JP2002080212A - Method of generating onion fullerene - Google Patents

Method of generating onion fullerene

Info

Publication number
JP2002080212A
JP2002080212A JP2000271822A JP2000271822A JP2002080212A JP 2002080212 A JP2002080212 A JP 2002080212A JP 2000271822 A JP2000271822 A JP 2000271822A JP 2000271822 A JP2000271822 A JP 2000271822A JP 2002080212 A JP2002080212 A JP 2002080212A
Authority
JP
Japan
Prior art keywords
onion
vacuum chamber
fullerene
gas
onion fullerene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000271822A
Other languages
Japanese (ja)
Other versions
JP5162061B2 (en
Inventor
Yoshiaki Agawa
阿川  義昭
Atsushi Hirata
敦 平田
Masashi Kubo
昌司 久保
Yoshihiro Yamamoto
佳宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000271822A priority Critical patent/JP5162061B2/en
Publication of JP2002080212A publication Critical patent/JP2002080212A/en
Application granted granted Critical
Publication of JP5162061B2 publication Critical patent/JP5162061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of generating an onion fullerene of which the particle diameter is large, the generating time is short, the cost is low and the friction coefficient is excellent. SOLUTION: An onion fullerene generating apparatus has an infrared lamp at the outside of a vacuum chamber. In the vacuum chamber a graphite crucible as a black body is assembled. The diamond fine powder which has the specified particle diameter is packed in the crucible and heated by the infrared lamp and then the onion fullerene is generated. The diamond fine powder is heated to approximately at least 1700 deg.C an inert gas in a stream of as an atmospheric gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、オニオンフラーレ
ンの生成方法に関する。ここで、オニオンフラーレンと
は、タマネギのような多層構造を有するオニオン構造フ
ラーレンを意味する。このオニオンフラーレンは、潤滑
剤として、またはオニオンフラーレンに金属を配合した
磁性材料などとして利用され得る。
[0001] The present invention relates to a method for producing onion fullerene. Here, the onion fullerene means an onion structure fullerene having a multilayer structure such as onion. The onion fullerene can be used as a lubricant or as a magnetic material in which a metal is mixed with onion fullerene.

【0002】[0002]

【従来の技術】近年、オニオンフラーレンは、通常の雰
囲気以外に、宇宙空間のような真空雰囲気や、高温環境
などでも有効である潤滑剤としての利用が期待されてい
る。従来、オニオンフラーレンは、図1に示されるよう
な装置を用いて生成されていた。
2. Description of the Related Art In recent years, onion fullerene has been expected to be used as a lubricant which is effective not only in a normal atmosphere but also in a vacuum atmosphere such as space or a high temperature environment. Conventionally, onion fullerene has been produced using an apparatus as shown in FIG.

【0003】図1に示す従来のオニオンフラーレン生成
装置は、真空槽1と、該真空槽内に熱絶縁されて取り付
けられたルツボ2と、該ルツボの外周囲に配置された通
常の抵抗加熱装置3とを備えている。ルツボ2内にはオ
ニオンフラレーンの原料4が充填されて、加熱される。
この抵抗加熱装置3の抵抗体(発熱体)は高融点金属や
グラファイトなどで製作されている。抵抗加熱装置3の
外側周辺にはリフレクター5が配置され、加熱装置から
の放射光をルツボ方向へ反射できるように構成されてい
る。真空槽1には、仕切バルブ6を介して油回転ポンプ
7が取り付けられており、また、真空計8も取り付けら
れている。また、真空槽1には、ガス導入系9〜13
が、上流に向かって、仕切バルブ9、ガス流量調節器
(以下、流量調節器と称す)10、仕切バルブ11、圧
力調節器12、ガスボンベ13の順序で取り付けられて
いる。このガスボンベには、原料の加熱中に流す雰囲気
ガス(例えば、ArやHe)が充填されている。さらに
また、真空槽1には、バルブ14が取り付けられ、この
バルブは図中には示されていないが排気ダクトに接続さ
れており、大気圧よりも減圧された状態にある。
A conventional onion fullerene generator shown in FIG. 1 is composed of a vacuum chamber 1, a crucible 2 which is thermally insulated and mounted in the vacuum chamber, and a normal resistance heating apparatus arranged around the crucible. 3 is provided. The crucible 2 is filled with a raw material 4 of onion fullerene and heated.
The resistor (heating element) of the resistance heating device 3 is made of a high melting point metal, graphite, or the like. A reflector 5 is arranged around the outside of the resistance heating device 3, and is configured to be able to reflect light emitted from the heating device in a crucible direction. An oil rotary pump 7 is attached to the vacuum tank 1 via a partition valve 6, and a vacuum gauge 8 is also attached. The vacuum chamber 1 has a gas introduction system 9 to 13.
Are installed in order of a partition valve 9, a gas flow controller (hereinafter, referred to as a flow controller) 10, a partition valve 11, a pressure controller 12, and a gas cylinder 13 toward the upstream. This gas cylinder is filled with an atmosphere gas (eg, Ar or He) flowing during heating of the raw material. Furthermore, a valve 14 is attached to the vacuum chamber 1, and this valve is connected to an exhaust duct (not shown in the figure), and is in a state where the pressure is reduced below the atmospheric pressure.

【0004】従来のオニオンフラーレンの生成方法は、
上記生成装置を用いて、次のように行われる。まず、ル
ツボ2内に、原料としてクラスタダイヤモンド(粒径:
5〜10nm)を充填する。次いで、真空槽を封止し、
仕切バルブ6を開にして、油回転ポンプ7を作動させ、
真空計8をモニターしながら真空槽内の圧力を10-2
orr(約1.3Pa)台に達するようにする。ここ
で、一旦、仕切バルブ6を閉じて、抵抗加熱装置3に電
力を投入し、約1500℃まで加熱する。この加熱中
に、好ましくはガス導入系より雰囲気ガスを導入する。
すなわち、雰囲気ガスが充填されたボンベ(Arガス)
13の元栓を開けて、圧力調整器12によりArガス圧
を大気圧よりやや高めに調節し、仕切バルブ11、9を
開けて、流量調節器10によりガス流量を調節し、真空
槽1内にArガスを導入する。導入されたガスが真空槽
1内に充満した時点で、バルブ14を開けて排気ダクト
へガスを引き込ませ、真空槽内の圧力が大気圧よりやや
高く維持できるようにする。この状態で2時間程度加熱
した後、抵抗加熱装置3の電力を落として真空槽1内を
室温に戻し、真空槽を開放する。ルツボ2内に粒径約1
0nmのオニオンフラーレンが生成する。
[0004] A conventional method for producing onion fullerene is as follows.
It is performed as follows using the above-described generation device. First, cluster diamond (particle diameter:
5-10 nm). Next, the vacuum chamber is sealed,
Open the gate valve 6, operate the oil rotary pump 7,
While monitoring the vacuum gauge 8, adjust the pressure in the vacuum chamber to 10 -2 T.
orr (about 1.3 Pa). Here, once the partition valve 6 is closed, power is supplied to the resistance heating device 3 to heat the resistance heating device 3 to about 1500 ° C. During this heating, an atmospheric gas is preferably introduced from a gas introduction system.
That is, a cylinder (Ar gas) filled with an atmospheric gas
13 is opened, the Ar gas pressure is adjusted slightly higher than the atmospheric pressure by the pressure adjuster 12, the partition valves 11 and 9 are opened, the gas flow rate is adjusted by the flow rate adjuster 10, and the Ar gas pressure is adjusted in the vacuum chamber 1. Ar gas is introduced. When the introduced gas is filled in the vacuum chamber 1, the valve 14 is opened to draw the gas into the exhaust duct, so that the pressure in the vacuum chamber can be maintained slightly higher than the atmospheric pressure. After heating for about 2 hours in this state, the power of the resistance heating device 3 is reduced to return the inside of the vacuum chamber 1 to room temperature, and the vacuum chamber is opened. About 1 particle size in crucible 2
0 nm onion fullerene is produced.

【0005】[0005]

【発明が解決しようとする課題】従来のオニオンフラー
レン生成方法では粒径が10nm程度の小さなものしか
得られず、これを潤滑剤として使用すると、Si基板の
ような鏡面を有するものを対象とする場合には、摩擦係
数は下がるが、金属のようなミクロにみて凹凸があるよ
うなものを対象とする場合には、粒径が小さすぎるため
に、金属同士の表面の凹凸面での面接触が支配的になっ
てしまい、潤滑剤としての作用が低減するという問題が
生じる。また、従来の生成方法は、クラスタダイヤモン
ド(2万円/g)を材料として使用するので、産業界に
流通させるにはコスト的に高くなるという問題もあっ
た。さらに、生成時間が2時間という長時間を要するの
で、生産コストが嵩むという問題もあった。
The conventional method for producing onion fullerenes can provide only a small onion fullerene having a particle size of about 10 nm. If this is used as a lubricant, it is intended for a substrate having a mirror surface such as a Si substrate. In this case, the coefficient of friction is reduced, but if the object is microscopically uneven such as metal, the surface contact between the metal surfaces is uneven due to the particle size being too small. Becomes dominant, and the effect as a lubricant decreases. In addition, since the conventional production method uses cluster diamond (20,000 yen / g) as a material, there is also a problem that it is costly to distribute it to industry. In addition, there is a problem that the production cost increases because the generation time requires a long time of 2 hours.

【0006】本発明の課題は、上記従来技術の問題点に
鑑み、短い生成時間で、安いコストで、優れた摩擦係数
を有する粒径の大きなオニオンフラーレンを生成する方
法を提供することにある。
An object of the present invention is to provide a method for producing onion fullerene having a large particle size and having an excellent coefficient of friction at a short production time, at a low cost, in view of the above-mentioned problems of the prior art.

【0007】[0007]

【課題を解決するための手段】本発明者らは、原料とし
て、クラスタダイヤモンドの代わりに所定の粒径を有す
るダイヤモンド微粉末を採用し、加熱機構として抵抗加
熱の代わりに赤外線ランプによる加熱を使用することに
より、従来技術の問題を解決し、本発明を完成するに至
った。
Means for Solving the Problems The present inventors employ diamond fine powder having a predetermined particle size instead of cluster diamond as a raw material, and use heating by an infrared lamp instead of resistance heating as a heating mechanism. By doing so, the problems of the prior art were solved, and the present invention was completed.

【0008】本発明のオニオンフラーレン生成方法は、
真空槽外に赤外線ランプが取り付けられ、該真空槽内に
黒体のグラファイト製ルツボが配置されたオニオンフラ
ーレン生成装置を用いて、該グラファイト製ルツボ内に
ダイヤモンド微粉末を充填し、該ダイヤモンド微粉末を
該赤外線ランプで加熱してオニオンフラーレンを得るこ
とからなる。粒径の大きなオニオンフラーレンを生成す
るためには、前記ダイヤモンド微粉末として粒径の大き
なものを用いればよい。潤滑剤として使用する場合、金
属のようなミクロにみて凹凸があるようなものを対象と
する時には、凹部の寸法よりも大きな粒径を有するオニ
オンフラーレンを形成することが必要である。金属同士
の凹凸面での面接触抵抗または金属と別の材料との面接
触抵抗が生じないようにすることができる範囲内の粒径
を有するオニオンフラーレンを生成することにより、潤
滑剤としての作用を効果的に発揮することができる。例
えば、5nm以上の粒径を有するダイヤモンド微粉末
(例えば、砥粒用ダイヤモンド)を使用することが好ま
しい。粒径が5nm未満のダイヤモンド微粉末から生成
されたオニオンフラーレンでは、金属面同士の潤滑性能
または金属と他の材料との間の潤滑性能が劣る。上限に
ついては、オニオン構造が形成され得る粒径を有するダ
イヤモンド微粉末を使用すればよく、特に制限されるわ
けではないが、例えば、好ましくは100nm程度のダ
イヤモンド微粉末を用いれば、満足すべき潤滑性能を有
するオニオンフラーレンが得られる。
[0008] The onion fullerene producing method of the present invention comprises:
Using an onion fullerene generator in which an infrared lamp is attached outside the vacuum chamber and a black body graphite crucible is arranged in the vacuum chamber, the graphite fine powder is filled in the graphite crucible, and the diamond fine powder is filled. Is heated by the infrared lamp to obtain onion fullerene. In order to generate onion fullerene having a large particle size, a diamond particle having a large particle size may be used as the diamond fine powder. When used as a lubricant, it is necessary to form an onion fullerene having a particle size larger than the size of the concave portion when targeting a microscopic material such as metal having irregularities. It acts as a lubricant by producing onion fullerene having a particle size within a range that can prevent surface contact resistance between metal irregularities or surface contact resistance between metal and another material from occurring. Can be effectively exhibited. For example, it is preferable to use diamond fine powder having a particle size of 5 nm or more (for example, diamond for abrasive grains). Onion fullerenes produced from diamond fine powder having a particle size of less than 5 nm have poor lubrication performance between metal surfaces or between a metal and another material. The upper limit may be a fine diamond powder having a particle size capable of forming an onion structure, and is not particularly limited. For example, if a fine diamond powder of preferably about 100 nm is used, satisfactory lubrication may be achieved. An onion fullerene having high performance is obtained.

【0009】また、前記ダイヤモンド微粉末を加熱する
時に、雰囲気ガスとしてAr、Heなどの不活性ガスを
流しながら加熱することが好ましい。というのは、オニ
オンフラーレンは加熱雰囲気中の残留酸素などと反応し
易いからである。さらに、前記加熱温度は1700℃以
上であることが好ましい。温度が1700℃未満である
とオニオンフラーレンの生成時間が長くかかり過ぎ、生
成コストが高くなるという問題がある。上限温度につい
ては、用いるオニオンフラーレン生成装置の材質、赤外
線ランプなどによる加熱性能に応じて適宜設定すること
ができる。
[0009] When heating the diamond fine powder, it is preferable to heat while flowing an inert gas such as Ar or He as an atmosphere gas. This is because onion fullerene easily reacts with residual oxygen in the heating atmosphere. Further, the heating temperature is preferably 1700 ° C. or higher. When the temperature is lower than 1700 ° C., there is a problem that the generation time of onion fullerene is too long and the generation cost is increased. The upper limit temperature can be appropriately set according to the material of the onion fullerene generator used and the heating performance of an infrared lamp or the like.

【0010】上記したように、例えば砥粒用ダイヤモン
ドを使用することにより、粒径の大きなオニオンフラー
レンを生成することができるので、このフラーレンを使
用することで金属同士の面の接触抵抗または金属と他の
材料との間の接触抵抗を大幅に下げることが可能であ
る。また、赤外線ランプを使用することで、上限温度と
して、例えば、1800℃程度の高温まで短時間で加熱
することができるため、生成時間を短縮させることがで
きると共に、生成コストも安くなる。
As described above, for example, onion fullerenes having a large particle size can be produced by using diamond for abrasive grains. It is possible to greatly reduce the contact resistance with other materials. In addition, by using an infrared lamp, heating can be performed in a short time to a high temperature of, for example, about 1800 ° C. as an upper limit temperature, so that the generation time can be shortened and the generation cost is reduced.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態とし
て、本発明の実施例で用いるオニオンフラーレン生成装
置を、図2を参照して説明する。図中、図1と同じ構成
部品には同じ符号を付してある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, as an embodiment of the present invention, an onion fullerene generator used in an embodiment of the present invention will be described with reference to FIG. In the figure, the same components as those in FIG. 1 are denoted by the same reference numerals.

【0012】本発明のオニオンフラーレン生成方法を実
施するために用いる生成装置は、図2にその模式的構成
を示すように、真空槽1と、該真空槽内に熱絶縁されて
取り付けられたルツボ2と、該ルツボの外周囲であっ
て、該真空槽外に、真空槽の側壁に設けられた石英窓な
どを隔てて配置された加熱用赤外線ランプ3'とを備え
ている。ルツボ2内にはオニオンフラレーンの原料4が
充填されて、加熱される。この赤外線ランプ3'の外側
周辺にはリフレクター5が配置され、赤外線ランプから
の放射光をルツボ方向へ反射できるように構成されてい
る。赤外線ランプとリフレクタとを組み合わせたもの
は、ゴールドイメージ炉として真空理工(株)より市販
されている。この赤外線ランプによる加熱方法として
は、楕円体内部の一方の焦点に赤外線ランプを置き、も
う一方の焦点に原料を置き、集光加熱するように構成さ
れているものを用いることが好ましい。真空槽1には、
仕切バルブ6を介して油回転ポンプ7が取り付けられて
おり、また、真空計8も取り付けられている。真空計8
は、上記のように真空槽1に直接、単独で接続されてい
てもよいし、仕切バルブ6と真空槽1との間に設けられ
ていてもよい。真空槽1には、ガス導入系9〜13が、
上流に向かって、仕切バルブ9、ガス流量調節器10、
仕切バルブ11、圧力調節器12、ガスボンベ13の順
序で取り付けられている。このガスボンベには、原料の
加熱中に流す雰囲気ガス(例えば、ArやHeなどの不
活性ガス)が充填されている。さらに、真空槽1には、
バルブ14が取り付けられ、このバルブは図中には示さ
れていないが排気ダクトに接続されており、大気圧より
も減圧された状態にある。
As shown in FIG. 2, a generating apparatus used to carry out the onion fullerene generating method of the present invention has a vacuum chamber 1 and a crucible heat-insulated in the vacuum chamber. And a heating infrared lamp 3 ′ which is arranged around the crucible and outside the vacuum chamber and separated by a quartz window or the like provided on the side wall of the vacuum chamber. The crucible 2 is filled with a raw material 4 of onion fullerene and heated. A reflector 5 is arranged around the outside of the infrared lamp 3 'so that the light emitted from the infrared lamp can be reflected in the crucible direction. A combination of an infrared lamp and a reflector is commercially available from Vacuum Riko Co., Ltd. as a gold image furnace. As a heating method using this infrared lamp, it is preferable to use a method in which an infrared lamp is placed at one focal point inside the ellipsoid, a raw material is placed at the other focal point, and condensing heating is performed. In the vacuum chamber 1,
An oil rotary pump 7 is mounted via a partition valve 6, and a vacuum gauge 8 is also mounted. Vacuum gauge 8
May be directly and independently connected to the vacuum chamber 1 as described above, or may be provided between the partition valve 6 and the vacuum chamber 1. In the vacuum chamber 1, gas introduction systems 9 to 13 are provided.
Upstream, gate valve 9, gas flow controller 10,
The partition valve 11, the pressure regulator 12, and the gas cylinder 13 are installed in this order. This gas cylinder is filled with an atmosphere gas (for example, an inert gas such as Ar or He) flowing during heating of the raw material. Furthermore, in the vacuum chamber 1,
A valve 14 is mounted, and this valve is connected to an exhaust duct (not shown), and is in a state where the pressure is reduced below the atmospheric pressure.

【0013】[0013]

【実施例】本発明のオニオンフラーレン生成方法は、図
2に示す生成装置を用いて、以下のようにして行われ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The onion fullerene producing method of the present invention is carried out as follows using a producing apparatus shown in FIG.

【0014】まず、ルツボ2内に、原料として市販の砥
粒用ダイヤモンド(デ・ビアス・インダストリアル社
製、商品名:Micron+MDA、粒径:0.1μm以下)を充
填した。次いで、真空槽1を封止し、仕切バルブ6を開
にして、油回転ポンプ7を作動させ、真空計8をモニタ
ーしながら真空槽内の圧力を10-2Torr(約1.3
Pa)台に達するようにした。ここで、一旦、仕切バル
ブ6を閉じて、赤外線ランプ3に電力を投入し、約18
00℃まで加熱した。この加熱中に、ガス導入系より雰
囲気ガスを導入した。すなわち、雰囲気ガスが充填され
たボンベ(Arガス)13の元栓を開けて、圧力調整器
12によりArガス圧を大気圧よりやや高めに調節し、
仕切バルブ11、9を開けて、流量調節器10によりガ
ス流量を調節し、真空槽1内にArガスを導入した。導
入されたガスが真空槽1内に充満した時点で、バルブ1
4を開けて排気ダクトへガスを引き込ませ、真空槽内の
圧力が大気圧よりやや高く(例えば、約1.5×105
Pa)維持できるようにした。この状態で1分程度加熱
した後、赤外線ランプの電力を落として真空槽1内を室
温に戻し、真空槽を開放した。ルツボ2内に粒径約10
0nmのオニオンフラーレンが生成していた。
First, the crucible 2 was filled with commercially available diamond for abrasive grains (trade name: Micron + MDA, particle size: 0.1 μm or less, manufactured by De Beers Industrial Co., Ltd.) as a raw material. Next, the vacuum chamber 1 is sealed, the partition valve 6 is opened, the oil rotary pump 7 is operated, and the pressure in the vacuum chamber is increased to 10 -2 Torr (about 1.3) while monitoring the vacuum gauge 8.
Pa). Here, once the partition valve 6 is closed, power is applied to the infrared lamp 3 and the
Heated to 00 ° C. During this heating, an atmosphere gas was introduced from the gas introduction system. That is, the main valve of the cylinder (Ar gas) 13 filled with the atmosphere gas is opened, and the Ar gas pressure is adjusted to slightly higher than the atmospheric pressure by the pressure regulator 12,
The partition valves 11 and 9 were opened, the gas flow was adjusted by the flow controller 10, and Ar gas was introduced into the vacuum chamber 1. When the introduced gas fills the vacuum chamber 1, the valve 1
4, the gas is drawn into the exhaust duct, and the pressure in the vacuum chamber is slightly higher than the atmospheric pressure (for example, about 1.5 × 10 5
Pa) It was made possible to maintain. After heating for about 1 minute in this state, the power of the infrared lamp was reduced, the inside of the vacuum chamber 1 was returned to room temperature, and the vacuum chamber was opened. Particle size about 10 in crucible 2
Onion fullerene of 0 nm was produced.

【0015】このようにして得られたオニオンフラーレ
ンを用いて、ボール・オン・ディスク式摩擦試験装置で
潤滑特性を検討した。この際、ディスクにはシリコン基
板、ボールには3.2mm径のベアリング鋼球を用い、
ディスク上に生成オニオンフラーレン10mgを散布し
て行った。この結果、大気中での潤滑特性は4mまでの
滑り距離でも摩擦係数約0.1で安定し、真空中では負
荷加重が1.5Nまで優れた潤滑特性を示した。これ
は、シリコンに対する金属の面接触抵抗を大幅に改良し
たことを示す。
Using the onionfullerene thus obtained, the lubrication characteristics were examined with a ball-on-disk friction tester. At this time, a silicon substrate was used for the disk, and a 3.2 mm diameter bearing steel ball was used for the ball.
Onion fullerene 10 mg was sprayed on a disk. As a result, the lubricating properties in the atmosphere were stable at a friction coefficient of about 0.1 even at a sliding distance of up to 4 m, and the lubricating properties were excellent in vacuum up to a load load of 1.5 N. This indicates that the surface contact resistance of the metal to silicon has been greatly improved.

【0016】[0016]

【発明の効果】本発明によれば、砥粒用ダイヤモンドな
どを原料として使用することで、生成コストを大幅に下
げることができ、また、粒径の大きいオニオンフラーレ
ンを得ることができる。このため、金属同士の面接触抵
抗(摩擦係数)または金属と他の材料との間の面接触抵
抗を大幅に下げることが可能になると共に、熱源として
赤外線ランプを使用することで、例えば、約1800℃
ほどの高温まで短時間で加熱することができ、オニオン
フラーレンの生成時間を従来の2時間から1分間程度に
まで短縮させることが可能となった。
According to the present invention, the production cost can be greatly reduced and the onion fullerene having a large particle size can be obtained by using diamond for abrasive grains as a raw material. For this reason, the surface contact resistance between metals (coefficient of friction) or the surface contact resistance between a metal and another material can be significantly reduced, and by using an infrared lamp as a heat source, for example, about 1800 ° C
As a result, the onion fullerene generation time can be reduced from the conventional two hours to about one minute.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来のオニオンフラーレン生成方法を実施す
るために用いる生成装置の模式的構成図。
FIG. 1 is a schematic configuration diagram of a generation device used to carry out a conventional onion fullerene generation method.

【図2】 本発明のオニオンフラーレン生成方法を実施
するために用いる生成装置の模式的構成図。
FIG. 2 is a schematic configuration diagram of a generation apparatus used to carry out the onion fullerene generation method of the present invention.

【符号の説明】[Explanation of symbols]

1 真空槽 2 ルツボ 3 抵抗加熱装置 3' 赤外線ラ
ンプ 4 原料 5 リフレクタ
ー 6 仕切バルブ 7 油回転ポン
プ 8 真空計 9 仕切バルブ 10 ガス流量調節器 11 仕切バル
ブ 12 圧力調節器 13 ガスボン
ベ 14 バルブ
DESCRIPTION OF SYMBOLS 1 Vacuum tank 2 Crucible 3 Resistance heating device 3 'Infrared lamp 4 Raw material 5 Reflector 6 Partition valve 7 Oil rotary pump 8 Vacuum gauge 9 Partition valve 10 Gas flow controller 11 Partition valve 12 Pressure regulator 13 Gas cylinder 14 Valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 佳宏 神奈川県茅ヶ崎市萩園2500番地 日本真空 技術株式会社内 Fターム(参考) 4G046 CA00 CB01 CC02 CC09 4H104 AA04A  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoshihiro Yamamoto 2500 Hagizono, Chigasaki-shi, Kanagawa Japan Vacuum Engineering Co., Ltd. F-term (reference) 4G046 CA00 CB01 CC02 CC09 4H104 AA04A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空槽外に赤外線ランプが取り付けら
れ、該真空槽内に黒体のグラファイト製ルツボが配置さ
れたオニオンフラーレン生成装置を用いて、該グラファ
イト製ルツボ内にダイヤモンド微粉末を充填し、該ダイ
ヤモンド微粉末を該赤外線ランプで加熱してオニオンフ
ラーレンを得ることを特徴とするオニオンフラーレンの
生成方法。
1. An onion fullerene generator in which an infrared lamp is mounted outside a vacuum chamber and a black body graphite crucible is disposed in the vacuum chamber, diamond fine powder is filled in the graphite crucible. And heating the diamond fine powder with the infrared lamp to obtain onion fullerene.
【請求項2】 前記ダイヤモンド微粉末を加熱する時
に、雰囲気ガスとして不活性ガスを流しながら加熱する
ことを特徴とする請求項1記載のオニオンフラーレンの
生成方法。
2. The method for producing onion fullerene according to claim 1, wherein the diamond fine powder is heated while flowing an inert gas as an atmosphere gas.
JP2000271822A 2000-09-07 2000-09-07 Generation method of onion fullerene Expired - Lifetime JP5162061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000271822A JP5162061B2 (en) 2000-09-07 2000-09-07 Generation method of onion fullerene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000271822A JP5162061B2 (en) 2000-09-07 2000-09-07 Generation method of onion fullerene

Publications (2)

Publication Number Publication Date
JP2002080212A true JP2002080212A (en) 2002-03-19
JP5162061B2 JP5162061B2 (en) 2013-03-13

Family

ID=18758052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000271822A Expired - Lifetime JP5162061B2 (en) 2000-09-07 2000-09-07 Generation method of onion fullerene

Country Status (1)

Country Link
JP (1) JP5162061B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350584A (en) * 2004-06-11 2005-12-22 National Institute Of Advanced Industrial & Technology Solid lubricating film for vacuum, its manufacturing method, and vacuum equipment
JP2012245456A (en) * 2011-05-26 2012-12-13 Gunma Univ Carbon catalyst, method for producing the same, cathode catalyst layer of fuel cell, and fuel cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10920035B2 (en) 2017-03-16 2021-02-16 Lyten, Inc. Tuning deformation hysteresis in tires using graphene
WO2018169889A1 (en) 2017-03-16 2018-09-20 Lyten, Inc. Carbon and elastomer integration
US9862606B1 (en) 2017-03-27 2018-01-09 Lyten, Inc. Carbon allotropes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111917A (en) * 1997-06-18 1999-01-19 Canon Inc Production of carbon nanotube
JPH11157818A (en) * 1997-11-21 1999-06-15 Masanori Yoshikawa Production of onion graphite and graphite product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111917A (en) * 1997-06-18 1999-01-19 Canon Inc Production of carbon nanotube
JPH11157818A (en) * 1997-11-21 1999-06-15 Masanori Yoshikawa Production of onion graphite and graphite product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010050831; 垣内孝宏、平田敦: 'クラスタダイヤモンドの加熱によるフラーレンの生成およびその潤滑特性' 第13回ダイヤモンドシンポジウム講演要旨集 , 19991125, P.160-161 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350584A (en) * 2004-06-11 2005-12-22 National Institute Of Advanced Industrial & Technology Solid lubricating film for vacuum, its manufacturing method, and vacuum equipment
JP2012245456A (en) * 2011-05-26 2012-12-13 Gunma Univ Carbon catalyst, method for producing the same, cathode catalyst layer of fuel cell, and fuel cell

Also Published As

Publication number Publication date
JP5162061B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
WO2001036704A2 (en) Method and apparatus for forming carbonaceous film
US20090155630A1 (en) Alloy nanoparticles, method of producing the same, and magnetic recording medium using alloy nanoparticles
MY125699A (en) Substrate material for mounting a semiconductor device, substrate for mounting a semiconductor device, semiconductor device, and method of producing the same
JP2002080212A (en) Method of generating onion fullerene
JP4558755B2 (en) Plasma CVD equipment
US7155115B2 (en) Method and device for vacuum sputtering
JPH1045473A (en) Graphite material coated with thermally decomposed carbon excellent in oxidation resistance
US6589919B2 (en) Powdery mold-releasing lubricant for use in casting with a mold and a mold casting method
JP6453826B2 (en) Sliding member and manufacturing method thereof
Di Girolamo et al. Tribological characterization of WC–Co plasma sprayed coatings
JPS5871306A (en) Production of powder
US2996783A (en) Method of shaping sic by vaporization and condensation
Bréchignac et al. Thermal and chemical nanofractal relaxation
TWI808244B (en) Film forming method
Suzuki et al. Time evolution of emission by carbon nanoparticles generated with a laser furnace technique
JP2004195339A (en) Method for forming nanostructure and nanostructure
JPH0617035A (en) Cryogenic cold storage material
Hirasawa et al. Morphological control of laser-synthesized silicon nanoparticles
CN106011716A (en) W-WSi2 functionally graded material and preparation method thereof
ES2249985B1 (en) MECHANICAL DUST GRINDING ACTIVATED BY ULTRAVIOLET RADIATION.
JPH05339731A (en) Production of material having hard low-friction layer on its surface
US8216386B2 (en) Atmosphere exchange method
Watt et al. The thermal accommodation of helium and argon on a tungsten wire, deduced from the heat lost by the wire
Bochkarev et al. Condensation of zinc and butanol vapors on a cryogenic surface
JP2008150275A (en) Composite article and process for synthesizing diamond thin film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5162061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term