JP2002078695A - Electrocardiogram measuring instrument - Google Patents

Electrocardiogram measuring instrument

Info

Publication number
JP2002078695A
JP2002078695A JP2000273973A JP2000273973A JP2002078695A JP 2002078695 A JP2002078695 A JP 2002078695A JP 2000273973 A JP2000273973 A JP 2000273973A JP 2000273973 A JP2000273973 A JP 2000273973A JP 2002078695 A JP2002078695 A JP 2002078695A
Authority
JP
Japan
Prior art keywords
electrocardiogram
signal
electrode
subject
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000273973A
Other languages
Japanese (ja)
Inventor
Hajime Fujii
元 藤井
Hiroaki Izuma
弘昭 出馬
Satoshi Fujita
智 藤田
Tomoaki Ueda
智章 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2000273973A priority Critical patent/JP2002078695A/en
Publication of JP2002078695A publication Critical patent/JP2002078695A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electrocardiogram measuring instrument capable of efficiently utilizing clinical data of electrocardiogram by a conventional standard 12 induction method by removing only base line oscillation effectively while holding useful cardiogram waveform information in an electrocardiogram for bathtub. SOLUTION: A signal processing means has a subtracter 18, a magnification converter 20 and an integrator 19. An electrocardiogram signal 42 to be processed is input into the positive side input of the subtracter 18, and then a signal is input into the negative side input of the subtracter, which is obtained by performing either of a magnification conversion processing by a magnification converter 20 or an integration processing by a integrator 19 at first and subsequently performing the other for the output signal from the subtracter 18, thereby an electrocardiogram signal 43 in which the base line oscillation is removed from the signal 42 is output from the subtracter 18.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、浴槽心電計等の心
電図に基線動揺が生じ易い電極構造を有する心電計にお
ける、心電図計測の高精度化技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for improving the accuracy of an electrocardiogram measurement in an electrocardiograph such as a bathtub electrocardiograph having an electrode structure in which an electrocardiogram easily fluctuates in a baseline.

【0002】[0002]

【従来の技術】医療現場や生理学の研究においては、標
準12誘導法と呼ばれる心電図計測方法が広く用いられ
ており、膨大な臨床データが蓄積されている。更に、計
測された心電図を臨床データとして蓄積するには、計測
結果である心電図が一定の品質を有している必要性か
ら、測定環境や測定器である心電計による誤差や測定バ
ラツキを最小限に抑制すべく、電極の装着位置や電極材
料に対する細かな制約が設けられている。
2. Description of the Related Art In a medical field and physiology research, an electrocardiogram measuring method called a standard 12-lead method is widely used, and enormous amounts of clinical data are accumulated. Furthermore, in order to accumulate the measured ECG as clinical data, it is necessary for the ECG that is the measurement result to have a certain quality, so that errors and measurement variations due to the measurement environment and the ECG that is the measuring device are minimized. In order to limit the size of the electrode, there are fine restrictions on the electrode mounting position and the electrode material.

【0003】例えば、電極材料について言えば、高価な
Ag−AgCl電極が使用されている。これは、体表面
の汗(塩分)と電極間で生じる電気化学反応により体表
面電位が変動を来すのを防止することで心電図の基線動
揺を抑制する効果がある。従って、被験者体表面の汗の
影響による誤差や測定バラツキを最小限に抑制できる。
また、電極に現れる体表面電位信号(電気信号)を信号
処理する場合におけるノイズ除去も簡単なフィルタ処理
で済ますことができる。
For example, an expensive Ag-AgCl electrode is used for an electrode material. This has the effect of suppressing the fluctuation of the baseline of the electrocardiogram by preventing the body surface potential from fluctuating due to the electrochemical reaction occurring between the electrodes on the body surface and the sweat (salt). Accordingly, errors and measurement variations due to the influence of sweat on the body surface of the subject can be suppressed to a minimum.
Further, noise removal in the case of processing the body surface potential signal (electric signal) appearing on the electrode can be performed by simple filter processing.

【0004】また、電極の装着位置に対する細かな制約
によって、かかる電極装着作業が医療従事者以外の者に
とっては非常に困難な作業となっている。このことは、
心電図計測は、心電図の解析によって心疾患の診断やリ
ラックス度や体調の評価が行なえる有用な方法であるの
も拘らず、産業上の利用範囲が著しく制約を受ける要因
となっている。
[0004] Further, due to the minute restrictions on the electrode mounting position, such electrode mounting work is extremely difficult for persons other than medical staff. This means
Although the electrocardiogram measurement is a useful method for diagnosing a heart disease and evaluating the degree of relaxation and physical condition by analyzing the electrocardiogram, it is a factor that significantly limits the industrial use range.

【0005】一方、被験者に直接電極を装着する必要が
なく被験者の心電図を無拘束且つ非侵襲に計測する手段
として浴槽心電計が開発されている。この浴槽心電計
は、被験者が入浴する浴槽内壁面に複数の電極を配置
し、浴槽内の湯水の電気伝導性が比較的良好であること
を利用して、被験者の体表面に直接電極を装着する労を
要することなく、浴槽内の被験者の心電図を連続的に計
測できるようにしたものである。
On the other hand, a bathtub electrocardiograph has been developed as a means for measuring a subject's electrocardiogram in a non-invasive and non-invasive manner without having to directly attach electrodes to the subject. In this bathtub electrocardiograph, a plurality of electrodes are arranged on the inner wall surface of the bathtub where the subject takes a bath, and by utilizing the relatively good electrical conductivity of hot and cold water in the bathtub, the electrodes are directly placed on the body surface of the subject. It is possible to continuously measure the electrocardiogram of the subject in the bathtub without requiring any labor for wearing.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た浴槽心電計は、電極と被験者体表面の間に湯水が介在
するため、心電図に被験者の体の動きや呼吸による基線
動揺に加えて湯水の動揺等に起因する大きな基線動揺が
生じ、標準12誘導法とは異なる誘導法となって、得ら
れる心電図の波形が標準12誘導法による心電図の波形
と異なる。この結果、臨床医学や生理学の研究者等が収
集蓄積した膨大な臨床データとの比較が行えず、心疾患
の診断やリラックス度や体調の評価に関し、当該臨床デ
ータを有効に活用できないという不都合があった。
However, in the above bathtub electrocardiograph, since hot and cold water is interposed between the electrode and the surface of the test subject, the electrocardiogram shows not only the motion of the test subject but also the movement of the baseline due to breathing. A large baseline sway due to sway or the like occurs, which is a lead method different from the standard 12-lead method, and the obtained electrocardiogram waveform is different from the electrocardiogram waveform obtained by the standard 12-lead method. As a result, it is not possible to compare with the enormous amount of clinical data collected and accumulated by clinical medicine and physiology researchers, and the inconvenience that the clinical data cannot be used effectively for diagnosis of heart disease and evaluation of relaxation and physical condition. there were.

【0007】本発明は、上述の問題点に鑑みてなされた
ものであり、その目的は、浴槽心電計等の心電図に大き
な基線動揺が発生し得る心電図計測装置において、有用
な心電図波形情報を保持しつつ当該基線動揺のみを効果
的に除去することで、従来の標準12誘導法による心電
図の臨床データを有効に活用し得る心電図計測装置を提
供する点にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide useful electrocardiogram waveform information in an electrocardiogram measuring apparatus such as a bathtub electrocardiograph which can cause a large baseline sway. An object of the present invention is to provide an electrocardiogram measurement apparatus capable of effectively utilizing clinical data of an electrocardiogram by a conventional standard 12-lead method by effectively removing only the base line sway while holding the data.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
の本発明に係る心電図計測装置の第一の特徴構成は、特
許請求の範囲の欄の請求項1に記載した如く、複数の心
電図電極と、前記複数の心電図電極に現れる電気信号か
ら心電図信号を生成処理する心電図信号生成手段と、前
記心電図信号生成手段によって生成された後の被処理心
電図信号に対して所定の信号処理を行う信号処理手段と
を備え、前記信号処理手段が、減算器と倍率変換器と積
分器を有し、前記被処理心電図信号を前記減算器の正側
入力に入力し、前記減算器からの出力信号に対して、前
記倍率変換器による倍率変換処理と前記積分器による積
分処理の何れか一方を先に、他方をその後に施して得ら
れる信号を前記減算器の負側入力に入力することによ
り、前記被処理心電図信号から基線動揺を除去または低
減した心電図信号を前記減算器から出力すべく構成され
ている点にある。
A first characteristic configuration of an electrocardiogram measuring apparatus according to the present invention for achieving this object is a plurality of electrocardiographic electrodes as described in claim 1 of the claims. An electrocardiogram signal generating means for generating and processing an electrocardiogram signal from electric signals appearing on the plurality of electrocardiogram electrodes; and a signal processing for performing a predetermined signal processing on the processed electrocardiogram signal generated by the electrocardiogram signal generating means. Means, the signal processing means has a subtractor, a magnification converter and an integrator, inputs the processed electrocardiogram signal to the positive side input of the subtractor, and for the output signal from the subtractor By inputting a signal obtained by performing one of the magnification conversion processing by the magnification converter and the integration processing by the integrator first and the other to the negative input of the subtractor, Processing electrocardiogram Certain ECG signal has been removed or reduced baseline upset from the signal at the point that is configured to output from said subtractor.

【0009】ここで、前記信号処理手段の処理対象とな
る被処理心電図信号は、前記心電図信号生成手段が生成
した心電図信号であっても、また、その心電図信号に対
して所定の前処理、例えば従来の心電図計測装置で行っ
ていたノイズ除去処理等、を施した心電図信号であって
も構わない。また、当該前処理が前記心電図信号生成手
段で行われても構わない。
Here, the processed electrocardiogram signal to be processed by the signal processing means may be an electrocardiogram signal generated by the electrocardiogram signal generation means, or may be a predetermined pre-processing for the electrocardiogram signal, for example, It may be an electrocardiogram signal that has been subjected to noise removal processing and the like performed by a conventional electrocardiogram measurement device. Further, the pre-processing may be performed by the electrocardiogram signal generating means.

【0010】同第二の特徴構成は、特許請求の範囲の欄
の請求項2に記載した如く、複数の心電図電極と、前記
複数の心電図電極に現れる電気信号から心電図信号を生
成する心電図信号生成手段と、前記心電図信号生成手段
によって生成された後の被処理心電図信号に対して所定
の信号処理を行う信号処理手段とを備えてなり、前記信
号処理手段が、単位振幅の三つの矩形波が負極性・正極
性・負極性或いは正極性・負極性・正極性の順に各極性
の時間比率が1:2:1となるように並び、三つの矩形
波の時間幅が前記被処理心電図信号に含まれる一つまた
は複数の特徴的信号成分の時間幅となるように設定され
てなるテンプレート波形と、前記被処理心電図信号との
相互相関処理を行う相互相関演算部を備えている点にあ
る。
[0010] A second feature of the present invention is that an electrocardiogram signal generator for generating an electrocardiogram signal from a plurality of electrocardiogram electrodes and an electric signal appearing on the plurality of electrocardiogram electrodes, as described in claim 2 of the claims. Means, and signal processing means for performing predetermined signal processing on the processed electrocardiogram signal generated by the electrocardiogram signal generation means, wherein the signal processing means comprises three rectangular waves having a unit amplitude. The time ratio of each polarity is arranged to be 1: 2: 1 in the order of negative polarity / positive polarity / negative polarity or positive polarity / negative polarity / positive polarity, and the time width of three rectangular waves corresponds to the electrocardiogram signal to be processed. A cross-correlation calculation unit that performs a cross-correlation process between a template waveform set to have a time width of one or more characteristic signal components included therein and the electrocardiogram signal to be processed is provided.

【0011】ここで、前記信号処理手段の処理対象とな
る被処理心電図信号は、前記心電図信号生成手段が生成
した心電図信号であっても、また、その心電図信号に対
して所定の前処理、例えば従来の心電図計測装置で行っ
ていたノイズ除去処理や上記第一の特徴構成の信号処理
手段による基線動揺除去または低減処理等、を施した心
電図信号であっても構わない。また、当該前処理が前記
心電図信号生成手段で行われても構わない。
Here, the processed electrocardiogram signal to be processed by the signal processing means may be an electrocardiogram signal generated by the electrocardiogram signal generation means, or may be a predetermined pre-processing, for example, It may be an electrocardiogram signal which has been subjected to noise removal processing performed by a conventional electrocardiogram measurement apparatus or baseline sway removal or reduction processing by the signal processing means of the first characteristic configuration. Further, the pre-processing may be performed by the electrocardiogram signal generating means.

【0012】同第三の特徴構成は、特許請求の範囲の欄
の請求項3に記載した如く、上記第二の特徴構成に加え
て、前記相互相関演算部の相互相関出力が所定の閾値以
上となる局所ピーク検出時刻に基づいて、前記特徴的信
号成分の発生時相を検出する発生時相検出手段を備えて
いる点にある。
[0012] In the third feature configuration, in addition to the second feature configuration, the cross-correlation output of the cross-correlation calculation unit may be equal to or more than a predetermined threshold value. The present invention is characterized in that an occurrence time phase detecting means for detecting the occurrence time phase of the characteristic signal component is provided based on the local peak detection time.

【0013】同第四の特徴構成は、特許請求の範囲の欄
の請求項4に記載した如く、上記第二または第三の特徴
構成に加えて、前記特徴的信号成分がQRS群である点
にある。
[0013] The fourth characteristic configuration is that, in addition to the second or third characteristic configuration, the characteristic signal component is a QRS complex in addition to the second or third characteristic configuration. It is in.

【0014】同第五の特徴構成は、特許請求の範囲の欄
の請求項5に記載した如く、上記第二、第三または第四
の特徴構成に加えて、前記信号処理手段が前記特徴的信
号成分を連続して所定回数以上検出した場合に、所定の
トリガ信号を出力する点にある。
According to a fifth aspect of the present invention, in addition to the second, third or fourth aspect of the present invention, the signal processing means includes the above-mentioned signal processing means. The point is that a predetermined trigger signal is output when a signal component is continuously detected a predetermined number of times or more.

【0015】同第六の特徴構成は、特許請求の範囲の欄
の請求項6に記載した如く、被験者が入浴する浴槽内壁
面の所定位置に各別に設置された少なくとも三つの心電
図電極と、前記少なくとも三つの各心電図電極に現れる
電気信号から擬似的な標準肢誘導である心電図信号を生
成する心電図信号生成手段とを備えてなり、前記各心電
図電極は、第1の電極が前記被験者の右腕付け根外側に
近い位置に、第2の電極が前記被験者の左腕付け根外側
に近い位置に、第3の電極が前記被験者の左足付け根外
側に近い位置に配置されており、前記心電図信号生成手
段が、前記第1の電極と前記第2の電極間、前記第1の
電極と前記第3の電極間、及び、前記第2の電極と前記
第3の電極間の、前記電気信号の差信号成分を各別に増
幅する差動増幅手段を備えてなる点にある。
The sixth characteristic configuration is that, as described in claim 6 of the claims, at least three electrocardiogram electrodes separately installed at predetermined positions on the inner wall surface of the bathtub where the subject takes a bath, An electrocardiogram signal generating means for generating an electrocardiogram signal as a pseudo standard limb lead from electric signals appearing on at least three electrocardiogram electrodes, wherein each of the electrocardiogram electrodes has a first electrode at the base of the right arm of the subject. The second electrode is located at a position near the outside of the left base of the subject's left arm, and the third electrode is located at a position near the outside of the left base of the subject's left foot. The difference signal components of the electric signal between the first electrode and the second electrode, between the first electrode and the third electrode, and between the second electrode and the third electrode are respectively Differential amplifier to amplify separately It lies in the fact to be equipped with.

【0016】同第七の特徴構成は、特許請求の範囲の欄
の請求項7に記載した如く、被験者が入浴する浴槽内壁
面の所定位置に各別に設置された少なくとも三つの心電
図電極と、前記少なくとも三つの各心電図電極に現れる
電気信号から擬似的な標準肢誘導である心電図信号を生
成する心電図信号生成手段とを備えてなり、前記各心電
図電極は、第1の電極が前記被験者の右腕付け根外側に
近い位置に、第2の電極が前記被験者の左腕付け根外側
に近い位置に、第3の電極が前記被験者の左膝上方外側
に近く且つ前記第2の電極と同じ深さの位置に配置され
ており、前記心電図信号生成手段が、前記第1の電極と
前記第2の電極間、前記第1の電極と前記第3の電極
間、及び、前記第2の電極と前記第3の電極間の、前記
電気信号の差信号成分を各別に増幅する差動増幅手段を
備えてなる点にある。
The seventh characteristic configuration is that, as described in claim 7 of the claims, at least three electrocardiogram electrodes separately installed at predetermined positions on the inner wall surface of the bathtub where the subject takes a bath, An electrocardiogram signal generating means for generating an electrocardiogram signal as a pseudo standard limb lead from electric signals appearing on at least three electrocardiogram electrodes, wherein each of the electrocardiogram electrodes has a first electrode at the base of the right arm of the subject. A second electrode is located at a position close to the outside, near the outside of the left base of the subject's left arm, and a third electrode is located at a position near the outside of the subject's left knee and at the same depth as the second electrode. Wherein the electrocardiogram signal generating means is provided between the first electrode and the second electrode, between the first electrode and the third electrode, and between the second electrode and the third electrode. Signal difference between the electrical signals The lies in comprising a differential amplifying means for amplifying each other.

【0017】同第八の特徴構成は、特許請求の範囲の欄
の請求項8に記載した如く、上記第六または第七の特徴
構成に加えて、前記少なくとも三つの心電図電極が、前
記第1、第2及び第3の電極に加えて、前記浴槽内壁面
の前記第3の電極に対して浴槽内にいる被験者の身体を
基準にして左右対称となる位置に配置された第4の電極
を有し、前記差動増幅手段が、3台の独立した差動増幅
器からなり、前記3台の差動増幅器の基準電位を全て前
記第4の電極の電位とする点にある。
According to an eighth feature of the present invention, in addition to the sixth or seventh feature of the present invention, the at least three electrocardiogram electrodes include the first electrocardiogram electrode. In addition to the second and third electrodes, a fourth electrode disposed at a position symmetrical with respect to the third electrode on the inner wall surface of the bathtub with respect to the body of the subject in the bathtub. Wherein the differential amplifying means comprises three independent differential amplifiers, and the reference potentials of the three differential amplifiers are all set to the potential of the fourth electrode.

【0018】同第九の特徴構成は、特許請求の範囲の欄
の請求項9に記載した如く、上記第一、第二、第三、第
四または第五の特徴構成に加えて、前記信号処理手段の
処理結果に基づいて、被験者の体調を推定する体調推定
手段を備えている点にある。
According to a ninth feature of the present invention, in addition to the first, second, third, fourth or fifth feature of the present invention, as described in claim 9 of the claims, The present invention is characterized in that a physical condition estimating means for estimating a physical condition of a subject based on a processing result of the processing means is provided.

【0019】以下に上記各特徴構成の作用並びに効果を
説明する。本発明に係る心電図計測装置の第一の特徴構
成によれば、信号処理手段の減算器出力が倍率変換処理
及び積分処理された後に基線動揺の推定値として減算器
の負側入力にフィードバックされることから、減算器に
よって基線動揺を含む心電図信号から当該基線動揺が除
去される。この結果、心電図信号に含まれる有用な心電
図情報、例えば、心臓の動きに関連して発生するP波、
Q波、R波、S波、T波、QRS群等の特徴的信号成分
の波形や発生時相や発生周期、或いは、隣接する各波の
間隔や、その間に発生する異常波形等を保持した状態
で、これら有用な心電図情報の検出を阻害する基線動揺
を効果的に除去できる。この結果、基線動揺除去後の心
電図波形が、従来の標準12誘導法による心電図波形に
より近い波形となり、標準12誘導法による心電図の臨
床データを有効に活用できる。
The operation and effect of each of the above features will be described below. According to the first feature configuration of the electrocardiogram measuring apparatus according to the present invention, the output of the subtractor of the signal processing means is fed back to the negative input of the subtractor as an estimated value of the baseline sway after the magnification conversion processing and the integration processing. Thus, the baseline sway is removed from the ECG signal including the baseline sway by the subtractor. As a result, useful electrocardiogram information included in the electrocardiogram signal, for example, a P-wave generated in connection with the movement of the heart,
The waveforms of characteristic signal components such as Q wave, R wave, S wave, T wave, QRS group, generation time phase and generation period, intervals between adjacent waves, and abnormal waveforms generated between them are held. In this state, the baseline fluctuation that hinders the detection of these useful ECG information can be effectively removed. As a result, the electrocardiogram waveform after removal of the baseline fluctuation is closer to the electrocardiogram waveform obtained by the conventional standard 12-lead method, and clinical data of the electrocardiogram obtained by the standard 12-lead method can be effectively used.

【0020】より詳細には、本特徴構成の減算器は、基
本的に入力値から出力の積分値を減算するので、出力値
が小さくなるように作用する。ところで、現実のフィー
ドバック要素である倍率変換処理及び積分処理は一定の
時定数をもって処理されることから、この時定数を所定
範囲(例えば1〜10秒程度)に設定しておけば、一定
期間の基線動揺に比べ高周波の上記特徴的信号成分の波
形が上記倍率変換処理及び積分処理によって基線動揺に
沿って平滑化され、直近の基線動揺成分の推定値が得ら
れる。この推定値は高周波の特徴的信号成分が除去され
ているので、上記減算処理によって被処理心電図信号か
ら特徴的信号成分が失われずに、低周波数成分の基線動
揺だけが減算処理される結果となる。従って、上記時定
数が極端に短いと、上記推定値に特徴的信号成分が含ま
れる結果となり、基線動揺以外に本来の信号成分も消失
する虞がある。ここで、倍率変換器は積分器のカットオ
フ周波数を決定するために使用される。
More specifically, since the subtractor having the characteristic configuration basically subtracts the integrated value of the output from the input value, the subtractor acts so as to reduce the output value. By the way, since the magnification conversion process and the integration process, which are actual feedback elements, are performed with a fixed time constant, if this time constant is set to a predetermined range (for example, about 1 to 10 seconds), a predetermined period of time is set. The waveform of the characteristic signal component having a higher frequency than that of the base line sway is smoothed along the base line sway by the above-mentioned magnification conversion processing and integration processing, and an estimated value of the latest base line sway component is obtained. Since the high-frequency characteristic signal component has been removed from the estimated value, the subtraction processing does not cause the loss of the characteristic signal component from the processed electrocardiogram signal, but results in the subtraction processing of only the base line fluctuation of the low-frequency component. . Accordingly, when the time constant is extremely short, the estimated value includes a characteristic signal component, and the original signal component may be lost in addition to the baseline fluctuation. Here, the magnification converter is used to determine the cutoff frequency of the integrator.

【0021】尚、信号処理手段の入出力はアナログ信号
に限定されるものではなく、ディジタル信号であっても
構わない。従って、ディジタル信号の場合は、減算器、
倍率変換器、積分器は夫々ディジタル回路で構成され
る。
The input and output of the signal processing means are not limited to analog signals, but may be digital signals. Therefore, in the case of a digital signal, a subtractor,
Each of the magnification converter and the integrator is constituted by a digital circuit.

【0022】同第二の特徴構成によれば、心電図信号に
含まれる有用な心電図情報であるP波、Q波、R波、S
波、T波、QRS群等の特徴的信号成分の内、特定の信
号成分に着目してその発生状況を正確に確認できる。ま
た、特に同第三の特徴構成によれば、その相互相関出力
から特徴的信号成分の発生時相が正確に抽出できること
から、その抽出された特徴的信号成分の発生時相に関連
する被験者の生理情報を得ることができる。
According to the second characteristic configuration, useful P-wave, Q-wave, R-wave, S-wave, which are useful electrocardiogram information included in the electrocardiogram signal.
By focusing on a specific signal component among characteristic signal components such as a wave, a T-wave, and a QRS complex, it is possible to accurately confirm the state of occurrence. In addition, in particular, according to the third characteristic configuration, since the generation phase of the characteristic signal component can be accurately extracted from the cross-correlation output, the subject related to the generation phase of the extracted characteristic signal component can be extracted. Physiological information can be obtained.

【0023】更に、本処理によって特定の信号成分の波
形情報のみを抽出することから、結果的に被処理心電図
信号に含まれる基線動揺やその他の心電図信号の動揺が
除去され、従来の標準12誘導法による心電図波形に対
して、略正確な発生時相の当該特徴的信号成分が得られ
るので、当該特徴的信号成分の発生時相に関する標準1
2誘導法による心電図の臨床データを有効に活用でき
る。
Further, since only the waveform information of a specific signal component is extracted by this processing, the fluctuation of the base line and the fluctuation of the electrocardiogram signal included in the electrocardiogram signal to be processed are removed as a result. Since the characteristic signal component of the generation time phase which is substantially accurate is obtained for the electrocardiogram waveform obtained by the method, the standard 1 relating to the generation time phase of the characteristic signal component is obtained.
Clinical data of electrocardiogram by 2-lead method can be effectively used.

【0024】尚、本特徴構成の相互相関処理はパターン
マッチドフィルタとして知られた手法を応用した処理を
行っている。つまり、抽出対象となる特徴的信号成分と
同一形状の信号波形(テンプレート波形)と被処理心電
図信号との相互相関処理を行い、その相互相関出力の出
力値が所定の閾値以上となる局所ピークを検出すること
で、その検出時刻に基づいて抽出対象の特徴的信号成分
の出現時間を知ることができる。しかし、一般的に相互
相関処理の演算負荷は非常に重くリアルタイム性に欠け
るため、本特徴構成では、単位振幅の三つの矩形波が負
極性・正極性・負極性或いは正極性・負極性・正極性の
順に各極性の時間比率が1:2:1となるように並び、
三つの矩形波の時間幅が抽出対象の特徴的信号成分の時
間幅となるように設定されてなるテンプレート波形を使
用することで、相互相関演算が簡単な加減算処理で実行
できるようになり、演算処理の大幅な高速化が図られて
いる。また、かかる演算処理の簡単化が図られても、正
極性と負極性の各合計の時間配分が等しいため、三つの
矩形波の時間幅と異なる時間幅の信号成分は相互相関演
算処理において相殺されるため、必要な特徴的信号成分
が抽出できる。
Incidentally, the cross-correlation processing of this characteristic configuration is performed by applying a technique known as a pattern matched filter. That is, cross-correlation processing is performed between a signal waveform (template waveform) having the same shape as the characteristic signal component to be extracted and the electrocardiogram signal to be processed, and a local peak at which the output value of the cross-correlation output is equal to or greater than a predetermined threshold value is detected. By detecting, the appearance time of the characteristic signal component to be extracted can be known based on the detection time. However, in general, the computational load of the cross-correlation processing is very heavy and lacks real-time characteristics. Therefore, in this characteristic configuration, three rectangular waves having a unit amplitude of negative, positive, negative or positive, negative, positive In order of sex, the time ratio of each polarity is arranged to be 1: 2: 1,
By using a template waveform that is set so that the time width of the three rectangular waves is equal to the time width of the characteristic signal component to be extracted, the cross-correlation calculation can be executed by simple addition and subtraction processing. The processing speed is greatly increased. Further, even if the arithmetic processing is simplified, signal components having a time width different from the time width of the three rectangular waves are canceled out in the cross-correlation arithmetic processing because the total time distribution of each of the positive polarity and the negative polarity is equal. Thus, necessary characteristic signal components can be extracted.

【0025】同第四の特徴構成によれば、前記被処理心
電図信号に大きな基線動揺やR波ピーク付近の波形形状
の動揺、その他の動揺があっても、QRS群の出現時間
を正確に検出することができる。その結果、R−R間隔
に基づく心拍変動等の被験者の生理情報を容易に判定す
ることができる。
According to the fourth characteristic configuration, even if the processed electrocardiogram signal has a large baseline fluctuation, a fluctuation in the waveform shape near the R-wave peak, or other fluctuations, the appearance time of the QRS complex can be accurately detected. can do. As a result, physiological information of the subject such as heart rate variability based on the RR interval can be easily determined.

【0026】同第五の特徴構成によれば、前記信号処理
手段が前記特徴的信号成分を連続して所定回数以上検出
した場合に、被験者が安定状態にあると判断できること
から、トリガ信号の発信を基準に、当該発信後の前記信
号処理手段の結果を被験者の体調等の生理状態の判定に
使用することで、より正確な判定が行える。特に、浴槽
心電計の場合、入浴直後に一時的な心拍変動や血圧上昇
が生じるため、トリガ信号を利用することで、かかる初
期変動の影響を受けることなく、上記判定を実行でき
る。
According to the fifth aspect, when the signal processing means continuously detects the characteristic signal component a predetermined number of times or more, it is possible to determine that the subject is in a stable state. By using the result of the signal processing means after the transmission for the determination of the physiological condition such as the physical condition of the subject, the determination can be made more accurately. In particular, in the case of a bathtub electrocardiograph, since a temporary heartbeat fluctuation and an increase in blood pressure occur immediately after bathing, the above determination can be executed by using a trigger signal without being affected by such initial fluctuation.

【0027】同第六または第七の特徴構成によれば、電
極の設置位置が標準12誘導法による心電図に近似した
心電図を得ることができるため、各電極間の差信号を差
動増幅手段で増幅することにより、標準12誘導法の一
部である標準肢誘導の3種の双極導出による心電図信号
を擬似的に生成することができる。また、この3種の双
極導出信号から、Goldberger導出法と呼ばれ
る3種の単極導出による心電図も計算によって求めるこ
とができる。従って、本特徴構成で得られた心電図を従
来の標準12誘導法による心電図と比較することで、過
去の臨床データに基づく各種診断が可能となる。
According to the sixth or seventh characteristic configuration, an electrocardiogram in which the positions of the electrodes are approximated to the electrocardiogram obtained by the standard 12-lead method can be obtained. By amplifying, it is possible to artificially generate an electrocardiogram signal by three types of bipolar derivation of standard limb lead which is a part of the standard 12 lead method. Further, from these three types of bipolar derived signals, an electrocardiogram based on three types of unipolar derived called a Goldberger derivation method can also be obtained by calculation. Therefore, various diagnoses based on past clinical data can be performed by comparing the electrocardiogram obtained by this feature configuration with the electrocardiogram obtained by the conventional standard 12-lead method.

【0028】同第八の特徴構成によれば、第4の電極が
検出する体表面電位の被験者体表面上の位置が、他の3
つの電極が検出する体表面電位の被験者体表面上の位置
に対して、電気的に略等距離にあるため、第4の電極の
電位を3台の差動増幅器の基準電位とすることで、各差
動増幅器に対して共通の電源電圧を供給することでき、
各入力電圧も基準電位に対して一定範囲内に抑えること
ができ、各差動増幅器の確実な動作を保証するととも
に、差動増幅手段を簡単に構成することが可能となる。
According to the eighth characteristic configuration, the position of the body surface potential detected by the fourth electrode on the subject's body surface is different from that of the other three.
Since the body surface potential detected by one electrode is electrically substantially equidistant from the position on the subject body surface, the potential of the fourth electrode is set as the reference potential of the three differential amplifiers. A common power supply voltage can be supplied to each differential amplifier,
Each input voltage can also be suppressed within a certain range with respect to the reference potential, and reliable operation of each differential amplifier can be ensured, and the differential amplifier can be simply configured.

【0029】同第九の特徴構成によれば、体調推定手段
によって被験者の体調が推定されるため、専門家による
信号処理手段の処理結果の解析を必要とせず、被験者自
身或いは第三者が、被験者の体調を容易且つ正確に判断
できる。また、当該推定結果に基づいて被験者の環境を
自動的或いは半自動的に調整することも可能となる。
According to the ninth characteristic configuration, since the physical condition of the subject is estimated by the physical condition estimating means, it is not necessary for the expert to analyze the processing result of the signal processing means, and the subject himself or a third party can The subject's physical condition can be easily and accurately determined. It is also possible to automatically or semi-automatically adjust the environment of the subject based on the estimation result.

【0030】[0030]

【発明の実施の形態】本発明に係る心電図計測装置(以
下、単に「本発明装置」という。)の実施の形態を、浴
槽心電計の場合について、図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an electrocardiogram measuring apparatus according to the present invention (hereinafter, simply referred to as "the present invention apparatus") will be described with reference to the drawings for a bathtub electrocardiograph.

【0031】〈第一実施形態〉図1に示すように、本発
明装置は、複数の心電図電極10と、複数の心電図電極
10に現れる電気信号40から心電図信号41を生成処
理する心電図信号生成手段11と、心電図信号生成手段
11によって生成された後の被処理心電図信号42に対
して所定の信号処理を行う信号処理手段12とを備えて
構成されている。尚、本第一実施形態では、信号処理手
段12は、被処理心電図信号42として心電図信号生成
手段11が生成した心電図信号41を直接処理する。
<First Embodiment> As shown in FIG. 1, the apparatus of the present invention comprises an electrocardiogram signal generating means for generating an electrocardiogram signal 41 from a plurality of electrocardiogram electrodes 10 and electric signals 40 appearing on the plurality of electrocardiogram electrodes 10. 11 and a signal processing unit 12 for performing predetermined signal processing on the processed electrocardiogram signal 42 generated by the electrocardiogram signal generation unit 11. In the first embodiment, the signal processing unit 12 directly processes the electrocardiogram signal 41 generated by the electrocardiogram signal generation unit 11 as the processed electrocardiogram signal 42.

【0032】図2に示すように、複数の心電図電極10
は4つの電極10a〜10dからなり、各電極10a〜
10dは被験者1が入浴する浴槽2の内壁面の湯水に浸
水する所定位置に各別に設置される。具体的には、第1
の電極10aが被験者1の右腕付け根外側に近い位置
に、第2の電極10bが被験者1の左腕付け根外側に近
い位置に、第3の電極10cが被験者1の左足付け根外
側に近い位置に、第4の電極10dが被験者1の右足付
け根外側に近い位置に設置されている。
As shown in FIG. 2, a plurality of ECG electrodes 10
Consists of four electrodes 10a to 10d, and each electrode 10a to 10d
10d is separately installed at a predetermined position on the inner wall surface of the bathtub 2 where the subject 1 takes a bath in the hot water. Specifically, the first
The electrode 10a is located at a position near the outside of the right base of the subject 1, the second electrode 10b is located at a position near the outside of the left base of the subject 1, and the third electrode 10c is located near the outside of the left base of the subject 1. The fourth electrode 10d is installed at a position near the outside of the right base of the subject's 1 foot.

【0033】心電図信号生成手段11は、図3に示すよ
うに、基本的に3台の差動増幅器13〜15で構成さ
れ、第1の電極10aに誘導される電気信号40aが第
1の増幅器13と第2の増幅器14の負側入力に、第2
の電極10bに誘導される電気信号40bが第1の増幅
器13の正側入力と第3の増幅器15の負側入力に、第
3の電極10cに誘導される電気信号40cが第2の増
幅器14と第3の増幅器15の正側入力に、夫々入力さ
れる。また、各差動増幅器13〜15は、各接地端子が
第4の電極10dと電気的に接続され、電極10dの電
位が各差動増幅器13〜15の基準電位として供され、
各電源も共通の電源から供給される。
As shown in FIG. 3, the electrocardiogram signal generating means 11 is basically composed of three differential amplifiers 13 to 15, and the electric signal 40a guided to the first electrode 10a is supplied to the first amplifier 10a. 13 and the negative input of the second amplifier 14
The electric signal 40b induced at the third electrode 10c is applied to the positive input of the first amplifier 13 and the negative input of the third amplifier 15, and the electric signal 40c induced to the third electrode 10c is applied to the second amplifier 14b. And the positive side input of the third amplifier 15. Further, each of the differential amplifiers 13 to 15 has a ground terminal electrically connected to the fourth electrode 10d, and a potential of the electrode 10d is provided as a reference potential of each of the differential amplifiers 13 to 15,
Each power supply is also supplied from a common power supply.

【0034】上記の心電図信号生成手段11の構成と心
電図電極10a〜10dの配置位置によって、第1の増
幅器13からは疑似第I誘導心電図信号41aが、第2
の増幅器14からは疑似第II誘導心電図信号41b
が、第3の増幅器15からは疑似第III誘導心電図信
号41cが、夫々出力される。ここで、各心電図信号4
1a〜41cを疑似誘導と称しているのは、これらが、
標準12誘導法における標準肢誘導の3種の双極導出心
電図に対応しているものの、後述する浴槽心電計に特有
の基線動揺が含まれていることを考慮したものである。
Depending on the configuration of the electrocardiogram signal generating means 11 and the positions of the electrocardiogram electrodes 10a to 10d, the first amplifier 13 outputs the pseudo I-lead ECG signal 41a and the second
From the pseudo-lead II electrocardiogram signal 41b
However, the pseudo third lead ECG signal 41c is output from the third amplifier 15, respectively. Here, each ECG signal 4
1a to 41c are called pseudo inductions because
Although it corresponds to three types of bipolar derived electrocardiograms of the standard limb lead in the standard 12-lead method, it takes into account that a baseline sway peculiar to the bathtub electrocardiograph described later is included.

【0035】また、各心電図信号41a〜41cは、数
式化すれば下記の数1〜数3によって表される。ここ
で、VI 、VII、VIII は、夫々各疑似誘導心電図信号
41a〜41cの信号電圧であり、VR、VL、VFは、夫々
第1の電極10a、第2の電極10b、第3の電極10
cの電位である。
Each of the electrocardiogram signals 41a to 41c can be expressed by the following equations 1 to 3 in the form of mathematical expressions. Here, V I , V II , and V III are the signal voltages of the respective pseudo-lead electrocardiogram signals 41a to 41c, and V R , V L , and V F are the first electrode 10a and the second electrode 10b, respectively. The third electrode 10
The potential of c.

【0036】[0036]

【数1】VI=VL− VR [Number 1] V I = V L - V R

【数2】VII=VF− VR ## EQU2 ## V II = V F −V R

【数3】VIII=VF− VL ## EQU3 ## V III = V F −V L

【0037】尚、各心電図信号41a〜41cは必要に
応じて更に増幅或いは不要な電源ノイズや高周波ノイズ
のフィルタ処理が施される。
The electrocardiogram signals 41a to 41c are further amplified or filtered for unnecessary power supply noise and high frequency noise as required.

【0038】更に、心電図信号生成手段11は、図3に
示すように、標準12誘導法における標準肢誘導の3種
の単極導出に対応する心電図信号を、下記の数4〜数6
に基づいて、計算によって導出する演算手段16を備え
ている。ここで、aVR 、aVL、aVFは、夫々3種の単極導
出に対応する心電図信号の信号電圧である。
Further, as shown in FIG. 3, the electrocardiogram signal generating means 11 converts the electrocardiogram signals corresponding to the three types of unipolar derivation of the standard limb lead in the standard 12-lead method into the following equations 4 to 6:
The calculation means 16 is derived by calculation based on Here, aV R, aV L, aV F is the signal voltage of the electrocardiogram signal corresponding to each of three monopolar derivation.

【0039】[0039]

【数4】 aVR=VR−0.5(VL+VF)=−0.5(VI+VIIEquation 4] aV R = V R -0.5 (V L + V F) = - 0.5 (V I + V II)

【数5】 aVL=VL−0.5(VR+VF)=0.5(VI−VIIIAV L = V L -0.5 (V R + V F ) = 0.5 (V I -V III )

【数6】 aVF=VF−0.5(VR+VL)=0.5(VI+VIIAV F = V F −0.5 (V R + V L ) = 0.5 (V I + V II )

【0040】上記構成による心電図信号生成手段11に
よって、標準12誘導法における6種の標準肢誘導の心
電図信号41(VI 、VII、VIII、aVR 、aVL、aVF
が生成される。
The electrocardiogram signal generating means 11 having the above-described configuration allows the electrocardiogram signals 41 (V I , V II , V III , aV R , aV L , aV F ) of six standard limb leads in the standard 12 lead method.
Is generated.

【0041】信号処理手段12は、心電図信号生成手段
11によって生成された心電図信号41またはこれら心
電図信号41に対して所定の前処理、例えば、電源ノイ
ズの除去処理等、を施した心電図信号(両者を総称して
被処理心電図信号42)に対して、基線動揺を除去(ま
たは大幅に低減)する基線動揺除去手段17を備える。
The signal processing means 12 generates an electrocardiogram signal 41 generated by the electrocardiogram signal generation means 11 or an electrocardiogram signal obtained by subjecting the electrocardiogram signal 41 to predetermined preprocessing, for example, power noise removal processing. Are collectively referred to as the processed electrocardiogram signal 42).

【0042】この基線動揺除去手段17は、図4に示す
ように、減算器18、積分器19、倍率変換器20を備
えて構成される。尚、図4に示す処理回路は1信号分で
ある。減算器18の正側入力が被処理心電図信号42の
1信号で、出力が基線動揺除去後の心電図信号43であ
る。この心電図信号に対して倍率変換処理と積分処理を
施すことで、被処理心電図信号42に重畳した浴槽2内
の湯水の動きや被験者1の身体の動き等に起因して発生
する低周波の基線動揺成分の推定値が得られ、これを減
算器18の負側入力にフィードバックすることで、基線
動揺除去後の心電図信号43が得られる。ここで、積分
器19と倍率変換器20の全体での時定数を1〜10秒
程度に設定することで、一定期間の基線動揺に比べ高周
波の上記特徴的信号成分(P波、Q波、R波、S波、T
波、QRS群等)の波形が上記倍率変換処理及び積分処
理によって基線動揺に沿って平滑化され、直近の基線動
揺成分の推定値が得られる。この推定値は高周波の特徴
的信号成分が除去されているので、上記減算処理によっ
て被処理心電図信号から特徴的信号成分が失われずに、
低周波数成分の基線動揺だけが減算処理される。従っ
て、時定数が極端に短いと、上記推定値に特徴的信号成
分が含まれる結果となり、基線動揺以外に本来の信号成
分も消失する虞がある。ここで、図4に示す構成に対し
て、積分器19と倍率変換器20の配置を入れ換え倍率
変換処理と積分処理の順番を逆転させても同様の効果を
得ることができる。
As shown in FIG. 4, the baseline fluctuation removing means 17 includes a subtractor 18, an integrator 19, and a magnification converter 20. The processing circuit shown in FIG. 4 is for one signal. The positive input of the subtractor 18 is one of the processed electrocardiogram signals 42, and the output is the electrocardiogram signal 43 after the baseline oscillation is removed. By subjecting the electrocardiogram signal to magnification conversion processing and integration processing, a low-frequency baseline generated due to movement of hot water in the bathtub 2 or movement of the body of the subject 1 superimposed on the electrocardiogram signal 42 to be processed. An estimated value of the sway component is obtained, and the estimated value is fed back to the negative input of the subtractor 18, whereby an electrocardiogram signal 43 after the baseline sway is removed is obtained. Here, by setting the overall time constant of the integrator 19 and the magnification converter 20 to about 1 to 10 seconds, the characteristic signal components (P wave, Q wave, R wave, S wave, T
The waveform of the wave, the QRS complex, etc.) is smoothed along the baseline fluctuation by the above-described magnification conversion processing and integration processing, and an estimated value of the latest baseline fluctuation component is obtained. Since the high frequency characteristic signal component has been removed from the estimated value, the characteristic signal component is not lost from the processed electrocardiogram signal by the subtraction processing,
Only the base line fluctuation of the low frequency component is subtracted. Therefore, if the time constant is extremely short, a characteristic signal component is included in the estimated value, and the original signal component may be lost in addition to the baseline fluctuation. Here, the same effect can be obtained by replacing the arrangement of the integrator 19 and the magnification converter 20 with the configuration shown in FIG. 4 and reversing the order of the magnification conversion processing and the integration processing.

【0043】また、基線動揺除去手段17は、アナログ
信号処理の他、ディジタル信号処理によって実現するこ
とも可能である。この場合、積分処理は区分求積法によ
って容易に実現できる。即ち、初期値を0から始めてサ
ンプリング間隔毎に入力ディジタル値を累積加算し、そ
の値を記憶及び出力すればよい。より具体的には、入力
ディジタル値が16ビット幅であれば、32ビットで累
積加算を行い、その累積加算値に倍率を示す係数を乗じ
たものが、上記推定値となるため、この値をディジタル
変換された被処理心電図信号42から減じればリアルタ
イム処理が容易に実現できる。尚、被処理心電図信号4
2のA/D変換処理は、信号処理手段12と心電図信号
生成手段11の何れで実行しても構わない。
Further, the baseline fluctuation removing means 17 can be realized by digital signal processing in addition to analog signal processing. In this case, the integration process can be easily realized by the piecewise quadrature method. That is, the input digital values may be cumulatively added at each sampling interval starting from the initial value 0, and the values may be stored and output. More specifically, if the input digital value is 16 bits wide, cumulative addition is performed with 32 bits, and the value obtained by multiplying the cumulative added value by a coefficient indicating a magnification is the above-mentioned estimated value. Real-time processing can be easily realized by subtracting from the digitally converted electrocardiogram signal 42 to be processed. The processed electrocardiogram signal 4
The A / D conversion process 2 may be executed by either the signal processing unit 12 or the electrocardiogram signal generation unit 11.

【0044】本実施形態では、標準12誘導法における
6種の標準肢誘導の心電図信号41の全てに対して、上
記基線動揺除去処理を実行することで、臨床医学や生理
学研究の場で得られる標準12誘導法における6種の標
準肢誘導に近似した各心電図信号43が得られる。この
結果、これらのデータと臨床医学や生理学研究の場で蓄
積された臨床データとの比較検討が可能となり、浴槽心
電計を利用した簡易な心電図計測結果に対しても、かか
る臨床データの有効利用が可能となる。
In this embodiment, the baseline sway elimination process is performed on all of the six standard limb lead electrocardiogram signals 41 in the standard 12 lead method, thereby obtaining the results in clinical medicine and physiological research. Electrocardiogram signals 43 approximate to the six standard limb leads in the standard 12 lead method are obtained. As a result, it is possible to compare these data with clinical data accumulated in clinical medicine and physiology research sites, and to evaluate the effectiveness of such clinical data even for simple ECG measurement results using a bathtub electrocardiograph. Can be used.

【0045】図5に、被処理心電図信号42の第2誘導
信号VIIに対して基線動揺除去手段17による処理を施
した結果の一例を示す。これより基線誘導の除去が効果
的に行われていることが分かる。
[0045] FIG. 5 shows an example of a result of performing the treatment with baseline upset removing means 17 relative to the second inductive signal V II of the processed electrocardiographic signal 42. From this, it can be seen that the removal of the baseline guidance is effectively performed.

【0046】ところで、上記基線動揺除去処理は必ずし
も6種の標準肢誘導の心電図信号41の全てに対して実
行する必要はなく、被験者1の心拍数等の特定の検査項
目に着目している場合は、その内の一部の心電図信号の
みを基線動揺除去手段17に入力して基線動揺除去処理
すればよい。また、6種の標準肢誘導の内の3種の単極
導出による心電図信号は、3種の双極導出心電図信号に
対する演算処理で生成されるため、かかる演算処理を基
線動揺除去後の3種の双極導出心電図信号に対して実行
しても構わない。かかる処理手順によれば、基線動揺除
去手段17の回路構成の簡単化が図れる。
Incidentally, the above-mentioned baseline fluctuation removal processing is not necessarily required to be executed for all of the six kinds of standard limb lead electrocardiogram signals 41, and attention is paid to specific test items such as the heart rate of the subject 1. May be performed by inputting only a part of the electrocardiogram signals to the baseline fluctuation removing means 17 and performing a baseline fluctuation removing process. In addition, since three types of electrocardiogram signals derived from unipolar derivation of the six standard limb leads are generated by arithmetic processing on three types of bipolar derived electrocardiogram signals, such arithmetic processing is performed by three types of electrocardiogram signals after the baseline sway is removed. It may be performed on a bipolar derived electrocardiogram signal. According to this processing procedure, the circuit configuration of the baseline fluctuation removing unit 17 can be simplified.

【0047】〈第二実施形態〉図6に示すように、複数
の心電図電極10と心電図信号生成手段11と信号処理
手段12とを備えている点において、図1に示す第一実
施形態と基本的な構成で変更はないが、本第二実施形態
では、信号処理手段12に、基線動揺除去手段17に加
えて、特徴的信号成分抽出手段21が設けられている。
複数の心電図電極10、心電図信号生成手段11、及
び、基線動揺除去手段17については第一実施形態と同
じであるので、説明を割愛する。
<Second Embodiment> As shown in FIG. 6, a plurality of electrocardiogram electrodes 10, electrocardiogram signal generating means 11 and signal processing means 12 are provided. In the second embodiment, the signal processing means 12 is provided with a characteristic signal component extracting means 21 in addition to the baseline fluctuation removing means 17, although there is no change in the typical configuration.
The plurality of electrocardiogram electrodes 10, the electrocardiogram signal generating means 11, and the baseline fluctuation removing means 17 are the same as in the first embodiment, and a description thereof will be omitted.

【0048】特徴的信号成分抽出手段21は、被処理心
電図信号44となる基線動揺除去手段17が生成した基
線動揺除去後の心電図信号43から、P波、Q波、R
波、S波、T波、QRS群等の特徴的信号成分の中から
特定の信号波を抽出し、その特定の信号波に含まれる心
電情報を更に抽出して出力するように構成されている。
具体的には、本実施形態では、QRS群を抽出して、そ
の発生時相を検出し、その発生間隔から心拍数及びその
時間変動をリアルタイムに検出する。その具体的な構成
は、図7に示すように、相互相関演算部22、最適窓幅
設定部23、ピーク時相検出部24、R−R間隔演算部
25、心拍変動スペクトル解析部26、トリガ信号発生
部27を備えて構成されている。
The characteristic signal component extracting means 21 converts the P-wave, the Q-wave, and the R-wave from the electrocardiogram signal 43 after the baseline oscillation removal generated by the baseline oscillation removing section 17 which becomes the electrocardiogram signal 44 to be processed.
It is configured to extract a specific signal wave from characteristic signal components such as a wave, an S wave, a T wave, and a QRS complex, and further extract and output electrocardiographic information included in the specific signal wave. I have.
Specifically, in the present embodiment, the QRS complex is extracted, its occurrence time phase is detected, and the heart rate and its time variation are detected in real time from the occurrence time interval. As shown in FIG. 7, the specific configuration is as follows: a cross-correlation calculation unit 22, an optimum window width setting unit 23, a peak time phase detection unit 24, an RR interval calculation unit 25, a heart rate variability spectrum analysis unit 26, a trigger The signal generator 27 is provided.

【0049】一般的に、心電図信号には、呼吸や体の動
き等に起因した基線動揺の他、R波ピーク付近の波形形
状の揺らぎ、心臓の位置が変化したり信号自体の振幅値
が変化する等の各種の揺らぎが混在している。特徴的信
号成分抽出手段21は、被処理心電図信号44にかかる
揺らぎが含まれていてもQRS群の発生時相を正確に検
出できるように、動作原理として基本的にパターンマッ
チドフィルタとして公知の手法を、相互相関演算部22
における相互相関処理に応用している。そこで、相互相
関演算部22は、被処理心電図信号44となる基線動揺
除去手段17が生成した基線動揺除去後の心電図信号4
3と、抽出対象であるQRS群の波形を模擬したテンプ
レート波形の相互相関処理を行う。
In general, an electrocardiogram signal includes a base line sway caused by respiration, body movement, fluctuations in a waveform shape near the R-wave peak, a change in the position of the heart, and a change in the amplitude value of the signal itself. Various fluctuations such as turbulence are mixed. The characteristic signal component extracting means 21 is basically a method known as a pattern matched filter as an operation principle, so that even when fluctuations in the processed electrocardiogram signal 44 are included, the occurrence phase of the QRS complex can be accurately detected. To the cross-correlation calculation unit 22
For cross-correlation processing. Therefore, the cross-correlation calculating unit 22 outputs the electrocardiogram signal 4 after the baseline oscillation removal generated by the baseline oscillation removing unit 17 to be the processed electrocardiogram signal 44.
3 and a template waveform simulating the waveform of the QRS complex to be extracted.

【0050】しかしながら、通常のパターンマッチドフ
ィルタによる相互相関処理は、演算負荷が非常に重くリ
アルタイム性に欠けるため、本実施形態では、テンプレ
ート波形として、図8に示すような単位振幅の三つの矩
形波が負極性・正極性・負極性の順に各極性の時間比率
が1:2:1となるように並んだものを利用する。三つ
の矩形波の時間幅は心電図信号43に含まれるQRS群
の時間幅となるように設定されている。テンプレート波
形として単位振幅の矩形波を用いることで、ディジタル
演算処理中の乗算処理を大幅に削減できるとともに、一
定のサンプリング間隔における後続のサンプリング値に
対する相互相関値を漸化式で表現でき再計算負荷の軽減
が図れる。また、かかる演算処理の簡単化が図られて
も、正極性と負極性の各合計の時間配分が等しいため、
三つの矩形波の時間幅と異なる時間幅の信号成分は相互
相関演算処理において相殺されるため、必要な特徴的信
号成分が抽出できる。以下、具体例に基づいて説明す
る。
However, the normal cross-correlation processing using a pattern matched filter has a very heavy computational load and lacks real-time performance. Therefore, in this embodiment, three rectangular waves having a unit amplitude as shown in FIG. Are used such that the time ratio of each polarity is 1: 2: 1 in the order of negative polarity / positive polarity / negative polarity. The time width of the three rectangular waves is set to be the time width of the QRS complex included in the electrocardiogram signal 43. By using a square wave of unit amplitude as a template waveform, multiplication processing during digital arithmetic processing can be greatly reduced, and the cross-correlation value for the subsequent sampling value at a fixed sampling interval can be expressed by a recurrence formula, and the recalculation load Can be reduced. In addition, even if such arithmetic processing is simplified, since the total time distribution of each of the positive polarity and the negative polarity is equal,
Since signal components having time widths different from the time widths of the three rectangular waves are canceled in the cross-correlation calculation processing, necessary characteristic signal components can be extracted. Hereinafter, a description will be given based on a specific example.

【0051】入力される被処理心電図信号44は既にデ
ィジタル化されており、数7に示す時系列データd
[t]とする。また、説明の簡単化のため、テンプレー
ト波形とQRS群の時間幅を12標本とすれば、テンプ
レート波形w[t]は数8のように表される。この場
合、相互相関値φ[t](例えば、最初の4標本分φ0
〜φ3)は数9〜数12のようにして得られる。
The input electrocardiogram signal 44 to be processed has already been digitized, and the time-series data d
[T]. For simplicity of explanation, if the time width of the template waveform and the QRS complex is set to 12 samples, the template waveform w [t] is expressed as in Expression 8. In this case, the cross-correlation value φ [t] (for example, the first four samples φ 0
To φ 3 ) are obtained as shown in Equations 9 to 12.

【0052】[0052]

【数7】 d[t]=[d0,d1,d2,d3,……,dn-1D [t] = [d0, d1, d2, d3,..., D n-1 ]

【数8】w[t]=[−1,−1,−1,1,1,1,
1,1,1,−1,−1,−1]
## EQU8 ## w [t] = [-1, -1, -1,1,1,1,1]
1,1,1, -1, -1, -1, -1]

【数9】φ0=−d0−d1−d2+d3+d4+d5
+d6+d7+d8−d9−d10−d11
## EQU9 ## φ0 = −d0−d1−d2 + d3 + d4 + d5
+ D6 + d7 + d8-d9-d10-d11

【数10】φ1=−d1−d2−d3+d4+d5+d
6+d7+d8+d9−d10−d11−d12
## EQU10 ## φ1 = -d1-d2-d3 + d4 + d5 + d
6 + d7 + d8 + d9-d10-d11-d12

【数11】φ2=−d2−d3−d4+d5+d6+d
7+d8+d9+d10−d11−d12−d13
## EQU11 ## φ2 = -d2-d3-d4 + d5 + d6 + d
7 + d8 + d9 + d10-d11-d12-d13

【数12】φ3=−d3−d4−d5+d6+d7+d
8+d9+d10+d11−d12−d13−d14
## EQU12 ## φ3 = -d3-d4-d5 + d6 + d7 + d
8 + d9 + d10 + d11-d12-d13-d14

【0053】ここで、数10〜数12は、各相互相関値
φiを1標本前のφi-1を用いて書き換えると、数13〜
数15のように、既出の相互相関値と被処理心電図信号
の4標本値の加減算のみの簡単な漸化式で表されるた
め、演算負荷の軽減が図れることが分かる。更に、テン
プレート波形とQRS群の時間幅を4m標本としてより
一般化すると、数13〜数15は数16のように表現で
きる。
Here, Equations (10) to (12) are obtained by rewriting each cross-correlation value φ i using φ i−1 one sample before.
As shown in Expression 15, it is understood that the calculation load can be reduced because it is represented by a simple recurrence formula of only addition and subtraction of the above-mentioned cross-correlation value and four sample values of the processed electrocardiogram signal. Further, when the time width of the template waveform and the QRS complex is generalized to 4 m samples, Expressions 13 to 15 can be expressed as Expression 16.

【0054】[0054]

【数13】 φ1=φ0+d0−2×d3+2×d9−d12## EQU13 ## φ1 = φ0 + d0−2 × d3 + 2 × d9−d12

【数14】 φ2=φ1+d1−2×d4+2×d10−d13[Formula 14] φ2 = φ1 + d1-2 × d4 + 2 × d10−d13

【数15】 φ3=φ2+d2−2×d5+2×d11−d14[Formula 15] φ3 = φ2 + d2-2 × d5 + 2 × d11−d14

【数16】 φi+1=φi+di−2×di+m+2×di+3m−di+4m [Formula 16] φ i + 1 = φ i + d i −2 × d i + m + 2 × d i + 3m −d i + 4m

【0055】数16に示す演算式に基づく相互相関演算
部22は、図9に示すように、FIFOメモリ28、レ
ジスタ29、加算器30を用いて簡単な構成で実現でき
る。FIFOメモリ28、レジスタ29、加算器30の
入出力ビット幅は被処理心電図信号44の信号値の量子
化ビット数に応じて決定される。最適窓幅設定部23
は、相互相関演算部22の出力である相互相関値45を
入力して、相互相関値45の局所ピーク値が最大となる
テンプレート波形の時間幅を設定する。
The cross-correlation calculator 22 based on the calculation formula shown in Expression 16 can be realized with a simple configuration using a FIFO memory 28, a register 29, and an adder 30, as shown in FIG. The input and output bit widths of the FIFO memory 28, the register 29, and the adder 30 are determined according to the number of quantization bits of the signal value of the processed electrocardiogram signal 44. Optimal window width setting unit 23
Inputs the cross-correlation value 45 output from the cross-correlation calculator 22 and sets the time width of the template waveform at which the local peak value of the cross-correlation value 45 becomes maximum.

【0056】図10に、相互相関演算部22の入出力信
号の一例を示す。上段が、入力信号である被処理心電図
信号44で、下段が出力信号である相互相関値45であ
る。このように、相互相関演算部22によって、被処理
心電図信号44からQRS群の波形を抽出することがで
きる。
FIG. 10 shows an example of input / output signals of the cross-correlation calculator 22. The upper part is a processed electrocardiogram signal 44 which is an input signal, and the lower part is a cross-correlation value 45 which is an output signal. As described above, the cross-correlation calculator 22 can extract the waveform of the QRS complex from the processed electrocardiogram signal 44.

【0057】図7に示すように、ピーク時相検出部24
は、相互相関値45の時系列データから局所ピークの存
在を検出し、各検出時刻にパルス信号46を出力する。
R−R間隔演算部25は、パルス信号46を逐次受信す
るとともに、その受信時間間隔に基づいて心電図波形の
R−R間隔(QRS群から次のQRS群までの時間間
隔)を演算し、それを実時間の波形情報に変換した心拍
変動信号47を出力する。心拍変動スペクトル解析部2
6は、心拍変動信号47に対して、例えば2Hz程度の
サンプリング速度で標本化してスペクトル解析を行う。
心拍変動のパワースペクトルは低周波域(0.04〜
0.15Hz)と高周波域(0.15〜0.5Hz)に
夫々ピークを有するが、心拍変動スペクトル解析部26
は、低周波域のピーク値をLF成分48、高周波域のピ
ーク値をHF成分49として出力する。
As shown in FIG. 7, the peak time phase detector 24
Detects the presence of a local peak from the time series data of the cross-correlation value 45, and outputs a pulse signal 46 at each detection time.
The RR interval calculator 25 sequentially receives the pulse signal 46 and calculates an RR interval (time interval from the QRS group to the next QRS group) of the electrocardiogram waveform based on the reception time interval. Is converted into real-time waveform information, and a heartbeat variability signal 47 is output. Heart rate variability spectrum analyzer 2
6 samples the heart rate variability signal 47 at a sampling rate of, for example, about 2 Hz and performs spectrum analysis.
The power spectrum of heart rate variability is in the low frequency range (0.04 ~
0.15 Hz) and a high frequency range (0.15 to 0.5 Hz), respectively.
Outputs the peak value in the low frequency range as the LF component 48 and the peak value in the high frequency range as the HF component 49.

【0058】トリガ信号発生部27は、パルス信号46
を入力して、その入力回数を計数するとともに、所定時
間内にその計数値が予め設定された所定値以上となると
トリガ信号50を出力する。パルス信号46の計数は、
内蔵のアップカウンタにより実行される。また、そのア
ップカウンタは、電源オン時、浴槽2への給湯開始時、
測定モードの設定時、及び、一定時間間隔で、計数値が
「0」にリセットされる。このトリガ信号50は、被験
者1の心電図波形に連続してQRS群が発生している状
態を示すことから、トリガ信号50が出力された後の心
電図信号43や、特徴的信号成分抽出手段21が出力す
る心拍変動信号47、及び、そのLF成分48とHF成
分49が、例えば後述する被験者1の体調推定に使用可
能な安定状態にあると判断でき、このトリガ信号50の
出力を確認することで、上記各種信号を利用した体調推
定等の結果の信頼性を高めることができる。
The trigger signal generator 27 outputs a pulse signal 46
Is input, the number of inputs is counted, and a trigger signal 50 is output when the count value becomes equal to or greater than a predetermined value within a predetermined time. The count of the pulse signal 46 is
It is executed by the built-in up counter. When the power is turned on, the hot water supply to the bathtub 2 is started,
The count value is reset to “0” when the measurement mode is set and at regular time intervals. Since the trigger signal 50 indicates a state in which the QRS complex is continuously generated in the electrocardiogram waveform of the subject 1, the electrocardiogram signal 43 after the trigger signal 50 is output and the characteristic signal component extracting means 21 The output heart rate variability signal 47 and its LF component 48 and HF component 49 can be determined to be in a stable state that can be used for estimating the physical condition of the subject 1 described later, for example, and the output of the trigger signal 50 is confirmed. Thus, the reliability of the result of the physical condition estimation and the like using the various signals can be improved.

【0059】〈第三実施形態〉図11に示すように、本
第三実施形態は、図6に示す第二実施形態の構成に加え
て、被験者1の体調を推定する体調推定手段31を備え
て構成されている。体調推定手段31は、基線動揺除去
手段17が出力する心電図信号43、特徴的信号成分抽
出手段21が出力する心拍変動信号47、及び、そのL
F成分48とHF成分49を、被験者1の心電図情報と
して受信する。特徴的信号成分抽出手段21が出力する
トリガ信号50を受信すると、上記心電図情報に基づい
て被験者1の体調を推定する。体調推定手段31におけ
る体調推定方法は、標準12誘導法により蓄積された臨
床データや生理学の研究データに基づいて、心電図情報
と体調や症状との関係を予めデータベース化したものを
検索して行う。かかる心電図情報と体調や症状との関係
として、例えば、表1に示すような関係を利用する。
<Third Embodiment> As shown in FIG. 11, the third embodiment includes a physical condition estimating means 31 for estimating the physical condition of the subject 1 in addition to the configuration of the second embodiment shown in FIG. It is configured. The physical condition estimating means 31 includes an electrocardiogram signal 43 output from the baseline fluctuation removing means 17, a heart rate variability signal 47 output from the characteristic signal component extracting means 21, and its L
The F component 48 and the HF component 49 are received as electrocardiogram information of the subject 1. When receiving the trigger signal 50 output from the characteristic signal component extracting means 21, the physical condition of the subject 1 is estimated based on the electrocardiogram information. The physical condition estimation method in the physical condition estimating means 31 is performed by searching a database in which the relationship between the electrocardiogram information and the physical condition and symptoms is stored in advance based on clinical data and physiological research data accumulated by the standard 12-lead method. As a relationship between the electrocardiogram information and a physical condition or symptom, for example, a relationship as shown in Table 1 is used.

【0060】[0060]

【表1】 [Table 1]

【0061】通常の健康状態における入浴では、入力直
後は一時的に心拍数が増大して血圧も上昇するが、徐々
に元の状態に復帰する。しかし、例えば上記のような心
電図情報が現れ対応する体調異常が推定されるときは、
入浴に伴う運動負荷が現在の体調にとって強すぎる可能
性があり、上記体調推定結果に基づいて、被験者1に対
する運動負荷等を軽減する処置を早期に施すことが可能
となる。
In bathing in a normal state of health, immediately after the input, the heart rate temporarily increases and the blood pressure also increases, but gradually returns to the original state. However, for example, when the above ECG information appears and the corresponding physical condition abnormality is estimated,
There is a possibility that the exercise load due to bathing is too strong for the current physical condition, and it is possible to perform a treatment for reducing the exercise load on the subject 1 at an early stage based on the physical condition estimation result.

【0062】以下に別実施形態を説明する。Another embodiment will be described below.

【0063】〈1〉上記第一実施形態において、心電図
信号生成手段11の構成は、必ずしも上記した3台の差
動増幅器13〜15による構成に限定されるものではな
い。例えば、1台の差動増幅器に対して、第1、第2及
び第3の電極10a,10b,10cの各電気信号40
a,40b,40cを高速に切り替えて入力すること
で、時分割処理を行うようにしても構わない。
<1> In the first embodiment, the configuration of the electrocardiogram signal generation means 11 is not necessarily limited to the configuration of the three differential amplifiers 13 to 15 described above. For example, for one differential amplifier, each electric signal 40 of the first, second and third electrodes 10a, 10b, 10c
Time division processing may be performed by switching and inputting a, 40b, and 40c at high speed.

【0064】〈2〉上記第一実施形態において、複数の
心電図電極10a〜10dの配置は、図2に示す配置方
法の他、第1の電極10aが被験者1の右腕付け根外側
に近い位置に、第2の電極10bが被験者1の左腕付け
根外側に近い位置に、第3の電極10cが被験者1の左
膝上方外側に近く且つ前記第2の電極と同じ深さの位置
に、第4の電極10dが右膝上方外側に近く且つ前記第
2の電極と同じ深さの位置に設置しても構わない。ま
た、何れの配置方法においても、第4の電極10dを設
置せずに、差動増幅器13〜15の基準電位として、他
の電極電位を使用するようにしても構わない。
<2> In the first embodiment, the arrangement of the plurality of electrocardiogram electrodes 10a to 10d is based on the arrangement method shown in FIG. The fourth electrode 10b is located at a position close to the outside of the left base of the left arm of the subject 1 and the third electrode 10c is located near the upper left knee of the subject 1 and at the same depth as the second electrode. 10d may be installed at a position close to the upper outside of the right knee and at the same depth as the second electrode. In any arrangement method, another electrode potential may be used as the reference potential of the differential amplifiers 13 to 15 without providing the fourth electrode 10d.

【0065】〈3〉上記第二実施形態において、相互相
関演算部22の相互相関処理によって被処理心電図信号
44の基線動揺も同時に除去可能であるので、基線動揺
除去手段17が生成した基線動揺除去後の心電図信号4
3を体調推定等の後工程で使用する必要がない場合は、
信号処理手段12に基線動揺除去手段17を設けずに、
基線動揺除去手段17に入力すべき被処理心電図信号4
2を特徴的信号成分抽出手段21に入力しても構わな
い。
<3> In the second embodiment, since the baseline fluctuation of the electrocardiogram signal 44 to be processed can be removed at the same time by the cross-correlation processing of the cross-correlation calculator 22, the baseline fluctuation removing means 17 generated by the baseline fluctuation removing means 17 can be used. Later ECG signal 4
If you do not need to use 3 in the post process such as physical condition estimation,
Without providing the baseline fluctuation removing means 17 in the signal processing means 12,
The processed electrocardiogram signal 4 to be input to the baseline fluctuation removing means 17
2 may be input to the characteristic signal component extraction means 21.

【0066】〈4〉上記第二実施形態において、特徴的
信号成分抽出手段21は、心拍変動スペクトル解析部2
6とトリガ信号発生部27の何れか一方または両方を備
えていなくても構わない。また、心拍変動スペクトル解
析部26を設けない場合は、R−R間隔演算部25が、
心拍変動信号47に代えて心拍数を所定時間間隔で出力
するようにしても構わない。
<4> In the second embodiment, the characteristic signal component extracting means 21 is the heart rate variability spectrum analyzing section 2
6 and the trigger signal generator 27 may not be provided. If the heart rate variability spectrum analysis unit 26 is not provided, the RR interval calculation unit 25
The heart rate may be output at predetermined time intervals instead of the heart rate variability signal 47.

【0067】〈5〉上記第二実施形態において、相互相
関演算部22の構成は、上記実施形態の構成に限定され
るものではない。また、同じ回路構成であっても、例え
ばFIFOメモリ28に代えてリング状メモリを用いて
構わない。また、相互相関演算部22の抽出対象となる
信号波は、QRS群に限定されるものではない。他の信
号波を抽出する場合には、テンプレート波形の時間幅
を、その抽出対象信号波の時間幅に設定すればよい。
<5> In the second embodiment, the configuration of the cross-correlation calculator 22 is not limited to the configuration of the above-described embodiment. Further, even with the same circuit configuration, for example, a ring-shaped memory may be used instead of the FIFO memory 28. The signal wave to be extracted by the cross-correlation calculator 22 is not limited to the QRS complex. When extracting another signal wave, the time width of the template waveform may be set to the time width of the signal wave to be extracted.

【0068】〈6〉上記各実施形態では、浴槽心電計の
場合について説明したが、通常の心電計においても、ス
テンレス電極やAg電極を使用した場合に被験者の汗の
影響によって心電図に基線動揺が発生し易く、かかる基
線動揺が通常の心電計に備えられている簡単な低域除去
フィルタ等のノイズ除去手段では除去しきれないという
問題がある。因みに、一般の臨床医学や生理学研究に使
用される心電計の電極には、汗の影響を受けにくい高価
なAg−AgClが用いられる。従って、上記第一実施
形態の基線動揺除去手段17や特徴的信号成分抽出手段
21は効果的に基線動揺を除去する機能を有するので、
ステンレス電極やAg電極を使用した通常の心電計の基
線除去処理や特徴的信号成分抽出処理に適用しても構わ
ない。
<6> In each of the above embodiments, the case of a bathtub electrocardiograph has been described. However, even in a normal electrocardiograph, when a stainless steel electrode or an Ag electrode is used, the baseline of the electrocardiogram due to the influence of the subject's sweat is used. There is a problem that the oscillation easily occurs, and the baseline oscillation cannot be completely removed by a noise removing means such as a simple low-pass removing filter provided in a normal electrocardiograph. Incidentally, an expensive Ag-AgCl which is hardly affected by sweat is used for an electrode of an electrocardiograph used for general clinical medicine and physiological research. Accordingly, since the baseline fluctuation removing means 17 and the characteristic signal component extracting means 21 of the first embodiment have a function of effectively removing the baseline fluctuation,
The present invention may be applied to a normal electrocardiograph baseline removal process or a characteristic signal component extraction process using a stainless steel electrode or an Ag electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る心電図計測装置の第一実施形態を
示すブロック構成図
FIG. 1 is a block diagram showing a first embodiment of an electrocardiogram measuring apparatus according to the present invention.

【図2】複数の心電図電極の配置例を示す説明図FIG. 2 is an explanatory diagram showing an example of arrangement of a plurality of electrocardiogram electrodes.

【図3】心電図信号生成手段を示すブロック構成図FIG. 3 is a block diagram showing an electrocardiogram signal generating means.

【図4】基線動揺除去手段を示すブロック構成図FIG. 4 is a block diagram showing a baseline fluctuation removing unit.

【図5】基線動揺除去手段による処理結果の一例を示す
波形図
FIG. 5 is a waveform chart showing an example of a processing result by a baseline fluctuation removing unit.

【図6】本発明に係る心電図計測装置の第二実施形態を
示すブロック構成図
FIG. 6 is a block diagram showing a second embodiment of the electrocardiogram measuring apparatus according to the present invention.

【図7】特徴的信号成分抽出手段を示すブロック構成図FIG. 7 is a block diagram showing a characteristic signal component extracting unit.

【図8】テンプレート波形の一例を示す波形図FIG. 8 is a waveform chart showing an example of a template waveform.

【図9】相互相関演算部を示すブロック構成図FIG. 9 is a block diagram showing a cross-correlation calculating unit.

【図10】相互相関演算部の入出力信号の一例を示す波
形図
FIG. 10 is a waveform chart showing an example of input / output signals of a cross-correlation calculating unit.

【図11】本発明に係る心電図計測装置の第三実施形態
を示すブロック構成図
FIG. 11 is a block diagram showing a third embodiment of the electrocardiogram measuring apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1: 被験者 2: 浴槽 10: 心電図電極 11: 心電図信号生成手段 12: 信号処理手段 13、14、15: 差動増幅器 16: 演算手段 17: 基線動揺除去手段 18: 減算器 19: 積分器 20: 倍率変換器 21: 特徴的信号成分抽出手段 22: 相互相関演算部 23: 最適窓幅設定部 24: ピーク時相検出部 25: R−R間隔演算部 26: 心拍変動スペクトル解析部 27: トリガ信号発生部 28: FIFOメモリ 29: レジスタ 30: 加算器 31: 体調推定手段 40: 電気信号 41、43: 心電図信号 42、44: 被処理心電図信号 45: 相互相関値 46: パルス信号 47: 心拍変動信号 48: LF成分 49: HF成分 50: トリガ信号 1: Subject 2: Bathtub 10: Electrocardiogram electrode 11: Electrocardiogram signal generating means 12: Signal processing means 13, 14, 15: Differential amplifier 16: Operation means 17: Baseline fluctuation removing means 18: Subtractor 19: Integrator 20: Magnification converter 21: Characteristic signal component extraction means 22: Cross-correlation calculation unit 23: Optimal window width setting unit 24: Peak time phase detection unit 25: RR interval calculation unit 26: Heart rate fluctuation spectrum analysis unit 27: Trigger signal Generation unit 28: FIFO memory 29: Register 30: Adder 31: Physical condition estimation means 40: Electric signal 41, 43: Electrocardiogram signal 42, 44: Electrocardiogram signal to be processed 45: Cross-correlation value 46: Pulse signal 47: Heart rate fluctuation signal 48: LF component 49: HF component 50: Trigger signal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 智 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 上田 智章 京都府京都市下京区中堂寺南町17 株式会 社関西新技術研究所内 Fターム(参考) 2D032 AA00 4C027 AA02 CC00 EE01 EE08 FF03 FF05 GG01 GG05 GG10 KK01 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Satoshi Fujita 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Osaka Gas Co., Ltd. (72) Inventor Tomoaki Ueda 17 2D032 AA00 4C027 AA02 CC00 EE01 EE08 FF03 FF05 GG01 GG05 GG10 KK01

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 複数の心電図電極と、前記複数の心電図
電極に現れる電気信号から心電図信号を生成処理する心
電図信号生成手段と、前記心電図信号生成手段によって
生成された後の被処理心電図信号に対して所定の信号処
理を行う信号処理手段とを備え、 前記信号処理手段が、減算器と倍率変換器と積分器を有
し、前記被処理心電図信号を前記減算器の正側入力に入
力し、前記減算器からの出力信号に対して、前記倍率変
換器による倍率変換処理と前記積分器による積分処理の
何れか一方を先に、他方をその後に施して得られる信号
を前記減算器の負側入力に入力することにより、前記被
処理心電図信号から基線動揺を除去または低減した心電
図信号を前記減算器から出力すべく構成されていること
を特徴とする心電図計測装置。
1. A plurality of electrocardiogram electrodes, an electrocardiogram signal generation means for generating and processing an electrocardiogram signal from electric signals appearing on the plurality of electrocardiogram electrodes, and a processed electrocardiogram signal generated by the electrocardiogram signal generation means. Signal processing means for performing predetermined signal processing, the signal processing means has a subtractor, a magnification converter and an integrator, and inputs the processed electrocardiogram signal to a positive side input of the subtractor, With respect to the output signal from the subtractor, one of a magnification conversion process by the magnification converter and an integration process by the integrator is performed first, and a signal obtained by subsequently performing the other is a negative side of the subtractor. An electrocardiogram measuring apparatus, characterized in that an electrocardiogram signal obtained by removing or reducing baseline fluctuation from the processed electrocardiogram signal is output from the subtracter by inputting the input to an input.
【請求項2】 複数の心電図電極と、前記複数の心電図
電極に現れる電気信号から心電図信号を生成する心電図
信号生成手段と、前記心電図信号生成手段によって生成
された後の被処理心電図信号に対して所定の信号処理を
行う信号処理手段とを備えてなり、 前記信号処理手段が、単位振幅の三つの矩形波が負極性
・正極性・負極性或いは正極性・負極性・正極性の順に
各極性の時間比率が1:2:1となるように並び、三つ
の矩形波の時間幅が前記被処理心電図信号に含まれる一
つまたは複数の特徴的信号成分の時間幅となるように設
定されてなるテンプレート波形と、前記被処理心電図信
号との相互相関処理を行う相互相関演算部を備えている
ことを特徴とする心電図計測装置。
2. A plurality of electrocardiogram electrodes, an electrocardiogram signal generating means for generating an electrocardiogram signal from electric signals appearing on the plurality of electrocardiogram electrodes, and a processed electrocardiogram signal generated by the electrocardiogram signal generating means. Signal processing means for performing predetermined signal processing, wherein the signal processing means outputs three rectangular waves of unit amplitude in the order of negative polarity, positive polarity, negative polarity or positive polarity, negative polarity, and positive polarity. Are arranged so that the time ratios of the signals are 1: 2: 1, and the time width of the three rectangular waves is set to be the time width of one or more characteristic signal components included in the processed electrocardiogram signal. An electrocardiogram measuring apparatus, comprising: a cross-correlation calculating unit that performs a cross-correlation process between a template waveform and a processed electrocardiogram signal.
【請求項3】 前記相互相関演算部の相互相関出力が所
定の閾値以上となる局所ピーク検出時刻に基づいて、前
記特徴的信号成分の発生時相を検出する発生時相検出手
段を備えていることを特徴とする請求項2記載の心電図
計測装置。
3. An occurrence time phase detecting means for detecting an occurrence time phase of the characteristic signal component based on a local peak detection time at which a cross-correlation output of the cross-correlation calculation section is equal to or greater than a predetermined threshold value. The electrocardiogram measuring device according to claim 2, wherein:
【請求項4】 前記特徴的信号成分がQRS群であるこ
とを特徴とする請求項2または3記載の心電図計測装
置。
4. The electrocardiogram measuring apparatus according to claim 2, wherein the characteristic signal component is a QRS complex.
【請求項5】 前記信号処理手段が前記特徴的信号成分
を連続して所定回数以上検出した場合に、所定のトリガ
信号を出力することを特徴とする請求項2、3または4
記載の心電図計測装置。
5. The apparatus according to claim 2, wherein said signal processing means outputs a predetermined trigger signal when said characteristic signal component is continuously detected a predetermined number of times or more.
The electrocardiogram measuring device according to the above.
【請求項6】 被験者が入浴する浴槽内壁面の所定位置
に各別に設置された少なくとも三つの心電図電極と、前
記少なくとも三つの各心電図電極に現れる電気信号から
擬似的な標準肢誘導である心電図信号を生成する心電図
信号生成手段とを備えてなり、 前記各心電図電極は、第1の電極が前記被験者の右腕付
け根外側に近い位置に、第2の電極が前記被験者の左腕
付け根外側に近い位置に、第3の電極が前記被験者の左
足付け根外側に近い位置に配置されており、 前記心電図信号生成手段が、前記第1の電極と前記第2
の電極間、前記第1の電極と前記第3の電極間、及び、
前記第2の電極と前記第3の電極間の、前記電気信号の
差信号成分を各別に増幅する差動増幅手段を備えてなる
ことを特徴とする心電図計測装置。
6. An electrocardiogram signal which is a pseudo standard limb lead from at least three electrocardiogram electrodes respectively installed at predetermined positions on an inner wall surface of a bathtub in which a subject takes a bath, and electric signals appearing at the at least three electrocardiogram electrodes. Wherein each of the ECG electrodes has a first electrode located at a position near the outside of the right base of the subject's right arm, and a second electrode at a position near the outside of the base of the left arm of the subject. , A third electrode is disposed at a position close to the left side of the subject's left foot, and the electrocardiogram signal generating means includes a first electrode and a second electrode.
, Between the first electrode and the third electrode, and
An electrocardiogram measuring apparatus, comprising: differential amplifying means for separately amplifying a difference signal component of the electric signal between the second electrode and the third electrode.
【請求項7】 被験者が入浴する浴槽内壁面の所定位置
に各別に設置された少なくとも三つの心電図電極と、前
記少なくとも三つの各心電図電極に現れる電気信号から
擬似的な標準肢誘導である心電図信号を生成する心電図
信号生成手段とを備えてなり、 前記各心電図電極は、第1の電極が前記被験者の右腕付
け根外側に近い位置に、第2の電極が前記被験者の左腕
付け根外側に近い位置に、第3の電極が前記被験者の左
膝上方外側に近く且つ前記第2の電極と同じ深さの位置
に配置されており、 前記心電図信号生成手段が、前記第1の電極と前記第2
の電極間、前記第1の電極と前記第3の電極間、及び、
前記第2の電極と前記第3の電極間の、前記電気信号の
差信号成分を各別に増幅する差動増幅手段を備えてなる
ことを特徴とする心電図計測装置。
7. An electrocardiogram signal which is a pseudo standard limb lead from at least three electrocardiogram electrodes which are separately provided at predetermined positions on an inner wall surface of a bathtub in which a subject takes a bath, and electric signals appearing at the at least three electrocardiogram electrodes. Wherein each of the ECG electrodes has a first electrode located at a position near the outside of the right base of the subject's right arm, and a second electrode at a position near the outside of the base of the left arm of the subject. A third electrode is disposed at a position close to and above the left knee of the subject and at the same depth as the second electrode, and the electrocardiogram signal generating means includes a first electrode and a second electrode.
, Between the first electrode and the third electrode, and
An electrocardiogram measuring apparatus, comprising: differential amplifying means for separately amplifying a difference signal component of the electric signal between the second electrode and the third electrode.
【請求項8】 前記少なくとも三つの心電図電極が、前
記第1、第2及び第3の電極に加えて、前記浴槽内壁面
の前記第3の電極に対して浴槽内にいる被験者の身体を
基準にして左右対称となる位置に配置された第4の電極
を有し、 前記差動増幅手段が、3台の独立した差動増幅器からな
り、前記3台の差動増幅器の基準電位を全て前記第4の
電極の電位とすることを特徴とする請求項6または7記
載の心電図計測装置。
8. The at least three ECG electrodes, in addition to the first, second, and third electrodes, with respect to the third electrode on the inner wall surface of the bathtub with respect to a body of a subject in the bathtub. And a fourth electrode disposed at a symmetrical position, wherein the differential amplifying means comprises three independent differential amplifiers, and all of the reference potentials of the three differential amplifiers are The electrocardiogram measuring apparatus according to claim 6, wherein the potential of the fourth electrode is set to the potential of the fourth electrode.
【請求項9】 前記信号処理手段の処理結果に基づい
て、被験者の体調を推定する体調推定手段を備えている
ことを特徴とする請求項1、2、3、4または5記載の
心電図計測装置。
9. The electrocardiogram measuring apparatus according to claim 1, further comprising a physical condition estimating means for estimating a physical condition of a subject based on a processing result of the signal processing means. .
JP2000273973A 2000-09-08 2000-09-08 Electrocardiogram measuring instrument Pending JP2002078695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000273973A JP2002078695A (en) 2000-09-08 2000-09-08 Electrocardiogram measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000273973A JP2002078695A (en) 2000-09-08 2000-09-08 Electrocardiogram measuring instrument

Publications (1)

Publication Number Publication Date
JP2002078695A true JP2002078695A (en) 2002-03-19

Family

ID=18759817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000273973A Pending JP2002078695A (en) 2000-09-08 2000-09-08 Electrocardiogram measuring instrument

Country Status (1)

Country Link
JP (1) JP2002078695A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523126A (en) * 2003-02-28 2006-10-12 メドトロニック・インコーポレーテッド Physiological event detector and method thereof
JP2008093100A (en) * 2006-10-10 2008-04-24 Noritz Corp Heart beat/respiration measuring device in bathtub
CN104000577A (en) * 2014-05-06 2014-08-27 深圳源动创新科技有限公司 Electrocardiogram measuring device and electrocardiogram measuring method thereof
CN105105784A (en) * 2015-07-20 2015-12-02 广州丰谱信息技术有限公司 Bathing equipment based on ultrasonic human body physiological data acquisition and auxiliary health protection
US10172531B2 (en) 2014-09-04 2019-01-08 Nippon Telegraph And Telephone Corporation Heartbeat detection method and heartbeat detection device
US10750969B2 (en) 2014-09-09 2020-08-25 Nippon Telegraph And Telephone Corporation Heartbeat detection method and heartbeat detection device
KR20200111580A (en) * 2019-03-19 2020-09-29 주식회사 에이티센스 Apparatus for measuring electrocardiogram, and method of operation the apparatus
CN111714116A (en) * 2020-05-07 2020-09-29 北京中科千寻科技有限公司 Motion artifact suppression method and twelve-lead wearable electrocardiogram monitoring device applying same
US10945623B2 (en) 2016-02-29 2021-03-16 Nippon Telegraph And Telephone Corporation Heartbeat detection method and heartbeat detection device
CN113573627A (en) * 2019-01-14 2021-10-29 运动数据试验室有限公司 System for measuring heart rate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523126A (en) * 2003-02-28 2006-10-12 メドトロニック・インコーポレーテッド Physiological event detector and method thereof
JP4657202B2 (en) * 2003-02-28 2011-03-23 メドトロニック,インコーポレイテッド Physiological event detector and method thereof
JP2008093100A (en) * 2006-10-10 2008-04-24 Noritz Corp Heart beat/respiration measuring device in bathtub
CN104000577A (en) * 2014-05-06 2014-08-27 深圳源动创新科技有限公司 Electrocardiogram measuring device and electrocardiogram measuring method thereof
US10172531B2 (en) 2014-09-04 2019-01-08 Nippon Telegraph And Telephone Corporation Heartbeat detection method and heartbeat detection device
US10750969B2 (en) 2014-09-09 2020-08-25 Nippon Telegraph And Telephone Corporation Heartbeat detection method and heartbeat detection device
CN105105784A (en) * 2015-07-20 2015-12-02 广州丰谱信息技术有限公司 Bathing equipment based on ultrasonic human body physiological data acquisition and auxiliary health protection
US10945623B2 (en) 2016-02-29 2021-03-16 Nippon Telegraph And Telephone Corporation Heartbeat detection method and heartbeat detection device
CN113573627A (en) * 2019-01-14 2021-10-29 运动数据试验室有限公司 System for measuring heart rate
KR20200111580A (en) * 2019-03-19 2020-09-29 주식회사 에이티센스 Apparatus for measuring electrocardiogram, and method of operation the apparatus
KR102241796B1 (en) 2019-03-19 2021-04-19 주식회사 에이티센스 Apparatus for measuring electrocardiogram, and method of operation the apparatus
CN111714116A (en) * 2020-05-07 2020-09-29 北京中科千寻科技有限公司 Motion artifact suppression method and twelve-lead wearable electrocardiogram monitoring device applying same

Similar Documents

Publication Publication Date Title
Berwal et al. Motion artifact removal in ambulatory ECG signal for heart rate variability analysis
JP6219942B2 (en) Real-time QRS period measurement in ECG
Nayak et al. Filtering techniques for ECG signal processing
JP2015519087A (en) Real-time QRS detection using adaptive threshold
US20040228217A1 (en) Devices and methods for heart rate measurement and wrist-watch incorporating same
Sun et al. An improved morphological approach to background normalization of ECG signals
Tueche et al. Embedded algorithm for QRS detection based on signal shape
Djermanova et al. LabVIEW based ECG signal acquisition and analysis
JP2002078695A (en) Electrocardiogram measuring instrument
Lamarque et al. A new concept of virtual patient for real-time ECG analyzers
Gu et al. An improved method with high anti-interference ability for R peak detection in wearable devices
Burte et al. Advances in QRS detection: Modified Wavelet energy gradient method
Nguyen et al. An Efficient Electrocardiogram R-peak Detection Exploiting Ensemble Empirical Mode Decomposition and Hilbert Transform
TW202108076A (en) Method for determining r peaks of electrocardiogram
Anas et al. On-line monitoring and analysis of bioelectrical signals
Vranić et al. Influence of the Main Filter on QRS-amplitude and Duration in Human Electrocardiogram
Jumahat et al. Automatic QRS onset detection of ECG signal using secant line slope formula
Chan et al. ECG parameter extractor of intelligent home healthcare embedded system
JP2003175009A (en) Electrocardiogram analytic apparatus and analytic method
Dhande LABVIEW BASED ECG SIGNAL ACQUISITION AND ANALYSIS
Mengko et al. Design and implementation of 12 Lead ECG signals interpretation system
Ahmad et al. An improved QRS complex detection for online medical diagnosis
Tara et al. Real-time monitoring of heart conditions via electrocardiogram processing at different lifestyle situations
Anisha et al. Recognition and eradication of prime artefact from the abdominal electrocardiogram
Abushukor et al. FPGA Implementation of IoT-Based Health Monitoring System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080724