JP2002079827A - Vehicular air-conditioner - Google Patents

Vehicular air-conditioner

Info

Publication number
JP2002079827A
JP2002079827A JP2000270410A JP2000270410A JP2002079827A JP 2002079827 A JP2002079827 A JP 2002079827A JP 2000270410 A JP2000270410 A JP 2000270410A JP 2000270410 A JP2000270410 A JP 2000270410A JP 2002079827 A JP2002079827 A JP 2002079827A
Authority
JP
Japan
Prior art keywords
cooling fan
fan motor
voltage
motor voltage
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000270410A
Other languages
Japanese (ja)
Other versions
JP4566370B2 (en
Inventor
Masato Tsuboi
政人 坪井
Atsuo Inoue
敦雄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2000270410A priority Critical patent/JP4566370B2/en
Priority to FR0108020A priority patent/FR2813561B1/en
Priority to DE2001133243 priority patent/DE10133243B4/en
Publication of JP2002079827A publication Critical patent/JP2002079827A/en
Application granted granted Critical
Publication of JP4566370B2 publication Critical patent/JP4566370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3208Vehicle drive related control of the compressor drive means, e.g. for fuel saving purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00792Arrangement of detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00828Ventilators, e.g. speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3266Cooling devices information from a variable is obtained related to the operation of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3276Cooling devices output of a control signal related to a condensing unit
    • B60H2001/3277Cooling devices output of a control signal related to a condensing unit to control the air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce fuel consumption of a vehicular engine by optimizing driving control of a cooling fan motor substantially continuously so as to suppress the total amount of consumed motive power small. SOLUTION: The vehicular air-conditioner comprises ambient air temperature recognizing means 15; vehicle speed recognizing means 14; controlled variable calculating means for calculating controlled variable of the cooling fan motor 12 by referring to a recognition value of each recognizing means; cooling fan motor driving control means for performing variable control depending on the calculated controlled variable; and consumed motive power calculating means for an air-conditioner apparatus for calculating the total consumed motive power W of the air-conditioner apparatus including the variable delivery compressor 5 and the cooling fan motor 12. The cooling fan motor controlled variable calculating means firstly calculates a target value Vp of the cooling fan motor voltage, and after operating such that the cooling fan motor voltage Vf approaches the target value Vp, the means repeatedly calculates and control the cooling fan motor voltage Vf to reduce the total consumed motive power W.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両用空調装置に
関し、とくに、冷凍回路の室外熱交換器に対し冷却ファ
ンを備えた車両用空調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle air conditioner, and more particularly to a vehicle air conditioner having a cooling fan for an outdoor heat exchanger of a refrigeration circuit.

【0002】[0002]

【従来の技術】従来の車両用空調装置は、たとえば図7
に示すように構成され、冷却ファンは図8に示すように
制御されている。図7においては、車室内へと通じる空
調ダクト101内に室内熱交換器、たとえば蒸発器10
2が設けられ、空調ダクト101外に室外熱交換器、た
とえば凝縮器103が設けられている。エンジン104
により駆動される圧縮機、たとえば可変容量型圧縮機1
05から凝縮器103を介して送られてきた冷媒が膨張
弁106で膨張されて蒸発器102に供給され、蒸発器
102からの冷媒が圧縮機105に戻されるように冷凍
回路107が構成されている。
2. Description of the Related Art A conventional vehicle air conditioner is shown in FIG.
The cooling fan is controlled as shown in FIG. In FIG. 7, an indoor heat exchanger, for example, an evaporator 10 is provided in an air-conditioning duct 101 leading to the vehicle interior.
2, an outdoor heat exchanger, for example, a condenser 103, is provided outside the air conditioning duct 101. Engine 104
, For example, a variable displacement compressor 1
The refrigeration circuit 107 is configured so that the refrigerant sent from the condenser 05 through the condenser 103 is expanded by the expansion valve 106 and supplied to the evaporator 102, and the refrigerant from the evaporator 102 is returned to the compressor 105. I have.

【0003】上記冷凍回路107においては、凝縮器1
03に対し冷却用空気流を発生させる冷却ファン108
およびそれを駆動するモータ109が設けられている。
この冷却ファンモータ109は、冷凍サイクルの冷媒圧
縮機105が作動すると、それに連動してオン−オフ制
御されている。つまり、メインコントローラ110から
の圧縮機用クラッチコントロール信号111に連動し
て、冷却ファンモータオンーオフ制御手段112を介し
てオン−オフ制御されている。
In the refrigeration circuit 107, the condenser 1
03 for generating a cooling airflow
And a motor 109 for driving the same.
When the refrigerant compressor 105 of the refrigeration cycle operates, the cooling fan motor 109 is on-off controlled in conjunction therewith. That is, the on / off control is performed via the cooling fan motor on / off control means 112 in conjunction with the compressor clutch control signal 111 from the main controller 110.

【0004】あるいは、冷却ファンモータ109が冷凍
サイクルの室外熱交換器103に対して以外に、ラジエ
ータの冷却ファンモータも兼ねている場合等には、車速
センサ113からの信号およびエンジン冷却水温度セン
サ114からの信号も考慮して、冷却ファンモータ10
9に所定の電圧を印加するようにしている。
Alternatively, when the cooling fan motor 109 also serves as a cooling fan motor for a radiator in addition to the outdoor heat exchanger 103 of the refrigeration cycle, a signal from a vehicle speed sensor 113 and an engine cooling water temperature sensor are provided. The signal from the cooling fan motor 10
9 is applied with a predetermined voltage.

【0005】したがって制御としては、図8に示すよう
に、圧縮機クラッチ信号Sm、あるいはそれに加えて車
速信号SP、エンジン冷却水信号Twに応じて、冷却フ
ァンモータオン−オフ制御手段112を介し冷却ファン
モータ109を制御している。いずれの場合にあって
も、冷却ファンモータ109は、単なるオン−オフ制
御、あるいは高−低の2段階電圧制御、あるいは高々高
−低−オフの3段階電圧制御に頼っている。
Accordingly, as shown in FIG. 8, the control is performed through the cooling fan motor on / off control means 112 in accordance with the compressor clutch signal Sm or the vehicle speed signal SP and the engine cooling water signal Tw in addition thereto. The fan motor 109 is controlled. In any case, the cooling fan motor 109 relies on simple on-off control, high-low two-stage voltage control, or at most high-low-off three-stage voltage control.

【0006】[0006]

【発明が解決しようとする課題】ところが上記のような
従来の冷却ファンモータの制御においては、基本的に、
単にオン−オフあるいは電圧の高−低の2段階制御しか
行っておらず、冷却ファンモータの制御電圧の導出に、
空調装置の総消費動力を考慮していないため、総消費動
力が最適な状態にて冷却ファンモータが運転されていな
い場合がある。したがって、冷却ファンモータの運転に
よって空調装置の総消費動力が大きくなり、それによっ
て車両エンジンの燃料消費量が大きくなる場合がある。
However, in the control of the conventional cooling fan motor as described above, basically,
Only two-stage control of ON-OFF or high-low voltage is performed. To derive the control voltage of the cooling fan motor,
Since the total power consumption of the air conditioner is not considered, the cooling fan motor may not be operated in a state where the total power consumption is optimal. Accordingly, the operation of the cooling fan motor may increase the total power consumption of the air conditioner, thereby increasing the fuel consumption of the vehicle engine.

【0007】また、単にオン−オフあるいは電圧の高−
低の2段階制御しか行っておらず、冷凍サイクルに対
し、凝縮器(室外熱交換器)の放熱量を考慮した冷却制
御が行われていないため、冷凍サイクルの安定性を低下
させている場合がある。冷凍サイクルが不安定である
と、ダクト吹出空気温度が安定しない。
In addition, simply turning on / off or high voltage-
When only low two-stage control is performed, and the cooling control is not performed on the refrigeration cycle in consideration of the amount of heat released from the condenser (outdoor heat exchanger), thereby reducing the stability of the refrigeration cycle. There is. If the refrigeration cycle is unstable, the temperature of the air discharged from the duct will not be stable.

【0008】さらに、オン−オフあるいは電圧高−低の
2段階の制御状態しかないため、凝縮器の放熱量があま
り必要とされていないときにも、冷却ファンモータの回
転数が必要以上に高くなる場合があり、騒音発生の原因
となる場合がある。また、高回転数で不必要に長時間運
転することは、冷却ファンモータの寿命低下の原因とも
なる。
Further, since there are only two control states, ie, ON-OFF and voltage high-low, even when the heat radiation amount of the condenser is not much needed, the rotation speed of the cooling fan motor is higher than necessary. And may cause noise. Unnecessarily operating at a high rotation speed for an unnecessarily long time also causes a reduction in the life of the cooling fan motor.

【0009】そこで本発明の課題は、上記のような従来
制御における問題点に着目し、室外熱交換器用の冷却フ
ァンモータの駆動制御を最適化することで、空調装置全
体の総消費動力を小さく抑えることができるようにし、
それによって車両エンジンの燃料消費量の低減をはかる
ことにある。
Accordingly, an object of the present invention is to reduce the total power consumption of the entire air conditioner by optimizing the drive control of a cooling fan motor for an outdoor heat exchanger by focusing on the problems in the conventional control as described above. So that it can be suppressed,
Thereby, the fuel consumption of the vehicle engine is reduced.

【0010】また、本発明の課題は、冷却ファンモータ
の駆動制御を最適化することにより、冷凍サイクルの安
定性を向上してダクト吹出空気温度の安定性を向上する
とともに、冷却ファンモータの低回転数での動作機会を
増やし、その寿命延長および騒音低減をはかることにあ
る。
Another object of the present invention is to improve the stability of the refrigeration cycle by optimizing the drive control of the cooling fan motor, thereby improving the stability of the temperature of the air blown from the duct, and to reduce the cooling fan motor. An object of the present invention is to increase the chances of operation at a rotational speed, extend the service life, and reduce noise.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る車両用空調装置は、空調ダクト内に設
けられた室内熱交換器、空調ダクト外に設けられた室外
熱交換器、エンジンにより駆動される可変容量型圧縮機
を備えた冷凍回路と、前記室外熱交換器に対し冷却用空
気流を発生させる冷却ファンおよび該冷却ファンを駆動
するモータを有する車両用空調装置において、少なくと
も、前記冷却用空気流の温度を検出する外気温度認識手
段と、車両の走行車速を認識する車速認識手段を設ける
とともに、各認識手段の認識値を参照して冷却ファンモ
ータの制御量を算出する冷却ファンモータ制御量算出手
段と、算出された制御量に応じて冷却ファンモータの駆
動制御量を可変制御する冷却ファンモータ駆動制御手段
を設け、かつ、前記圧縮機および冷却ファンモータを含
む、空調装置用機器の合計消費動力Wを算出する空調装
置用機器消費動力算出手段を設け、前記冷却ファンモー
タ制御量算出手段は、まず冷却ファンモータ電圧の目標
値Vpを算出し冷却ファンモータ電圧Vfが目標値Vp
に近づくように操作した後、前記合計消費動力Wが減少
するように、冷却ファンモータ電圧Vfを繰り返し演算
および制御することを特徴とするものからなる。
In order to solve the above problems, an air conditioner for a vehicle according to the present invention comprises an indoor heat exchanger provided inside an air conditioning duct and an outdoor heat exchanger provided outside the air conditioning duct. A refrigeration circuit including a variable displacement compressor driven by an engine, a cooling fan that generates a cooling airflow to the outdoor heat exchanger, and a vehicle air conditioner that includes a motor that drives the cooling fan. At least an outside air temperature recognizing means for detecting a temperature of the cooling air flow and a vehicle speed recognizing means for recognizing a traveling speed of the vehicle are provided, and a control amount of the cooling fan motor is calculated by referring to a recognition value of each recognizing means. A cooling fan motor control amount calculating means for performing the cooling fan motor drive control means for variably controlling a drive control amount of the cooling fan motor in accordance with the calculated control amount; An air conditioner device power consumption calculator for calculating a total power consumption W of the air conditioner device, including the compressor and the cooling fan motor, is provided. The cooling fan motor control amount calculating unit firstly outputs a target value of the cooling fan motor voltage. Vp is calculated and the cooling fan motor voltage Vf is set to the target value Vp
After that, the cooling fan motor voltage Vf is repeatedly calculated and controlled so that the total power consumption W decreases.

【0012】上記車両用空調装置においては、上記冷却
ファンモータ制御量算出手段は、冷却ファンモータ電圧
Vfの演算において、合計消費動力Wが減少していく方
向に、ある電圧変化幅ΔVをもって、冷却ファンモータ
電圧Vfを減少又は増加する方向に繰り返し演算および
制御し、合計消費動力Wが増加に転じたときには、電圧
変化幅ΔVを半分にするとともに冷却ファンモータ電圧
Vfの操作方向を増加又は減少する方向に反転させ、こ
れら一連の演算および制御を繰り返し行うようにするこ
とが好ましい。
In the vehicle air conditioner, the cooling fan motor control amount calculating means may calculate the cooling fan motor voltage Vf with a certain voltage variation ΔV in a direction in which the total power consumption W decreases. The calculation and control are repeatedly performed in the direction of decreasing or increasing the fan motor voltage Vf, and when the total power consumption W starts to increase, the voltage change width ΔV is halved and the operation direction of the cooling fan motor voltage Vf is increased or decreased. It is preferable that the direction is reversed so that these series of operations and control are repeatedly performed.

【0013】また、冷却ファンモータ制御量算出手段
は、冷却ファンモータ電圧Vfの演算において、冷却フ
ァンモータ電圧の変化幅ΔVおよび/または合計消費動
力Wの前回値と今回値の差が所定値より小さくなったと
き、または、前記ΔVおよび/または前記Wの差が所定
値より小さい状態のまま一定時間経過したときに、予め
記憶してある目標冷却ファンモータ電圧Vp式導出のた
めの各パラメータ値であるデータの一部を更新し、前記
更新後データから、最小二乗法により新たな目標冷却フ
ァンモータ電圧Vpの算出式を導出し、現在の算出式を
新たに算出した目標冷却ファンモータ電圧Vpの算出式
に更新するようにすることができる。
Further, in the calculation of the cooling fan motor voltage Vf, the difference between the previous value and the current value of the variation width ΔV of the cooling fan motor voltage and / or the total power consumption W may be larger than a predetermined value. When it becomes smaller, or when a certain period of time has elapsed while the difference between the ΔV and / or the W is smaller than a predetermined value, each parameter value for deriving a target cooling fan motor voltage Vp formula stored in advance is used. Is updated, a new formula for calculating the target cooling fan motor voltage Vp is derived from the updated data by the least squares method, and the current calculation formula is newly calculated for the target cooling fan motor voltage Vp. Can be updated to the calculation formula.

【0014】また、冷却ファンモータ制御量算出手段
は、冷却ファンモータ電圧Vfの演算において、外気温
度認識手段による認識値と車速認識手段による認識値を
参照して目標冷却ファンモータ電圧Vpを算出するよう
にすることが好ましい。
Further, the cooling fan motor control amount calculating means calculates the target cooling fan motor voltage Vp by referring to the recognition value by the outside air temperature recognition means and the recognition value by the vehicle speed recognition means in the calculation of the cooling fan motor voltage Vf. It is preferable to do so.

【0015】さらに、上記冷却ファンモータ制御量算出
手段は、冷却ファンモータ電圧Vfの演算において、外
気温度認識手段による認識値と車速認識手段による認識
値を参照して目標冷却ファンモータ電圧Vpを繰り返し
算出し、前回Vpと今回Vpの差ΔVpが所定値になっ
たとき、冷却ファンモータ電圧Vfの演算操作を今回の
新たなVpに基づいて最初から行うようにすることが好
ましい。
Further, in the calculation of the cooling fan motor voltage Vf, the cooling fan motor control amount calculating means repeats the target cooling fan motor voltage Vp by referring to the recognition value by the outside air temperature recognition means and the recognition value by the vehicle speed recognition means. Preferably, when the difference ΔVp between the previous Vp and the current Vp has reached a predetermined value, the operation for calculating the cooling fan motor voltage Vf is preferably performed from the beginning based on the new Vp this time.

【0016】上記のような本発明に係る車両用空調装置
においては、冷却ファンモータの電圧を演算により導出
するに際し、空調装置用の各機器の合計消費動力Wの算
出値が考慮され、そのときの状態に応じて、合計消費動
力が小さくなるように最適な制御電圧として算出され
る。したがって、無駄な動力の消費が抑えられ、空調装
置全体の合計消費動力が小さくなる結果、車両エンジン
の燃料消費量も低く抑えられる。
In the vehicle air conditioner according to the present invention as described above, when deriving the voltage of the cooling fan motor by calculation, the calculated value of the total power consumption W of each device for the air conditioner is considered. Is calculated as the optimum control voltage so that the total power consumption becomes smaller. Therefore, useless power consumption is suppressed, and the total power consumption of the entire air conditioner is reduced, so that the fuel consumption of the vehicle engine is also reduced.

【0017】また、冷却ファンモータの駆動制御が無段
階に最適化されるので、室外熱交換器の放熱状態が無段
階に最適に調整され、それによって冷凍サイクルにおけ
る冷媒の状態の変動が小さく抑えられる。その結果、室
内熱交換器での熱交換性能の変動が小さく抑えられ、ダ
クト吹出空気温度の安定性が向上される。
Further, since the drive control of the cooling fan motor is steplessly optimized, the heat radiation state of the outdoor heat exchanger is steplessly optimally adjusted, whereby fluctuations in the state of the refrigerant in the refrigeration cycle are suppressed to a small level. Can be As a result, the fluctuation of the heat exchange performance in the indoor heat exchanger is suppressed to a small value, and the stability of the duct outlet air temperature is improved.

【0018】さらに、冷却ファンモータの無段階での最
適制御により、従来のオン−オフあるいは電圧高−低の
2段階制御の場合に比べ、低回転数での動作時間が増
え、前述の空調装置の合計消費動力の低減がはかられつ
つ、冷却ファンモータの寿命延長および騒音低減も達成
される。
Furthermore, the stepless optimal control of the cooling fan motor increases the operating time at a low rotational speed compared with the conventional two-step control of on-off or high-low voltage, and the air conditioner described above. , While extending the life of the cooling fan motor and reducing noise.

【0019】[0019]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態を、図面を参照して説明する。図1は、本発明の一
実施態様に係る車両用空調装置を示している。図1にお
いて、空調ダクト1内には、室内熱交換器としての蒸発
器2が設けられており、空調ダクト1外に、室外熱交換
器としての凝縮器3が設けられている。車両エンジン4
によって駆動される可変容量型圧縮機5(可変容量コン
プレッサ)で圧縮された冷媒が凝縮器3で凝縮され、受
液器6、膨張弁7を介して蒸発器2に送られ、蒸発器2
から圧縮機5に戻されるように冷凍回路8が構成されて
いる。圧縮機5には、メインコントローラ9から容量制
御信号が送られ、冷凍回路8の高圧側に設けられた高圧
センサ10から、圧力検知信号がメインコントローラ9
に送られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a vehicle air conditioner according to one embodiment of the present invention. In FIG. 1, an evaporator 2 as an indoor heat exchanger is provided in an air conditioning duct 1, and a condenser 3 as an outdoor heat exchanger is provided outside the air conditioning duct 1. Vehicle engine 4
The refrigerant compressed by the variable capacity compressor 5 (variable capacity compressor) driven by the compressor is condensed in the condenser 3, sent to the evaporator 2 via the liquid receiver 6 and the expansion valve 7, and
The refrigeration circuit 8 is configured to return to the compressor 5 from the compressor. A displacement control signal is sent from the main controller 9 to the compressor 5, and a pressure detection signal is sent from a high pressure sensor 10 provided on the high pressure side of the refrigeration circuit 8 to the compressor 5.
Sent to

【0020】この冷凍回路8の凝縮器3に対し、冷却用
空気流を発生させる冷却ファン11が設けられており、
冷却ファン11は冷却ファンモータ12によって駆動さ
れる。この冷却ファンモータ12の駆動は、冷却ファン
モータ制御量算出手段としてのメインコントローラ9か
らの冷却ファンモータ制御量信号に基づき、冷却ファン
モータ駆動制御手段としての冷却ファン電圧コントロー
ラ13を介して制御される。メインコントローラ9に
は、上記冷却ファンモータ制御量を演算するために、車
速認識手段としての車速センサ14からの車速信号、外
気温度認識手段としての外気温度センサ15からの外気
温度信号、冷却水温度認識手段としてのエンジン冷却水
温度センサ16からの冷却水温度信号、車内温度認識手
段としての車室内温度センサ17からの車内温度信号、
蒸発器2の下流側に設けられた蒸発器出口空気温度セン
サ18からの信号が入力されるようになっている。
The condenser 3 of the refrigeration circuit 8 is provided with a cooling fan 11 for generating a cooling air flow.
The cooling fan 11 is driven by a cooling fan motor 12. The driving of the cooling fan motor 12 is controlled through a cooling fan voltage controller 13 as a cooling fan motor drive control unit based on a cooling fan motor control amount signal from a main controller 9 as a cooling fan motor control amount calculation unit. You. The main controller 9 includes a vehicle speed signal from a vehicle speed sensor 14 as a vehicle speed recognition unit, an outside air temperature signal from an outside air temperature sensor 15 as an outside air temperature recognition unit, and a cooling water temperature to calculate the cooling fan motor control amount. A cooling water temperature signal from an engine cooling water temperature sensor 16 as recognition means, a vehicle interior temperature signal from a vehicle interior temperature sensor 17 as vehicle interior temperature recognition means,
A signal from an evaporator outlet air temperature sensor 18 provided on the downstream side of the evaporator 2 is input.

【0021】空調ダクト1の入口側には、外気導入口2
1と内気導入口22との吸気空気量の切替ダンパ23が
設けられ、それを調節するインテークアクチュエータ2
4が設けられている。また、送風機のファン25および
そのモータ26の電圧を制御する送風機電圧コントロー
ラ27が設けられている。蒸発器2の下流側には、本実
施態様では、エンジン冷却水が通水される温水ヒータ2
8が設けられており、その直下流側に、エアミックスダ
ンパ29が設けられている。エアミックスダンパ29の
開度は、メインコントローラ9からの信号に基づいて、
エアミックスダンパアクチュエータ30を介して制御さ
れる。
At the inlet side of the air conditioning duct 1, an outside air inlet 2
1 and a switching damper 23 for switching the amount of intake air between an inside air inlet 22 and an intake actuator 2 for adjusting the same.
4 are provided. Further, a fan voltage controller 27 for controlling the voltage of the fan 25 of the blower and its motor 26 is provided. In the present embodiment, on the downstream side of the evaporator 2, a hot water heater 2 through which engine cooling water flows is provided.
8 is provided, and an air mix damper 29 is provided immediately downstream thereof. The opening degree of the air mix damper 29 is determined based on a signal from the main controller 9.
It is controlled via the air mix damper actuator 30.

【0022】31、32、33は、それぞれ、車室内へ
の温調空気吹出口を示しており、各吹出口にはそれぞれ
開度調整用のダンパ34、35、36が設けられてい
る。本実施態様では、吹出口33に電気ヒータ37が設
けられており、電気ヒータ37の電圧は、メインコント
ローラ9からの信号に基づいて電気ヒータ電圧コントロ
ーラ38を介して制御される。
Reference numerals 31, 32, and 33 denote temperature-controlled air outlets into the passenger compartment, respectively, and each of the outlets is provided with dampers 34, 35, and 36 for adjusting the opening. In this embodiment, the electric outlet 37 is provided with the electric heater 37, and the voltage of the electric heater 37 is controlled via the electric heater voltage controller 38 based on a signal from the main controller 9.

【0023】メインコントローラ9では、冷却ファンモ
ータ制御量の算出は、たとえば図2〜図4に示すように
行われる。図2、図3に示すフローチャートはメインル
ーチンを示しており、ステップS1で先ずサブルーチン
に入る。サブルーチンでは、図4に示すように、外気温
度Toutと車速SPが入力され(ステップS101、
S102)、目標冷却ファンモータ電圧Vpが、 Vp=f(Tout,SP) によって算出される(ステップS103)。先ず、目標
冷却ファンモータ電圧の初期値V0が入力され、前記目
標冷却ファンモータ電圧Vp(今回値)とその前回値で
ある目標冷却ファンモータ電圧Vp’との差を算出する
(ステップS104、S105)。
In the main controller 9, calculation of the cooling fan motor control amount is performed, for example, as shown in FIGS. The flowcharts shown in FIGS. 2 and 3 show a main routine, and first enter a subroutine in step S1. In the subroutine, as shown in FIG. 4, the outside air temperature Tout and the vehicle speed SP are input (step S101,
S102), the target cooling fan motor voltage Vp is calculated by Vp = f (Tout, SP) (step S103). First, the initial value V0 of the target cooling fan motor voltage is input, and the difference between the target cooling fan motor voltage Vp (current value) and the previous value, the target cooling fan motor voltage Vp ', is calculated (steps S104 and S105). ).

【0024】図2に示すメインルーチンに戻り、前記目
標冷却ファンモータ電圧ΔVpを半分にした冷却ファン
モータ制御電圧変化幅ΔVaを前回冷却ファンモータ制
御電圧Vf’に加算し、新たな冷却ファンモータ制御電
圧Vfとして操作した後、空調装置消費動力の合計W0
を算出する(ステップS2〜S5)。
Returning to the main routine shown in FIG. 2, the cooling fan motor control voltage change width ΔVa obtained by halving the target cooling fan motor voltage ΔVp is added to the previous cooling fan motor control voltage Vf ′, and a new cooling fan motor control is performed. After operating as the voltage Vf, the total power consumption W0 of the air conditioner is calculated.
Is calculated (steps S2 to S5).

【0025】続いて冷却ファンモータ制御電圧変化幅Δ
Vaを前回冷却ファンモータ制御電圧Vf'(ステップS
4のVf)に加算し、新たな冷却ファンモータ制御電圧
Vfとして操作した後、空調装置消費動力の合計W1を
算出する(ステップS6〜S8)。続いて図4のサブル
ーチンを実行し(ステップS9)、前記目標冷却ファン
モータ電圧変化量ΔVpが±A(所定値)の範囲内であ
るか否かを判定し(ステップS10)、範囲内であれ
ば、空調装置消費動力の合計W0とW1を比較する(ス
テップS11)。空調装置消費動力の合計W0とW1を
比較して、W1が大きい場合は、図3に示すように、前
記冷却ファンモータ制御電圧変化幅ΔVaを半分とした
ΔVbを、前回冷却ファンモータ制御電圧Vf’から減
算し、新たなファン制御電圧Vfとして操作した後、空
調装置消費動力の合計W2を算出する(ステップS12
〜S15)。続いて図4のサブルーチンを実行し(ステ
ップS16)、前記目標冷却ファンモータ電圧変化量Δ
Vpが±Aの範囲内であれば、空調装置消費動力の合計
W1とW2を比較する(ステップS17、S18)。空
調装置消費動力の合計W1とW2を比較して、W2が大
きく且つ前記冷却ファンモータ制御電圧変化幅ΔVbが
±B(所定値)の範囲内であり、W1とW2の差の絶対
値がCよりも小さい場合は、現在の外気温度Toutお
よび車速SP、冷却ファンモータ制御電圧Vfをメモリ
ーに記憶する(ステップS19、S20)。
Subsequently, the cooling fan motor control voltage change width Δ
Va is set to the previous cooling fan motor control voltage Vf ′ (step S
4 and Vf) is operated as a new cooling fan motor control voltage Vf, and the total power consumption W1 of the air conditioner is calculated (steps S6 to S8). Subsequently, the subroutine of FIG. 4 is executed (step S9), and it is determined whether or not the target cooling fan motor voltage change amount ΔVp is within a range of ± A (predetermined value) (step S10). For example, the total power consumption W0 and W1 of the air conditioner is compared (step S11). Comparing the total power consumption W0 and W1 of the air conditioner, when W1 is large, as shown in FIG. 3, the cooling fan motor control voltage change width ΔVb is reduced by half to the previous cooling fan motor control voltage Vf. ', And operated as a new fan control voltage Vf, to calculate the total power consumption W2 of the air conditioner (step S12).
To S15). Subsequently, the subroutine of FIG. 4 is executed (step S16), and the target cooling fan motor voltage variation Δ
If Vp is within the range of ± A, the total power consumption W1 and W2 of the air conditioner is compared (steps S17 and S18). Comparing the total power consumption W1 and W2 of the air conditioner, W2 is large and the cooling fan motor control voltage change width ΔVb is within a range of ± B (predetermined value), and the absolute value of the difference between W1 and W2 is C If smaller, the current outside air temperature Tout, vehicle speed SP, and cooling fan motor control voltage Vf are stored in the memory (steps S19 and S20).

【0026】前記記憶情報から最小2乗近似法により、
目標冷却ファンモータ電圧Vp式を導出し(ステップS
21)、現在Vp式(図4のVp式)を新たなVp式に
更新した後(ステップS22)、フローチャートのST
ARTに戻る。
From the stored information, by the least squares approximation method,
The target cooling fan motor voltage Vp formula is derived (step S
21), after updating the current Vp expression (the Vp expression in FIG. 4) to a new Vp expression (step S22), ST in the flowchart.
Return to ART.

【0027】上記ステップS10において目標冷却ファ
ンモータ電圧変化量ΔVpが±Aの範囲内にないときに
は、ステップS2に戻る。ステップS11においてW0
<W1でないときには、ステップS6に戻る。ステップ
S17においてΔVpが±Aの範囲内にないときにはス
テップS2に戻り、ステップS18においてW1<W2
でないときにはステップS13に戻る。さらに、ステッ
プS19が成立しないときには、くり返しステップS1
2に戻る。
If the target cooling fan motor voltage change amount ΔVp is not within the range of ± A in step S10, the process returns to step S2. In step S11, W0
If not <W1, the process returns to step S6. When ΔVp is not within the range of ± A in step S17, the process returns to step S2, and in step S18, W1 <W2
If not, the process returns to step S13. Further, when step S19 is not established, the step S1 is repeated.
Return to 2.

【0028】上記フローチャートにおいて、合計消費動
力Wは、たとえば図5に示すように算出される。また、
フローチャートにおける目標冷却ファンモータ電圧Vp
の式は、たとえば図6に示すように導出される。
In the above flowchart, the total power consumption W is calculated, for example, as shown in FIG. Also,
Target cooling fan motor voltage Vp in flowchart
Is derived, for example, as shown in FIG.

【0029】図5に示す例では、検知量として、蒸発器
流出空気温度Teout、外気温度Tout、内気温度
Tin、インテーク状態INT、送風機電圧演算値BL
V、圧縮機容量制御信号Ic、高圧圧力Pd、冷却ファ
ンモータ電圧Vfan、バッテリ電圧VB、電気ヒータ
電圧Vhを検出する。蒸発器流入空気温度Teinを、 Tein=Tout×α+Tin×(1−α) で演算し、冷媒流量Grを、 Gr=f(Qe,ΔIe) で演算する。但し、 Qe=f(Tein,BLV,Teout) ΔIe=f(Ps,Pd) Ps=f(Ic) である。ここで、 Qe:冷房能力 ΔIe:蒸発器エンタルピー差 Ps:圧縮機吸入圧力 である。
In the example shown in FIG. 5, as the detected amounts, the evaporator outflow air temperature Teout, the outside air temperature Tout, the inside air temperature Tin, the intake state INT, and the blower voltage calculation value BL
V, compressor capacity control signal Ic, high pressure Pd, cooling fan motor voltage Vfan, battery voltage VB, and electric heater voltage Vh. The evaporator inflow air temperature Tein is calculated by Tein = Tout × α + Tin × (1−α), and the refrigerant flow rate Gr is calculated by Gr = f (Qe, ΔIe). Here, Qe = f (Tein, BLV, Teout) ΔIe = f (Ps, Pd) Ps = f (Ic). Here, Qe: cooling capacity ΔIe: evaporator enthalpy difference Ps: compressor suction pressure

【0030】そして、圧縮機消費動力Wcmpを、 Wcmp=f(Gr,Ps,Pd) で演算する、但し、 Ps=f(Ic) である。Then, the compressor power consumption Wcmp is calculated by Wcmp = f (Gr, Ps, Pd), where Ps = f (Ic).

【0031】また、圧縮機以外の空調装置消費動力We
lcを、 Welc=η×f(Wfan,Wcl,Wblv,W
h) で求める。但し、 Wfan=f(Vfan) Wcl=f(VB) Wblv=f(BLV) Wh=f(Vh) η:オルタネータ効率 である。
In addition, the power consumption We of the air conditioner other than the compressor.
lc is expressed as Welc = η × f (Wfan, Wcl, Wblv, W
h) Obtain with. Where Wfan = f (Vfan) Wcl = f (VB) Wblv = f (BLV) Wh = f (Vh) η: Alternator efficiency.

【0032】上記圧縮機消費動力Wcmpと、それ以外
の消費動力Welcとの合計Wが、 W=Wcmp+Welc として求められる。
The sum W of the compressor power consumption Wcmp and the other power consumption Welc is obtained as W = Wcmp + Welc.

【0033】また、図6は、前述の図4のサブルーチン
の目標冷却ファンモータ電圧Vpの演算式を求める考え
方を示している。
FIG. 6 shows the concept of obtaining the arithmetic expression for the target cooling fan motor voltage Vp in the subroutine of FIG. 4 described above.

【0034】図6に示すように、空調装置の合計消費動
力は、圧縮機消費動力Wcompと各種電気機器消費動
力Welcとの合計となり、各種電気機器消費動力に
は、原動機(エンジン)の発生動力に対しオルタネータ
・レギュレータの効率分が上乗せされた動力が消費され
る。圧縮機消費動力Wcompは、各種条件(蒸発器流
出空気温度Teout、外気温度Tout、内気温度T
in、インテーク状態INT、送風機電圧演算値BL
V、圧縮機容量制御信号Ic、冷凍回路の高圧圧力P
d)に応じて発生する消費動力であり、電気機器消費動
力Welcも、各種条件(冷却ファンモータ使用電圧V
fan、バッテリ電圧VB、電気ヒータ電圧Vh、送風
機電圧演算値BLV)に応じて発生する消費動力であ
る。
As shown in FIG. 6, the total power consumption of the air conditioner is the sum of the power consumption Wcomp of the compressor and the power consumption Welc of various electric devices, and the power consumption of various electric devices includes the power generated by the prime mover (engine). On the other hand, the power is added to the efficiency of the alternator / regulator. The compressor consumption power Wcomp is calculated based on various conditions (evaporator outflow air temperature Teout, outside air temperature Tout, inside air temperature Tout).
in, intake state INT, blower voltage calculation value BL
V, compressor capacity control signal Ic, high pressure P of the refrigeration circuit
d), and the power consumption Welc of the electric equipment also depends on various conditions (cooling fan motor operating voltage V
fan, the battery voltage VB, the electric heater voltage Vh, and the blower voltage calculation value BLV).

【0035】これら消費動力を合計した空調装置の合計
消費動力Wと、冷却ファンモータ電圧Vfan(つま
り、冷却ファンモータの実際に行った駆動制御量)との
相関関係(相関データ)が、各パラメータ(各説明変
数)毎に採られる。すなわち、Vfanを目的変数、つ
まり目標冷却ファンモータ電圧Vpとし、各パラメータ
を説明変数として、説明変数毎に相関関係が求められ
る。そして、外気温度Toutと車速SPが説明変数と
され、冷却ファンモータ電圧Vpが目的変数とされて、
相関関係が求められる。このVfan(Vp)とWとの
相関関係は、各説明変数に関して、一般に図に示すよう
な最低極値(極小値)をもつデータとなる。この極小値
Wminあるいはその近傍のWとなるVfan(Vp)
に制御すれば、冷却ファンモータの消費動力を、そのと
きの条件に応じて最適に低減することが可能になる。単
なる冷却ファンモータ電圧のオン−オフ制御や高低2段
階制御では、このような、そのときの条件に応じた冷却
ファンモータの消費動力の低減、冷却ファンモータ電圧
制御の最適化はできない。
The correlation (correlation data) between the total power consumption W of the air conditioner, which is the sum of these power consumptions, and the cooling fan motor voltage Vfan (ie, the actual drive control amount of the cooling fan motor) is represented by each parameter. (Each explanatory variable) is taken for each. In other words, Vfan is set as the target variable, that is, the target cooling fan motor voltage Vp, and each parameter is set as an explanatory variable, and a correlation is obtained for each of the explanatory variables. Then, the outside air temperature Tout and the vehicle speed SP are used as explanatory variables, and the cooling fan motor voltage Vp is used as an objective variable.
A correlation is required. The correlation between Vfan (Vp) and W is generally data having the lowest extreme value (minimum value) as shown in the figure for each explanatory variable. Vfan (Vp) which is the minimum value Wmin or W in the vicinity thereof
, The power consumption of the cooling fan motor can be optimally reduced according to the conditions at that time. In the simple on / off control of the cooling fan motor voltage and the two-level control of the cooling fan motor, it is not possible to reduce the power consumption of the cooling fan motor and optimize the cooling fan motor voltage control according to the conditions at that time.

【0036】このような技術思想に基づき、上記相関デ
ータから、目的変数と説明変数の相関式fを導出する。 Vp=f(Tout,SP) の相関式を導出し、この相関式を用いて、前述の図4の
サブルーチンに示したように演算し、そのときの条件に
応じて、実際に冷却ファンモータ電圧コントローラ13
に出力する指令信号を決定する。
Based on such a technical idea, a correlation equation f between the objective variable and the explanatory variable is derived from the correlation data. A correlation equation of Vp = f (Tout, SP) is derived, and using this correlation equation, a calculation is performed as shown in the above-described subroutine of FIG. 4, and according to the condition at that time, the cooling fan motor voltage is actually calculated. Controller 13
The command signal to be output to is determined.

【0037】このような制御においては、そのときの車
両や空調装置の状態に応じて、実質的に無段階にて、冷
却ファンモータの電圧を最適に制御することが可能とな
る。つまり、冷却ファンモータ電圧は、空調装置の合計
消費動力が可能な限り小さくなるように制御され、同時
に冷凍サイクルの冷媒の状態の変動が抑えられダクト吹
出空気温度変動が抑えられるように制御される。空調装
置の合計消費動力が小さく抑えられることにより、車両
エンジンの燃料消費量が低く抑えられ、冷凍サイクルの
安定化により、ダクト吹出空気温度の安定性が確保され
る。
In such control, the voltage of the cooling fan motor can be optimally controlled substantially steplessly according to the state of the vehicle and the air conditioner at that time. In other words, the cooling fan motor voltage is controlled so that the total power consumption of the air conditioner is reduced as much as possible, and at the same time, is controlled so that the fluctuation of the refrigerant state of the refrigeration cycle is suppressed and the duct outlet air temperature fluctuation is suppressed. . Since the total power consumption of the air conditioner is kept low, the fuel consumption of the vehicle engine is kept low, and the stability of the refrigeration cycle ensures the stability of the duct outlet air temperature.

【0038】また、冷却ファンモータを低回転数で運転
する機会が増えるから、冷却ファンおよびそのモータの
寿命延長や騒音低減も達成される。
Further, since the chance of operating the cooling fan motor at a low rotation speed increases, the life of the cooling fan and the motor can be extended and the noise can be reduced.

【0039】[0039]

【発明の効果】以上説明したように、本発明に係る車両
用空調装置によれば、空調装置への合計消費動力を考慮
し、そのときの状態に応じて冷却ファンに使用すべき動
力を最適に制御できるようにしたので、冷却ファンの消
費動力、ひいては空調装置の総消費動力を小さく抑える
ことができ、車両エンジンの燃料消費量を抑えることが
できる。
As described above, according to the vehicle air conditioner according to the present invention, the total power consumed by the air conditioner is taken into consideration, and the power to be used for the cooling fan is optimized according to the state at that time. , The power consumption of the cooling fan, and thus the total power consumption of the air conditioner, can be reduced, and the fuel consumption of the vehicle engine can be reduced.

【0040】また、冷却ファンを実質的に無段階に最適
に制御できるので、ダクト吹出空気温度の安定性を向上
でき、かつ冷却ファンは低回転数での運転機会が増える
ことから、寿命延長および騒音低減をはかることも可能
となる。
Further, since the cooling fan can be optimally controlled substantially steplessly, the stability of the temperature of the air blown out from the duct can be improved, and the cooling fan can be operated at a low rotation speed. It is also possible to reduce noise.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様に係る車両用空調装置の概
略構成図である。
FIG. 1 is a schematic configuration diagram of a vehicle air conditioner according to an embodiment of the present invention.

【図2】図1の装置の制御を示すフローチャートであ
る。
FIG. 2 is a flowchart showing control of the apparatus of FIG.

【図3】図2のフローの続きを示すフローチャートであ
る。
FIG. 3 is a flowchart showing a continuation of the flow of FIG. 2;

【図4】図2のフローにおけるサブルーチンを示すフロ
ーチャートである。
FIG. 4 is a flowchart showing a subroutine in the flow of FIG. 2;

【図5】図2のフローにおける合計消費動力算出の一例
を示すブロック図である。
FIG. 5 is a block diagram illustrating an example of a calculation of total power consumption in the flow of FIG. 2;

【図6】図4のサブルーチンにおける目標冷却ファンモ
ータ電圧演算式導出の一例を示す説明図である。
FIG. 6 is an explanatory diagram showing an example of deriving a target cooling fan motor voltage calculation expression in the subroutine of FIG. 4;

【図7】従来の車両用空調装置の概略構成図である。FIG. 7 is a schematic configuration diagram of a conventional vehicle air conditioner.

【図8】図7の装置の制御を示すブロック図である。FIG. 8 is a block diagram showing control of the device of FIG. 7;

【符号の説明】[Explanation of symbols]

1 空調ダクト 2 室内熱交換器としての蒸発器 3 室外熱交換器としての凝縮器 4 車両エンジン 5 可変容量型圧縮機 6 受液器 7 膨張弁 8 冷凍回路 11 冷却ファン 12 冷却ファンモータ 13 冷却ファン電圧コントローラ 14 車速センサ 15 外気温度センサ 16 エンジン冷却水温度センサ 17 車室内温度センサ 18 蒸発器出口空気温度センサ 21 外気導入口 22 内気導入口 23 切替ダンパ 24 インテークアクチュエータ 25 送風機ファン 26 送風機モータ 27 送風機電圧コントローラ 28 温水ヒータ 29 エアミックスダンパ 30 エアミックスダンパアクチュエータ 31、32、33 吹出口 34、35、36 ダンパ 37 電気ヒータ 38 電気ヒータ電圧コントローラ REFERENCE SIGNS LIST 1 air conditioning duct 2 evaporator as indoor heat exchanger 3 condenser as outdoor heat exchanger 4 vehicle engine 5 variable capacity compressor 6 liquid receiver 7 expansion valve 8 refrigeration circuit 11 cooling fan 12 cooling fan motor 13 cooling fan Voltage controller 14 Vehicle speed sensor 15 Outside air temperature sensor 16 Engine cooling water temperature sensor 17 Car interior temperature sensor 18 Evaporator outlet air temperature sensor 21 Outside air inlet 22 Inside air inlet 23 Switching damper 24 Intake actuator 25 Blower fan 26 Blower motor 27 Blower voltage Controller 28 Hot water heater 29 Air mix damper 30 Air mix damper actuator 31, 32, 33 Air outlet 34, 35, 36 Damper 37 Electric heater 38 Electric heater voltage controller

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 空調ダクト内に設けられた室内熱交換
器、空調ダクト外に設けられた室外熱交換器、エンジン
により駆動される可変容量型圧縮機を備えた冷凍回路
と、前記室外熱交換器に対し冷却用空気流を発生させる
冷却ファンおよび該冷却ファンを駆動するモータを有す
る車両用空調装置において、少なくとも、前記冷却用空
気流の温度を検出する外気温度認識手段と、車両の走行
車速を認識する車速認識手段を設けるとともに、各認識
手段の認識値を参照して冷却ファンモータの制御量を算
出する冷却ファンモータ制御量算出手段と、算出された
制御量に応じて冷却ファンモータの駆動制御量を可変制
御する冷却ファンモータ駆動制御手段を設け、かつ、前
記圧縮機および冷却ファンモータを含む、空調装置用機
器の合計消費動力Wを繰り返し算出する空調装置用機器
消費動力算出手段を設け、前記冷却ファンモータ制御量
算出手段は、まず冷却ファンモータ電圧の目標値Vpを
算出し冷却ファンモータ電圧Vfが目標値Vpに近づく
ように操作した後、前記合計消費動力Wが減少するよう
に、冷却ファンモータ電圧Vfを繰り返し演算および制
御することを特徴とする車両用空調装置。
1. A refrigeration circuit including an indoor heat exchanger provided in an air conditioning duct, an outdoor heat exchanger provided outside the air conditioning duct, a variable displacement compressor driven by an engine, and the outdoor heat exchange. A vehicle air conditioner having a cooling fan for generating a cooling airflow to a cooling device and a motor for driving the cooling fan, at least an outside air temperature recognition means for detecting a temperature of the cooling airflow, and a traveling vehicle speed of the vehicle. And a cooling fan motor control amount calculating unit that calculates a control amount of the cooling fan motor with reference to the recognition value of each recognition unit, and a cooling fan motor control unit that calculates the control amount of the cooling fan motor according to the calculated control amount. Cooling fan motor drive control means for variably controlling the drive control amount is provided, and the total power consumption W of the air conditioner equipment including the compressor and the cooling fan motor is repeated. The cooling fan motor control amount calculation means first calculates a target value Vp of the cooling fan motor voltage and calculates the cooling fan motor voltage Vf so as to approach the target value Vp. After the operation, the air conditioner for a vehicle is characterized by repeatedly calculating and controlling the cooling fan motor voltage Vf so that the total power consumption W decreases.
【請求項2】 冷却ファンモータ制御量算出手段は、冷
却ファンモータ電圧Vfの演算において、合計消費動力
Wが減少していく方向に、ある電圧変化幅ΔVをもっ
て、冷却ファンモータ電圧Vfを減少又は増加する方向
に繰り返し演算および制御し、合計消費動力Wが増加に
転じたときには、電圧変化幅ΔVを半分にするとともに
冷却ファンモータ電圧Vfの操作方向を増加又は減少す
る方向に反転させ、これら一連の演算および制御を繰り
返し行う、請求項1の車両用空調装置。
2. The cooling fan motor control amount calculating means decreases or increases the cooling fan motor voltage Vf by a certain voltage change width ΔV in a direction in which the total consumed power W decreases in the calculation of the cooling fan motor voltage Vf. When the total power consumption W starts to increase, the voltage change width ΔV is halved, and the operation direction of the cooling fan motor voltage Vf is reversed to increase or decrease. The vehicle air conditioner according to claim 1, wherein the calculation and the control of are repeatedly performed.
【請求項3】 冷却ファンモータ制御量算出手段は、冷
却ファンモータ電圧Vfの演算において、冷却ファンモ
ータ電圧の変化幅ΔVおよび/または合計消費動力Wの
前回値と今回値の差が所定値より小さくなったとき、ま
たは、前記ΔVおよび/または前記Wの差が所定値より
小さい状態のまま一定時間経過したときに、予め記憶し
てある目標冷却ファンモータ電圧Vp式導出のための各
パラメータ値であるデータの一部を更新し、前記更新後
データから、最小二乗法により新たな目標冷却ファンモ
ータ電圧Vpの算出式を導出し、現在の算出式を新たに
算出した目標冷却ファンモータ電圧Vpの算出式に更新
する、請求項1または2の車両用空調装置。
3. The cooling fan motor control amount calculating means, in the calculation of the cooling fan motor voltage Vf, the difference between the previous value and the current value of the variation width ΔV of the cooling fan motor voltage and / or the total power consumption W is larger than a predetermined value. When it becomes smaller, or when a certain period of time has elapsed while the difference between the ΔV and / or the W is smaller than a predetermined value, each parameter value for deriving a target cooling fan motor voltage Vp formula stored in advance is used. Is updated, a new formula for calculating the target cooling fan motor voltage Vp is derived from the updated data by the least squares method, and the current calculation formula is newly calculated for the target cooling fan motor voltage Vp. The vehicle air conditioner according to claim 1, wherein the vehicle air conditioner is updated to a calculation formula.
【請求項4】 冷却ファンモータ制御量算出手段は、冷
却ファンモータ電圧Vfの演算において、外気温度認識
手段による認識値と車速認識手段による認識値を参照し
て目標冷却ファンモータ電圧Vpを算出する、請求項1
ないし3のいずれかに記載の車両用空調装置。
4. The cooling fan motor control amount calculation means calculates a target cooling fan motor voltage Vp with reference to the recognition value by the outside air temperature recognition means and the recognition value by the vehicle speed recognition means in the calculation of the cooling fan motor voltage Vf. , Claim 1
4. The vehicle air conditioner according to any one of claims 1 to 3.
【請求項5】 冷却ファンモータ制御量算出手段は、冷
却ファンモータ電圧Vfの演算において、外気温度認識
手段による認識値と車速認識手段による認識値を参照し
て目標冷却ファンモータ電圧Vpを繰り返し算出し、前
回Vpと今回Vpの差ΔVpが所定値になったとき、冷
却ファンモータ電圧Vfの演算操作を今回の新たなVp
に基づいて最初から行う、請求項4の車両用空調装置。
5. The cooling fan motor control amount calculating means repeatedly calculates a target cooling fan motor voltage Vp with reference to the recognition value by the outside air temperature recognition means and the recognition value by the vehicle speed recognition means in the calculation of the cooling fan motor voltage Vf. When the difference ΔVp between the previous Vp and the current Vp has reached a predetermined value, the operation of calculating the cooling fan motor voltage Vf is changed to the new Vp
The air conditioner for a vehicle according to claim 4, wherein the air conditioning is performed from the beginning based on the following.
JP2000270410A 2000-09-06 2000-09-06 Air conditioner for vehicles Expired - Fee Related JP4566370B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000270410A JP4566370B2 (en) 2000-09-06 2000-09-06 Air conditioner for vehicles
FR0108020A FR2813561B1 (en) 2000-09-06 2001-06-19 AIR CONDITIONER FOR VEHICLES
DE2001133243 DE10133243B4 (en) 2000-09-06 2001-07-09 Vehicle air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000270410A JP4566370B2 (en) 2000-09-06 2000-09-06 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2002079827A true JP2002079827A (en) 2002-03-19
JP4566370B2 JP4566370B2 (en) 2010-10-20

Family

ID=18756856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000270410A Expired - Fee Related JP4566370B2 (en) 2000-09-06 2000-09-06 Air conditioner for vehicles

Country Status (3)

Country Link
JP (1) JP4566370B2 (en)
DE (1) DE10133243B4 (en)
FR (1) FR2813561B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532396A (en) * 2004-04-19 2007-11-15 ベール ゲーエムベーハー ウント コー カーゲー Method and apparatus for adjusting the refrigerant cycle of a vehicle air conditioner
CN101900393A (en) * 2009-05-06 2010-12-01 福特全球技术公司 Be used to optimize the air-conditioner control system and the method for automobile energy consumption
CN103743058A (en) * 2013-12-21 2014-04-23 博耐尔汽车电气系统有限公司 Hybrid electric automobile air conditioner controller

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6637229B1 (en) * 2002-10-21 2003-10-28 Delphi Technologies, Inc. Cooling fan control method for minimizing the power consumption of a vehicle air conditioning system
DE10323813A1 (en) * 2003-05-23 2004-12-09 Behr Gmbh & Co. Kg Method and device for controlling a device for exchanging heat
DK2339266T3 (en) * 2009-12-25 2018-05-28 Sanyo Electric Co Cooling device
FR3006942B1 (en) * 2013-06-18 2016-09-30 Renault Sa SYSTEM AND METHOD FOR CONTROLLING A MOTORCYCLE GROUP, IN PARTICULAR FOR A HEATING AND / OR AIR CONDITIONING SYSTEM FOR A MOTOR VEHICLE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245220A (en) * 1988-08-05 1990-02-15 Nissan Motor Co Ltd Air conditioner for vehicle
JPH02175320A (en) * 1988-12-27 1990-07-06 Nippondenso Co Ltd Airconditioner for car
JPH06171352A (en) * 1992-12-07 1994-06-21 Zexel Corp Air-conditioner for vehicle
JPH08188044A (en) * 1995-01-11 1996-07-23 Toyota Motor Corp Control device of electric motor for condenser fan of air conditioner
JPH10240329A (en) * 1997-02-26 1998-09-11 Mitsubishi Electric Corp Curve fine-segmentation method and numerical controller provided with spline interpolation function
JP2000215176A (en) * 1999-01-25 2000-08-04 Casio Comput Co Ltd Eletronic calculation device and record medium recording calculation processing program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19713197B4 (en) * 1997-03-28 2008-04-24 Behr Gmbh & Co. Kg Method for operating an air conditioning system in a motor vehicle and air conditioning with a refrigerant circuit
DE19743828A1 (en) * 1997-10-03 1999-04-08 Behr Gmbh & Co Procedure for operating air-conditioning plant for car
FR2802151B1 (en) * 1999-10-27 2006-02-17 Sanden Corp AIR CONDITIONING SYSTEM FOR VEHICLES
JP4481448B2 (en) * 2000-07-17 2010-06-16 サンデン株式会社 Air conditioner for vehicles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245220A (en) * 1988-08-05 1990-02-15 Nissan Motor Co Ltd Air conditioner for vehicle
JPH02175320A (en) * 1988-12-27 1990-07-06 Nippondenso Co Ltd Airconditioner for car
JPH06171352A (en) * 1992-12-07 1994-06-21 Zexel Corp Air-conditioner for vehicle
JPH08188044A (en) * 1995-01-11 1996-07-23 Toyota Motor Corp Control device of electric motor for condenser fan of air conditioner
JPH10240329A (en) * 1997-02-26 1998-09-11 Mitsubishi Electric Corp Curve fine-segmentation method and numerical controller provided with spline interpolation function
JP2000215176A (en) * 1999-01-25 2000-08-04 Casio Comput Co Ltd Eletronic calculation device and record medium recording calculation processing program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532396A (en) * 2004-04-19 2007-11-15 ベール ゲーエムベーハー ウント コー カーゲー Method and apparatus for adjusting the refrigerant cycle of a vehicle air conditioner
JP4797201B2 (en) * 2004-04-19 2011-10-19 ベール ゲーエムベーハー ウント コー カーゲー Method and apparatus for adjusting the refrigerant cycle of a vehicle air conditioner
CN101900393A (en) * 2009-05-06 2010-12-01 福特全球技术公司 Be used to optimize the air-conditioner control system and the method for automobile energy consumption
CN101900393B (en) * 2009-05-06 2013-12-04 福特全球技术公司 Climate control system and method for optimizing energy consumption of a vehicle
CN103743058A (en) * 2013-12-21 2014-04-23 博耐尔汽车电气系统有限公司 Hybrid electric automobile air conditioner controller

Also Published As

Publication number Publication date
FR2813561A1 (en) 2002-03-08
JP4566370B2 (en) 2010-10-20
FR2813561B1 (en) 2008-10-31
DE10133243B4 (en) 2004-08-19
DE10133243A1 (en) 2002-03-28

Similar Documents

Publication Publication Date Title
JP4347588B2 (en) Operation method of air conditioner and apparatus using the same
JP3085335B2 (en) Air conditioner
JP2007139269A (en) Supercritical refrigerating cycle
JP2004299667A (en) Air-conditioner for vehicle
JP2003166764A (en) Refrigerating cycle device
JP2001026215A (en) Air conditioner for vehicle
JP4481448B2 (en) Air conditioner for vehicles
JP2005193749A (en) Controller
JP3704814B2 (en) Air conditioner for vehicles
JP2004066847A (en) Air conditioner for vehicle
JP4669640B2 (en) Air conditioner for vehicles
JP6745180B2 (en) Vehicle air conditioner
JP2002079827A (en) Vehicular air-conditioner
JP2005206014A (en) Control method and control device for refrigeration cycle of vehicular air conditioner
JP2003237360A (en) Air-conditioning system for vehicle
JP2020093644A (en) Vehicular air conditioning device
JP2000272335A (en) Air conditioner for vehicle
JP2011020478A (en) Air conditioner for vehicle
JP2004114735A (en) Air-conditioner for vehicle
JP7338175B2 (en) vehicle air conditioner
JP2000280733A (en) Automobile air conditioner
JP3824824B2 (en) Air conditioner for vehicles
JP4251062B2 (en) Air conditioner for hybrid vehicles
JP4482503B2 (en) Control device
JP2003211953A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140813

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees