JP2002075441A - Nonaqueous electrolyte cell - Google Patents

Nonaqueous electrolyte cell

Info

Publication number
JP2002075441A
JP2002075441A JP2000255825A JP2000255825A JP2002075441A JP 2002075441 A JP2002075441 A JP 2002075441A JP 2000255825 A JP2000255825 A JP 2000255825A JP 2000255825 A JP2000255825 A JP 2000255825A JP 2002075441 A JP2002075441 A JP 2002075441A
Authority
JP
Japan
Prior art keywords
lipf
battery
positive electrode
batteries
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000255825A
Other languages
Japanese (ja)
Other versions
JP3634728B2 (en
Inventor
Naoki Imachi
直希 井町
Hiroshi Watanabe
浩志 渡辺
Satoshi Ubukawa
訓 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000255825A priority Critical patent/JP3634728B2/en
Publication of JP2002075441A publication Critical patent/JP2002075441A/en
Application granted granted Critical
Publication of JP3634728B2 publication Critical patent/JP3634728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte cell enabled to aim at a cost reduction and high energy density, by disusing a protection circuit according to the improvement of an over discharge characteristics. SOLUTION: For the nonaqueous electrolyte cell, a positive pole 1 containing a positive pole activator, a negative pole 2 containing a negative pole activator enabled to occlude and release lithium, and an electrolyte liquid containing solute and solvent, are arranged inside a laminate outer casing 6. Vinylene carbonate is added to the solvent of the electrolyte liquid, and the solute of the electrolyte liquid contains lithium salt shown by the general formula; LiPF6-X (CnF2n+1)X (here, X is an integer chosen from 1-5, n fulfils n=1 or n=2, preferably X=2 or X=3, most preferably, X=2 or X=3 and n=2).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極活物質を含む
正極と、リチウムを吸蔵放出可能な負極活物質を含む負
極と、溶媒及び溶質を備えた電解液とが外装体内に配置
された非水電解質電池に関する。
BACKGROUND OF THE INVENTION The present invention relates to a non-aqueous battery comprising a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material capable of inserting and extracting lithium, and an electrolyte solution containing a solvent and a solute. The present invention relates to a water electrolyte battery.

【0002】[0002]

【従来の技術】近年、コバルト酸リチウムを正極活物質
とする一方、リチウムイオンを吸蔵、放出し得る炭素材
料等を負極活物質とする非水電解質電池が、注目されて
いる。
2. Description of the Related Art In recent years, a non-aqueous electrolyte battery using lithium cobalt oxide as a positive electrode active material and a carbon material capable of occluding and releasing lithium ions as a negative electrode active material has attracted attention.

【0003】このようにコバルト酸リチウムを正極活物
質として用いた場合には、サイクル特性や負荷特性等の
通常時の電池特性に優れる反面、過充電試験や高温放置
試験等の異常時における電池の信頼性という面では、電
池単独での対策が不十分である。そこで、異常時におけ
る電池の信頼性を向上すべく、電池外部に保護回路や保
護素子等(以下、保護回路等という)を設け、これら保
護回路等と電池とをパック化するという手段が採られて
いる。このように保護回路等と電池とをパック化すると
いう手段を用いれば、異常時における電池の信頼性は向
上するものの、保護回路等は高価であるため高コスト化
を招来したり、更に、電池パック内に保護回路等を配置
するための余分なスペースが必要となるということか
ら、高エネルギー密度化を図ることができないといった
課題を有していた。したがって、低コストで高エネルギ
ー密度化を図るには、異常時においても保護回路等を不
要とするような電池単体での特性が必要となる。
[0003] When lithium cobaltate is used as the positive electrode active material in this manner, the battery characteristics during normal operation such as cycle characteristics and load characteristics are excellent, but the battery characteristics during abnormalities such as overcharge tests and high-temperature storage tests are improved. In terms of reliability, measures using batteries alone are insufficient. Therefore, in order to improve the reliability of the battery in the event of an abnormality, a means of providing a protection circuit or a protection element outside the battery (hereinafter referred to as a protection circuit or the like) and packing the protection circuit and the like and the battery is adopted. ing. If the protection circuit and the like are packed in a battery as described above, the reliability of the battery at the time of abnormality is improved, but the protection circuit and the like are expensive, which leads to an increase in cost. Since an extra space is required for arranging a protection circuit and the like in the pack, there is a problem that high energy density cannot be achieved. Therefore, in order to increase the energy density at a low cost, it is necessary to provide characteristics of a single battery that does not require a protection circuit or the like even in an abnormal situation.

【0004】そこで、異常時における電池単体での信頼
性を向上すべく、例えば、過充電特性や熱安定性に関し
ては、これらの耐性にすぐれたマンガン酸リチウムを正
極活物質として用いることや、セパレータを改良するこ
とにより、一定の効果をあげているものの、過放電特性
に関しては、これといった対策が採られていないのが現
状である。これは、過充電特性や熱安定性に関しては、
電池の安全性に直結する課題であるため、企業や大学に
おいて積極的に研究がなされているが、過放電特性は電
池の安全性に直結するものではないため、企業や大学に
おいて積極的に研究が行われていないということに起因
するものと考えられる。
Therefore, in order to improve the reliability of the battery alone at the time of abnormality, for example, with respect to overcharge characteristics and thermal stability, lithium manganate which has excellent resistance to these is used as a positive electrode active material, and a separator is used. Although certain effects have been achieved by improving the above, at present, no measures have been taken for overdischarge characteristics. This is due to overcharge characteristics and thermal stability.
Active research is being conducted at companies and universities because it is an issue directly related to battery safety, but overdischarge characteristics are not directly linked to battery safety. It is considered that this is due to the fact that the process has not been performed.

【0005】しかしながら、過放電異常を招くと、電池
電圧の低下により、正極電位の低下や負極電位の上昇が
生じ、電解液が分解して電池内で多量のガスが発生する
という課題や、不可逆領域まで正極を過放電すると、正
極活物質の結晶構造が変化してしまうため、再度充放電
することができなくなるといった課題を生じる。即ち、
過充電特性や熱安定性を向上させても、過放電特性をも
向上させないと、保護回路等が必要となるため、電池の
低コスト化や高エネルギー密度化を図ることができない
という問題がある。
However, when an overdischarge abnormality is caused, a decrease in the battery voltage causes a decrease in the potential of the positive electrode and an increase in the potential of the negative electrode, and the problem that the electrolyte is decomposed and a large amount of gas is generated in the battery. If the positive electrode is over-discharged to the region, the crystal structure of the positive electrode active material changes, which causes a problem that charging and discharging cannot be performed again. That is,
Even if the overcharge characteristics and the thermal stability are improved, if the overdischarge characteristics are not improved, a protection circuit or the like is required, so that there is a problem that the cost and the energy density of the battery cannot be reduced. .

【0006】[0006]

【発明が解決しようとする課題】本発明は、以上の事情
に鑑みなされたものであって、過放電特性を向上させる
ことにより、保護回路等を不要とし、これにより、低コ
スト化や高エネルギー密度化を図ることができる非水電
解質電池の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and eliminates the need for a protection circuit or the like by improving overdischarge characteristics, thereby reducing costs and increasing energy consumption. It is an object of the present invention to provide a non-aqueous electrolyte battery capable of increasing the density.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、正極活物質
を含む正極と、リチウムを吸蔵放出可能な負極活物質を
含む負極と、溶媒及び溶質を備えた電解液とが外装体内
に配置された非水電解質電池において、上記電解液の溶
媒には、ビニレンカーボネート(以下、VCと略す)が
添加され、且つ、上記電解液の溶質には、一般式LiP
6-X ( Cn 2n+1)X 〔尚、Xは1〜5の整数で、且
つn=1又は2を満たし、望ましくはX=2又は3であ
り、特に望ましくはX=2又は3で、且つn=2を満た
す〕で示されるリチウム塩が含まれていることを特徴と
する。
Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 of the present invention provides a positive electrode containing a positive electrode active material and a negative electrode containing a negative electrode active material capable of inserting and extracting lithium. And a non-aqueous electrolyte battery in which an electrolyte containing a solvent and a solute is disposed in an outer package, wherein vinylene carbonate (hereinafter abbreviated as VC) is added to the solvent of the electrolyte, and the electrolyte is Of the general formula LiP
F 6-X (C n F 2n + 1 ) X [where X is an integer of 1 to 5 and satisfies n = 1 or 2, preferably X = 2 or 3, particularly preferably X = 2 Or 3 and n = 2 is satisfied].

【0008】上記構成の如く、電解液の溶媒にVCが添
加され、且つ、電解液の溶質には、一般式LiPF6-X
( Cn 2n+1)X で示されるリチウム塩が含まれていれ
ば、VCとLiPF6-X ( Cn 2n+1)X とから成る分
解物が負極活物質上で良好な複合被膜を形成するので、
過放電時にコバルトやマンガンが溶解し、これらが負極
上に析出することによる負極活物質への直接的なダメー
ジを抑制することができるので、過放電特性が向上す
る。
As described above, VC is added to the solvent of the electrolytic solution, and the solute of the electrolytic solution contains the general formula LiPF 6-X
(C n F 2n + 1) if it contains a lithium salt represented by X, VC and LiPF 6-X (C n F 2n + 1) X and good composite decomposition product on the anode active material consisting of Because it forms a film,
Since cobalt and manganese are dissolved at the time of overdischarge, and direct damage to the negative electrode active material due to deposition on the negative electrode can be suppressed, overdischarge characteristics are improved.

【0009】また、請求項2記載の発明は、請求項1記
載の発明において、上記正極活物質には、スピネル型マ
ンガン酸リチウムが含まれていることを特徴とする。正
極活物質としてコバルト酸リチウムを用いた場合には、
過放電時におけるコバルト酸リチウムの可逆性が低いと
いうことに起因して、本発明をコバルト酸リチウムに適
用しても飛躍的な過放電特性の向上は見られない。これ
に対して、正極活物質に正極電位が落ち難いマンガン酸
リチウムが含まれている場合には、正極電位の低下を正
極活物質への影響が少ない電位領域までに抑制すること
ができ、且つ、前述の如く、VCとLiPF6-X ( Cn
2n+1)X とから成る良好な複合被膜により負極活物質
への直接的なダメージを抑制することができるので、過
放電特性が飛躍的に向上する。
The invention according to claim 2 is characterized in that, in the invention according to claim 1, the positive electrode active material contains spinel-type lithium manganate. When lithium cobaltate is used as the positive electrode active material,
Due to the low reversibility of lithium cobaltate during overdischarge, no remarkable improvement in overdischarge characteristics is observed even when the present invention is applied to lithium cobaltate. On the other hand, in the case where the positive electrode active material contains lithium manganate whose positive electrode potential is unlikely to fall, the decrease in the positive electrode potential can be suppressed to a potential region where the influence on the positive electrode active material is small, and As described above, VC and LiPF 6-X (C n
F 2n + 1 ) X can suppress direct damage to the negative electrode active material with a good composite coating composed of F 2n + 1 ) X , so that the overdischarge characteristics are dramatically improved.

【0010】また、請求項3記載の発明は、請求項1又
は2記載の発明において、上記一般式LiPF6-X ( C
n 2n+1)X で表されるリチウム塩のモル濃度が、0.
3mol/l以上であることを特徴とする。上記の如
く、一般式LiPF6-X ( Cn 2n+1)X で表されるリ
チウム塩のモル濃度を0.3mol/l以上に規制する
のは、LiPF3 (C2 5 3 のモル濃度が0.3m
ol/l未満であれば、過放電後の容量回復率が十分に
確保されないという理由による。
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the compound represented by the general formula LiPF 6-X (C
n F 2n + 1 ) X has a molar concentration of 0.
It is characterized by being at least 3 mol / l. As described above, the reason why the molar concentration of the lithium salt represented by the general formula LiPF 6-X (C n F 2n + 1 ) X is restricted to 0.3 mol / l or more is that LiPF 3 (C 2 F 5 ) 3 0.3m molar concentration
If it is less than ol / l, the capacity recovery rate after overdischarge is not sufficiently ensured.

【0011】また、請求項4記載の発明は、請求項1、
2又は3記載の発明において、上記電解液の溶媒に対す
る上記VCの質量比をy(wt%)と規定した場合、当
該質量比yが0<y≦5、望ましくは0<y≦3である
ことを特徴とする。上記の如く、VCの添加量を規制す
るのは、VCの添加量が5wt%を越えると著しく電池
の内部抵抗が大きくなって、通常の使用領域での電池特
性は大幅に低下するという理由によるものである。特
に、VCの添加量が2wt%以下であれば、電池の内部
抵抗の増大が十分に抑制されるので、VCの添加量が2
wt%以下であることが、特に望ましい。
[0011] The invention described in claim 4 is based on claim 1,
In the invention described in 2 or 3, when the mass ratio of the VC to the solvent of the electrolytic solution is defined as y (wt%), the mass ratio y satisfies 0 <y ≦ 5, preferably 0 <y ≦ 3. It is characterized by the following. As described above, the addition amount of VC is regulated because if the addition amount of VC exceeds 5% by weight, the internal resistance of the battery becomes extremely large, and the battery characteristics in a normal use region are greatly reduced. Things. In particular, if the added amount of VC is 2 wt% or less, the increase in the internal resistance of the battery is sufficiently suppressed, so that the added amount of VC is 2 wt%.
It is particularly desirable that the content be not more than wt%.

【0012】また、請求項5記載の発明は、請求項2、
3又は4記載の発明において、上記正極活物質の総量に
対する上記スピネル型マンガン酸リチウムの質量比をz
(wt%)と規定した場合、当該質量比zが20≦zで
あることを特徴とする。上記の如く、スピネル型マンガ
ン酸リチウムの割合を規制するのは、正極活物質の総量
に対するマンガン酸リチウムの割合が質量比で20wt
%未満であると、過放電後の容量回復率の大幅な改善が
見られないからである。
[0012] Further, the invention according to claim 5 is based on claim 2,
In the invention described in 3 or 4, the mass ratio of the spinel-type lithium manganate to the total amount of the positive electrode active material is z
(Wt%), the mass ratio z is 20 ≦ z. As described above, the ratio of the spinel-type lithium manganate is regulated by the fact that the ratio of the lithium manganate to the total amount of the positive electrode active material is 20 wt%.
%, The capacity recovery rate after overdischarge is not significantly improved.

【0013】[0013]

【発明の実施の形態】本発明の第1の形態〜第4の形態
を、以下に説明する。 (第1の形態)本発明の第1の形態を、図1〜図4に基
づいて、以下に説明する。図1は本発明の第1の形態に
係る非水電解質電池の正面図、図2は図1のA−A線矢
視断面図、図3は本発明の第1の形態に係る非水電解質
電池に用いられる発電要素の斜視図、図4はラミネート
外装体の断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First to fourth embodiments of the present invention will be described below. (First Embodiment) A first embodiment of the present invention will be described below with reference to FIGS. 1 is a front view of a non-aqueous electrolyte battery according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, and FIG. 3 is a non-aqueous electrolyte according to the first embodiment of the present invention. FIG. 4 is a perspective view of a power generating element used for a battery, and FIG. 4 is a cross-sectional view of a laminate exterior body.

【0014】図3に示すように、本発明の非水電解質電
池は、LiCoO2 を主体とする正極1と、炭素材料を
主体とする負極2と、これら両電極を離間するポリエチ
レン製のセパレータ(図3においては図示せず)とから
成る発電要素4を有しており、上記正極1にはアルミニ
ウムから成る正極タブ8が、また上記負極2にはニッケ
ルから成る負極タブ9がそれぞれ接続されている。
As shown in FIG. 3, the nonaqueous electrolyte battery of the present invention comprises a positive electrode 1 mainly composed of LiCoO 2 , a negative electrode 2 mainly composed of a carbon material, and a polyethylene separator which separates these two electrodes. (Not shown in FIG. 3). A positive electrode tab 8 made of aluminum is connected to the positive electrode 1, and a negative electrode tab 9 made of nickel is connected to the negative electrode 2. I have.

【0015】上記発電要素4は、図1及び図2に示すよ
うに、収納空間5内に配置されており、この収納空間5
は、ラミネート外装体6の上下端と中央部とをそれぞれ
封止部7a・7b・7cで封口することにより形成され
る。また、収納空間5には、エチレンカーボネート(E
C)とジエチルカーボネート(DEC)とが体積比で
3:7の割合で混合された混合溶媒に2wt%のVCを
添加したものに、LiPF5 (CF3 )が1mol/l
の割合で溶解された電解液が注入されている。
As shown in FIGS. 1 and 2, the power generation element 4 is disposed in a storage space 5.
Are formed by sealing the upper and lower ends and the central portion of the laminate exterior body 6 with sealing portions 7a, 7b, and 7c, respectively. The storage space 5 contains ethylene carbonate (E
C) and diethyl carbonate (DEC) mixed at a ratio of 3: 7 by volume to a mixture of 2 wt% VC and LiPF 5 (CF 3 ) at 1 mol / l.
The electrolyte solution dissolved in the ratio of is injected.

【0016】上記ラミネート外装体6の具体的な構造
は、図4に示すように、アルミニウム層(厚み:30μ
m)21の一方の面に、ウレタン系接着剤から成る接着
剤層(厚み:2μm)25を介してナイロン層(厚み:
25μm)22が接着され、このナイロン層22にウレ
タン系接着剤から成る接着剤層(厚み:2μm)26を
介してポリエチレンテレフタレート層(厚み:12μ
m)23が接着される一方、アルミニウム層21の他方
の面には、変性ポリプロピレンから成る接着剤層(厚
み:2μm)27を介してポリプロピレン層(厚み:4
0μm)24が接着される構造である。
As shown in FIG. 4, a specific structure of the laminate outer package 6 is an aluminum layer (thickness: 30 μm).
m) A nylon layer (thickness: 2 μm) on one side of 21 via an adhesive layer (thickness: 2 μm) 25 made of a urethane-based adhesive.
25 μm) 22 is adhered, and a polyethylene terephthalate layer (thickness: 12 μm) is bonded to the nylon layer 22 via an adhesive layer (thickness: 2 μm) 26 made of a urethane-based adhesive.
m) 23 is adhered, and on the other surface of the aluminum layer 21 is a polypropylene layer (thickness: 4) via an adhesive layer (thickness: 2 μm) 27 made of modified polypropylene.
0 μm) 24 is bonded.

【0017】ここで、前記正極タブ8と前記負極タブ9
とは、上記ラミネート外装体6の封止部7aから突出し
ている。正極タブ8は正極側の外部端子を兼用する一
方、負極タブ9は負極側の外部端子を兼用している。
尚、上記構造の電池の容量は600mAである。
Here, the positive electrode tab 8 and the negative electrode tab 9
Means projecting from the sealing portion 7a of the laminate exterior body 6. The positive electrode tab 8 also functions as an external terminal on the positive electrode side, while the negative electrode tab 9 also functions as an external terminal on the negative electrode side.
The capacity of the battery having the above structure is 600 mA.

【0018】ここで、上記構造の電池を、以下のように
して作製した。先ず、正極活物質としてのLiCoO2
と炭素導電剤とグラファイトとフッ素樹脂系結着剤とを
質量比で、92:3:2:3の割合で混合して正極合剤
を作製した後、この正極合剤をアルミニウムから成る帯
状の正極芯体の両面に塗着し、更に圧延、乾燥すること
により正極1を作製した。
Here, the battery having the above structure was manufactured as follows. First, LiCoO 2 as a positive electrode active material
, A carbon conductive agent, graphite, and a fluororesin binder in a mass ratio of 92: 3: 2: 3 to prepare a positive electrode mixture, and then mixing the positive electrode mixture with a strip of aluminum. The positive electrode 1 was produced by applying the coating on both sides of the positive electrode core, further rolling and drying.

【0019】これと並行して、負極活物質としての炭素
材料とスチレン系結着剤とを質量比で、98:2の割合
で混合して負極合剤を作製した後、この負極合剤を銅か
ら成る帯状の負極芯体の両面に塗着し、更に乾燥、圧延
することにより負極2を作製した。次に、これら正負極
1・2に、それぞれ正極タブ8と負極タブ9とを取り付
けた後、正負極1・2をセパレータを介して配置する。
しかる後、正負両極1・2及びセパレータを偏平渦巻状
に巻回して、図3(図3においては、セパレータは省略
している)に示すような発電要素4を作製した。
In parallel with this, a carbon material as a negative electrode active material and a styrene-based binder are mixed at a mass ratio of 98: 2 to prepare a negative electrode mixture. Negative electrode 2 was produced by coating on both sides of a strip-shaped negative electrode core made of copper, followed by drying and rolling. Next, after attaching the positive electrode tab 8 and the negative electrode tab 9 to these positive and negative electrodes 1 and 2, respectively, the positive and negative electrodes 1 and 2 are arranged via a separator.
Thereafter, the positive and negative electrodes 1 and 2 and the separator were wound in a flat spiral shape to produce a power generating element 4 as shown in FIG. 3 (the separator is omitted in FIG. 3).

【0020】次いで、7層構造のラミネート材を用意し
た後、このラミネート材における両端のポリプロピレン
同士を重ね合わせ、更に、重ね合わせ部をインパルス加
熱法により溶着して、封止部7cを形成した。次に、こ
の筒状のラミネート材の収納空間5内に発電要素4を挿
入した。この際、筒状のラミネート材の一方の開口部か
ら両タブ8・9が突出するように発電要素4を配置し
た。次に、この状態で、両タブ8・9が突出している開
口部のラミネート材を溶着して封止し、封止部7aを形
成した。この際、溶着は高周波誘導加熱装置を用いて行
った。
Next, after preparing a laminated material having a seven-layer structure, the polypropylenes at both ends of the laminated material were overlapped with each other, and the overlapped portion was welded by an impulse heating method to form a sealing portion 7c. Next, the power generating element 4 was inserted into the storage space 5 of the cylindrical laminate material. At this time, the power generating element 4 was arranged so that the tabs 8 and 9 protruded from one opening of the cylindrical laminate. Next, in this state, the laminated material in the opening from which both tabs 8 and 9 protrude was welded and sealed to form a sealed portion 7a. At this time, welding was performed using a high-frequency induction heating device.

【0021】次に、この状態で、真空加熱乾燥(温度:
105℃)を2時間行い、ラミネート材及び発電要素4
の水分を除去した。この後、エチレンカーボネート(E
C)とジエチルカーボネート(DEC)とが体積比で
3:7の割合で混合された混合溶媒に2wt%のVCを
添加したものに、LiPF5 (CF3 )が1mol/l
の割合で溶解された電解液を注入した。しかる後、上記
封止部7aとは反対側のラミネート材の端部を高周波誘
導溶着装置を用いて溶着し、封止部7bを形成すること
により、非水電解質電池を作製した。
Next, in this state, drying by heating under vacuum (temperature:
105 ° C.) for 2 hours, and the laminate material and the power generation element 4
Of water was removed. Thereafter, ethylene carbonate (E
C) and diethyl carbonate (DEC) mixed at a ratio of 3: 7 by volume to a mixture of 2 wt% VC and LiPF 5 (CF 3 ) at 1 mol / l.
Of the dissolved electrolyte was injected at a rate of Thereafter, the end of the laminate material opposite to the sealing portion 7a was welded using a high-frequency induction welding device to form a sealing portion 7b, thereby producing a non-aqueous electrolyte battery.

【0022】(第2の形態)正極活物質として、コバル
ト酸リチウムに代えてスピネル型マンガン酸リチウムを
用いた他は、上記第1の形態と同様にして電池を作製し
た。
(Second Embodiment) A battery was fabricated in the same manner as in the first embodiment except that spinel-type lithium manganate was used instead of lithium cobaltate as the positive electrode active material.

【0023】(第3の形態)正極活物質として、コバル
ト酸リチウムに代えてマグネシウム置換マンガン酸リチ
ウム(結晶格子の一部をマグネシウムで置換したスピネ
ル型マンガン酸リチウム)を用いた他は、上記第1の形
態と同様にして電池を作製した。
(Third Embodiment) As the positive electrode active material, a magnesium-substituted lithium manganate (a spinel-type lithium manganate in which a part of a crystal lattice is substituted with magnesium) is used in place of lithium cobaltate. A battery was produced in the same manner as in the first embodiment.

【0024】(第4の形態)正極活物質として、コバル
ト酸リチウムに代えてアルミニウム置換マンガン酸リチ
ウム(結晶格子の一部をアルミニウムで置換したスピネ
ル型マンガン酸リチウム)を用いた他は、上記第1の形
態と同様にして電池を作製した。
(Fourth Embodiment) As the positive electrode active material, a lithium-substituted lithium manganate (a spinel-type lithium manganate in which a part of a crystal lattice is substituted with aluminum) is used instead of lithium cobaltate. A battery was produced in the same manner as in the first embodiment.

【0025】なお、本発明に用いられる電解液の溶媒と
しては上記のものに限らず、例えばエチレンカーボネー
トとジメチルカーボネート、エチルメチルカーボネー
ト、テトラヒドロフラン、1,2−ジメトキシエタン、
1,3−ジオキソラン、2−メトキシテトラヒドロフラ
ン、ジエチルエーテル等の低粘度低沸点溶媒とを適度な
比率で混合した溶媒を用いることができる。
The solvent of the electrolytic solution used in the present invention is not limited to the above-mentioned ones. For example, ethylene carbonate and dimethyl carbonate, ethyl methyl carbonate, tetrahydrofuran, 1,2-dimethoxyethane,
A solvent obtained by mixing a low-viscosity, low-boiling solvent such as 1,3-dioxolan, 2-methoxytetrahydrofuran, diethyl ether or the like at an appropriate ratio can be used.

【0026】また、電解液の溶質としては、上記LiP
5 (CF3 )の他、LiPF4 (CF3 2 、LiP
3 (CF3 3 、LiPF2 (CF3 4 、LiPF
(CF3 5 、LiPF5 (C2 5 )、LiPF
4 (C2 5 2 、LiPF3 (C2 5 3 、LiP
2 (C2 5 4 、LiPF(C2 5 5 等を用い
ることができる。
As the solute of the electrolyte, the above-mentioned LiP
In addition to F 5 (CF 3 ), LiPF 4 (CF 3 ) 2 , LiP
F 3 (CF 3 ) 3 , LiPF 2 (CF 3 ) 4 , LiPF
(CF 3 ) 5 , LiPF 5 (C 2 F 5 ), LiPF
4 (C 2 F 5 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiP
F 2 (C 2 F 5) 4, LiPF (C 2 F 5) can be used 5 or the like.

【0027】更に、電解液の溶質には上記LiPF
5 (CF3 )等が含まれていれば良く、必ずしも電解液
の溶質が全てLiPF5 (CF3 )等から構成されてい
る必要はない。加えて、外装体としてはアルミラミネー
ト外装体に限定するものではなく、SUSから成る外装
缶、或いはアルミニウム又はアルミニウム合金から成る
外装缶でも良いことは勿論である。
Further, the solute of the electrolytic solution contains the above-mentioned LiPF
5 (CF 3 ) and the like need only be contained, and the solute of the electrolytic solution does not necessarily need to be composed entirely of LiPF 5 (CF 3 ). In addition, the exterior body is not limited to the aluminum laminate exterior body, but may be an exterior can made of SUS or an exterior can made of aluminum or an aluminum alloy.

【0028】[0028]

【実施例】(第1実施例) 〔実施例1〕実施例1としては、上記第1の形態に示す
方法で作製した電池を用いた。このようにして作製した
電池を、以下、本発明電池A1と称する。
EXAMPLES (First Example) [Example 1] In Example 1, a battery manufactured by the method described in the first embodiment was used. The battery fabricated in this manner is hereinafter referred to as Battery A1 of the invention.

【0029】〔実施例2〜10〕電解液の溶質として、
LiPF5 (CF3 )の代わりに、それぞれLiPF4
(CF3 2 、LiPF3 (CF3 3 、LiPF
2 (CF3 4 、LiPF(CF3 5 、LiPF
5 (C2 5 )、LiPF4 (C2 5 2 、LiPF
3(C2 5 3 、LiPF2 (C2 5 4 、LiP
F(C2 5 5 を用いた他は、上記実施例1と同様に
して電池を作製した。このようにして作製した電池を、
以下、それぞれ本発明電池A2〜A10と称する。
Examples 2 to 10 As a solute of an electrolytic solution,
Instead of LiPF 5 (CF 3 ), LiPF 4
(CF 3 ) 2 , LiPF 3 (CF 3 ) 3 , LiPF
2 (CF 3 ) 4 , LiPF (CF 3 ) 5 , LiPF
5 (C 2 F 5 ), LiPF 4 (C 2 F 5 ) 2 , LiPF
3 (C 2 F 5 ) 3 , LiPF 2 (C 2 F 5 ) 4 , LiP
A battery was fabricated in the same manner as in Example 1 except that F (C 2 F 5 ) 5 was used. The battery fabricated in this way is
Hereinafter, these batteries are referred to as present invention batteries A2 to A10, respectively.

【0030】〔比較例1〜10〕VCを添加しない他
は、それぞれ上記実施例1〜10と同様にして電池を作
製した。このようにして作製した電池を、以下、それぞ
れ比較電池W1〜W10と称する。
Comparative Examples 1 to 10 Batteries were produced in the same manner as in Examples 1 to 10 except that VC was not added. The batteries fabricated in this manner are hereinafter referred to as comparative batteries W1 to W10, respectively.

【0031】〔比較例11〜13〕電解液の溶質とし
て、LiPF5 (CF3 )の代わりに、それぞれLiP
6、LiBF4 、LiClO4 を用いた他は、上記実
施例1と同様にして電池を作製した。このようにして作
製した電池を、以下、比較電池W11〜W13と称す
る。
[Comparative Examples 11 to 13] Instead of LiPF 5 (CF 3 ), LiP
A battery was fabricated in the same manner as in Example 1 except that F 6 , LiBF 4 , and LiClO 4 were used. The batteries fabricated in this manner are hereinafter referred to as comparative batteries W11 to W13.

【0032】〔比較例14〜16〕VCを添加しない他
は、それぞれ上記比較例11〜13と同様にして電池を
作製した。このようにして作製した電池を、以下、それ
ぞれ比較電池W14〜W16と称する。
Comparative Examples 14 to 16 Batteries were produced in the same manner as in Comparative Examples 11 to 13 except that VC was not added. The batteries fabricated in this manner are hereinafter referred to as comparative batteries W14 to W16, respectively.

【0033】〔実験〕上記本発明電池A1〜A10及び
比較電池W1〜W16を、下記の条件で充電、放電、及
び過放電し、更に、下記数1で示す容量回復率を算出し
たので、その結果を下記表1に示す。
[Experiment] The batteries A1 to A10 of the present invention and the comparative batteries W1 to W16 were charged, discharged, and overdischarged under the following conditions. Further, a capacity recovery rate represented by the following equation 1 was calculated. The results are shown in Table 1 below.

【0034】・充電条件 充電電流500mAで電池電圧が4.2Vとなるまで定
電流で充電し、電池電圧が4.2Vに到達した後は電流
値が25mA以下となるまで定電圧で充電するという条
件 ・放電条件 放電電流500mAで電池電圧が3.0Vまで定電流で
放電するという条件尚、充電と放電との間隔(休止時
間)は10分間とした。 ・過放電条件 電池電圧が1.0Vとなるまで微小電流10mAで放電
した後、60℃で5日間放置するという条件
Charging conditions Charging is performed at a constant current at a charging current of 500 mA until the battery voltage reaches 4.2 V, and after the battery voltage reaches 4.2 V, charging is performed at a constant voltage until the current value becomes 25 mA or less. Conditions-Discharge conditions Conditions for discharging at a constant current up to a battery voltage of 3.0 V at a discharge current of 500 mA. The interval (pause time) between charge and discharge was set to 10 minutes. -Overdischarge condition A condition in which the battery is discharged at a small current of 10 mA until the battery voltage becomes 1.0 V, and then left at 60 ° C for 5 days.

【0035】[0035]

【数1】 (Equation 1)

【0036】[0036]

【表1】 [Table 1]

【0037】表1から明らかなように、溶媒にVCが添
加され、且つ、溶質が、一般式LiPF6-X ( Cn
2n+1)X 〔尚、Xは1〜5の整数で、且つn=1又は2
を満たす〕で示されるリチウム塩から成る本発明電池A
1〜A10は、同じリチウム塩を溶質とするが溶媒にV
Cが添加されていない比較電池W1〜W10と比べて、
過放電後の容量回復率が高くなっていることが認められ
る。
As apparent from Table 1, VC was added to the solvent, and the solute was represented by the general formula LiPF 6-X (C n F
2n + 1 ) X [where X is an integer of 1 to 5 and n = 1 or 2
The present invention battery A comprising a lithium salt represented by the following formula:
1 to A10 have the same lithium salt as a solute, but V
Compared with comparative batteries W1 to W10 to which C was not added,
It can be seen that the capacity recovery rate after overdischarge is high.

【0038】この原因についての詳細は明らかではない
が、電池組立後の初期の充放電反応で、リチウム塩の一
部とVCとが分解、反応して、負極活物質上に複合性の
良質な被膜(以下複合被膜という)が形成されているこ
とによるものと考えられる。具体的には、比較電池W1
〜W10では、過放電という異常反応によって、正極の
電位が強制的に低下させられ、正極活物質中からコバル
トがイオンとして溶解し、それが負極活物質上に析出す
ることによって負極の電位が上昇する。その結果、電解
液の分解や活物質自体の劣化が生じるため、過放電後の
再充放電では十分な放電容量が得られない。特に、コバ
ルト析出による負極活物質のダメージは非常に大きいも
のとなるため、上記再充放電時の放電容量が著しく低下
する。これに対して、本発明電池A1〜A10では、負
極活物質上に上記複合性の被膜が析出されるので、負極
活物質のダメージが大幅に軽減され、再充放電時の放電
容量の低下が抑制される。尚、複合被膜は正極活物質上
にも形成され、コバルトの溶解そのものを抑制している
可能性もあるが、これについては現在調査中である。
Although the details of this cause are not clear, part of the lithium salt and VC decompose and react in the initial charge / discharge reaction after battery assembly, resulting in a high quality composite material on the negative electrode active material. This is considered to be due to the formation of a coating (hereinafter referred to as a composite coating). Specifically, the comparative battery W1
At ~ W10, an abnormal reaction called overdischarge forcibly lowers the potential of the positive electrode, and cobalt dissolves as ions from the positive electrode active material, which precipitates on the negative electrode active material, increasing the potential of the negative electrode. I do. As a result, decomposition of the electrolytic solution and deterioration of the active material itself occur, so that a sufficient discharge capacity cannot be obtained by recharging and discharging after overdischarging. In particular, since the damage of the negative electrode active material due to the deposition of cobalt becomes extremely large, the discharge capacity at the time of the recharge / discharge remarkably decreases. On the other hand, in the batteries A1 to A10 of the present invention, since the composite film is deposited on the negative electrode active material, damage to the negative electrode active material is greatly reduced, and a decrease in discharge capacity during recharge / discharge is reduced. Is suppressed. The composite coating may also be formed on the positive electrode active material and may suppress the dissolution of cobalt itself, which is currently under investigation.

【0039】また、複合被膜は、リチウム塩の種類によ
って性質が異なるものと考えられ、−P( Cn 2n+1)
−部分とVCとの分解反応による複合被膜が負極活物質
との親和性やコバルトイオンの析出抑制に大きな効果が
あるものと考えられる。具体的には、VCが添加され且
つ電解液の溶質としてLiPF6 、LiBF4 、LiC
lO4 の何れかを用いた比較電池W11〜W13では、
VCは添加されていないが電解液の溶質としてLiPF
6 、LiBF4 、LiClO4 の何れかを用いた比較電
池W14〜W16と比べて、過放電後の容量回復率が殆
ど変わらないことが認められる。したがって、リチウム
塩としては、−P( Cn 2n+1)−部分を有するLiP
6-X ( Cn 2n+1)X で示されるものが含まれている
ことが必要であることが分かる。
The properties of the composite film are considered to be different depending on the type of the lithium salt, ie, -P (C n F 2n + 1 ).
It is considered that the composite coating formed by the decomposition reaction between the-part and VC has a great effect on the affinity with the negative electrode active material and the suppression of the deposition of cobalt ions. Specifically, VC is added and LiPF 6 , LiBF 4 , LiC
In Comparative Battery W11~W13 with either lO 4,
No VC was added, but LiPF was used as a solute in the electrolyte.
6 , it is recognized that the capacity recovery rate after overdischarge hardly changes as compared with the comparative batteries W14 to W16 using either LiBF 4 or LiClO 4 . Thus, as the lithium salt, -P (C n F 2n + 1) - LiP having portions
It can be seen that it is necessary to include those represented by F 6-X (C n F 2n + 1 ) X.

【0040】加えて、一般式LiPF6-X ( Cn
2n+1)X 〔尚、Xは1〜5の整数で、且つn=1又は2
を満たす〕で示されるリチウム塩の中でも、Xが2又は
3の本発明電池A2、A3、A7、A8が良好であり、
その中でも、nが2の本発明電池A7、A8が特に良好
であることが認められる。この理由は定かではないが、
リチウム塩が分解してVCと複合する形態が、nが2で
Xが2又は3の場合に、最も良好であるためと考えられ
る(即ち、主として分解に寄与している部分は−P( C
n 2n+1)−部分であると考えられ、その量〔Xの値〕
が多すぎても、少なすぎても本来必要な複合膜が形成さ
れないという理由によるものと考えられる)。尚、上記
実験では示していないが、コバルト酸リチウムと同じよ
うな層構造をもつニッケル酸リチウムについても同様の
効果があることを、実験により確認している。
In addition, the general formula LiPF 6-X (C n F
2n + 1 ) X [where X is an integer of 1 to 5 and n = 1 or 2
Of the present invention, the batteries A2, A3, A7, and A8 of the present invention in which X is 2 or 3 are preferable.
Among these, it is recognized that the batteries A7 and A8 of the present invention in which n is 2 are particularly good. I'm not sure why,
It is considered that the form in which the lithium salt is decomposed and combined with VC is most favorable when n is 2 and X is 2 or 3 (that is, the portion mainly contributing to the decomposition is -P (C
n F 2n + 1 ) -part and its quantity [value of X]
It is considered that if the amount is too large or too small, the originally required composite film is not formed). Although not shown in the above experiments, it has been confirmed by experiments that lithium nickel oxide having the same layer structure as lithium cobalt oxide has the same effect.

【0041】(第2実施例) 〔実施例1〕実施例1としては、上記第2の形態に示す
方法で作製した電池を用いた。このようにして作製した
電池を、以下、本発明電池B1と称する。
(Second Example) [Example 1] In Example 1, a battery manufactured by the method described in the second embodiment was used. The battery fabricated in this manner is hereinafter referred to as Battery B1 of the invention.

【0042】〔実施例2〜10〕電解液の溶質として、
LiPF5 (CF3 )の代わりに、それぞれLiPF4
(CF3 2 、LiPF3 (CF3 3 、LiPF
2 (CF3 4 、LiPF(CF3 5 、LiPF
5 (C2 5 )、LiPF4 (C2 5 2 、LiPF
3(C2 5 3 、LiPF2 (C2 5 4 、LiP
F(C2 5 5 を用いた他は、上記実施例1と同様に
して電池を作製した。このようにして作製した電池を、
以下、それぞれ本発明電池B2〜B10と称する。
Examples 2 to 10 As a solute of an electrolytic solution,
Instead of LiPF 5 (CF 3 ), LiPF 4
(CF 3 ) 2 , LiPF 3 (CF 3 ) 3 , LiPF
2 (CF 3 ) 4 , LiPF (CF 3 ) 5 , LiPF
5 (C 2 F 5 ), LiPF 4 (C 2 F 5 ) 2 , LiPF
3 (C 2 F 5 ) 3 , LiPF 2 (C 2 F 5 ) 4 , LiP
A battery was fabricated in the same manner as in Example 1 except that F (C 2 F 5 ) 5 was used. The battery fabricated in this way is
Hereinafter, these batteries are referred to as present invention batteries B2 to B10, respectively.

【0043】〔比較例1〜10〕VCを添加しない他
は、それぞれ上記実施例1〜10と同様にして電池を作
製した。このようにして作製した電池を、以下、それぞ
れ比較電池X1〜X10と称する。
Comparative Examples 1 to 10 Batteries were produced in the same manner as in Examples 1 to 10 except that VC was not added. The batteries fabricated in this manner are hereinafter referred to as comparative batteries X1 to X10, respectively.

【0044】〔比較例11〜13〕電解液の溶質とし
て、LiPF5 (CF3 )の代わりに、それぞれLiP
6、LiBF4 、LiClO4 を用いた他は、上記実
施例1と同様にして電池を作製した。このようにして作
製した電池を、以下、比較電池X11〜X13と称す
る。
[Comparative Examples 11 to 13] Instead of LiPF 5 (CF 3 ), LiP
A battery was fabricated in the same manner as in Example 1 except that F 6 , LiBF 4 , and LiClO 4 were used. The batteries manufactured in this manner are hereinafter referred to as comparative batteries X11 to X13.

【0045】〔比較例14〜16〕VCを添加しない他
は、それぞれ上記比較例11〜13と同様にして電池を
作製した。このようにして作製した電池を、以下、それ
ぞれ比較電池X14〜X16と称する。
Comparative Examples 14 to 16 Batteries were produced in the same manner as in Comparative Examples 11 to 13 except that VC was not added. The batteries fabricated in this manner are hereinafter referred to as comparative batteries X14 to X16, respectively.

【0046】〔実験〕上記本発明電池B1〜B10及び
比較電池X1〜X16を、前記第1実施例の実験と同様
の条件で充電、放電、及び過放電し、更に、前記数1で
示す容量回復率を算出したので、その結果を下記表2に
示す。
[Experiment] The batteries B1 to B10 of the present invention and the comparative batteries X1 to X16 were charged, discharged and overdischarged under the same conditions as in the experiment of the first embodiment. The recovery rate was calculated, and the results are shown in Table 2 below.

【0047】[0047]

【表2】 [Table 2]

【0048】表2から明らかなように、正極活物質とし
てマンガン酸リチウムを用いた場合でも、溶媒にVCが
添加され、且つ、溶質が、一般式LiPF6-X ( Cn
2n+ 1)X 〔尚、Xは1〜5の整数で、且つn=1又は2
を満たす〕で示されるリチウム塩を含む本発明電池B1
〜B10は、同じリチウム塩を溶質とするが溶媒にVC
が添加されていない比較電池X1〜X10と比べて、過
放電後の容量回復率が高くなっていることが認められ
る。この原因は、前記第1実施例の実験で示した理由と
同様の理由によるものと考えられる。
As is clear from Table 2, even when lithium manganate is used as the positive electrode active material, VC is added to the solvent, and the solute has the general formula LiPF 6-X (C n F
2n + 1 ) X [where X is an integer of 1 to 5 and n = 1 or 2
The present invention battery B1 containing a lithium salt represented by the following formula:
To B10, the same lithium salt is used as a solute, but VC
It is recognized that the capacity recovery rate after overdischarge is higher than that of the comparative batteries X1 to X10 to which no is added. This is considered to be due to the same reason as that shown in the experiment of the first embodiment.

【0049】但し、マンガン酸リチウムを正極活物質と
して用いた場合には、コバルト酸リチウムを正極活物質
として用いた場合に比べて、過放電状態での結晶格子か
らのマンガンイオン(コバルトイオン)の溶解がより起
こり易くなって、イオンの溶解による負極活物質の劣化
が一層大きくなるので、複合被膜を形成することによる
改善効果も大きくなることが表1及び表2から明らかで
ある。
However, when lithium manganate is used as the positive electrode active material, manganese ions (cobalt ions) from the crystal lattice in the overdischarged state are lower than when lithium cobalt oxide is used as the positive electrode active material. It is clear from Tables 1 and 2 that the dissolution is more likely to occur and the deterioration of the negative electrode active material due to the dissolution of ions is further increased, so that the improvement effect by forming the composite coating is also increased.

【0050】また、コバルト酸リチウムを正極活物質と
して用いた場合と同様に、VCが添加され且つ電解液の
溶質としてLiPF6 、LiBF4 、LiClO4 の何
れかを用いた比較電池X11〜X13では、VCは添加
されていないが電解液の溶質としてLiPF6 、LiB
4 、LiClO4 の何れかを用いた比較電池X14〜
X16と比べて、過放電後の容量回復率が殆ど変わらな
いことが認められる。したがって、リチウム塩として
は、−P( Cn 2n+1)−部分を有するLiPF 6-X (
n 2n+1)X で示されるものが含まれていることが必
要であることが分かる。
Further, lithium cobalt oxide is used as a positive electrode active material.
As in the case where the electrolyte is used, VC is added and
LiPF as solute6, LiBFFour, LiClOFourWhat
In the comparative batteries X11 to X13 using these, VC was added.
LiPF as a solute of the electrolytic solution6, LiB
FFour, LiClOFourComparative battery X14 using any one of
The capacity recovery rate after overdischarge is almost the same as X16
Is recognized. Therefore, as lithium salt
Is -P (CnF2n + 1LiPF having a)-moiety 6-X(
CnF2n + 1)XMust be included.
It turns out that it is important.

【0051】加えて、一般式LiPF6-X ( Cn
2n+1)X 〔尚、Xは1〜5の整数で、且つn=1又は2
を満たす〕で示されるリチウム塩の中でも、Xが2又は
3の本発明電池B2、B3、B7、B8が良好であり、
その中でも、nが2の本発明電池B7、B8が特に良好
であることが認められる。この理由は、前記第1実施例
の実験でおいて述べた理由と同様の理由によるものと考
えられる。
In addition, the general formula LiPF 6-X (C n F
2n + 1 ) X [where X is an integer of 1 to 5 and n = 1 or 2
Of the present invention, the batteries B2, B3, B7, and B8 of the present invention in which X is 2 or 3 are favorable,
Among them, it is recognized that the batteries B7 and B8 of the present invention in which n is 2 are particularly good. This reason is considered to be the same as the reason described in the experiment of the first embodiment.

【0052】(第3実施例) 〔実施例1〕実施例1としては、上記第3の形態に示す
方法で作製した電池を用いた。このようにして作製した
電池を、以下、本発明電池C1と称する。
(Third Example) [Example 1] In Example 1, a battery manufactured by the method described in the third embodiment was used. The battery fabricated in this manner is hereinafter referred to as Battery C1 of the invention.

【0053】〔実施例2〜10〕電解液の溶質として、
LiPF5 (CF3 )の代わりに、それぞれLiPF4
(CF3 2 、LiPF3 (CF3 3 、LiPF
2 (CF3 4 、LiPF(CF3 5 、LiPF
5 (C2 5 )、LiPF4 (C2 5 2 、LiPF
3(C2 5 3 、LiPF2 (C2 5 4 、LiP
F(C2 5 5 を用いた他は、上記実施例1と同様に
して電池を作製した。このようにして作製した電池を、
以下、それぞれ本発明電池C2〜C10と称する。
[Examples 2 to 10] As a solute of the electrolytic solution,
Instead of LiPF 5 (CF 3 ), LiPF 4
(CF 3 ) 2 , LiPF 3 (CF 3 ) 3 , LiPF
2 (CF 3 ) 4 , LiPF (CF 3 ) 5 , LiPF
5 (C 2 F 5 ), LiPF 4 (C 2 F 5 ) 2 , LiPF
3 (C 2 F 5 ) 3 , LiPF 2 (C 2 F 5 ) 4 , LiP
A battery was fabricated in the same manner as in Example 1 except that F (C 2 F 5 ) 5 was used. The battery fabricated in this way is
Hereinafter, these batteries are referred to as present invention batteries C2 to C10, respectively.

【0054】〔比較例1〜10〕VCを添加しない他
は、それぞれ上記実施例1〜10と同様にして電池を作
製した。このようにして作製した電池を、以下、それぞ
れ比較電池Y1〜Y10と称する。
[Comparative Examples 1 to 10] Batteries were produced in the same manner as in Examples 1 to 10 except that VC was not added. The batteries fabricated in this manner are hereinafter referred to as comparative batteries Y1 to Y10, respectively.

【0055】〔比較例11〜13〕電解液の溶質とし
て、LiPF5 (CF3 )の代わりに、それぞれLiP
6、LiBF4 、LiClO4 を用いた他は、上記実
施例1と同様にして電池を作製した。このようにして作
製した電池を、以下、比較電池Y11〜Y13と称す
る。
[Comparative Examples 11 to 13] Instead of LiPF 5 (CF 3 ), LiP
A battery was fabricated in the same manner as in Example 1 except that F 6 , LiBF 4 , and LiClO 4 were used. The batteries manufactured in this manner are hereinafter referred to as comparative batteries Y11 to Y13.

【0056】〔比較例14〜16〕VCを添加しない他
は、それぞれ上記比較例11〜13と同様にして電池を
作製した。このようにして作製した電池を、以下、それ
ぞれ比較電池Y14〜Y16と称する。
[Comparative Examples 14 to 16] Batteries were produced in the same manner as in Comparative Examples 11 to 13 except that VC was not added. The batteries fabricated in this manner are hereinafter referred to as comparative batteries Y14 to Y16, respectively.

【0057】〔実験〕上記本発明電池C1〜C10及び
比較電池Y1〜Y16を、前記第1実施例の実験と同様
の条件で充電、放電、及び過放電し、更に、前記数1で
示す容量回復率を算出したので、その結果を下記表3に
示す。
[Experiment] The batteries of the present invention C1 to C10 and the comparative batteries Y1 to Y16 were charged, discharged and overdischarged under the same conditions as in the experiment of the first embodiment. The recovery rate was calculated, and the results are shown in Table 3 below.

【0058】[0058]

【表3】 [Table 3]

【0059】表3から明らかなように、結晶格子の一部
をマグネシウムで置換したスピネル型マンガン酸リチウ
ムを用いた場合にも、無置換のスピネル型マンガン酸リ
チウムを用いた場合と同様の傾向があることが確認され
た。
As is evident from Table 3, the same tendency as in the case of using unsubstituted lithium spinel-type manganate was obtained when spinel-type lithium manganate in which a part of the crystal lattice was substituted with magnesium was used. It was confirmed that there was.

【0060】(第4実施例) 〔実施例1〕実施例1としては、上記第4の形態に示す
方法で作製した電池を用いた。このようにして作製した
電池を、以下、本発明電池D1と称する。
Fourth Example [Example 1] In Example 1, a battery manufactured by the method described in the fourth embodiment was used. The battery fabricated in this manner is hereinafter referred to as Battery D1 of the invention.

【0061】〔実施例2〜10〕電解液の溶質として、
LiPF5 (CF3 )の代わりに、それぞれLiPF4
(CF3 2 、LiPF3 (CF3 3 、LiPF
2 (CF3 4 、LiPF(CF3 5 、LiPF
5 (C2 5 )、LiPF4 (C2 5 2 、LiPF
3(C2 5 3 、LiPF2 (C2 5 4 、LiP
F(C2 5 5 を用いた他は、上記実施例1と同様に
して電池を作製した。このようにして作製した電池を、
以下、それぞれ本発明電池D2〜D10と称する。
Examples 2 to 10 As solutes of the electrolyte,
Instead of LiPF 5 (CF 3 ), LiPF 4
(CF 3 ) 2 , LiPF 3 (CF 3 ) 3 , LiPF
2 (CF 3 ) 4 , LiPF (CF 3 ) 5 , LiPF
5 (C 2 F 5 ), LiPF 4 (C 2 F 5 ) 2 , LiPF
3 (C 2 F 5 ) 3 , LiPF 2 (C 2 F 5 ) 4 , LiP
A battery was fabricated in the same manner as in Example 1 except that F (C 2 F 5 ) 5 was used. The battery fabricated in this way is
Hereinafter, these batteries are referred to as present invention batteries D2 to D10, respectively.

【0062】〔比較例1〜10〕VCを添加しない他
は、それぞれ上記実施例1〜10と同様にして電池を作
製した。このようにして作製した電池を、以下、それぞ
れ比較電池Z1〜Z10と称する。
[Comparative Examples 1 to 10] Batteries were produced in the same manner as in Examples 1 to 10 except that VC was not added. The batteries fabricated in this manner are hereinafter referred to as comparative batteries Z1 to Z10, respectively.

【0063】〔比較例11〜13〕電解液の溶質とし
て、LiPF5 (CF3 )の代わりに、それぞれLiP
6、LiBF4 、LiClO4 を用いた他は、上記実
施例1と同様にして電池を作製した。このようにして作
製した電池を、以下、比較電池Z11〜Z13と称す
る。
[Comparative Examples 11 to 13] Instead of LiPF 5 (CF 3 ), LiP
A battery was fabricated in the same manner as in Example 1 except that F 6 , LiBF 4 , and LiClO 4 were used. The batteries fabricated in this manner are hereinafter referred to as Comparative Batteries Z11 to Z13.

【0064】〔比較例14〜16〕VCを添加しない他
は、それぞれ上記比較例11〜13と同様にして電池を
作製した。このようにして作製した電池を、以下、それ
ぞれ比較電池Z14〜Z16と称する。
Comparative Examples 14 to 16 Batteries were produced in the same manner as in Comparative Examples 11 to 13 except that VC was not added. The batteries fabricated in this manner are hereinafter referred to as comparative batteries Z14 to Z16, respectively.

【0065】〔実験〕上記本発明電池D1〜D10及び
比較電池Z1〜Z16を、前記第1実施例の実験と同様
の条件で充電、放電、及び過放電し、更に、前記数1で
示す容量回復率を算出したので、その結果を下記表4に
示す。
[Experiment] The batteries D1 to D10 of the present invention and the comparative batteries Z1 to Z16 were charged, discharged and overdischarged under the same conditions as in the experiment of the first embodiment. The recovery rate was calculated, and the results are shown in Table 4 below.

【0066】[0066]

【表4】 [Table 4]

【0067】表4から明らかなように、結晶格子の一部
をアルミニウムで置換したスピネル型マンガン酸リチウ
ムを用いた場合にも、無置換のスピネル型マンガン酸リ
チウムを用いた場合と同様の傾向があることが確認され
た。上記表3及び表4から明らかなように、結晶格子の
一部を異種元素で置換するか否かに係わらず、スピネル
型マンガン酸リチウムを用いた場合には同様の効果があ
ることが分かる。
As is clear from Table 4, the same tendency as in the case of using unsubstituted spinel-type lithium manganate was obtained when spinel-type lithium manganate in which a part of the crystal lattice was substituted with aluminum was used. It was confirmed that there was. As is clear from Tables 3 and 4, the same effect is obtained when spinel-type lithium manganate is used, regardless of whether a part of the crystal lattice is replaced with a different element.

【0068】尚、結晶格子内に置換可能な異種元素とし
ては、上記マグネシウム、アルミニウムの他に、リチウ
ム、カルシウム、バナジウム、チタン、クロム、銅、ニ
オブ、コバルト、ニッケル、ジルコニウム、亜鉛、鉄、
モリブデン、錫などがあり、その中でも特にリチウム、
マグネシウム、アルミニウムが最適である。
The different elements that can be substituted in the crystal lattice include magnesium, aluminum, lithium, calcium, vanadium, titanium, chromium, copper, niobium, cobalt, nickel, zirconium, zinc, iron, and the like.
There are molybdenum and tin, among which lithium,
Magnesium and aluminum are optimal.

【0069】(第5実施例) 〔実験1〕正極活物質材料として、マンガン酸リチウム
とコバルト酸リチウムとの混合物を用いる他は、前記第
1実施例の実施例8に示す本発明電池A8〔ECとDE
Cとが体積比で3:7の割合で混合された混合溶媒に2
wt%のVCを添加したものに、LiPF3 (C
2 5 3 が1mol/lの割合で溶解された電解液を
有する電池〕と同様の電池を、マンガン酸リチウムとコ
バルト酸リチウムとの混合比率を変化させて種々作製し
た。そして、これら電池を、前記第1実施例の実験と同
様の条件で充電、放電、及び過放電し、更に、前記数1
で示す容量回復率を算出したので、その結果を下記表5
及び図5に示す。
Fifth Embodiment [Experiment 1] The battery A8 of the present invention shown in the eighth embodiment of the first embodiment, except that a mixture of lithium manganate and lithium cobaltate is used as the positive electrode active material. EC and DE
C in a mixed solvent of 3: 7 by volume.
wt% VC added to LiPF 3 (C
Batteries having an electrolyte solution in which 2 F 5 ) 3 was dissolved at a rate of 1 mol / l], and various kinds of batteries were manufactured by changing the mixing ratio of lithium manganate and lithium cobaltate. These batteries were charged, discharged and overdischarged under the same conditions as in the experiment of the first embodiment.
Table 5 shows the results of the calculation.
And FIG.

【0070】[0070]

【表5】 [Table 5]

【0071】表5及び図5から明らかなように、正極活
物質の総量に対するマンガン酸リチウムの割合が質量比
で20wt%以上であれば、過放電後の容量回復率が大
幅に改善することが認められた。
As is clear from Table 5 and FIG. 5, when the ratio of lithium manganate to the total amount of the positive electrode active material is 20 wt% or more by mass, the capacity recovery rate after overdischarge can be significantly improved. Admitted.

【0072】このような結果となったのは、図6に示す
ように、スピネル型マンガン酸リチウムでは4V電圧領
域以外に2.8V電圧領域でも放電曲線がプラトーとな
る特性を有しているため、過放電時にリチウム過剰状態
となっても正極の電位が落ち難くなっていることが要因
であると思われる。即ち、混合系正極では、マンガン酸
リチウムが過放電時の正極電位の低下を抑制するため、
コバルト酸リチウムの可逆性が維持できる電圧領域まで
しか電位の低下が起こらず、その結果、コバルト酸リチ
ウムの劣化が抑制されて、容量維持率の向上が図られる
ものと考えられる。より具体的にいうと、コバルト酸リ
チウムは、通常使用される範囲以下の電圧領域では、放
電曲線がプラトーとなる箇所がないため、結晶構造が完
全に壊れる領域まで、容易に過放電される危険性がある
のに対して、マンガン酸リチウムは2.8V付近にプラ
トーとなる電位を有するため、結晶構造の変化はこの段
階で一時抑制することができる。このため、過放電によ
る結晶構造の変化を極力抑えることができるので、正極
活物質の劣化が抑制される。このことは、混合系でも同
様に考えることができ、マンガン酸リチウムの混合割合
が多くなると、これに比例して、2.8V付近のプラト
ーとなる電位が増加するため、正極活物質の劣化が抑制
されることになる。
As shown in FIG. 6, the spinel-type lithium manganate has the characteristic that the discharge curve has a plateau in the 2.8 V voltage region in addition to the 4 V voltage region, as shown in FIG. It is considered that the reason is that the potential of the positive electrode is hardly reduced even when the lithium becomes excessive during the overdischarge. That is, in the mixed positive electrode, lithium manganate suppresses a decrease in the positive electrode potential during overdischarge,
It is considered that the potential drops only to the voltage range where the reversibility of lithium cobaltate can be maintained, and as a result, the deterioration of lithium cobaltate is suppressed and the capacity retention ratio is improved. More specifically, in lithium cobalt oxide, there is no place where the discharge curve becomes a plateau in a voltage range below the range of normal use, so that there is a risk that lithium cobalt oxide is easily overdischarged to a region where the crystal structure is completely destroyed. In contrast to this, lithium manganate has a plateau potential near 2.8 V, so that a change in crystal structure can be temporarily suppressed at this stage. For this reason, a change in the crystal structure due to overdischarge can be suppressed as much as possible, and deterioration of the positive electrode active material is suppressed. This can be similarly considered in a mixed system. When the mixing ratio of lithium manganate increases, the potential that becomes a plateau near 2.8 V increases in proportion to this, so that the deterioration of the positive electrode active material is reduced. Will be suppressed.

【0073】また、マンガン酸リチウムの混合量に応じ
て容量維持率に差異が見られる理由としては、混合系正
極では過放電時にマンガン酸リチウムの方に負荷の割合
が多くなるため、マンガン酸リチウムの混合量が少ない
電池では劣化の程度が大きくなり過ぎることが原因と考
えられる。したがって、正極活物質の総量に対するマン
ガン酸リチウムの割合は質量比で20wt%以上である
ことが望ましい。
The reason why the capacity retention ratio varies depending on the amount of lithium manganate mixed is that the load ratio of lithium manganate during overdischarge increases in the mixed type positive electrode. It is considered that the reason is that the degree of deterioration becomes too large in a battery with a small amount of mixed. Therefore, the ratio of lithium manganate to the total amount of the positive electrode active material is desirably 20% by weight or more by mass ratio.

【0074】尚、上記効果は、リチウム塩としてLiP
3 (C2 5 3 を用いた場合に限定するものではな
く、一般式LiPF6-X ( Cn 2n+1)X 〔尚、Xは1
〜5の整数で、且つn=1又は2を満たす〕で表される
リチウム塩を用いた場合には、上記と同様の効果が得ら
れることを実験により確認している。
The above effect is obtained by using LiP as a lithium salt.
The present invention is not limited to the case where F 3 (C 2 F 5 ) 3 is used, but the general formula LiPF 6-X (C n F 2n + 1 ) X [where X is 1
It has been confirmed by experiments that the same effect as described above can be obtained when a lithium salt represented by the following formula is used: n is an integer of 5 and n = 1 or 2.

【0075】また、上記実験では、マンガン酸リチウム
に混合する正極活物質としてコバルト酸リチウムを用い
たが、これに限定するものではなく、例えば、ニッケル
酸リチウム、或いはコバルト酸リチウムとニッケル酸リ
チウムとの混合物を用いた場合であっても、上記と同様
の効果が得られることを実験により確認している。
In the above experiment, lithium cobaltate was used as the positive electrode active material mixed with lithium manganate. However, the present invention is not limited to this. For example, lithium nickelate, or lithium cobaltate and lithium nickelate may be used. It has been confirmed by experiments that the same effect as above can be obtained even when the mixture of the above is used.

【0076】〔実験2〕VCの添加量を変える他は、前
記第1実施例の実施例8に示す本発明電池A8と同様の
電池を種々作製し、これら電池を、前記第1実施例の実
験と同様の条件で充電、放電、及び過放電し、更に、前
記数1で示す容量回復率を算出したので、その結果を下
記表6及び図7に示す。
[Experiment 2] A battery similar to the battery A8 of the present invention shown in Example 8 of the first embodiment was manufactured in various manners except that the amount of VC added was changed, and these batteries were replaced with those of the first embodiment. The battery was charged, discharged, and overdischarged under the same conditions as in the experiment, and the capacity recovery rate represented by the above equation 1 was calculated. The results are shown in Table 6 and FIG. 7 below.

【0077】[0077]

【表6】 [Table 6]

【0078】表6及び図7から明らかなように、電解液
の溶媒に対するVCの添加量が増加するに伴って、過放
電後の容量回復率は高くなっている反面、VCの添加量
が増加するに伴って、電池作製時の電池の内部抵抗が大
きくなるということが認められる。特にVCの添加量が
5wt%を越えると著しく電池の内部抵抗が大きくな
る。このように電池の内部抵抗が大きくなると、通常の
使用領域での電池特性は大幅に低下するので、VCの添
加量は5wt%以下であることが望ましく、特に2wt
%以下であることが望ましい。
As is clear from Table 6 and FIG. 7, as the amount of VC added to the solvent of the electrolytic solution increases, the capacity recovery rate after overdischarge increases, but the amount of VC increases. As a result, it is recognized that the internal resistance of the battery at the time of manufacturing the battery increases. In particular, when the added amount of VC exceeds 5 wt%, the internal resistance of the battery is significantly increased. When the internal resistance of the battery is increased as described above, the battery characteristics in a normal use region are greatly reduced. Therefore, it is desirable that the amount of VC added is 5 wt% or less, and particularly 2 wt%.
% Is desirable.

【0079】尚、上記効果は、リチウム塩としてLiP
3 (C2 5 3 を用いた場合に限定するものではな
く、一般式LiPF6-X ( Cn 2n+1)X 〔尚、Xは1
〜5の整数で、且つn=1又は2を満たす〕で表される
リチウム塩を用いた場合には、上記と同様の効果が得ら
れることを実験により確認している。
The above effect is obtained by using LiP as a lithium salt.
The present invention is not limited to the case where F 3 (C 2 F 5 ) 3 is used, but the general formula LiPF 6-X (C n F 2n + 1 ) X [where X is 1
It has been confirmed by experiments that the same effect as described above can be obtained when a lithium salt represented by the following formula is used: n is an integer of 5 and n = 1 or 2.

【0080】〔実験3〕LiPF3 (C2 5 3 のモ
ル濃度を変化させる〔但し、電池の充放電性能を維持す
る目的から、LiPF3 (C2 5 3 のモル濃度を減
少させた分だけ代替品としてのLiPF6 を添加し、ト
ータルのリチウム塩濃度が1mol/lとなるように調
整している〕他は、前記第1実施例の実施例8に示す本
発明電池A8と同様の電池を種々作製し、これら電池
を、前記第1実施例の実験と同様の条件で充電、放電、
及び過放電し、更に、前記数1で示す容量回復率を算出
したので、その結果を下記表7及び図8に示す。
[Experiment 3] Changing the molar concentration of LiPF 3 (C 2 F 5 ) 3 [However, in order to maintain the charge / discharge performance of the battery, the molar concentration of LiPF 3 (C 2 F 5 ) 3 was reduced. LiPF 6 as a substitute is added as much as the amount added, and the total lithium salt concentration is adjusted to be 1 mol / l.] Other than the above, the battery A8 of the present invention shown in Example 8 of the first embodiment. Various batteries were manufactured in the same manner as described above, and these batteries were charged, discharged, and discharged under the same conditions as in the experiment of the first embodiment.
And overdischarge, and the capacity recovery rate represented by the above equation 1 was calculated. The results are shown in Table 7 and FIG. 8 below.

【0081】[0081]

【表7】 [Table 7]

【0082】表7及び図8から明らかなように、LiP
3 (C2 5 3 のモル濃度が減少するにしたがっ
て、過放電後の容量回復率は低下していくが、LiPF
3 (C 2 5 3 のモル濃度が0.3mol/l以上で
あれば、過放電後の容量回復率は十分に確保されている
ことが認められる。
As is clear from Table 7 and FIG.
FThree(CTwoFFive)ThreeAs the molarity of
As a result, the capacity recovery rate after overdischarge decreases, but the LiPF
Three(C TwoFFive)ThreeIs more than 0.3mol / l
If any, the capacity recovery rate after overdischarge is sufficiently ensured
It is recognized that.

【0083】この要因の詳細は不明であるが、LiPF
3 (C2 5 3 のモル濃度が0.3mol/l以上で
あれば、LiPF3 (C2 5 3 以外のリチウム塩が
混合されている場合においても、充電初期に分解したL
iPF3 (C2 5 3 とVCとの複合被膜が負極活物
質上に形成され、マンガン析出抑制効果が十分に発揮さ
れていることによるものと考えられる。一方、LiPF
3 (C2 5 3 のモル濃度が0.3mol/l未満に
なると、その効果が大きく低減するのは、その他のリチ
ウム塩(上記実験ではLiPF6 )との相互作用によ
り、LiPF3 (C2 5 3 とVCとの複合被膜が負
極活物質上に十分に形成されないという理由によるもの
と考えられる。したがって、LiPF3 (C2 5 3
のモル濃度が0.3mol/l以上であることが望まし
い。
Although the details of this factor are unknown, LiPF
If the molar concentration of 3 (C 2 F 5 ) 3 is 0.3 mol / l or more, even if a lithium salt other than LiPF 3 (C 2 F 5 ) 3 is mixed, L decomposed at the early stage of charging.
This is probably because a composite coating of iPF 3 (C 2 F 5 ) 3 and VC was formed on the negative electrode active material, and the effect of suppressing manganese deposition was sufficiently exhibited. On the other hand, LiPF
When the molar concentration of 3 (C 2 F 5 ) 3 is less than 0.3 mol / l, the effect is greatly reduced because the interaction with other lithium salts (LiPF 6 in the above experiment) causes LiPF 3 ( This is considered to be because the composite film of C 2 F 5 ) 3 and VC was not sufficiently formed on the negative electrode active material. Therefore, LiPF 3 (C 2 F 5 ) 3
Is preferably 0.3 mol / l or more.

【0084】尚、上記効果は、リチウム塩としてLiP
3 (C2 5 3 を用いた場合に限定するものではな
く、一般式LiPF6-X ( Cn 2n+1)X 〔尚、Xは1
〜5の整数で、且つn=1又は2を満たす〕で表される
リチウム塩を用いた場合には、上記と同様の効果が得ら
れることを実験により確認している。
The above effect is obtained by using LiP as a lithium salt.
The present invention is not limited to the case where F 3 (C 2 F 5 ) 3 is used, but the general formula LiPF 6-X (C n F 2n + 1 ) X [where X is 1
It has been confirmed by experiments that the same effect as described above can be obtained when a lithium salt represented by the following formula is used: n is an integer of 5 and n = 1 or 2.

【0085】[0085]

【発明の効果】以上説明したように、本発明によれば、
過放電特性が飛躍的に向上するので、保護回路等が不要
となり、これにより、非水電解質電池の低コスト化や高
エネルギー密度化を図ることができるといった優れた効
果を奏する。
As described above, according to the present invention,
Since the overdischarge characteristic is dramatically improved, a protective circuit or the like is not required, thereby providing an excellent effect that the cost and the energy density of the nonaqueous electrolyte battery can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の形態に係る非水電解質電池の正
面図。
FIG. 1 is a front view of a nonaqueous electrolyte battery according to a first embodiment of the present invention.

【図2】図1のA−A線矢視断面図。FIG. 2 is a sectional view taken along line AA of FIG. 1;

【図3】本発明の第1の形態に係る非水電解質電池に用
いられる発電要素の斜視図。
FIG. 3 is a perspective view of a power generation element used in the nonaqueous electrolyte battery according to the first embodiment of the present invention.

【図4】ラミネート外装体の断面図。FIG. 4 is a cross-sectional view of a laminate exterior body.

【図5】マンガン酸リチウムの混合量と容量回復率との
関係を示すグラフ。
FIG. 5 is a graph showing a relationship between a mixed amount of lithium manganate and a capacity recovery rate.

【図6】マンガン酸リチウム、コバルト酸リチウム、及
びマンガン酸リチウムとコバルト酸リチウムとの混合物
における容量と正極電位との関係を示すグラフ。
FIG. 6 is a graph showing a relationship between capacity and positive electrode potential in lithium manganate, lithium cobaltate, and a mixture of lithium manganate and lithium cobaltate.

【図7】VCの添加量と容量回復率及び内部抵抗との関
係を示すグラフ。
FIG. 7 is a graph showing the relationship between the amount of VC added and the capacity recovery rate and internal resistance.

【図8】LiPF3 (C2 5 3 のモル濃度と容量回
復率との関係を示すグラフ。
FIG. 8 is a graph showing the relationship between the molar concentration of LiPF 3 (C 2 F 5 ) 3 and the capacity recovery rate.

【符号の説明】[Explanation of symbols]

1:正極 2:負極 4:発電要素 5:収納空間 6:ラミネート外装体 8:正極タブ 9:負極タブ 1: Positive electrode 2: Negative electrode 4: Power generation element 5: Storage space 6: Laminate exterior body 8: Positive electrode tab 9: Negative electrode tab

───────────────────────────────────────────────────── フロントページの続き (72)発明者 生川 訓 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H029 AJ02 AK03 AL06 AM03 AM04 AM05 AM07 BJ04 BJ14 HJ01 HJ02 HJ10 HJ11 5H050 AA04 BA17 CA09 CB07 DA13 HA01 HA02 HA10 HA11  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ikukawa Nori 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5H029 AJ02 AK03 AL06 AM03 AM04 AM05 AM07 BJ04 BJ14 HJ01 HJ02 HJ10 HJ11 5H050 AA04 BA17 CA09 CB07 DA13 HA01 HA02 HA10 HA11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質を含む正極と、リチウムを吸
蔵放出可能な負極活物質を含む負極と、溶媒及び溶質を
備えた電解液とが外装体内に配置された非水電解質電池
において、 上記電解液の溶媒には、ビニレンカーボネートが添加さ
れ、且つ、上記電解液の溶質には、一般式LiPF6-X
( Cn 2n+1)X 〔尚、Xは1〜5の整数で、且つn=
1又は2を満たし、望ましくはX=2又は3であり、特
に望ましくはX=2又は3で、且つn=2を満たす〕で
示されるリチウム塩が含まれていることを特徴とする非
水電解質電池。
1. A non-aqueous electrolyte battery in which a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material capable of inserting and extracting lithium, and an electrolytic solution including a solvent and a solute are arranged in an outer package. Vinylene carbonate is added to the solvent of the electrolytic solution, and the solute of the electrolytic solution has a general formula LiPF 6-X
(C n F 2n + 1 ) X [where X is an integer of 1 to 5 and n =
1 or 2, preferably X = 2 or 3, particularly preferably X = 2 or 3, and n = 2]. Electrolyte battery.
【請求項2】 上記正極活物質には、スピネル型マンガ
ン酸リチウムが含まれている、請求項1記載の非水電解
質電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the positive electrode active material contains spinel-type lithium manganate.
【請求項3】 上記一般式LiPF6-X ( Cn 2n+1)
X で表されるリチウム塩のモル濃度が、0.3mol/
l以上である、請求項1又は2記載の非水電解質電池。
3. The general formula LiPF 6-X (C n F 2n + 1 )
The molar concentration of the lithium salt represented by X is 0.3 mol /
The nonaqueous electrolyte battery according to claim 1, wherein the number is 1 or more.
【請求項4】 上記電解液の溶媒に対する上記ビニレン
カーボネートの質量比をy(wt%)と規定した場合、
当該質量比yが0<y≦5、望ましくは0<y≦3であ
る、請求項1、2又は3記載の非水電解質電池。
4. When the mass ratio of the vinylene carbonate to the solvent of the electrolytic solution is defined as y (wt%),
4. The nonaqueous electrolyte battery according to claim 1, wherein the mass ratio y satisfies 0 <y ≦ 5, preferably 0 <y ≦ 3.
【請求項5】 上記正極活物質の総量に対する上記スピ
ネル型マンガン酸リチウムの質量比をz(wt%)と規
定した場合、当該質量比zが20≦zである、請求項
2、3又は4記載の非水電解質電池。
5. When the mass ratio of the spinel-type lithium manganate to the total amount of the positive electrode active material is defined as z (wt%), the mass ratio z satisfies 20 ≦ z. The non-aqueous electrolyte battery according to the above.
JP2000255825A 2000-08-25 2000-08-25 Non-aqueous electrolyte battery Expired - Fee Related JP3634728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000255825A JP3634728B2 (en) 2000-08-25 2000-08-25 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000255825A JP3634728B2 (en) 2000-08-25 2000-08-25 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2002075441A true JP2002075441A (en) 2002-03-15
JP3634728B2 JP3634728B2 (en) 2005-03-30

Family

ID=18744548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000255825A Expired - Fee Related JP3634728B2 (en) 2000-08-25 2000-08-25 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3634728B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259677A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Lithium secondary battery
JP2006073513A (en) * 2004-08-03 2006-03-16 Samsung Sdi Co Ltd Lithium secondary battery and lithium secondary battery pack
KR100929032B1 (en) 2007-10-05 2009-11-26 삼성에스디아이 주식회사 Electrode assembly, secondary battery having the same, manufacturing method of electrode assembly and electrode assembly manufactured by the method
US20100316908A1 (en) * 2009-06-11 2010-12-16 Sony Corporation Battery
CN110611123A (en) * 2019-10-23 2019-12-24 东莞维科电池有限公司 Lithium ion battery electrolyte and lithium ion battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259677A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Lithium secondary battery
JP2006073513A (en) * 2004-08-03 2006-03-16 Samsung Sdi Co Ltd Lithium secondary battery and lithium secondary battery pack
KR100929032B1 (en) 2007-10-05 2009-11-26 삼성에스디아이 주식회사 Electrode assembly, secondary battery having the same, manufacturing method of electrode assembly and electrode assembly manufactured by the method
US20100316908A1 (en) * 2009-06-11 2010-12-16 Sony Corporation Battery
CN110611123A (en) * 2019-10-23 2019-12-24 东莞维科电池有限公司 Lithium ion battery electrolyte and lithium ion battery

Also Published As

Publication number Publication date
JP3634728B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
JP4056346B2 (en) Nonaqueous electrolyte secondary battery
JP4349321B2 (en) battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
US7824810B2 (en) Electrolytic solution and battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP4951933B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5781386B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2004063394A (en) Nonaqueous electrolyte battery
JP2005521220A (en) Lithium secondary battery containing overdischarge inhibitor
JP2008098053A (en) Battery
JP6565916B2 (en) Nonaqueous electrolyte secondary battery
CN107256980A (en) A kind of method for improving the resistance to over-discharge property of lithium ion battery
JP4236427B2 (en) Lithium secondary battery
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JP2008262900A (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP3634728B2 (en) Non-aqueous electrolyte battery
JP2006032301A (en) Electrolyte and battery
JP2007042439A (en) Electrolyte and battery
JP2012033502A (en) Electrolytic solution and secondary battery
JP2003132949A (en) Nonaqueous secondary battery and its manufacturing method
JP3519919B2 (en) Lithium secondary battery
JP2003187863A (en) Secondary battery using organic electrolyte
JP2000173653A (en) Nonaqueous electrolyte battery
JP4951923B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2001307736A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees