JP2002079275A - Water cleaning device - Google Patents

Water cleaning device

Info

Publication number
JP2002079275A
JP2002079275A JP2000272804A JP2000272804A JP2002079275A JP 2002079275 A JP2002079275 A JP 2002079275A JP 2000272804 A JP2000272804 A JP 2000272804A JP 2000272804 A JP2000272804 A JP 2000272804A JP 2002079275 A JP2002079275 A JP 2002079275A
Authority
JP
Japan
Prior art keywords
water
harmful substances
ozone
water purification
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000272804A
Other languages
Japanese (ja)
Inventor
Azusa Shiga
あづさ 志賀
Takayuki Urata
隆行 浦田
Yoshifumi Moriya
好文 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000272804A priority Critical patent/JP2002079275A/en
Publication of JP2002079275A publication Critical patent/JP2002079275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water cleaning device which can remove toxic substances from water continuously and further prevent the re-discharge of the toxic substances to the environment by oxidatively decomposing them. SOLUTION: This water cleaning device has an adsorption part for adsorbing and removing the toxic substances in water continuously and a means for oxidatively decomposing the toxic substances adsorbed on the adsorption part. Thereby the continuous removal of the toxic substances from water and the prevention of their re-discharge to the environment can be carried out at the same time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸着材を使用した
水の浄化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to water purification using an adsorbent.

【0002】[0002]

【従来の技術】家庭用浄水器として普及しているもの
は、活性炭及び中空糸膜等のろ過膜を組み合わせたカー
トリッジを有するものが主流である。活性炭により水中
残留塩素及び発ガン性の懸念されるトリハロメタン、農
薬等の有害物質を吸着除去しており、定期的に交換して
いる。
2. Description of the Related Art The mainstream of water purifiers for household use is one having a cartridge in which activated carbon and a filtration membrane such as a hollow fiber membrane are combined. Activated carbon removes residual chlorine in water and harmful substances such as trihalomethane and pesticides, which are carcinogenic, and is regularly replaced.

【0003】[0003]

【発明が解決しようとする課題】吸着作用を利用した活
性炭による浄水では、通水量の増加に伴い吸着能力が徐
々に低下し、吸着許容量を超えると破過による再溶出が
起こる等の問題を有している。また、フタル酸エステル
類のような環境ホルモンは水中では非常に低濃度(ppb
オーダー)であるが、活性炭に吸着されて濃縮されるた
め、使用済みのカートリッジの処理が問題となる。
In the case of water purification using activated carbon utilizing the adsorption action, the adsorbing capacity gradually decreases with an increase in the amount of water passing, and when the amount exceeds the permissible adsorption amount, re-elution due to breakthrough occurs. Have. Environmental hormones such as phthalates are very low in water (ppb
However, since it is adsorbed on activated carbon and concentrated, the treatment of used cartridges becomes a problem.

【0004】また、有害物質を分解するような浄水装置
は、吸着作用を利用した活性炭による浄水に比べて処理
速度が遅く、バッチ処理が必要であり、連続的な処理は
難しかった。
[0004] Further, a water purification apparatus that decomposes harmful substances has a slower processing speed than that of water purification using activated carbon utilizing an adsorption action, requires batch processing, and is difficult to perform continuous processing.

【0005】本発明は、上記従来の問題点を解決するも
ので、吸着材により水中の有害物質を連続的に処理し、
分解手段により吸着材に吸着した有害物質を分解するこ
とにより、水中からの有害物質の除去だけでなく、効率
良く有害物質を酸化分解して無害化することを目標とす
る。
The present invention solves the above-mentioned conventional problems, and continuously treats harmful substances in water with an adsorbent.
By decomposing the harmful substance adsorbed on the adsorbent by the decomposition means, the purpose is not only to remove the harmful substance from the water, but also to oxidize and decompose the harmful substance efficiently to make it harmless.

【0006】[0006]

【課題を解決するための手段】前記目標を達成するため
に本発明は、水中の有害物質を連続的に吸着除去する吸
着部と、吸着部に吸着された有害物質を酸化分解する手
段を有し、水中の有害物質を無害化することを可能とし
ている。
In order to achieve the above object, the present invention comprises an adsorbing section for continuously adsorbing and removing harmful substances in water, and a means for oxidizing and decomposing harmful substances adsorbed on the adsorbing section. This makes it possible to detoxify harmful substances in water.

【0007】[0007]

【発明の実施の形態】本発明の請求項1記載の発明は、
吸着材により水中の有害物質を除去する吸着部と、吸着
部に吸着された有害物質を酸化分解する手段を有し、水
中の有害物資を分解し無害化することができる浄水装置
である。この構成により、水中の有害物質を吸着材に吸
着させることで除去し、吸着材に吸着した有害物質を酸
化分解して無害化しており、連続的な除去と、有害物質
を環境中に再放出しないことを併せて可能とする。
BEST MODE FOR CARRYING OUT THE INVENTION
The water purification device has an adsorbing section for removing harmful substances in water by an adsorbent, and means for oxidatively decomposing harmful substances adsorbed on the adsorbing section, and can decompose and detoxify harmful substances in water. With this configuration, harmful substances in water are removed by adsorbing them onto the adsorbent, and the harmful substances adsorbed on the adsorbent are oxidized and decomposed to make them harmless. It is also possible to do not.

【0008】本発明の請求項2記載の発明は、吸着剤に
よる有害物質の吸着と、吸着部に吸着された有害物質の
酸化分解が同じ容器内で行われることを特徴とする請求
項1記載の浄水装置であり、この構成により、有害物質
の吸着除去と有害物質の酸化分解を並行して行うことが
できる。
[0008] The invention according to claim 2 of the present invention is characterized in that the adsorption of the harmful substance by the adsorbent and the oxidative decomposition of the harmful substance adsorbed by the adsorption section are performed in the same container. With this configuration, it is possible to perform adsorption removal of harmful substances and oxidative decomposition of harmful substances in parallel.

【0009】本発明の請求項3記載の発明は、有害物質
をオゾンを用いて分解することを特徴とする請求項1ま
たは2記載の浄水装置であり、オゾンは比較的簡単に生
成でき、また高濃度で発生するので、有害物質を効率良
く酸化分解できるのである。
According to a third aspect of the present invention, there is provided the water purification apparatus according to the first or second aspect, wherein the harmful substance is decomposed by using ozone. Since it is generated at a high concentration, harmful substances can be efficiently oxidized and decomposed.

【0010】本発明の請求項4記載の発明は、有害物質
の分解が、オゾンと、紫外線または過酸化水素の少なく
とも一つを併用することを特徴とする請求項3記載の浄
水装置である。オゾンは、紫外線、過酸化水素の存在下
でドロキシルラジカルに変化する。ヒドロキシルラジカ
ルによる酸化はオゾン酸化に比べて反応速度が速く、オ
ゾン酸化が0.1〜103オーダーであるのに対して、107〜1
09オーダーである。よって、高濃度で反応するオゾン酸
化と反応速度が速いヒドロキシルラジカルによる酸化を
併用することで、効率良く有害物質を分解できる。ま
た、オゾンと複数の手段を併用することで、連鎖反応に
よりさらに酸化反応を促進することができる。例えば、
紫外線と過酸化水素を併用した系では、過酸化水素によ
りオゾンがヒドロキシルラジカルへ変化し、紫外線によ
り過酸化水素もヒドロキシルラジカルへ変化する等の複
雑な連鎖反応が起こり、酸化反応が促進さる。
According to a fourth aspect of the present invention, there is provided the water purification apparatus according to the third aspect, wherein the decomposition of the harmful substance uses ozone and at least one of ultraviolet light and hydrogen peroxide. Ozone changes into droxyl radicals in the presence of ultraviolet light and hydrogen peroxide. Oxidation with hydroxyl radicals has a higher reaction rate than ozone oxidation, whereas ozone oxidation is on the order of 0.1 to 10 3 , whereas 10 7 to 1
0 9 order. Therefore, harmful substances can be efficiently decomposed by using both the ozone oxidation which reacts at a high concentration and the oxidation by the hydroxyl radical having a high reaction rate. In addition, by using ozone and a plurality of means in combination, an oxidation reaction can be further promoted by a chain reaction. For example,
In a system in which ultraviolet light and hydrogen peroxide are used in combination, a complicated chain reaction occurs such that ozone is changed to hydroxyl radical by hydrogen peroxide, and hydrogen peroxide is also changed to hydroxyl radical by ultraviolet light, and the oxidation reaction is accelerated.

【0011】本発明の請求項5記載の発明は、有害物質
の分解が、紫外線または、紫外線と過酸化水素、紫外線
と次亜塩素酸のいずれかによることを特徴とする請求項
1記載の浄水装置である。C−H結合の結合エネルギー
は約100kcal/molであり、約287nmより低波長側の紫外
線によれば約100kcal/mol以上のエネルギーを得ること
ができ、C−H結合を切断することができるのである。
The invention according to claim 5 of the present invention is characterized in that the decomposition of harmful substances is carried out by one of ultraviolet rays, ultraviolet rays and hydrogen peroxide, and ultraviolet rays and hypochlorous acid. Device. The bond energy of the C—H bond is about 100 kcal / mol, and the energy of about 100 kcal / mol or more can be obtained by ultraviolet light having a wavelength lower than about 287 nm, and the C—H bond can be cut. is there.

【0012】本発明の請求項6記載の発明は、吸着材が
光触媒を有することを特徴とする請求項1〜5いずれか
1項に記載の浄水装置であり、この構成により吸着材に
吸着した有害物質を光触媒表面で発生したヒドロキシル
ラジカルによって酸化分解することができる。また、ヒ
ドロキシルラジカルが光触媒表面に結合したまま反応に
関与するので反応物へ酸素原子が移行して反応副生成物
として酸化物が生じるのを防ぐことが出来る。
According to a sixth aspect of the present invention, there is provided the water purification apparatus according to any one of the first to fifth aspects, wherein the adsorbent has a photocatalyst. Harmful substances can be oxidatively decomposed by hydroxyl radicals generated on the photocatalytic surface. Further, since the hydroxyl radical participates in the reaction while being bonded to the photocatalyst surface, it is possible to prevent the transfer of oxygen atoms to the reactant and the formation of an oxide as a reaction by-product.

【0013】[0013]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。浄水装置の一実施例について図1を
用いて説明する。
An embodiment of the present invention will be described below with reference to the drawings. One embodiment of the water purification device will be described with reference to FIG.

【0014】吸着剤1は容器2内に設けられており、前
記容器2内には紫外線灯3が設けられている。4はオゾ
ン発生装置で発生したオゾンはオゾン供給経路5を通過
して容器2内に供給される。6の容器内には過酸化水素
溶液または次亜塩素酸溶液7を有しており、8の薬液供
給経路を通過して容器2内に供給される。
The adsorbent 1 is provided in a container 2, and an ultraviolet lamp 3 is provided in the container 2. Reference numeral 4 denotes ozone generated by the ozone generator, which is supplied into the container 2 through an ozone supply path 5. The container 6 has a hydrogen peroxide solution or a hypochlorous acid solution 7 and is supplied into the container 2 through the chemical solution supply path 8.

【0015】処理水は、流入口9より容器2に入り吸着
剤1により有害物質を吸着除去され、流出口10より出
る。吸着剤1に吸着された有害物質は、オゾン発生装置
4で発生したオゾンにより、酸化分解される。また、オ
ゾンの供給、紫外線灯の点灯、過酸化水素または次亜塩
素酸の供給は、同時に行っても良いし、逐次的に行って
も良い。逐次的に行う際には、まずオゾンを供給して、
オゾンによる酸化分解をした後に、紫外線照射や薬液の
供給を行い、ヒドロキシルラジカルによる酸化を行うと
良い。オゾンはヒドロキシルラジカルよりも高濃度で生
成でき、有害物質との反応の選択性が高いため、まずオ
ゾンと反応して分解できる有害物質を分解しておき、残
ったオゾンが変化して生成したヒドロキシルラジカル、
または過酸化水素等に起因するヒドロキシルラジカル
で、残存した有害物質を分解し、効率良く分解を行うこ
とができるからである。
The treated water enters the container 2 through the inlet 9, the harmful substances are adsorbed and removed by the adsorbent 1, and exits through the outlet 10. The harmful substances adsorbed by the adsorbent 1 are oxidized and decomposed by the ozone generated by the ozone generator 4. Also, the supply of ozone, the turning on of the ultraviolet lamp, and the supply of hydrogen peroxide or hypochlorous acid may be performed simultaneously or sequentially. When performing sequentially, first supply ozone,
After oxidative decomposition with ozone, ultraviolet irradiation or supply of a chemical solution is preferably performed to oxidize with hydroxyl radicals. Ozone can be generated at a higher concentration than hydroxyl radicals and has high selectivity for reaction with harmful substances, so first decompose harmful substances that can be decomposed by reacting with ozone, radical,
Alternatively, the remaining harmful substances can be decomposed with hydroxyl radicals caused by hydrogen peroxide or the like, and decomposition can be performed efficiently.

【0016】吸着材1は活性炭、ゼオライト、また、光
触媒を担持した活性炭、ゼオライトを用いる。光触媒を
活性炭、ゼオライトに混ぜて用いても良い。
As the adsorbent 1, activated carbon or zeolite, or activated carbon or zeolite carrying a photocatalyst is used. A photocatalyst may be used by mixing it with activated carbon or zeolite.

【0017】飲用の浄化の場合は、紫外線灯のみ、また
は紫外線灯と光触媒を用い、過酸化水素、次亜塩素酸や
オゾン添加はしない方が良い。
In the case of purification for drinking, it is better to use only an ultraviolet lamp or an ultraviolet lamp and a photocatalyst, and not to add hydrogen peroxide, hypochlorous acid or ozone.

【0018】次に実施例に示した給水給湯機を用いて行
った実験例を示す。
Next, an example of an experiment conducted using the water heater / water heater shown in the embodiment will be described.

【0019】60ppbのフタル酸ジメチル溶液を毎分2Lで
連続的に通水して、浄水装置によるフタル酸ジメチルの
除去性能を確認した。各種分解手段を以下に示す。
A 60 ppb dimethyl phthalate solution was continuously passed through at a rate of 2 L / min to confirm the dimethyl phthalate removal performance of the water purifier. Various decomposition means are shown below.

【0020】(実験例1)分解手段を動作させず、通水
のみを3時間行った。
(Experimental Example 1) Only the water was passed for 3 hours without operating the decomposition means.

【0021】(実験例2)オゾン分解装置を動作させ、
発生したオゾンを供給しながら通水を3時間行った。
(Experimental Example 2) An ozonolysis device was operated,
Water was supplied for 3 hours while supplying the generated ozone.

【0022】(実験例3)紫外線灯を点灯し、オゾン分
解装置を動作させ、発生したオゾンを供給しながら通水
を3時間行った。
(Experimental Example 3) The ultraviolet lamp was turned on, the ozone decomposing device was operated, and water was supplied for 3 hours while supplying the generated ozone.

【0023】(実験例4)紫外線灯を点灯し、オゾン分
解装置を動作させ、発生したオゾンを供給しながら通水
を行い、2時間後にオゾンの供給を停止し、過酸化水素
の供給を行いながらさらに1時間通水を行った。
(Experimental Example 4) The ultraviolet lamp was turned on, the ozone decomposing device was operated, and water was supplied while supplying the generated ozone. After 2 hours, the supply of ozone was stopped and the supply of hydrogen peroxide was performed. Water was further passed for one hour.

【0024】(実験例5)紫外線灯を点灯して通水を3
時間行った。
(Experimental Example 5) The ultraviolet lamp was turned on and the water flow was 3 times.
Time went.

【0025】(実験例6)紫外線灯を点灯し、過酸化水
素を供給しながら通水を3時間行った。
(Experimental Example 6) The ultraviolet lamp was turned on, and water was supplied for 3 hours while supplying hydrogen peroxide.

【0026】(実験例7)活性炭に10gの酸化チタンを
混ぜ、紫外線灯を点灯し通水を3時間行った。
(Experimental Example 7) 10 g of titanium oxide was mixed with activated carbon, an ultraviolet lamp was turned on, and water was passed for 3 hours.

【0027】(実験例8)活性炭に10gの酸化チタンを
混ぜ、オゾン分解装置を動作させ、発生したオゾンを供
給しながら通水を3時間行った。
(Experimental Example 8) Activated carbon was mixed with 10 g of titanium oxide, an ozonolysis apparatus was operated, and water was passed for 3 hours while supplying generated ozone.

【0028】吸着剤には粒状活性炭(クラレケミカル社
製)100mlを用いた。各種分解手段を通水と平行して動
作させ、3時間後の処理水を採取した。処理水95mlをメ
スフラスコに入れn−ヘキサン2.5ml、塩化ナトリウ
ム、標準物質100ngを添加し、振とう器を用いて10分
間、2回水平振とうした。振とう終了後、再度n−ヘキ
サン層を分取し、ガスクロマトグラフ−質量分析計を用
いて分析した。標準物質のピーク強度との比から試料溶
液中のフタル酸ジメチル濃度を計算した。各種分解手段
による処理水中のフタル酸ジメチル濃度を(表1)に示
す。
As the adsorbent, 100 ml of granular activated carbon (manufactured by Kuraray Chemical Co., Ltd.) was used. Various decomposition means were operated in parallel with the passage of water, and treated water after 3 hours was collected. 95 ml of treated water was placed in a volumetric flask, and 2.5 ml of n-hexane, sodium chloride and 100 ng of a standard substance were added, and the mixture was horizontally shaken twice for 10 minutes using a shaker. After completion of the shaking, the n-hexane layer was separated again and analyzed using a gas chromatograph-mass spectrometer. The dimethyl phthalate concentration in the sample solution was calculated from the ratio with the peak intensity of the standard substance. The dimethyl phthalate concentration in the treated water by various decomposition means is shown in (Table 1).

【0029】[0029]

【表1】 [Table 1]

【0030】すべての実験例において、フタル酸ジメチ
ルの濃度は検出限界の1ppb以下であり、フタル酸ジメチ
ルの吸着除去率が高いことが解った。
In all the experimental examples, it was found that the concentration of dimethyl phthalate was below the detection limit of 1 ppb, and the adsorption and removal rate of dimethyl phthalate was high.

【0031】次に、3時間の処理後の活性炭を取り出
し、活性炭に吸着しているフタル酸ジメチルの濃度を測
定した。取り出した活性炭を200mlのn−ヘキサンに浸
漬して活性炭に残存しているフタル酸ジメチルを抽出し
た後、n−ヘキサン層を分取して、塩化ナトリウム、標
準物質100ngを添加し、振とう器を用いて10分間、2
回水平振とうした。振とう終了後、再度n−ヘキサン層
を分取し、ガスクロマトグラフ−質量分析計を用いて分
析した。標準物質のピーク強度との比から試料溶液中の
フタル酸ジメチル濃度(200mlのn−ヘキサン中の濃度
として)を計算した。各種分解手段による浄化後のフタ
ル酸ジメチル濃度と分解率を(表2)に示す。分解率は
実験例1のフタル酸ジメチル濃度を100%として計算し
た。
Next, the activated carbon after the treatment for 3 hours was taken out, and the concentration of dimethyl phthalate adsorbed on the activated carbon was measured. The extracted activated carbon was immersed in 200 ml of n-hexane to extract dimethyl phthalate remaining in the activated carbon.Then, the n-hexane layer was separated, and sodium chloride and 100 ng of a standard substance were added. For 10 minutes, 2
Shake horizontally. After the shaking, the n-hexane layer was collected again and analyzed using a gas chromatograph-mass spectrometer. The dimethyl phthalate concentration in the sample solution (as the concentration in 200 ml of n-hexane) was calculated from the ratio to the peak intensity of the standard substance. The dimethyl phthalate concentration and the decomposition rate after purification by various decomposition means are shown in (Table 2). The decomposition rate was calculated assuming that the dimethyl phthalate concentration in Experimental Example 1 was 100%.

【0032】[0032]

【表2】 [Table 2]

【0033】実験例2〜8において、フタル酸ジメチル
濃度が実施例1に比べて減少しており、各分解手段によ
り、活性炭に吸着したフタル酸ジメチルが分解されてい
ることがわかった。特に、実施例3、4、7、8では10
%以下に除去することができた。これにより、本発明の
浄水装置によれば、水中からの有害物質の連続的な吸着
除去と、吸着された有害物質の酸化分解を並行して行う
ことができることが明らかになった。
In Experimental Examples 2 to 8, the dimethyl phthalate concentration was lower than that in Example 1, and it was found that dimethyl phthalate adsorbed on activated carbon was decomposed by each decomposition means. In particular, in Examples 3, 4, 7, and 8,
% Or less. Thereby, according to the water purification device of the present invention, it has been clarified that the continuous adsorption and removal of the harmful substance from the water and the oxidative decomposition of the adsorbed harmful substance can be performed in parallel.

【0034】[0034]

【発明の効果】本発明の請求項1記載の発明によれば、
水中からの有害物質の除去だけでなく、有害物質を分解
し、環境中への有害物質の再放出を防ぐことができる。
According to the first aspect of the present invention,
It can not only remove harmful substances from water but also decompose harmful substances and prevent the release of harmful substances into the environment.

【0035】本発明の請求項2記載の発明によれば、有
害物質の吸着除去と有害物質の酸化分解を並行して行う
ことができる。
According to the second aspect of the present invention, the removal of the harmful substance and the oxidative decomposition of the harmful substance can be performed in parallel.

【0036】本発明の請求項3記載の発明によれば、比
較的簡単な装置により、また高濃度で発生するために、
有害物質を効率良く酸化分解できる。
According to the invention of claim 3 of the present invention, since it is generated by a relatively simple device and at a high concentration,
The harmful substances can be efficiently oxidatively decomposed.

【0037】本発明の請求項4記載の発明によれば、高
濃度で反応するオゾン酸化と、反応速度が速いヒドロキ
シルラジカルによる酸化を併用するために、効率良く有
害物質を分解できる。また、連鎖反応によりさらに酸化
反応を促進することができる。
According to the invention of claim 4 of the present invention, harmful substances can be efficiently decomposed because of the combined use of ozone oxidation, which reacts at a high concentration, and oxidation with hydroxyl radicals, which have a high reaction rate. Further, the oxidation reaction can be further promoted by a chain reaction.

【0038】本発明の請求項5記載の発明によれば、C
−H結合を切断するのに必要な100kcal/mol以上のエネ
ルギーを得ることができ、C−H結合を切断することが
できるのである。
According to the fifth aspect of the present invention, C
The energy of 100 kcal / mol or more necessary for breaking the -H bond can be obtained, and the CH bond can be broken.

【0039】本発明の請求項6記載の発明によれば、光
触媒表面でヒドロキシルラジカルを発生することがで
き、それにより酸化分解することができる。また、ヒド
ロキシルラジカルが光触媒表面に結合したまま反応に関
与するので反応物へ酸素原子が移行して反応副生成物と
して酸化物が生じるのを防ぐことが出来る。
According to the invention of claim 6 of the present invention, hydroxyl radicals can be generated on the surface of the photocatalyst, and can be oxidatively decomposed. Further, since the hydroxyl radical participates in the reaction while being bonded to the photocatalyst surface, it is possible to prevent the transfer of oxygen atoms to the reactant and the formation of an oxide as a reaction by-product.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す浄水装置の断面図FIG. 1 is a sectional view of a water purification apparatus showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 吸着材 2 容器 3 紫外線灯 4 オゾン発生装置 DESCRIPTION OF SYMBOLS 1 Adsorbent 2 Container 3 Ultraviolet light 4 Ozone generator

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/76 C02F 1/76 Z 1/78 1/78 (72)発明者 守屋 好文 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4D024 AA02 AB04 AB11 AB14 BA02 BA07 CA11 DB23 DB24 DB30 4D037 AA02 AB11 AB14 AB16 AB18 BA18 BB09 CA01 CA11 CA12 4D050 AA04 AB16 AB19 BB02 BB04 BB09 BC04 BC05 BC09 BD02 BD03 CA06 CA07 4G069 AA03 BA04A BA04B BA07A BA07B BA08A BA08B BA48A CA01 CA07 CA10 CA11 CA19 EA02Y Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C02F 1/76 C02F 1/76 Z 1/78 1/78 (72) Inventor Yoshifumi Moriya 1006 Odakadoma, Kadoma City, Osaka Prefecture F term (reference) in Matsushita Electric Industrial Co., Ltd. BA04B BA07A BA07B BA08A BA08B BA48A CA01 CA07 CA10 CA11 CA19 EA02Y

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 吸着材により水中の有害物質を除去する
吸着部と、吸着部に吸着された有害物質を酸化分解する
手段を有し、水中の有害物資を分解し無害化することが
できる浄水装置。
1. A water purification system comprising: an adsorbing section for removing harmful substances in water by an adsorbent; and a means for oxidatively decomposing harmful substances adsorbed on the adsorbing section to decompose and detoxify harmful substances in water. apparatus.
【請求項2】 吸着剤による有害物質の吸着と、吸着部
に吸着された有害物質の酸化分解が同じ容器内で行われ
ることを特徴とする請求項1記載の浄水装置。
2. The water purification apparatus according to claim 1, wherein the adsorption of the harmful substance by the adsorbent and the oxidative decomposition of the harmful substance adsorbed by the adsorption section are performed in the same container.
【請求項3】 有害物質をオゾンを用いて分解すること
を特徴とする請求項1または2記載の浄水装置。
3. The water purification apparatus according to claim 1, wherein harmful substances are decomposed using ozone.
【請求項4】 有害物質の分解が、オゾンと、紫外線ま
たは過酸化水素の少なくとも一つを併用することを特徴
とする請求項3記載の浄水装置。
4. The water purification apparatus according to claim 3, wherein the harmful substance is decomposed by using ozone and at least one of ultraviolet light and hydrogen peroxide.
【請求項5】 有害物質の分解が、紫外線または、紫外
線と過酸化水素、紫外線と次亜塩素酸のいずれかによる
ことを特徴とする請求項1記載の浄水装置。
5. The water purification apparatus according to claim 1, wherein the decomposition of the harmful substance is caused by one of ultraviolet rays, ultraviolet rays and hydrogen peroxide, and ultraviolet rays and hypochlorous acid.
【請求項6】 吸着材が光触媒を有することを特徴とす
る請求項1〜5いずれか1項に記載の浄水装置。
6. The water purification device according to claim 1, wherein the adsorbent has a photocatalyst.
JP2000272804A 2000-09-08 2000-09-08 Water cleaning device Pending JP2002079275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000272804A JP2002079275A (en) 2000-09-08 2000-09-08 Water cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000272804A JP2002079275A (en) 2000-09-08 2000-09-08 Water cleaning device

Publications (1)

Publication Number Publication Date
JP2002079275A true JP2002079275A (en) 2002-03-19

Family

ID=18758857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272804A Pending JP2002079275A (en) 2000-09-08 2000-09-08 Water cleaning device

Country Status (1)

Country Link
JP (1) JP2002079275A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313834A (en) * 2003-04-11 2004-11-11 Mitsui Eng & Shipbuild Co Ltd Photochemical reaction method, liquid treatment method, and liquid treatment apparatus
JP2006110470A (en) * 2004-10-14 2006-04-27 Ueda Shikimono Kojo:Kk Water cleaning agent
JP2021109176A (en) * 2020-01-14 2021-08-02 飯田グループホールディングス株式会社 Formic acid generation method and formic acid generation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313834A (en) * 2003-04-11 2004-11-11 Mitsui Eng & Shipbuild Co Ltd Photochemical reaction method, liquid treatment method, and liquid treatment apparatus
JP2006110470A (en) * 2004-10-14 2006-04-27 Ueda Shikimono Kojo:Kk Water cleaning agent
JP2021109176A (en) * 2020-01-14 2021-08-02 飯田グループホールディングス株式会社 Formic acid generation method and formic acid generation system
JP7076113B2 (en) 2020-01-14 2022-05-27 飯田グループホールディングス株式会社 Formic acid production method and formic acid production system

Similar Documents

Publication Publication Date Title
KR100470747B1 (en) Method and apparatus for eliminating the stench and volatile organic compounds in the polluted air
JP2003190976A (en) Apparatus and method for treating wastewater
WO2005070833A1 (en) Method for treating raw water containing hardly decomposable substance
JP4732845B2 (en) Water treatment method and apparatus
JP2002079275A (en) Water cleaning device
EP0242941B1 (en) Process and apparatus for the deodorization of air
JPH10249336A (en) Water treating method and water treating device using photocatalyst
JP2696292B2 (en) Ion water conditioner
RU2636076C2 (en) Method of photochemical purifying water and device for its implementation
Yu Destruction of aqueous solutions of 2, 4-dichlorophenol in a plasma-catalytic barrier discharge reactor
JPH11104618A (en) Method and apparatus for treating polluted water containing harmful substance
KR200250579Y1 (en) A Purifier Use Photo Catalytic Reaction And Activated Charcoal Function
KR100453024B1 (en) Potable Advanced Water Clearer
JP3704761B2 (en) Water treatment equipment
JP2006205098A (en) Apparatus for oxidative decomposition of hardly decomposable organic compound
KR20040029348A (en) Air Cleaning Apparatus using Ozone and Catalyst Material for Noxious Gas Removal
JP2003266090A (en) Wastewater treatment method
KR102557943B1 (en) Physical and Chemical Deodorization System and Method using Gaseous Chlorine Dioxide Adsorption on Silica Gel and UV Irradiation as well as Adsorption-Desorption on-Shifts Process
JP4422444B2 (en) Water purifier
JPH11253931A (en) Purifying agent and water purifier using the same
RU2203228C2 (en) Method of cleaning and decontamination of water
JP3900460B2 (en) Water treatment equipment
JP2003181475A (en) Apparatus for cleaning water
JP2008264727A (en) Method for decomposing hardly decomposable harmful material
JPH0539696U (en) Water purification sterilizer