valve, and a bypass valve. It can be applied to various fields.

【0002】[0002]

【従来の技術】この種の技術として、特開平10−28
1556号公報に開示された技術が知られている。この
技術は、多数の独立気泡を有するスポンジを水の通路に
配置したものであり、水の凍結による体積の膨張をスポ
ンジに吸収させることで、器具類の破損を防止しようと
したものである。
2. Description of the Related Art Japanese Patent Laid-Open No. Hei 10-28 discloses this kind of technology.
The technique disclosed in Japanese Patent No. 1556 is known. In this technique, a sponge having a large number of closed cells is arranged in a water passage, and an attempt is made to prevent breakage of instruments by absorbing the expansion of the volume due to freezing of water into the sponge.

【0003】[0003]

【発明が解決しようとする課題】従来技術で用いられて
いたスポンジは、液状の樹脂(例えば、ゴム、ウレタン
等)の内部で発泡を行って樹脂を硬化させるものであ
り、独立気泡を覆う樹脂膜が薄くなるため繰り返しの変
形によってヘタリ、破裂し易い不具合がある。このた
め、繰り返しの凍結によって収縮と拡張を繰り返すと、
スポンジが弾性を失って体積膨張を吸収する性質を失う
ため、繰り返し凍結が発生するような部位では信頼性に
欠けていた。
The sponge used in the prior art is a type of foaming inside a liquid resin (for example, rubber, urethane, etc.) to harden the resin. Since the film becomes thin, there is a problem that the film is easily broken or ruptured due to repeated deformation. Therefore, when contraction and expansion are repeated by repeated freezing,
Since the sponge loses its elasticity and loses the property of absorbing volumetric expansion, it lacks reliability in a portion where repeated freezing occurs.

【0004】また、水道水が直接的に供給される水路
(ガバナ等で減圧される前の水路)には、高い水圧(最
大17.5kgf/cm2 )が加わる。このような高水
圧領域の水路内に配置される部材には、17.5kgf
/cm2 以上であっても変形し難い硬度が要求される。
しかし、スポンジは、高水圧が加わると容易に変形して
しまうため、高水圧領域の水路には使用することができ
なかった。つまり、高水圧領域では、凍結破損を防止す
ることができなかった。
[0004] A high water pressure (up to 17.5 kgf / cm 2 ) is applied to a water channel to which tap water is directly supplied (a water channel before the pressure is reduced by a governor or the like). The members disposed in the water channel in such a high water pressure region include 17.5 kgf.
/ Cm 2 or more is required to have a hardness that is not easily deformed.
However, the sponge is easily deformed when high water pressure is applied, and thus cannot be used for a water channel in a high water pressure region. In other words, freezing damage could not be prevented in the high water pressure region.

【0005】[0005]

【発明の目的】本発明は、上記の事情に鑑みてなされた
もので、その目的は、繰り返しの凍結によって収縮と拡
張を繰り返しても、体積膨張を吸収する性質を失うこと
なく長期に亘って安定して凍結破損を防ぐことができる
とともに、高い水圧のかかる高水圧領域であっても使用
することが可能な膨張吸収材および凍結破損防止装置の
提供にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention for a long period of time without losing the property of absorbing volume expansion even if shrinkage and expansion are repeated by repeated freezing. An object of the present invention is to provide an expansion absorbing material and an anti-freezing breakage device that can stably prevent freezing damage and can be used even in a high water pressure region where high water pressure is applied.

【0006】[0006]

【課題を解決するための手段】この発明は、上記の目的
を達成するために次の手段を採用する。〔請求項1の手
段〕膨張吸収材は、容積変形可能な多数のカプセルを弾
性変形可能なゴム材の中にモールドしてなり、水が存在
する部分に配置されることを特徴とする。
The present invention employs the following means to achieve the above object. [Means of Claim 1] The expansion absorbing material is characterized in that a number of capsules that can be deformed in volume are molded in a rubber material that can be elastically deformed, and are arranged in a portion where water exists.

【0007】〔請求項2の手段〕凍結破損防止装置は、
容積変形可能な多数のカプセルを弾性変形可能なゴム材
の中にモールドしてなる膨張吸収材を、水が存在する部
分に配置したことを特徴とする。
[Means of Claim 2] The freeze damage prevention device is
An expansion absorbent formed by molding a number of volume-deformable capsules into an elastically-deformable rubber material is disposed at a portion where water exists.

【0008】〔請求項3の手段〕請求項1または請求項
2の膨張吸収材または凍結破損防止装置において、前記
カプセルは、不活性ガス等の気体を樹脂等の硬化物膜で
覆った直径が10〜300μmの粒子であることを特徴
とする。
[0008] According to a third aspect of the present invention, in the expansion absorbing material or the freeze damage prevention device according to the first or second aspect, the capsule has a diameter such that a gas such as an inert gas is covered with a cured material film such as a resin. It is a particle of 10 to 300 μm.

【0009】[0009]

【作用および発明の効果】〔請求項1および請求項2の
作用および効果〕水が凍結して氷になると、水(氷)の
体積が膨張するため膨張吸収材が圧縮される。すると、
膨張吸収材に封入された多数のカプセルがそれぞれ収縮
し、結果的に膨張吸収材が収縮して水の体積膨張を吸収
する。これにより、水の凍結による膨張が緩和され、器
具や配管等の破損を防止できる。
When the water freezes and becomes ice, the volume of the water (ice) expands, so that the expansion absorbing material is compressed. Then
A number of capsules enclosed in the swelling absorber shrink, respectively, and as a result, the swelling absorber shrinks to absorb the volume expansion of water. Thereby, expansion due to freezing of water is alleviated, and damage to instruments, piping, and the like can be prevented.

【0010】この膨張吸収材は、容積変形可能な多数の
カプセルを弾性変形可能なゴム材の中にモールドしたも
のであるため、繰り返しの凍結によって収縮と拡張を繰
り返しても、体積膨張を吸収する性質を失うことなく長
期に亘って安定して凍結破損を防ぐことができる。
[0010] Since this expansion absorbing material is formed by molding a large number of capsules capable of deforming volume in an elastically deformable rubber material, it absorbs volume expansion even if contraction and expansion are repeated by repeated freezing. Freezing damage can be prevented stably over a long period without losing properties.

【0011】また、ゴム材の中にカプセルを封入する構
造であるため、封入されるカプセルの割合を調節するこ
とにより、収縮率を比較的自由に調節することができる
とともに、ゴム材の使用材料によって強度を自由に調節
することができる。このため、高い水圧のかかる高水圧
領域であっても使用することができる。さらに、ゴム材
の中にカプセルを封入する構造であるため、膨張吸収材
の形状を自由な形状に成形できる。
In addition, since the capsule is encapsulated in the rubber material, the shrinkage can be adjusted relatively freely by adjusting the proportion of the encapsulated capsule, and the material used for the rubber material can be adjusted. The strength can be freely adjusted by the method. Therefore, it can be used even in a high water pressure region where a high water pressure is applied. Further, since the capsule is sealed in the rubber material, the shape of the expansion absorbing material can be freely formed.

【0012】〔請求項3の作用および効果〕カプセルの
直径が10〜300μmの粒子であるため、小型の膨張
吸収材を作成できる。このため、水が凍る可能性のある
狭い容積内においても膨張吸収材を配置することが可能
になる。
[Function and Effect of Claim 3] Since the capsules are particles having a diameter of 10 to 300 µm, a small-sized expansion / absorption material can be produced. For this reason, it becomes possible to arrange the expansion / absorption material even in a narrow volume where water may freeze.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を、複数の実
施例および変形例を用いて説明する。 〔第1実施例〕図1は水圧応動装置の要部断面図を含む
ガス給湯器の概略図である。ガス給湯器は、水入口から
出湯口1までの給水通路2と、ガス入口からガスバーナ
3までのガス通路4とを備える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described using a plurality of examples and modifications. [First Embodiment] FIG. 1 is a schematic view of a gas water heater including a cross-sectional view of a main part of a hydraulic pressure responsive device. The gas water heater includes a water supply passage 2 from the water inlet to the tap hole 1 and a gas passage 4 from the gas inlet to the gas burner 3.

【0014】給水通路2は、上流側より下流に向けて、
流路を開閉する水栓5、水圧に応答してガス通路4を開
閉する水圧応動装置6、ガスバーナ3で発生した熱によ
って通過する水を加熱する熱交換器7が配置されてい
る。ガス通路4は、上流側より下流に向けて、流路を開
閉する器具栓8、水圧応動装置6によって作動する水圧
応動弁9、ガスバーナ3内にガスを噴射するガス噴射ノ
ズル10が設けられている。
The water supply passage 2 is located downstream from the upstream side.
A water faucet 5 for opening and closing the flow path, a water pressure responsive device 6 for opening and closing the gas passage 4 in response to the water pressure, and a heat exchanger 7 for heating water passing by heat generated by the gas burner 3 are arranged. The gas passage 4 is provided with an instrument plug 8 that opens and closes a flow path, a water pressure responsive valve 9 that is operated by a water pressure responsive device 6, and a gas injection nozzle 10 that injects gas into the gas burner 3 from the upstream side to the downstream side. I have.

【0015】水圧応動装置6には、ダイヤフラム11に
よって区画される1次室12と2次室13が形成されて
いる。1次室12は水が流れる部屋で、1次室12への
水の入路には、ダイヤフラム11と同軸上にガバナ弁1
4が設けられている。このガバナ弁14は、給水圧に変
動が生じても流量を一定に保つための周知なバルブであ
る。また、1次室12の出口流路には、通過する水量を
調節することによって出湯温度を調節するための湯温調
節器15が設けられている。そして、湯温調節器15を
通過した水は、ベンチュリ16を通って熱交換器7に供
給される。
The hydraulic pressure responsive device 6 has a primary chamber 12 and a secondary chamber 13 defined by a diaphragm 11. The primary chamber 12 is a room through which water flows, and the governor valve 1 is coaxial with the diaphragm 11 when water enters the primary chamber 12.
4 are provided. The governor valve 14 is a well-known valve for keeping the flow rate constant even when the supply water pressure fluctuates. A hot water temperature controller 15 is provided in the outlet flow path of the primary chamber 12 for adjusting the tap water temperature by adjusting the amount of water passing therethrough. Then, the water that has passed through the hot water temperature controller 15 is supplied to the heat exchanger 7 through the venturi 16.

【0016】ベンチュリ16は、流路を絞るとともに、
流路に対して直角方向に横孔17が設けられており、そ
の横孔17が2次室13に通じている。このため、ベン
チュリ16に水が流れると、ベンチュリ効果によって横
孔17を通じて2次室13の圧力が下がり、ダイヤフラ
ム11が2次室13側へ変移する。すると、ダイヤフラ
ム11に対して垂直方向に取り付けられていた出力軸1
8が水圧応動装置6の外側に突出する。ここで、水圧応
動弁9は、出力軸18の突出力を受けて開くように設け
られている。このため、水栓5を開き、ベンチュリ16
に水が流れてダイヤフラム11が2次室13側に変移す
ると、水圧応動弁9がガス通路4を開くように作用す
る。
The venturi 16 narrows the flow path,
A horizontal hole 17 is provided at right angles to the flow path, and the horizontal hole 17 communicates with the secondary chamber 13. Therefore, when water flows into the venturi 16, the pressure in the secondary chamber 13 decreases through the lateral hole 17 due to the venturi effect, and the diaphragm 11 shifts to the secondary chamber 13 side. Then, the output shaft 1 attached vertically to the diaphragm 11
8 projects outside the hydraulic responsive device 6. Here, the hydraulic pressure responsive valve 9 is provided so as to be opened by receiving a projecting output of the output shaft 18. For this reason, the faucet 5 is opened and the venturi 16 is opened.
When the water flows through the diaphragm 11 and the diaphragm 11 shifts to the secondary chamber 13 side, the water pressure responsive valve 9 acts to open the gas passage 4.

【0017】水栓5が閉じられると、ベンチュリ16の
水の流れが停止する。このため、ベンチュリ効果がなく
なるため、1次室12と2次室13の圧差がなくなり、
ダイヤフラム11が元の位置に戻る。つまり、2次室1
3側に変移していたダイヤフラム11が1次室12側に
戻り、出力軸18が水圧応動装置6の内側に戻る。この
結果、水圧応動弁9がガス通路4を閉じるように作用す
る。
When the faucet 5 is closed, the flow of water in the venturi 16 stops. For this reason, the venturi effect disappears, and the pressure difference between the primary chamber 12 and the secondary chamber 13 disappears,
The diaphragm 11 returns to the original position. That is, the secondary room 1
The diaphragm 11 shifted to the third side returns to the primary chamber 12 side, and the output shaft 18 returns to the inside of the hydraulic pressure responsive device 6. As a result, the water pressure responsive valve 9 acts to close the gas passage 4.

【0018】水圧応動装置6の1次室12および2次室
13は、外部に連通する水抜き孔19(図6参照)が設
けられており、その水抜き孔19は水抜き栓20(図6
参照)によって塞がれている。そして、水抜き栓20を
手動操作によって取り外すことにより、1次室12およ
び2次室13の水が外部へ抜けるように設けられてい
る。
The primary chamber 12 and the secondary chamber 13 of the hydraulic pressure responsive device 6 are provided with a drain hole 19 (see FIG. 6) communicating with the outside, and the drain hole 19 is provided with a drain plug 20 (see FIG. 6). 6
See). The water in the primary chamber 12 and the secondary chamber 13 is provided so that the water in the primary chamber 12 and the secondary chamber 13 can be drained to the outside by removing the drain plug 20 by manual operation.

【0019】水圧応動装置6の2次室13には、略ドー
ナツ形状に形成された膨張吸収材21が配置されてい
る。膨張吸収材21は、容積変形可能な多数のカプセル
を弾性変形可能なゴム材(例えば、シリコーンゴム、ブ
チルゴム、EPM、EPDM、NBR等)の中にモール
ドしたものであり、この実施例では横孔17を通じて水
が供給される2次室13の内部に配置されている。
In the secondary chamber 13 of the hydraulic pressure responsive device 6, an expansion absorbing material 21 formed in a substantially donut shape is disposed. The expansion absorbent 21 is obtained by molding a number of capsules capable of deforming volume in a rubber material (e.g., silicone rubber, butyl rubber, EPM, EPDM, NBR, etc.) which can be elastically deformed. It is arranged inside a secondary chamber 13 to which water is supplied through 17.

【0020】カプセルは、不活性ガス等の気体を硬化物
膜(樹脂、ガラス、カーボン等)で覆った直径が10〜
300μm(例えば50μm)ほどの粒子であり、例え
ばゴム材の体積100%のうち、カプセルの割合を40
%にすることにより、膨張吸収材21は25%の体積収
縮を得ることができる。そして、カプセルの混合割合
と、膨張吸収材21の大きさによって体積膨張の吸収量
を調節できる。また、使用するゴム材の材質によって、
膨張吸収材21の硬度を自由に調節できる。
The capsule has a diameter of 10 to 10 in which a gas such as an inert gas is covered with a cured film (resin, glass, carbon, etc.).
Particles having a size of about 300 μm (for example, 50 μm).
%, The expansion absorbent 21 can obtain a volume contraction of 25%. Then, the volume expansion absorption amount can be adjusted by the mixing ratio of the capsules and the size of the expansion absorbing material 21. Also, depending on the rubber material used,
The hardness of the expansion absorbent 21 can be freely adjusted.

【0021】水が氷になった時の体積膨張率は、9.2
%であるため、体積膨張の全てを膨張吸収材21で吸収
するように設けても良いが、水の体積膨張の一部を膨張
吸収材21で吸収するように設けて、他の体積膨張分
は、水を収容する部屋の強度によって破損を防ぐように
しても良い。
The volume expansion coefficient when water becomes ice is 9.2.
%, All of the volume expansion may be provided so as to be absorbed by the expansion absorbing material 21. However, a portion of the volume expansion of water may be provided so as to be absorbed by the expansion absorbing material 21, and the other volume expansion component is provided. May be prevented from being damaged by the strength of the room accommodating the water.

【0022】次に、凍結時の作動を説明する。気温が0
℃以下に低下すると、水抜きを怠った場合、通水路から
水の凍結が始まり、熱容量の大きな水圧応動装置6は最
後に凍結する。このため、1次室12および2次室13
内の水が閉じ込められた状態で凍結が開始される。1次
室12および2次室13内の水が凍結すると、水の体積
が9.2%膨張する。その膨張によって、2次室13内
に配置された膨張吸収材21が圧縮力を受ける。する
と、膨張吸収材21に封入された多数のカプセルが収縮
し、結果的に膨張吸収材21が収縮して水(氷)の体積
膨張を吸収する(図2参照)。これにより、水の凍結に
よる膨張が緩和され、器具や配管等の破損を防止でき
る。気温が上昇して凍結した氷が水に戻ると、膨張吸収
材21に対する圧縮力が解除されるため、膨張吸収材2
1が元の形状に復帰する。
Next, the operation during freezing will be described. Temperature is 0
If the temperature falls below ℃, if the drainage is neglected, the freezing of the water starts from the water passage, and the hydraulic pressure responsive device 6 having a large heat capacity finally freezes. For this reason, the primary room 12 and the secondary room 13
Freezing starts with the water inside trapped. When the water in the primary chamber 12 and the secondary chamber 13 freezes, the volume of the water expands by 9.2%. Due to the expansion, the expansion absorber 21 disposed in the secondary chamber 13 receives a compressive force. Then, many capsules enclosed in the expansion absorbing material 21 contract, and as a result, the expansion absorbing material 21 contracts to absorb the volume expansion of water (ice) (see FIG. 2). Thereby, expansion due to freezing of water is alleviated, and damage to instruments, piping, and the like can be prevented. When the temperature rises and the frozen ice returns to the water, the compressive force on the expansion absorbent 21 is released, so that the expansion absorbent 2
1 returns to its original shape.

【0023】このように、水抜きを忘れて水圧応動装置
6が凍結しても、膨張吸収材21が圧縮されて収縮する
ため、水圧応動装置6の変形や破損を防ぐことができ
る。また、使用される膨張吸収材21は、容積変形可能
な多数のカプセルを弾性変形可能なゴム材の中にモール
ドしたものであるため、繰り返しの凍結によって収縮と
拡張を繰り返しても、体積膨張を吸収する性質を失うこ
となく長期に亘って安定して凍結破損を防ぐことができ
る。
As described above, even if the hydraulic pressure responsive device 6 freezes due to forgetting to drain water, the expansion / absorption material 21 is compressed and contracted, so that deformation and breakage of the hydraulic pressure responsive device 6 can be prevented. In addition, since the expansion absorbing material 21 used is formed by molding a number of capsules capable of deforming volume in an elastically deformable rubber material, even if shrinking and expanding are repeated by repeated freezing, volume expansion does not occur. Freezing damage can be prevented stably for a long time without losing the absorbing property.

【0024】ゴム材の中にカプセルを封入する構造であ
るため、封入されるカプセルの割合を調節することによ
り、収縮率を比較的自由に調節することができるととも
に、ゴム材の使用材料によって強度を自由に調節するこ
とができる。また、ゴム材の中に多数のカプセルをモー
ルドする構造であるため、ゴム材の成形型によって膨張
吸収材21を自由な形状に成形することができる。つま
り、用途に応じた形の膨張吸収材21を得ることができ
る。
Since the structure is such that the capsules are sealed in the rubber material, the shrinkage can be adjusted relatively freely by adjusting the ratio of the capsules to be sealed, and the strength depends on the material used for the rubber material. Can be adjusted freely. In addition, since the structure is such that a number of capsules are molded in the rubber material, the expansion absorbent 21 can be formed into a free shape by a rubber mold. That is, it is possible to obtain the expansion / absorbing material 21 having a shape suitable for the intended use.

【0025】〔第2実施例〕図3は水圧応動装置6の要
部断面図である。上記の第1実施例では、水圧応動装置
6の2次室13内に膨張吸収材21を配置した例を示し
たが、この第2実施例は、水圧応動装置6の1次室12
内に膨張吸収材21を配置したものである。
[Second Embodiment] FIG. 3 is a sectional view of a main part of a hydraulic pressure responsive device 6. In the above-described first embodiment, the example in which the expansion absorbing material 21 is disposed in the secondary chamber 13 of the hydraulic pressure responsive device 6 has been described. However, in the second embodiment, the primary chamber 12 of the hydraulic pressure responsive device 6 is provided.
The expansion absorbent 21 is arranged in the inside.

【0026】〔第3実施例〕図4は水電磁弁22の断面
図である。上記の第1、第2実施例では、水圧応動装置
6に膨張吸収材21を配置して、水圧応動装置6の破損
を防止する例を示したが、この第3実施例は、図4に示
すように、水電磁弁22における水通路23や、水が満
たされる容器(電磁弁のアーマチュア収納容器24)内
に膨張吸収材21を配置して、水電磁弁22の凍結破損
を防ぐものである。
Third Embodiment FIG. 4 is a sectional view of the water solenoid valve 22. In the above-described first and second embodiments, an example has been described in which the expansion absorber 21 is disposed in the hydraulic pressure response device 6 to prevent the hydraulic pressure response device 6 from being damaged. However, in the third embodiment, FIG. As shown, the expansion absorber 21 is disposed in the water passage 23 of the water solenoid valve 22 or in a container filled with water (the armature storage container 24 of the solenoid valve) to prevent the water solenoid valve 22 from freezing and breaking. is there.

【0027】膨張吸収材21は、ゴム材の中にカプセル
を封入する構造であるため、カプセルの配合割合や、ゴ
ム材の使用材料によって強度を自由に調節することがで
きる。このため、この実施例のように、通水時に高水圧
が加わる領域であっても、膨張吸収材21を配置するこ
とができる。つまり、従来のスポンジでは、通水時に高
水圧が加わる領域において潰れてしまうため、高水圧が
加わる領域に配置することはできなかったが、本発明の
膨張吸収材21は、17.5kgf/cm2 以上であっ
ても変形し難い強度を得ることができ、高水圧が加わる
部位での凍結破損をも防ぐことができる。
Since the expansion / absorption material 21 has a structure in which a capsule is sealed in a rubber material, the strength can be freely adjusted depending on the blending ratio of the capsule and the material used for the rubber material. For this reason, as in this embodiment, the expansion absorbent 21 can be arranged even in a region where high water pressure is applied at the time of flowing water. In other words, the conventional sponge collapses in a region where high water pressure is applied when flowing water, and thus cannot be disposed in a region where high water pressure is applied. However, the expansion and absorption material 21 of the present invention requires 17.5 kgf / cm. Even if it is 2 or more, it is possible to obtain a strength that is not easily deformed, and it is also possible to prevent freezing damage at a portion where high water pressure is applied.

【0028】また、上述したように、膨張吸収材21の
形状を自由に成形できるとともに、カプセルの直径が1
0〜300μm(例えば50μm)ほどの粒子であるた
め、小型の膨張吸収材21を作成できる。このため、電
磁弁のアーマチュア収納容器24内のように、水が凍る
可能性のある狭い容積内においても膨張吸収材21を配
置することが可能になる。さらに、この実施例のよう
に、水通路23においてクラックの発生し易いコーナ部
に膨張吸収材21を配置することにより、凍結時、コー
ナ部にかかる応力集中を緩和できる。このため、小さな
膨張吸収材21で効率的に凍結破損を防ぐことができ
る。
Further, as described above, the shape of the expansion / absorption material 21 can be freely shaped, and the diameter of the capsule can be one.
Since the particles have a size of about 0 to 300 μm (for example, 50 μm), a small-sized expansion absorbent 21 can be formed. For this reason, it becomes possible to arrange the expansion absorbent 21 even in a narrow volume where water may freeze, such as in the armature storage container 24 of the solenoid valve. Further, as in this embodiment, by arranging the expansion absorbing material 21 at the corner where cracks easily occur in the water passage 23, stress concentration on the corner during freezing can be reduced. For this reason, freezing damage can be efficiently prevented by the small expansion absorbent 21.

【0029】〔第4実施例〕図5はバイパスサーボ弁2
5の断面図である。この第4実施例は、バイパスサーボ
弁25の水通路23に円筒状に設けた膨張吸収材21を
配置した例を示すものである。
Fourth Embodiment FIG. 5 shows a bypass servo valve 2
5 is a sectional view of FIG. The fourth embodiment shows an example in which a cylindrical expansion-absorbing material 21 is disposed in a water passage 23 of a bypass servo valve 25.

【0030】〔変形例〕上記の第1、第2実施例では、
水圧応動装置6の内部に膨張吸収材21を配置した例を
示したが、図6に示すように、ガバナ弁14の部分に膨
張吸収材21を配置するなど、水圧応動装置6における
高圧領域に膨張吸収材21を配置しても良い。また、水
圧応動装置6と一体に設けられた開閉弁26の2次室2
7内に膨張吸収材21を配置しても良い。
[Modification] In the first and second embodiments,
Although the example in which the expansion absorbing material 21 is arranged inside the hydraulic pressure responsive device 6 is shown, as shown in FIG. 6, the expansion absorbing material 21 is disposed in a portion of the governor valve 14, for example, in a high pressure region in the hydraulic pressure responsive device 6. The expansion absorbent 21 may be provided. Further, the secondary chamber 2 of the on-off valve 26 provided integrally with the water pressure responsive device 6 is provided.
The expansion absorbent 21 may be arranged in the inside 7.

【0031】上記の実施例では、水圧応動装置6、水電
磁弁22、バイパスサーボの内部に膨張吸収材21を配
置して凍結破損を防ぐ例を示したが、凍結破損する可能
性のある器具はもちろん、水路など水の存在する部位に
膨張吸収材21を配置して凍結による破損を防ぐように
しても良い。
In the above embodiment, an example is shown in which the expansion absorbing material 21 is disposed inside the water pressure responsive device 6, the water solenoid valve 22, and the bypass servo to prevent freezing damage. Needless to say, the expansion absorbing material 21 may be disposed at a portion where water exists, such as a water channel, to prevent breakage due to freezing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水圧応動装置の要部断面図を含むガス給湯器の
概略図である(第1実施例)。
FIG. 1 is a schematic diagram of a gas water heater including a cross-sectional view of a main part of a water pressure response device (first embodiment).

【図2】凍結時における水圧応動装置の要部断面図であ
る(第1実施例)。
FIG. 2 is a cross-sectional view of a main part of the hydraulic pressure response device during freezing (first embodiment).

【図3】水圧応動装置の要部断面図である(第2実施
例)。
FIG. 3 is a sectional view of a main part of a hydraulic pressure response device (second embodiment).

【図4】水電磁弁の断面図である(第3実施例)。FIG. 4 is a sectional view of a water solenoid valve (third embodiment).

【図5】バイパスサーボ弁の断面図である(第4実施
例)。
FIG. 5 is a sectional view of a bypass servo valve (fourth embodiment).

【図6】水圧応動装置の断面図である(変形例)。FIG. 6 is a sectional view of a water pressure response device (modification).

【符号の説明】[Explanation of symbols]

6 水圧応動装置 21 膨張吸収材 22 水電磁弁 25 バイパスサーボ弁 6 Water pressure response device 21 Expansion absorber 22 Water solenoid valve 25 Bypass servo valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 蜂矢 秋仁 名古屋市中川区福住町2番26号 リンナイ 株式会社内 (72)発明者 鈴木 伊津士 名古屋市南区要町四丁目30番地 ミトクゴ ム株式会社内 (72)発明者 渡部 一朗 大阪府吹田市江坂町1丁目23番28−801 日邦産業株式会社内 Fターム(参考) 2D060 BA07 BC17 3H057 AA05 BB46 CC02 DD02 EE02 FA22 HH03 HH24  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akihito Hachiya 2-26, Fukuzumi-cho, Nakagawa-ku, Nagoya Rinnai Co., Ltd. In-company (72) Inventor Ichiro Watanabe 1-23-28-801 Esakacho, Suita-shi, Osaka Nippon Sangyo Co., Ltd.F-term (reference) 2D060 BA07 BC17 3H057 AA05 BB46 CC02 DD02 EE02 FA22 HH03 HH24

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】容積変形可能な多数のカプセルを弾性変形
可能なゴム材の中にモールドしてなり、水が存在する部
分に配置される凍結破損防止用の膨張吸収材。
1. An expansion absorbing material for preventing freezing damage, wherein a number of capsules capable of volume deformation are molded in an elastically deformable rubber material, and are disposed in a portion where water is present.
【請求項2】容積変形可能な多数のカプセルを弾性変形
可能なゴム材の中にモールドしてなる膨張吸収材を、水
が存在する部分に配置してなる凍結破損防止装置。
2. An apparatus for preventing freezing damage, comprising a plurality of volume-deformable capsules molded in an elastically deformable rubber material and an expansion / absorption material disposed in a portion where water is present.
【請求項3】請求項1または請求項2の膨張吸収材また
は凍結破損防止装置において、 前記カプセルは、不活性ガス等の気体を樹脂等の硬化物
膜で覆った直径が10〜300μmの粒子であることを
特徴とする膨張吸収材または凍結破損防止装置。
3. The expansion-absorbing material or the device for preventing freezing damage according to claim 1, wherein the capsule is a particle having a diameter of 10 to 300 μm in which a gas such as an inert gas is covered with a cured material film such as a resin. An expansion-absorbing material or a device for preventing freezing damage, characterized in that:
JP2000265622A 2000-09-01 2000-09-01 Expansion absorption material and freezing damage prevention apparatus Withdrawn JP2002081745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000265622A JP2002081745A (en) 2000-09-01 2000-09-01 Expansion absorption material and freezing damage prevention apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000265622A JP2002081745A (en) 2000-09-01 2000-09-01 Expansion absorption material and freezing damage prevention apparatus

Publications (1)

Publication Number Publication Date
JP2002081745A true JP2002081745A (en) 2002-03-22

Family

ID=18752859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000265622A Withdrawn JP2002081745A (en) 2000-09-01 2000-09-01 Expansion absorption material and freezing damage prevention apparatus

Country Status (1)

Country Link
JP (1) JP2002081745A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521690A (en) * 2003-01-31 2006-09-21 クーリギー インコーポレイテッド Cracking prevention method for preventing cracking in liquid circulation system
CN114877113A (en) * 2022-04-27 2022-08-09 宁波方太厨具有限公司 Prevent frostbite and split valve body and contain its gas heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521690A (en) * 2003-01-31 2006-09-21 クーリギー インコーポレイテッド Cracking prevention method for preventing cracking in liquid circulation system
CN114877113A (en) * 2022-04-27 2022-08-09 宁波方太厨具有限公司 Prevent frostbite and split valve body and contain its gas heater

Similar Documents

Publication Publication Date Title
US5336057A (en) Micropump with liquid-absorptive polymer gel actuator
WO2004078538A3 (en) Fluid heater with freeze protection
US6712088B2 (en) Pilot-type channel valves providing counter-flow prevention
US5308163A (en) Check valve for fluid containers and a method of manufacturing the same
JP2002081745A (en) Expansion absorption material and freezing damage prevention apparatus
JP2003064263A (en) Expansion absorbing material and freeze failure preventing device
WO2020048506A1 (en) Isolation system between micro valve and liquid, control method, and biochip
JP3452719B2 (en) Expansion valve
JP3869640B2 (en) Freezing damage prevention device
JPS56164287A (en) Solenoid valve preventing damage in case of freezing
WO1985003997A1 (en) Transportable refrigeration device
JP4053042B2 (en) Freeze-thaw valve to limit the use of cryogen
GB2120934A (en) Release member for a fire sprinkler installation
JPH11173705A (en) Expansion valve with bypass pipeline for refrigeration cycle
JPH10281556A (en) Freezing and damaging preventive device
US6387303B1 (en) Method for forming a seal between mating components
JPH07139655A (en) Anti-freezing air valve
JPS57107476A (en) Hot water/cold water mixing cock with pressure absorbing mechanism
JP2002004348A (en) Antifreezing method for water service pipe and bellows valve used therefor
JPS60101361A (en) Sealing method of vessel
JP3145745B2 (en) Micro pump
CN112762617B (en) Thermal cell and water heater with prevent frostbite function
RU9236U1 (en) AUTOMATIC ELECTRIC INDEPENDENT DEVICE FOR PROTECTION AGAINST FREEZING OF HEATING AND OTHER WATER SYSTEMS
RU1813956C (en) Valving member
JP2007308992A (en) Water pipe unit with freeze bursting preventive function and method of preventing freeze bursting of water pipe unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106