JP2002079538A - Method for producing metal-clad laminated plate - Google Patents

Method for producing metal-clad laminated plate

Info

Publication number
JP2002079538A
JP2002079538A JP2000273041A JP2000273041A JP2002079538A JP 2002079538 A JP2002079538 A JP 2002079538A JP 2000273041 A JP2000273041 A JP 2000273041A JP 2000273041 A JP2000273041 A JP 2000273041A JP 2002079538 A JP2002079538 A JP 2002079538A
Authority
JP
Japan
Prior art keywords
metal
pressure
clad laminate
cooling
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000273041A
Other languages
Japanese (ja)
Inventor
Noriyasu Oto
則康 大戸
Tsutomu Ichiki
勉 一木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000273041A priority Critical patent/JP2002079538A/en
Publication of JP2002079538A publication Critical patent/JP2002079538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a metal-clad laminated plate improved in dimensional change ratio in the method in which metal foil is molded by being energized to be resistance-heated. SOLUTION: In the method, a body 4, in which laminates 5 in which the lengthy metal foil 1 is folded repeatedly and strung, and a prepreg body 2 is placed between the parts of the folded foil 1 and molding plates 3 in which insulating coats are applied on the surfaces of aluminum plates are arranged alternately, is pressed, and the laminates 5 are resistance-heated by energizing the metal foil 1 and press-molded. The pressure is released for 5-20 min before cooling is started, and then the body 4 is cooled by increasing the pressure to be 1.1-1.3 times as high as the molding pressure during heating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プリント配線板に
利用される金属張り積層板の製造方法に関し、具体的に
は、内層用回路基板を配したプリプレグ体を金属箔間に
配置した積層体と、アルミニウム板の表面に絶縁被覆を
形成した成形用プレートとを交互に配置して形成された
被圧体をプレスすると共に、上記金属箔に給電して抵抗
加熱によって上記積層体を加熱、加圧成形をする金属張
り積層板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a metal-clad laminate used for a printed wiring board, and more specifically, to a laminate in which a prepreg body having an inner-layer circuit board is arranged between metal foils. And a pressing plate formed by alternately arranging a forming plate having an insulating coating formed on the surface of an aluminum plate, and pressing the pressurized body, supplying power to the metal foil to heat and heat the laminate by resistance heating. The present invention relates to a method for producing a metal-clad laminate subjected to pressure forming.

【0002】[0002]

【従来の技術】プリント配線板に利用される金属張り積
層板は、プリプレグ又は内層用回路基板と組合わせたプ
リプレグからなるプリプレグ体の外層に金属箔を重ねた
積層体と、成形用プレートとを交互に配置して形成され
た被圧体をプレスして、加熱加圧する成形法が採用され
ている。この成形法として、プレスの熱盤に被圧体を挟
んで熱盤からの伝熱により加熱しながら加圧する方法
や、特表平8−506289号公報に記載されたよう
な、被圧体をプレスした状態で金属箔に給電して、抵抗
加熱により加熱しながら加圧する方法が行われている。
なお、抵抗加熱は、電気抵抗を有する導電体に電流を流
し、ジュール効果で発生する熱により加熱する方法であ
る。
2. Description of the Related Art A metal-clad laminate used for a printed wiring board is composed of a prepreg or a prepreg composed of a prepreg combined with an inner-layer circuit board and a laminate in which a metal foil is laminated on an outer layer and a molding plate. A molding method in which pressurized bodies formed alternately are pressed and heated and pressed is employed. Examples of the molding method include a method in which a pressurized body is sandwiched between hot plates of a press and pressure is applied while heating by heat transfer from the hot platen, or a method in which a pressurized body as described in JP-A-8-506289 is used. A method has been used in which power is supplied to a metal foil in a pressed state, and pressure is applied while heating by resistance heating.
Note that resistance heating is a method in which a current is applied to a conductor having electric resistance and heating is performed using heat generated by the Joule effect.

【0003】この抵抗加熱により加熱しながら加圧する
方法としては、例えば、図4に示すように、金属箔21
として長尺のものを用い、この金属箔21を複数重ね折
り返し屈曲させると共に、屈曲して対向する金属箔21
間にプリプレグ22、及び成形用プレート23を交互に
複数配置して被圧体24を作製する。次いで、上記方法
は、この被圧体24をプレスの加圧板11、11の間に
挟んで加圧した状態で金属箔21に給電すると、抵抗加
熱によりプリプレグ22が加熱される。なお、図中の符
号12は真空槽、符号13は真空ポンプを示す。
As a method of applying pressure while heating by resistance heating, for example, as shown in FIG.
A long metal foil is used as the metal foil 21 and a plurality of the metal foils 21 are folded back and bent, and the metal foils 21 which are bent and face each other are bent.
A plurality of prepregs 22 and molding plates 23 are alternately arranged therebetween to produce a pressure-receiving body 24. Next, in the above-described method, when power is supplied to the metal foil 21 in a state where the pressed body 24 is pressed between the pressurizing plates 11 of the press, the prepreg 22 is heated by resistance heating. In addition, the code | symbol 12 in a figure shows a vacuum tank, and the code | symbol 13 shows a vacuum pump.

【0004】上記抵抗加熱による成形法は、金属箔を熱
源として直接に加熱することができるため、一つの被圧
体に多数の金属張り積層板を成形しても、それぞれを均
一に加熱することができるので、品質のばらつきの少な
い金属張り積層板を得ることができるものである。
[0004] In the above-described forming method by resistance heating, since a metal foil can be directly heated using a heat source, even if a large number of metal-clad laminates are formed on one pressurized body, they must be uniformly heated. Therefore, it is possible to obtain a metal-clad laminate having little variation in quality.

【0005】[0005]

【発明が解決しようとする課題】上記抵抗加熱による方
法では、成形用プレートとしてアルミニウム板の表面に
絶縁被覆を施したものが汎用されている。上記アルミニ
ウム板の成形用プレートを用いて成形した金属張り積層
板は、寸法変化率が大きくなる傾向がある。
In the above-mentioned method using resistance heating, a plate formed by applying an insulating coating to the surface of an aluminum plate is widely used as a forming plate. A metal-clad laminate formed using the above-described aluminum plate forming plate tends to have a large dimensional change rate.

【0006】一方、近年の電子機器・電気機器の使用拡
大に伴って、プリント配線板として内層用回路基板を内
包した多層のプリント配線基板が多用されている。そし
て、この多層のプリント配線基板は、内層及び外層の回
路幅や回路間がより狭く、高密度化が採用されている。
多層のプリント配線基板に利用される多層の金属張り積
層板にあっては、内層用回路と外層用回路の位置決め精
度の向上が求められており、そのために、寸法変化率が
良好なものが要望されている。
On the other hand, with the recent expansion of the use of electronic equipment and electric equipment, multilayer printed wiring boards including an inner circuit board are frequently used as printed wiring boards. In this multilayer printed wiring board, the circuit width and the circuit between the inner layer and the outer layer are narrower, and high density is adopted.
For multilayer metal-clad laminates used for multilayer printed wiring boards, it is required to improve the positioning accuracy of the inner layer circuit and the outer layer circuit, and therefore, those with a good dimensional change rate are required. Have been.

【0007】本発明は上記の事情に鑑みてなされたもの
で、その目的とするところは、金属箔に給電して抵抗加
熱によって成形をする金属張り積層板の製造方法にあっ
て、寸法変化率をより良好とする金属張り積層板の製造
方法の製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a metal-clad laminate in which power is supplied to a metal foil and formed by resistance heating. It is an object of the present invention to provide a method for manufacturing a metal-clad laminate, which makes the method more favorable.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記目的を
達成するため鋭意研究を重ねた結果、アルミニウム板の
表面に絶縁被覆を施した成形用プレートは、成形される
金属張り積層板と比較すると、その線膨張係数が大きく
て加熱及び冷却の際に成形用プレートが大きく伸縮する
ものであり、この影響によって金属張り積層板の内部に
ストレスが蓄積され、このため寸法変化率が低下するこ
とを見出し、さらに研究を重ねた結果、成形中の圧力
を、冷却開始前の直前5〜20分間は開放し、その後、
加熱のときの圧力に対し1.1〜3倍の圧力を加圧して
冷却すると、金属張り積層板の寸法変化率が良好になる
ことを見出し、本発明の完成に至ったものである。
Means for Solving the Problems As a result of intensive studies conducted by the present inventor to achieve the above-mentioned object, a forming plate having an aluminum plate with an insulating coating on the surface is made of a metal-clad laminated plate. By comparison, the coefficient of linear expansion is large, and the plate for molding expands and contracts greatly during heating and cooling. Due to this effect, stress is accumulated inside the metal-clad laminate, and the dimensional change rate is reduced. As a result of further study, the pressure during molding was released for 5 to 20 minutes immediately before the start of cooling, and thereafter,
It has been found that when a pressure 1.1 to 1 to 3 times the pressure at the time of heating is applied and cooled, the dimensional change rate of the metal-clad laminate is improved, and the present invention has been completed.

【0009】請求項1記載の金属張り積層板の製造方法
は、長尺の金属箔が複数重に折り返して連なっており、
この金属箔の間にプリプレグ体を有して形成した積層体
と、アルミニウム板の表面に絶縁被覆を施した成形用プ
レートとを交互に配置して形成された被圧体をプレスす
ると共に、上記金属箔に給電して抵抗加熱によって上記
積層体を加熱、加圧成形する金属張り積層板の製造方法
において、上記圧力を、冷却を開始する前5〜20分間
開放し、その後、加熱のときの成形圧力に対し1.1〜
3倍の圧力を加圧して被圧体を冷却することを特徴とす
る。上記製造方法は、冷却を開始する前5〜20分間開
放することによって、加熱及び加圧によって生じたスト
レスを成形の途中で開放するので、金属張り積層板の内
部にストレスが蓄積されることを防止できるものであ
る。
In the method for manufacturing a metal-clad laminate according to the first aspect, a long metal foil is folded and folded in multiple layers.
Pressing a pressure-formed body formed by alternately arranging a laminate formed with a prepreg body between the metal foils and a forming plate having an aluminum plate coated with an insulating coating, In the method for producing a metal-clad laminate in which the laminate is heated by resistance heating by supplying power to a metal foil and pressure-molded, the pressure is released for 5 to 20 minutes before starting cooling, and thereafter, when heating is performed. 1.1 to molding pressure
It is characterized in that the pressure object is cooled by applying three times the pressure. The above manufacturing method releases the stress generated by heating and pressurization during molding by releasing for 5 to 20 minutes before starting the cooling, so that the stress is accumulated inside the metal-clad laminate. It can be prevented.

【0010】請求項2記載の金属張り積層板の製造方法
は、請求項1記載の金属張り積層板の製造方法におい
て、上記積層体の冷却温度が、冷却開始より金属張り積
層板のガラス転移温度以下に達するまでは0.5℃/分
以上1℃/分以下の冷却速度であることを特徴とする。
上記によって、成形用プレートの収縮によるストレスを
金属張り積層板が受けることを、抑えることができるも
のである。
According to a second aspect of the present invention, in the method for manufacturing a metal-clad laminate according to the first aspect, the cooling temperature of the laminate is set such that a glass transition temperature of the metal-clad laminate from the start of cooling. The cooling rate is not less than 0.5 ° C./min and not more than 1 ° C./min.
As described above, it is possible to prevent the metal-clad laminate from receiving stress due to shrinkage of the forming plate.

【0011】なお、上記ガラス転移温度は、示差走査熱
量計(DSC)を用いて20℃/分の割合で昇温させて
発熱量を測定し、この発熱曲線(吸温)から求めたもの
である。
The above-mentioned glass transition temperature is determined from a heat generation curve (heat absorption) by measuring the heat generation by raising the temperature at a rate of 20 ° C./min using a differential scanning calorimeter (DSC). is there.

【0012】請求項3記載の金属張り積層板の製造方法
は、請求項1又は請求項2記載の金属張り積層板の製造
方法において、上記成形用プレートは、その線膨張係数
が19〜25×10-6cm/cm・℃であることを特徴
とする。
According to a third aspect of the present invention, in the method for manufacturing a metal-clad laminate according to the first or second aspect, the molding plate has a coefficient of linear expansion of 19 to 25 ×. It is characterized by being 10 −6 cm / cm · ° C.

【0013】なお、本発明でいう線膨張係数は、温度が
20〜100℃での線膨張係数である。
[0013] The coefficient of linear expansion referred to in the present invention is a coefficient of linear expansion at a temperature of 20 to 100 ° C.

【0014】請求項4記載の金属張り積層板の製造方法
は、請求項1乃至請求項3いずれか記載の金属張り積層
板の製造方法において、上記プリプレグ体は、表面に回
路を形成した内層用回路基板の外側にプリプレグを配し
たものであることを特徴とする。上記によって、寸法変
化率が良好で、内層用回路と外層用回路の位置決め精度
が向上した多層の金属張り積層板を成形することができ
るものである。
According to a fourth aspect of the present invention, in the method for manufacturing a metal-clad laminate according to any one of the first to third aspects, the prepreg body is used for an inner layer having a circuit formed on a surface thereof. The prepreg is provided outside the circuit board. According to the above, it is possible to form a multilayer metal-clad laminate having a good dimensional change rate and improved positioning accuracy of the inner layer circuit and the outer layer circuit.

【0015】[0015]

【発明の実施の形態】図1〜3は、本発明に係る実施の
形態の一例を示し、図1は金属張り積層板の製造方法を
説明する説明図、図2は温度、圧力の状態を示すグラ
フ、図3(a)は多層の金属張り積層板を成形する前の
組み合わせ状態を示す断面図、(b)は多層の金属張り
積層板の断面図である。
1 to 3 show an embodiment of the present invention. FIG. 1 is an explanatory view for explaining a method for manufacturing a metal-clad laminate, and FIG. FIG. 3A is a cross-sectional view showing a combined state before forming a multilayer metal-clad laminate, and FIG. 3B is a cross-sectional view of the multilayer metal-clad laminate.

【0016】本発明の対象となる金属張り積層板は、長
尺の複数重に折り返して連なった金属箔1に給電して、
抵抗加熱により加熱しながら成形されるものである。上
記金属張り積層板は、プリプレグ体2とその外層に金属
箔1を重ねた積層体5を加熱して形成される。上記金属
張り積層板の組み合わせ構成は、図3(a)に示す如
く、表面に回路8を形成した内層用回路基板7の外側に
プリプレグ9を配置してプリプレグ体2とし、さらにそ
の両側外層に金属箔1を配置して積層体5とする。上記
プリプレグ9は、ガラス織物あるいは不織物等の基材に
エポキシ樹脂等の熱硬化性樹脂を含浸させ、この樹脂を
Bステージ状態に半硬化させたものである。また、上記
金属箔1は、銅箔等が挙げられる。上記積層体5は、加
熱及び加圧されると、プリプレグ8の樹脂が硬化して絶
縁層9aを形成して、多層の金属張り積層板となる。
The metal-clad laminate, which is the object of the present invention, supplies power to a long and continuous metal foil 1 that is folded back into multiple layers.
It is molded while heating by resistance heating. The metal-clad laminate is formed by heating a prepreg body 2 and a laminate 5 in which a metal foil 1 is laminated on an outer layer thereof. As shown in FIG. 3 (a), the combination structure of the metal-clad laminate is such that a prepreg 9 is arranged outside a circuit board 7 for an inner layer having a circuit 8 formed on the surface to form a prepreg body 2, and further, an outer layer on both sides thereof is formed. The metal foil 1 is arranged to form a laminate 5. The prepreg 9 is obtained by impregnating a base material such as a glass fabric or non-woven fabric with a thermosetting resin such as an epoxy resin, and semi-curing the resin in a B-stage state. The metal foil 1 is, for example, a copper foil. When the laminate 5 is heated and pressurized, the resin of the prepreg 8 is cured to form an insulating layer 9a, and becomes a multilayer metal-clad laminate.

【0017】上記金属張り積層板の製造方法は、一対の
長尺の金属箔1、1を用い、この金属箔1、1にプリプ
レグ体2を挟んで一組の積層体5を形成すると共に金属
箔1、1を複数重に折り返しながら、積層体4と成形用
プレート3を交互に配置して被圧体4を作製する。次い
で、上記製造方法は、この被圧体4を真空槽12に投入
し、プレスの加圧板11、11の間にセットすると共
に、金属箔1にプレスの加圧板11、11を介して電源
を接続する。なお、このとき加圧板11と被圧体4の間
には、必要に応じて、アラミド繊維等のクッション材や
熱伝導調整材を挟むようにしてもよい。
In the method of manufacturing the metal-clad laminate, a pair of long metal foils 1 and 1 are used. A pair of laminates 5 are formed on the metal foils 1 and 1 with a prepreg body 2 interposed therebetween. The laminated body 4 and the forming plate 3 are alternately arranged while folding the foils 1 and 1 into a plurality of layers, thereby producing the pressure-receiving body 4. Next, in the above-described manufacturing method, the pressure-receiving body 4 is put into the vacuum chamber 12 and set between the pressurizing plates 11, 11, and the power is supplied to the metal foil 1 via the pressurizing plates 11, 11. Connecting. At this time, a cushion material such as aramid fiber or a heat conduction adjusting material may be interposed between the pressing plate 11 and the pressure-receiving body 4 as necessary.

【0018】上記製造方法に用いられる成形用プレート
3は、アルミニウム板の表面に絶縁被覆を施した電気絶
縁性の板である。上記成形用プレート3は、その線膨張
係数が19〜25×10-6cm/cm・℃の範囲である
ものを用いることができる。例えば、熱盤からの伝熱に
より加熱する製法で多用されているSUS製の成形用プ
レートは、その線膨張係数が15〜18×10-6cm/
cm・℃程度であり、上記アルミニウム板の表面に絶縁
被覆を施した成形用プレート3の線膨張係数は、SUS
製の成形用プレートの線膨張係数に比較して大きいもの
である。
The molding plate 3 used in the above-described manufacturing method is an electrically insulating plate having an aluminum plate coated with an insulating coating on the surface. As the molding plate 3, a plate having a coefficient of linear expansion in the range of 19 to 25 × 10 −6 cm / cm · ° C. can be used. For example, a SUS forming plate that is frequently used in a method of heating by heat transfer from a hot plate has a linear expansion coefficient of 15 to 18 × 10 −6 cm /.
cm · ° C., and the linear expansion coefficient of the forming plate 3 having the surface of the aluminum plate coated with an insulating material is SUS
It is larger than the linear expansion coefficient of a molding plate made of steel.

【0019】上記製造方法は、上記被圧体4を加圧板1
1、11で加圧する。この際、加圧される圧力は、接触
圧程度が好ましい。次に、上記製造方法は、真空ポンプ
13を稼働し、真空槽12の雰囲気圧を5000〜40
000Pa程度の真空状態とした後、金属箔1に給電し
て抵抗加熱によって上記積層体5を加熱する。
In the above manufacturing method, the pressure-receiving body 4 is
Pressure is applied at 1 and 11. At this time, the pressure to be applied is preferably about the contact pressure. Next, in the above manufacturing method, the vacuum pump 13 is operated, and the atmospheric pressure of the vacuum chamber 12 is set to 5,000 to 40.
After a vacuum state of about 000 Pa is reached, power is supplied to the metal foil 1 to heat the laminate 5 by resistance heating.

【0020】上記加熱の際における温度及び圧力等の成
形条件の一例を、図2に基づいて説明する。図2(a)
は、時間の経過と積層体の温度カーブT、(b)は圧力
カーブPを示す。上記温度カーブTは、金属箔1を給電
した時点(t0)から上昇し、時間(t1)でプリプレ
グ9中の樹脂が溶融する温度(符号A)を経て所定の成
形温度(符号B)に達する。上記圧力カーブPは、加圧
開始時点から積層体5の温度がプリプレグ中の樹脂が溶
融をする温度(符号A)に達するまでの間は接触圧(符
号P1)で保持し、その後所定の成形圧力(符号P2)
に加圧する。上記成形圧力(P2)は、1〜3MPa程
度が汎用される。また、真空槽12の雰囲気圧は、加圧
開始時点から積層体5の温度がプリプレグ中の樹脂が溶
融をする温度(符号A)に達するまでの間は上記真空状
態で保持し、その後常圧に戻す方法が例示される。
An example of molding conditions such as temperature and pressure during the above heating will be described with reference to FIG. FIG. 2 (a)
Indicates a lapse of time and a temperature curve T of the laminate, and (b) indicates a pressure curve P. The temperature curve T rises from the point of time (t0) when the metal foil 1 is supplied, and reaches a predetermined molding temperature (symbol B) through a temperature (symbol A) at which the resin in the prepreg 9 melts at time (t1). . The pressure curve P is maintained at a contact pressure (symbol P1) until the temperature of the laminate 5 reaches a temperature (symbol A) at which the resin in the prepreg melts from the start of pressurization, and thereafter, a predetermined molding is performed. Pressure (sign P2)
Press. The molding pressure (P2) is generally about 1 to 3 MPa. The atmospheric pressure in the vacuum chamber 12 is maintained at the above-mentioned vacuum state from the start of pressurization until the temperature of the laminated body 5 reaches the temperature (symbol A) at which the resin in the prepreg melts. Is returned.

【0021】本発明の製造方法は、加熱が終了して冷却
する直前、及び、冷却のときに以下の方法で行うもので
ある。上記製造方法は、上記加熱を終了した被圧体4の
圧力を、冷却を開始する前5〜20分間(図中t2から
t3の間)開放し、その後、上記圧力は、加熱のときの
成形圧力(P2)に対し1.1〜3倍の圧力(符号P
3)を加圧して上記被圧体4を冷却するものである。
The production method of the present invention is carried out by the following method immediately after cooling after heating and before cooling. In the manufacturing method, the pressure of the pressurized body 4 after the completion of the heating is released for 5 to 20 minutes (between t2 and t3 in the figure) before the start of the cooling, and thereafter, the pressure is reduced during the heating. 1.1 to 3 times the pressure of pressure (P2) (symbol P
3) is pressed to cool the pressure-receiving body 4.

【0022】上記製造方法は、圧力が冷却を開始する前
に5〜20分間開放されることによって、加熱及び加圧
によって積層体5の内部に生じるストレスを成形の途中
で開放するので、ストレスが蓄積されることを防止でき
るものである。その結果、上記製造方法は、寸法変化率
が良好な金属張り積層板を得ることができるものであ
る。なかでも、多層の金属張り積層板は、内層用回路と
外層用回路の位置決め精度が向上するものである。上記
圧力の開放時間が、5分未満では寸法変化率が向上する
効果が不十分であり、上記圧力の開放時間が、20分を
超えると金属張り積層板の表面粗度が大きくなる恐れが
あると共に、冷却開始が遅れるため生産性の低下を招く
恐れがある。
In the above manufacturing method, since the stress generated inside the laminate 5 due to heating and pressurization is released during molding by releasing the pressure for 5 to 20 minutes before the cooling is started, the stress is reduced. It can prevent accumulation. As a result, the above manufacturing method can obtain a metal-clad laminate having a good dimensional change rate. Above all, the multilayer metal-clad laminate improves the positioning accuracy of the inner layer circuit and the outer layer circuit. When the pressure release time is less than 5 minutes, the effect of improving the dimensional change rate is insufficient, and when the pressure release time exceeds 20 minutes, the surface roughness of the metal-clad laminate may increase. At the same time, since the start of cooling is delayed, productivity may be reduced.

【0023】上記製造方法は、冷却の際に、圧力を加熱
のときの成形圧力(P2)に対し1.1〜3倍の圧力
(P3)に加圧することによって、寸法変化率が良好な
金属張り積層板を得ることができるものである。なかで
も、多層の金属張り積層板は、内層用回路と外層用回路
の位置決め精度が向上するものである。上記圧力が加熱
のときの成形圧力(P2)に対し1.1倍未満であると
寸法変化率が向上する効果が不十分であり、上記圧力が
加熱のときの成形圧力(P2)に対し3倍を超えると成
形用プレートが変形を生じる等の支障を起こす恐れがあ
る。
In the above manufacturing method, a metal having a good dimensional change rate is obtained by applying a pressure (P3) which is 1.1 to 3 times the molding pressure (P2) at the time of cooling during cooling. A laminated board can be obtained. Above all, the multilayer metal-clad laminate improves the positioning accuracy of the inner layer circuit and the outer layer circuit. If the pressure is less than 1.1 times the molding pressure (P2) at the time of heating, the effect of improving the dimensional change rate is insufficient, and the pressure is 3 times the molding pressure (P2) at the time of heating. If the number exceeds twice, there is a possibility that troubles such as deformation of the molding plate may occur.

【0024】また、上記製造方法は、温度カーブTが、
冷却開始より金属張り積層板のガラス転移温度(図中符
号C)以下に達するまでは0.5℃/分以上1℃/分以
下の冷却速度で下降させることが好ましい。上記温度カ
ーブTが1℃/分を超える冷却速度であると、金属張り
積層板の反りが大きくなる恐れがあり、0.5℃/分未
満の冷却速度であると冷却に時間を要して生産性の低下
を招く恐れがある。上記温度カーブTが金属張り積層板
のガラス転移温度(図中符号C)を超えたところで、1
℃/分を超える冷却速度で急冷する。
In the above manufacturing method, the temperature curve T
It is preferable to lower at a cooling rate of 0.5 ° C./min or more and 1 ° C./min or less from the start of cooling until the temperature of the metal-clad laminate reaches the glass transition temperature (C in the figure) or lower. If the temperature curve T is a cooling rate exceeding 1 ° C./min, the warpage of the metal-clad laminate may increase. If the cooling rate is less than 0.5 ° C./min, it takes time to cool. There is a risk of lowering productivity. When the temperature curve T exceeds the glass transition temperature (C in the figure) of the metal-clad laminate, 1
Quench at a cooling rate above ° C / min.

【0025】なお、上記被圧体4の冷却は、加圧板1
1、11に冷却水を通して行ったり、冷却専用室に上記
被圧体4を搬送して周囲に冷風を送風したり、放冷を行
ったり等、各種の冷却方法を採用することができる。
The pressurized body 4 is cooled by the pressing plate 1
Various cooling methods can be adopted, such as cooling water passing through the cooling chambers 1 and 11, cooling air to be conveyed to the dedicated cooling chamber and blowing cool air around, and cooling.

【0026】このようにして、上記製造方法は、金属箔
1に給電して抵抗加熱によって上記積層体5を加熱し、
プリプレグ9中の樹脂が硬化して絶縁層9aを形成した
多層の金属張り積層板を得ることができる。上記金属張
り積層板は、寸法変化率が良好なものである。
As described above, according to the manufacturing method, the laminate 5 is heated by resistance heating by supplying power to the metal foil 1,
A multilayer metal-clad laminate in which the resin in the prepreg 9 is cured to form the insulating layer 9a can be obtained. The metal-clad laminate has a good dimensional change rate.

【0027】なお、上記製造方法では、金属箔1が2枚
の長尺ものを一対として用いたが、1枚の長尺の金属箔
を用い、それを折り返してプリプレグ体を金属箔の間に
挟んで積層体としたものでもよい。また、プリプレグ体
2は、内層用回路基板7がプリプレグを介して複数重ね
たものでも、プリプレグ単独のものでもよい。なかで
も、内層用回路基板7の回路8が複雑なものを用いた多
層の金属張り積層板は、本発明の効果が顕著に発現され
る。
In the above-mentioned manufacturing method, two long metal foils 1 are used as a pair. However, one long metal foil is used, and the prepreg is folded between the metal foils. It may be a laminated body sandwiched therebetween. In addition, the prepreg body 2 may be one in which a plurality of inner layer circuit boards 7 are stacked via a prepreg, or one in which the prepreg is alone. In particular, a multilayer metal-clad laminate using a complicated circuit 8 of the inner layer circuit board 7 remarkably exerts the effects of the present invention.

【0028】[0028]

【実施例】本発明の効果を確認するため、以下の実施例
及び比較例を行い、多層の金属張り積層板を作製した。
EXAMPLES In order to confirm the effects of the present invention, the following Examples and Comparative Examples were carried out to produce multilayer metal-clad laminates.

【0029】(実施例1)以下のようにして、被圧体を
形成した。ガラス織物にエポキシ樹脂を含浸させた厚さ
0.1mm、樹脂量が52重量%のプリプレグ(松下電
工株式会社製:R1661)を使用した。また、表面に
回路を形成した内層用回路基板は、銅張り積層板(松下
電工株式会社製、R1766)の表面の銅箔(厚さ35
μm)をエッチングして、両面にエッチング率50%の
回路と位置合わせ穴を形成した厚さ0.1mmの基板を
使用した。プリプレグ体は、上記内層用回路基板の両側
に上記プリプレグを各1枚配して作製した。なお、上記
プリプレグは、ガラス転移温度が130℃であり、溶融
開始温度が90℃であった。また、成形用プレートは、
アルミニウム板の表面に絶縁被覆を形成した厚さ1mm
の板を用いた。この成形用プレートの線膨張係数は、2
1×10-6cm/cm・℃であった。
Example 1 A pressure-receiving member was formed as follows. A prepreg (R1661 manufactured by Matsushita Electric Works, Ltd.) in which glass fabric was impregnated with an epoxy resin and had a thickness of 0.1 mm and a resin amount of 52% by weight was used. The circuit board for the inner layer having a circuit formed on the surface is a copper foil (thickness of 35) on the surface of a copper-clad laminate (R1766, manufactured by Matsushita Electric Works, Ltd.).
μm) was etched, and a 0.1 mm-thick substrate having a circuit with an etching rate of 50% and alignment holes formed on both surfaces was used. The prepreg body was prepared by arranging one prepreg on each side of the inner layer circuit board. The prepreg had a glass transition temperature of 130 ° C. and a melting start temperature of 90 ° C. Also, the molding plate is
1mm thick with insulating coating formed on the surface of aluminum plate
Was used. The linear expansion coefficient of this molding plate is 2
It was 1 × 10 −6 cm / cm · ° C.

【0030】金属箔は、厚み18μmの長尺の銅箔を一
対用いた。そして、上記一対の銅箔の間に、上記プリプ
レグ体を挟んで積層体を形成すると共に、上記一対の銅
箔を複数重ね折り返し屈曲させながら、積層体と成形用
プレートを交互に配置して、50組の積層体を有するブ
ロック体を作製した。なお、このとき上から25組目の
積層体に熱電対を設置し、成形の際の温度を確認するこ
ととした。次に、図1に示すように、上記被圧体を真空
槽に投入し、プレスの加圧板の間にセットすると共に、
金属箔にプレスの加圧板を介して電源を接続した。
As the metal foil, a pair of long copper foils having a thickness of 18 μm was used. And, between the pair of copper foils, while forming a laminate sandwiching the prepreg body, while stacking and bending a plurality of the pair of copper foils, the laminate and the forming plate are alternately arranged, A block having 50 sets of laminates was prepared. At this time, a thermocouple was set on the 25th set of stacked bodies from the top, and the temperature at the time of molding was checked. Next, as shown in FIG. 1, the pressure-receiving body is put into a vacuum chamber, and is set between pressurizing plates of a press.
A power supply was connected to the metal foil via a pressing plate of a press.

【0031】上記真空槽に投入した被圧体は、圧力を先
ず接触圧とし、真空ポンプを稼働して6650Paの真
空状態とした後、銅箔に給電した。成形の温度が90℃
に達したところで、圧力を1MPaに加圧し、また、雰
囲気圧を真空状態から常圧に解除した。成形温度は最高
温度を185℃とし、加熱開始から60分加熱して成形
をした。
The pressure of the object to be charged into the vacuum chamber was first set to a contact pressure, and a vacuum pump was operated to make a vacuum state of 6650 Pa. Then, power was supplied to the copper foil. Molding temperature is 90 ° C
, The pressure was increased to 1 MPa, and the atmospheric pressure was released from the vacuum state to normal pressure. The maximum molding temperature was 185 ° C., and the molding was performed by heating for 60 minutes from the start of heating.

【0032】次に給電を停止した後に、圧力を5分間無
加圧状態に開放し、その後、圧力を1.1MPaに加圧
した状態で冷却した。このとき加圧板に通す冷却水を調
整し、積層体の温度が130℃になるまで、冷却速度を
1℃/分となるように徐々に冷却し、その後急冷して、
多層の金属張り積層板を得た。
Next, after the power supply was stopped, the pressure was released to a non-pressurized state for 5 minutes, and then cooling was performed while the pressure was increased to 1.1 MPa. At this time, the cooling water passed through the pressure plate was adjusted, and the cooling rate was gradually decreased to 1 ° C./min until the temperature of the laminate reached 130 ° C., followed by rapid cooling.
A multilayer metal-clad laminate was obtained.

【0033】(実施例2)給電を停止した後に、圧力を
20分間無加圧状態に開放した以外は、実施例1と同様
にして多層の金属張り積層板を得た。
(Example 2) A multilayer metal-clad laminate was obtained in the same manner as in Example 1, except that after the power supply was stopped, the pressure was released to a non-pressurized state for 20 minutes.

【0034】(実施例3)冷却の際に圧力を3MPaに
加圧した以外は、実施例1と同様にして多層の金属張り
積層板を得た。
Example 3 A multilayer metal-clad laminate was obtained in the same manner as in Example 1 except that the pressure was increased to 3 MPa during cooling.

【0035】(実施例4)給電を停止した後に、圧力を
20分間無加圧状態に開放し、その後、圧力を3MPa
に加圧した状態で冷却した以外は実施例1と同様にして
多層の金属張り積層板を得た。
Example 4 After the power supply was stopped, the pressure was released to a non-pressurized state for 20 minutes, and then the pressure was increased to 3 MPa.
A multilayer metal-clad laminate was obtained in the same manner as in Example 1 except that cooling was performed in a state where pressure was applied.

【0036】(実施例5)冷却の際に積層体の温度が1
30℃になるまで、冷却速度を0.5℃/分となるよう
にした以外は実施例1と同様にして多層の金属張り積層
板を得た。
Example 5 The temperature of the laminate during cooling was 1
A multilayer metal-clad laminate was obtained in the same manner as in Example 1, except that the cooling rate was 0.5 ° C./min until the temperature reached 30 ° C.

【0037】(実施例6)冷却の際に圧力を3MPaに
加圧した以外は、実施例5と同様にして多層の金属張り
積層板を得た。
Example 6 A multilayer metal-clad laminate was obtained in the same manner as in Example 5, except that the pressure was increased to 3 MPa during cooling.

【0038】(実施例7)成形用プレートに、線膨張係
数が、23×10-6cm/cm・℃のアルミニウム板の
表面に絶縁被覆を形成した厚さ1mmの板を用いた以外
は実施例1と同様にして多層の金属張り積層板を得た。
Example 7 The same procedure was carried out except that a 1 mm-thick plate in which an insulating coating was formed on the surface of an aluminum plate having a linear expansion coefficient of 23 × 10 −6 cm / cm · ° C. was used as the molding plate. A multilayer metal-clad laminate was obtained in the same manner as in Example 1.

【0039】(実施例8)冷却の際に圧力を3MPaに
加圧した以外は、実施例7と同様にして多層の金属張り
積層板を得た。
Example 8 A multilayer metal-clad laminate was obtained in the same manner as in Example 7, except that the pressure was increased to 3 MPa during cooling.

【0040】(実施例9)冷却の際に積層体の温度が1
30℃になるまで、冷却速度を2℃/分となるようにし
た以外は実施例1と同様にして多層の金属張り積層板を
得た。
(Embodiment 9) During the cooling, the temperature of the laminate was 1
A multilayer metal-clad laminate was obtained in the same manner as in Example 1 except that the cooling rate was 2 ° C./min until the temperature reached 30 ° C.

【0041】(実施例10)成形用プレートに、線膨張
係数が、15×10-6cm/cm・℃の絶縁処理を施し
たSUS製の厚さ1mmの板を用いた以外は実施例1と
同様にして多層の金属張り積層板を得た。
Example 10 Example 1 was repeated except that a 1 mm thick SUS plate insulated with a linear expansion coefficient of 15 × 10 −6 cm / cm · ° C. was used as the molding plate. In the same manner as in the above, a multilayer metal-clad laminate was obtained.

【0042】(比較例1)給電を停止した後に、圧力を
3分間無加圧状態に開放した以外は、実施例1と同様に
して多層の金属張り積層板を得た。
(Comparative Example 1) A multilayer metal-clad laminate was obtained in the same manner as in Example 1 except that after the power supply was stopped, the pressure was released to a non-pressurized state for 3 minutes.

【0043】(比較例2)給電を停止した後に、圧力を
30分間無加圧状態に開放した以外は、実施例1と同様
にして多層の金属張り積層板を得た。
(Comparative Example 2) A multilayer metal-clad laminate was obtained in the same manner as in Example 1 except that after the power supply was stopped, the pressure was released to a non-pressurized state for 30 minutes.

【0044】(比較例3)冷却の際に圧力を0.5MP
aに加圧した以外は、実施例1と同様にして多層の金属
張り積層板を得た。
(Comparative Example 3) During cooling, the pressure was set to 0.5MPa.
A multilayer metal-clad laminate was obtained in the same manner as in Example 1 except that the pressure was changed to a.

【0045】(比較例4)冷却の際に圧力を4MPaに
加圧した以外は、実施例1と同様にして多層の金属張り
積層板を成形した。成形後に成形用プレートが変形する
異常が発生していた。
Comparative Example 4 A multilayer metal-clad laminate was formed in the same manner as in Example 1 except that the pressure was increased to 4 MPa during cooling. An abnormality in which the molding plate was deformed after molding occurred.

【0046】(比較例5)成形用プレートに、線膨張係
数が、23×10-6cm/cm・℃のアルミニウム板の
表面に絶縁被覆を形成した厚さ1mmの板を用いた。ま
た、給電を停止した後に、圧力を1分間無加圧状態に開
放し、その後、圧力を1MPaに加圧した状態で冷却し
た。冷却の際に積層体の温度が130℃になるまで、冷
却速度を1.5℃/分となるようにした。これ以外は実
施例1と同様にして多層の金属張り積層板を得た。
(Comparative Example 5) As a molding plate, a plate having a thickness of 1 mm in which an insulating coating was formed on the surface of an aluminum plate having a linear expansion coefficient of 23 × 10 -6 cm / cm · ° C was used. Further, after the power supply was stopped, the pressure was released to a non-pressurized state for one minute, and thereafter, cooling was performed while the pressure was increased to 1 MPa. The cooling rate was set to 1.5 ° C./min until the temperature of the laminate reached 130 ° C. during cooling. Otherwise in the same manner as in Example 1, a multilayer metal-clad laminate was obtained.

【0047】(寸法変化率の評価)実施例及び比較例で
得た金属張り積層板の寸法変化率としてパターン位置精
度を測定した。上記パターン位置精度は、基準点(基準
ガイド穴)とパターン位置との距離を10ヵ所測定し、
設計値に対するずれを算出した。パターン位置のずれが
最大であったものを表1に示した。
(Evaluation of the dimensional change rate) The pattern position accuracy was measured as the dimensional change rate of the metal-clad laminates obtained in Examples and Comparative Examples. The pattern position accuracy is determined by measuring the distance between the reference point (reference guide hole) and the pattern position at 10 points.
The deviation from the design value was calculated. Table 1 shows the pattern pattern having the largest deviation.

【0048】(他の特性評価)実施例及び比較例で得た
金属張り積層板の特性として、JIS−C−6481に
準拠して測定して、表面粗度、反り、外観のしわ発生率
を評価した。表面粗度は、表面粗度計で銅箔の表面を斜
め方向に測定し、最大値(Rmax)を算出した。反り
は、全面エッチングして作製した試料を170℃1時間
加熱した後、反り量を測定した。外観のしわ発生率は、
1000ピースの銅箔表面を目視で観察し、しわ不良の
有無を検査して算出した。結果は表1に示すとおりであ
った。
(Evaluation of Other Characteristics) As the characteristics of the metal-clad laminates obtained in Examples and Comparative Examples, the surface roughness, warpage, and appearance wrinkle occurrence rate were measured according to JIS-C-6481. evaluated. The surface roughness was measured by obliquely measuring the surface of the copper foil with a surface roughness meter, and the maximum value (Rmax) was calculated. The warpage was measured by heating a sample prepared by etching the entire surface at 170 ° C. for 1 hour, and then measuring the amount of warpage. The appearance of wrinkles
The surface of 1,000 pieces of copper foil was visually observed, and the presence or absence of wrinkle defects was inspected and calculated. The results were as shown in Table 1.

【0049】[0049]

【表1】 [Table 1]

【0050】実施例はいずれもパターン位置精度が40
〜50μm以下と良好であったのに対し、比較例1〜
3、5はパターン位置精度が70〜100μmと大きい
ものがあった。また、比較例4は、成形用プレートが変
形する異常が発生した。また、130℃になるまで、冷
却速度を1℃/分とした実施例1は、実施例9と比較し
て反りが良好であった。また、成形用プレートに、線膨
張係数15×10-6cm/cm・℃のものを用いた実施
例10は、パターン位置精度は良好であったが、しわ不
良が発生してしまった。
In each of the embodiments, the pattern position accuracy is 40.
Comparative Examples 1 to 50 μm or less
Samples Nos. 3 and 5 had a large pattern position accuracy of 70 to 100 μm. In Comparative Example 4, an abnormality in which the molding plate was deformed occurred. Further, in Example 1 in which the cooling rate was 1 ° C./min until the temperature reached 130 ° C., the warpage was better than that in Example 9. In Example 10 using a molding plate having a linear expansion coefficient of 15 × 10 −6 cm / cm · ° C., the pattern position accuracy was good, but wrinkle defects occurred.

【0051】[0051]

【発明の効果】請求項1〜4記載の金属張り積層板の製
造方法は、寸法変化率が良好な金属張り積層板を得るこ
とができる。特に、多層の金属張り積層板にあっては、
寸法変化率が良好で、内層用回路と外層用回路の位置決
め精度が向上したものを得ることができる。
According to the method for manufacturing a metal-clad laminate according to claims 1 to 4, a metal-clad laminate having a good dimensional change rate can be obtained. In particular, for multi-layer metal-clad laminates,
It is possible to obtain a product having a good dimensional change rate and improved positioning accuracy between the inner layer circuit and the outer layer circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示し、金属張り積
層板の製造方法を説明する説明図である。
FIG. 1 is an explanatory view illustrating an example of an embodiment of the present invention and illustrating a method of manufacturing a metal-clad laminate.

【図2】本発明の時間の経過と温度、圧力の状態を示
し、(a)は温度カーブ、(b)は圧力の状態を示すグ
ラフである。
FIGS. 2A and 2B are graphs showing the lapse of time, temperature, and pressure according to the present invention, wherein FIG. 2A is a temperature curve, and FIG.

【図3】(a)は多層の金属張り積層板を成形する前の
組み合わせ状態を示す断面図、(b)は多層の金属張り
積層板の断面図である。
FIG. 3A is a cross-sectional view showing a combination state before forming a multilayer metal-clad laminate, and FIG. 3B is a cross-sectional view of the multilayer metal-clad laminate.

【図4】従来の製造方法を説明する説明図である。FIG. 4 is an explanatory view illustrating a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1 金属箔 2 プリプレグ体 3 成形用プレート 4 被圧体 5 積層体 11 加圧板 DESCRIPTION OF SYMBOLS 1 Metal foil 2 Prepreg body 3 Forming plate 4 Pressed body 5 Laminate 11 Press plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 長尺の金属箔が複数重に折り返して連な
っており、この金属箔の間にプリプレグ体を有して形成
した積層体と、アルミニウム板の表面に絶縁被覆を施し
た成形用プレートとを交互に配置して形成された被圧体
をプレスすると共に、上記金属箔に給電して抵抗加熱に
よって上記積層体を加熱、加圧成形する金属張り積層板
の製造方法において、上記圧力を、冷却を開始する前5
〜20分間開放し、その後、加熱のときの成形圧力に対
し1.1〜3倍の圧力を加圧して被圧体を冷却すること
を特徴とする金属張り積層板の製造方法。
1. A laminate comprising a plurality of long metal foils which are folded back and formed, and a prepreg body is formed between the metal foils, and a laminate for forming an insulating coating on the surface of an aluminum plate. In a method for manufacturing a metal-clad laminate, the plate is pressed alternately and a pressure-formed body formed is pressed, and the metal foil is supplied with power to the metal foil to heat the laminate by resistance heating. Before starting cooling 5
A method for producing a metal-clad laminate, comprising releasing the pressurized body by applying pressure that is 1.1 to 3 times the molding pressure at the time of heating, after opening for up to 20 minutes.
【請求項2】 上記積層体の冷却温度が、冷却開始より
金属張り積層板のガラス転移温度以下に達するまでは
0.5℃/分以上1℃/分以下の冷却速度であることを
特徴とする請求項1記載の金属張り積層板の製造方法。
2. A cooling rate of 0.5 ° C./min or more and 1 ° C./min or less from the start of cooling until the temperature reaches the glass transition temperature of the metal-clad laminate from the start of cooling. The method for producing a metal-clad laminate according to claim 1.
【請求項3】 上記成形用プレートは、その線膨張係数
が19〜25×10 -6cm/cm・℃であることを特徴
とする請求項1又は請求項2記載の金属張り積層板の製
造方法。
3. The molding plate has a coefficient of linear expansion.
Is 19-25 × 10 -6cm / cm ・ ℃
The production of the metal-clad laminate according to claim 1 or claim 2.
Construction method.
【請求項4】 上記プリプレグ体は、表面に回路を形成
した内層用回路基板の外側にプリプレグを配したもので
あることを特徴とする請求項1乃至請求項3いずれか記
載の金属張り積層板の製造方法。
4. The metal-clad laminate according to claim 1, wherein the prepreg body has a prepreg disposed outside a circuit board for an inner layer having a circuit formed on a surface thereof. Manufacturing method.
JP2000273041A 2000-09-08 2000-09-08 Method for producing metal-clad laminated plate Pending JP2002079538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000273041A JP2002079538A (en) 2000-09-08 2000-09-08 Method for producing metal-clad laminated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000273041A JP2002079538A (en) 2000-09-08 2000-09-08 Method for producing metal-clad laminated plate

Publications (1)

Publication Number Publication Date
JP2002079538A true JP2002079538A (en) 2002-03-19

Family

ID=18759058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000273041A Pending JP2002079538A (en) 2000-09-08 2000-09-08 Method for producing metal-clad laminated plate

Country Status (1)

Country Link
JP (1) JP2002079538A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117711A1 (en) * 2007-03-27 2008-10-02 Panasonic Electric Works Co., Ltd. Metal-plated laminated board, multilayer laminated board and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117711A1 (en) * 2007-03-27 2008-10-02 Panasonic Electric Works Co., Ltd. Metal-plated laminated board, multilayer laminated board and method for manufacturing the same
JP2008307886A (en) * 2007-03-27 2008-12-25 Panasonic Electric Works Co Ltd Metal-clad laminated board, multilayer laminated board and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2008124370A (en) Method of manufacturing multilayer printed wiring board
JP2007221068A (en) Flush printed wiring board, method for manufacturing same, and multilayer printed wiring board made thereof
JP2912342B1 (en) Method for producing multilayer copper-clad laminate
JP2001015933A (en) Thermally fusible insulating sheet
JP3277195B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP2002079538A (en) Method for producing metal-clad laminated plate
JP4715017B2 (en) Multilayer laminate manufacturing method
JP3882739B2 (en) Manufacturing method of metal foil clad laminate with inner layer circuit
JP4277827B2 (en) Manufacturing method of laminate
JP4599745B2 (en) Method for producing metal-clad laminate
JP4462057B2 (en) Inner layer circuit member, multilayer wiring circuit board using the same, and manufacturing method thereof
JPH1013024A (en) Method for manufacturing multilayer printed wiring board
JP2002052614A (en) Method for manufacturing laminated sheet
JP4389627B2 (en) Method for producing flexible metal laminate
JP3351468B2 (en) Manufacturing method of multilayer printed wiring board and laminating apparatus
KR20100111144A (en) Method for manufacturing multi layer printed circuit board
JP3605917B2 (en) Manufacturing method of laminated board with inner layer circuit
JP2002171061A (en) Manufacturing method for multilayered printed wiring board
JP2004284192A (en) Insulating sheet with metal foil and its manufacturing method
JPH1131886A (en) Manufacture of multilayered printed wiring board
JP2002067061A (en) Method for manufacturing metal-clad laminate
JP4238484B2 (en) Laminate production method
JP2000094623A (en) Manufacture of laminate
JP3277893B2 (en) Manufacturing method of laminated board
JPH0970922A (en) Thin laminate and manufacture thereof