JP2002075358A - Positive electrode material for lithium ion secondary battery and manufacturing method of the material - Google Patents

Positive electrode material for lithium ion secondary battery and manufacturing method of the material

Info

Publication number
JP2002075358A
JP2002075358A JP2000254764A JP2000254764A JP2002075358A JP 2002075358 A JP2002075358 A JP 2002075358A JP 2000254764 A JP2000254764 A JP 2000254764A JP 2000254764 A JP2000254764 A JP 2000254764A JP 2002075358 A JP2002075358 A JP 2002075358A
Authority
JP
Japan
Prior art keywords
lithium
iron
positive electrode
limno
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000254764A
Other languages
Japanese (ja)
Other versions
JP3407042B2 (en
Inventor
Mitsuharu Tabuchi
光春 田渕
Kazuaki Ato
和明 阿度
Hironori Kobayashi
弘典 小林
Hikari Sakabe
比夏里 栄部
Hiroyuki Kageyama
博之 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000254764A priority Critical patent/JP3407042B2/en
Publication of JP2002075358A publication Critical patent/JP2002075358A/en
Application granted granted Critical
Publication of JP3407042B2 publication Critical patent/JP3407042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compounds Of Iron (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new positive electrode material for a lithium ion battery having excellent battery characteristics. SOLUTION: The positive electrode material for lithium ion battery consists of a lithium-containing composite oxide expressed by LiMn1-yFeyO2, (0<y<0.5) substantially formed from a rhombic phase, and is manufactured through such processes that lithium compound, oxidizing agent, and alkali are added to and mixed with a solution containing manganese ions (II) and iron ions (III) and then the obtained mixture solution is subjected to a hydrothermal treatment at a temperature of 400 deg.C or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池正極用材料及びその製造方法に関する。
The present invention relates to a positive electrode material for a lithium ion secondary battery and a method for producing the same.

【0002】[0002]

【従来技術】最近の携帯電話、ノートパソコン等のポー
タブル機器に搭載されている二次電池として、その傑出
したエネルギー密度ゆえに注目されているのがリチウム
イオン二次電池である。リチウムイオン二次電池は、今
後、電気自動車あるいは電力負荷平準化システム等の大
型電池への適用が検討されており、その重要性はますま
す高まっている。
2. Description of the Related Art Lithium-ion secondary batteries have attracted attention as a secondary battery mounted on portable devices such as portable telephones and notebook personal computers because of their outstanding energy density. The application of lithium ion secondary batteries to large batteries such as electric vehicles and power load leveling systems is being studied in the future, and their importance is increasing more and more.

【0003】現在実用化されているリチウムイオン二次
電池では、正極材料にリチウムコバルト酸化物(LiC
oO2)材料、負極材料に黒鉛等の炭素材料がそれぞれ
用いられ、電解液として有機電解液が使用されている。
その中でも、正極材料は、電池の作動電圧(正極中の遷
移金属の酸化還元電位と負極元素のそれとの差)、充放
電容量(正極から脱離・挿入可能なLi量)等の電池性
能に大きな影響を与える構成要素である。
[0003] In a lithium ion secondary battery currently in practical use, a lithium cobalt oxide (LiC) is used as a positive electrode material.
Carbon materials such as graphite are used for the oO 2 ) material and the negative electrode material, respectively, and an organic electrolyte is used as the electrolyte.
Among them, the cathode material is used to improve the battery performance such as the operating voltage of the battery (the difference between the oxidation-reduction potential of the transition metal in the cathode and that of the anode element) and the charge / discharge capacity (the amount of Li that can be removed and inserted from the cathode). It is a component that has a great influence.

【0004】ところが、正極材料である上記リチウムコ
バルト酸化物は、希少金属であるコバルトを用いるた
め、リチウムイオン二次電池製造の低コスト化を妨げる
要因の一つとなっている。そこで、より安価で資源的問
題の少ない正極材料としてリチウムマンガン酸化物(L
iMn24,LiMnO2)の開発が注目されている。
[0004] However, the lithium cobalt oxide as the positive electrode material uses cobalt, which is a rare metal, and thus is one of the factors that hinder the cost reduction of the production of lithium ion secondary batteries. Therefore, lithium manganese oxide (L
The development of iMn 2 O 4 and LiMnO 2 ) has attracted attention.

【0005】このうちLiMn24は、酸化還元電位が
約4Vと大きく、現在最も注目を浴びている材料である
が、化学式より理論上MnO2組成まで取り出し得るL
i量が0.5であり、これはLiMnO2の1.0の半
分しかなく、その高容量化に限界がある。
[0005] Among LiMn 2 O 4 is greater and the oxidation reduction potential of about 4V, is a material that has attracted the currently most attention may retrieve up to theoretically MnO 2 composition than the chemical formula L
The i amount is 0.5, which is only half of 1.0 of LiMnO 2 , and there is a limit in increasing its capacity.

【0006】一方、LiMnO2では作動電圧が約3V
と低いものの、LiMn24に比べて高容量化が期待で
きる。LiMnO2の作動電圧の低さはLiMn24
の対比においてデメリットとなるが、実際の電池におい
ては大きな問題とならない。これは、有機電解液の分解
が4V系に比べて起こりにくいため、それだけ電池の安
全性の向上に寄与できるからである。ところで、このL
iMnO2には、安定相である斜方晶相と準安定相であ
る単斜晶相とがあるが、合成は斜方晶相の方が容易であ
る。
On the other hand, the operating voltage of LiMnO 2 is about 3 V
However, a higher capacity can be expected as compared with LiMn 2 O 4 . The low operating voltage of LiMnO 2 has a disadvantage in comparison with LiMn 2 O 4 , but does not cause a serious problem in an actual battery. This is because the decomposition of the organic electrolytic solution is less likely to occur than in the case of the 4 V system, which can contribute to the improvement of the safety of the battery. By the way, this L
Although iMnO 2 has an orthorhombic phase which is a stable phase and a monoclinic phase which is a metastable phase, the orthorhombic phase is easier to synthesize.

【0007】以上のような点から、高容量リチウムイオ
ン二次電池の正極用材料としては、リチウムマンガン酸
化物の中で特に斜方晶相LiMnO2の合成について種
々の検討が進められている。例えば、参考文献1(R.J.
Gummow, D.C.Lies, and M.M.Thackeray, Material Rese
arch Bulletin, 28, (1993), pp.1249-56.)によれば、
MnO2とLiOHを出発物質とし、炭素(還元剤)の
共存下、アルゴン気流中で焼成して斜方晶LiMnO2
を製造することが記載されている。
[0007] In view of the above, various studies have been made on the synthesis of orthorhombic phase LiMnO 2 , especially among lithium manganese oxides, as a positive electrode material for a high capacity lithium ion secondary battery. For example, Reference 1 (RJ
Gummow, DCLies, and MMThackeray, Material Rese
arch Bulletin, 28, (1993), pp. 1249-56.)
MnO 2 and LiOH are used as starting materials, and calcined in an argon stream in the presence of carbon (reducing agent) to produce orthorhombic LiMnO 2
Is described.

【0008】しかしながら、この方法では、上記のよう
に還元剤を用いて焼成雰囲気を還元性にする必要がある
ことから、工業的規模での量産に適しているとは言い難
い。
However, this method is not suitable for mass production on an industrial scale because the firing atmosphere needs to be reduced by using a reducing agent as described above.

【0009】また例えば、特開平6−349494号公
報では、鉄等の異種金属を含むMnOOH又はMn(O
H)2を、リチウムイオンを含む溶媒中350℃以下の
温度でイオン交換及び加熱反応させることにより低結晶
性斜方晶LiMnO2が製造できることが開示されてい
る。
[0009] For example, in Japanese Patent Application Laid-Open No. 6-349494, MnOOH or Mn (O
It is disclosed that low-crystalline orthorhombic LiMnO 2 can be produced by subjecting H) 2 to ion exchange and heat reaction in a solvent containing lithium ions at a temperature of 350 ° C. or lower.

【0010】しかしながら、この方法では、イオン交換
プロセスと加熱プロセスの2段階プロセスが必要であ
る。特に、加熱プロセス時には、試料の酸化を防止して
斜方晶構造が分解される事態を回避するために、真空中
及び不活性雰囲気とすることが必要であり、電極材料を
量産するに際しての大きな障壁となっている。従って、
このような雰囲気制御が不要な合成プロセスの開発が必
要であり、その合成プロセスの一つとして水熱法が注目
されている。
[0010] However, this method requires a two-step process of an ion exchange process and a heating process. In particular, during the heating process, it is necessary to use a vacuum and an inert atmosphere in order to prevent the sample from being oxidized and to prevent the orthorhombic structure from being decomposed. It is a barrier. Therefore,
It is necessary to develop a synthesis process that does not require such atmosphere control, and the hydrothermal method has attracted attention as one of the synthesis processes.

【0011】[0011]

【発明が解決しようとする課題】水熱法に関し、本発明
者らは、すでに水熱法を用いてMnOOHとLiOHか
ら300℃以下の温度で容易に斜方晶LiMnO2を製
造できることを明らかにしている(参考文献2:M.Tabu
chi, K.Ado, C.Masquelier, I.Matsubara, H.Sakaebe,
H.Kageyama, H.Kobayashi, R.Kanno and O.Nakamura, S
olid State Ionics, 89, (1996), pp.53-63)。さら
に、本発明者らは、酸化マンガン、水酸化マンガン、炭
酸マンガン等を出発原料として用い、水酸化リチウムと
ともに水熱処理することによって斜方晶LiMnO2
製造する技術もすでに見出している(特開平11−13
0438号公報)。
Regarding the hydrothermal method, the present inventors have already shown that orthorhombic LiMnO 2 can be easily produced from MnOOH and LiOH at a temperature of 300 ° C. or less using the hydrothermal method. (Reference 2: M.Tabu
chi, K. Ado, C. Masquelier, I. Matsubara, H. Sakaebe,
H.Kageyama, H.Kobayashi, R.Kanno and O.Nakamura, S
olid State Ionics, 89, (1996), pp.53-63). Furthermore, the present inventors have already found a technique for producing orthorhombic LiMnO 2 by using manganese oxide, manganese hydroxide, manganese carbonate, or the like as a starting material, and performing a hydrothermal treatment together with lithium hydroxide (Japanese Unexamined Patent Publication (Kokai) No. Heisei 9 (1994) -207). 11-13
No. 0438).

【0012】しかしながら、これらの水熱法では、雰囲
気制御は不要となるものの、斜方晶LiMnO2の特性
(特に電極材料としての充放電特性)を改善すべく異種
金属を含有させる場合には、その製造プロセスが複雑に
なる。そのため、異種金属が含有する斜方晶LiMnO
2の製造コストの低廉化は困難とされている。
[0012] However, in these hydrothermal methods, although atmosphere control is not required, when different metals are contained in order to improve the characteristics of orthorhombic LiMnO 2 (especially the charge / discharge characteristics as an electrode material), The manufacturing process becomes complicated. Therefore, the orthorhombic LiMnO containing the dissimilar metal
It is considered difficult to reduce the manufacturing cost of ( 2 ).

【0013】このように、異種金属含有斜方晶LiMn
2、すなわち充放電特性に優れたリチウムイオン電池
正極用材料を工業的規模で製造できる技術は未だ開発さ
れるに至っていない。
As described above, the orthorhombic LiMn containing the dissimilar metal is used.
A technique for producing O 2 , that is, a material for a positive electrode of a lithium ion battery having excellent charge / discharge characteristics on an industrial scale has not yet been developed.

【0014】従って、本発明の主な目的は、従来の斜方
晶相LiMnO2と同等以上の電池特性を与える新規な
リチウムイオン電池正極用材料を工業的規模で製造でき
る方法を提供することにある。
Accordingly, it is a main object of the present invention to provide a method for producing a novel lithium ion battery cathode material which provides battery characteristics equal to or better than conventional orthorhombic phase LiMnO 2 on an industrial scale. is there.

【0015】[0015]

【課題を解決するための手段】本発明者は、上記従来技
術の問題に鑑みて鋭意研究を重ねた結果、特定の方法で
鉄含有斜方晶LiMnO2を製造することにより上記目
的を達成できることを見出し、本発明を完成するに至っ
た。
Means for Solving the Problems The present inventor has made intensive studies in view of the above-mentioned problems of the prior art, and as a result, it has been found that the above object can be achieved by producing iron-containing orthorhombic LiMnO 2 by a specific method. And completed the present invention.

【0016】すなわち、本発明は、下記のリチウムイオ
ン二次電池正極用材料及びその製造方法に係るものであ
る。
That is, the present invention relates to the following positive electrode material for a lithium ion secondary battery and a method for producing the same.

【0017】1.組成式LiMn1-yFey2(但し、
0<y<0.5)で示されるリチウム含有複合酸化物で
あって、実質的に斜方晶相から構成されるリチウムイオ
ン二次電池正極用材料。
1. Composition formula LiMn 1-y Fe y O 2 (however,
0 <y <0.5) A positive electrode material for a lithium ion secondary battery, which is a lithium-containing composite oxide substantially composed of an orthorhombic phase.

【0018】2.マンガンイオン(II)及び鉄イオン
(III)を含む溶液に、リチウム化合物、酸化剤及びア
ルカリを加えた後、得られた混合溶液を400℃以下で
水熱処理することにより、組成式LiMn1-yFey2
(但し、0<y<0.5)で示されるリチウム含有複合
酸化物を得ることを特徴とするリチウムイオン二次電池
正極用材料の製造方法。
2. After adding a lithium compound, an oxidizing agent and an alkali to a solution containing manganese ions (II) and iron ions (III), the resulting mixed solution is subjected to hydrothermal treatment at 400 ° C. or lower to obtain a composition formula LiMn 1-y Fe y O 2
(However, a method for producing a positive electrode material for a lithium ion secondary battery, characterized by obtaining a lithium-containing composite oxide represented by 0 <y <0.5).

【0019】[0019]

【発明の実施の形態】1.リチウムイオン二次電池正極
用材料 本発明のリチウムイオン二次電池正極用材料は、組成式
LiMn1-yFey2(但し、0<y<0.5)で示さ
れるリチウム含有複合酸化物であって、実質的に斜方晶
相から構成されるものである。すなわち、上記複合酸化
物は、LiMnO2のMnの一部をFeで置換したもの
である。Feで置換することによって、正極材料として
の充放電特性が改善されるとともに、材料の低コスト化
を図ることができる。
DETAILED DESCRIPTION OF THE INVENTION 1. Lithium ion secondary battery positive electrode
Material for Lithium Ion Secondary Battery The material for a positive electrode of a lithium ion secondary battery of the present invention is a lithium-containing composite oxide represented by the composition formula LiMn 1-y Fe y O 2 (where 0 <y <0.5), and substantially Is composed of an orthorhombic phase. That is, the composite oxide is obtained by substituting a part of Mn of LiMnO 2 with Fe. By substituting with Fe, the charge / discharge characteristics as a positive electrode material can be improved and the cost of the material can be reduced.

【0020】上記yの値は、通常0<y<0.5であ
り、好ましくは0.01≦y≦0.2である。yは0.
5未満の範囲で所望の電気特性等に応じて適宜設定する
ことができる。上記yの値が0.5以上となる場合には
電気化学的活性を有しないLiFeO2相が主生成相と
なるので好ましくない。
The value of y is generally 0 <y <0.5, preferably 0.01 ≦ y ≦ 0.2. y is 0.
It can be set appropriately within a range of less than 5 according to desired electrical characteristics and the like. When the value of y is 0.5 or more, the LiFeO 2 phase having no electrochemical activity becomes the main generated phase, which is not preferable.

【0021】上記複合酸化物の結晶形は、通常は、実質
的に斜方晶相から構成される。但し、本発明の効果を妨
げない範囲内で他の結晶相又は非晶質部分が含まれてい
ても良い。
The crystal form of the above-mentioned composite oxide is usually substantially composed of an orthorhombic phase. However, other crystalline phases or amorphous portions may be included as long as the effects of the present invention are not impaired.

【0022】本発明材料は、リチウムイオン二次電池正
極用として好適に使用することができる。正極材料(正
極活物質)として本発明の正極用材料を使用するほか
は、公知のリチウムイオン二次電池の構成要素をそのま
ま採用することにより、リチウムイオン二次電池を製造
することができる。例えば、本発明の正極用材料を集電
体に固定したものを正極とし、負極として金属リチウム
を使用し、電解液として過塩素酸リチウム等のリチウム
化合物を有機溶媒(エチレンカーボネート、ジメチルカ
ーボネート等)に溶解させたものを用い、公知のセパレ
ータ等を用いてリチウムイオン二次電池を組み立てるこ
とができる。2.リチウムイオン二次電池正極用材料の製造方法 本発明におけるリチウムイオン二次電池正極用材料の製
造方法は、マンガンイオン(II)及び鉄イオン(III)
を含む溶液に、リチウム化合物、酸化剤及びアルカリを
加えた後、得られた混合溶液を400℃以下で水熱処理
することにより、組成式LiMn1-yFey2(但し、
0<y<0.5)で示されるリチウム含有複合酸化物を
得ることを特徴とする。
The material of the present invention can be suitably used for a positive electrode of a lithium ion secondary battery. In addition to using the positive electrode material of the present invention as a positive electrode material (positive electrode active material), a lithium ion secondary battery can be manufactured by adopting known components of a lithium ion secondary battery as they are. For example, a material in which the material for a positive electrode of the present invention is fixed to a current collector is used as a positive electrode, metallic lithium is used as a negative electrode, and a lithium compound such as lithium perchlorate is used as an electrolytic solution in an organic solvent (ethylene carbonate, dimethyl carbonate, etc.). The lithium ion secondary battery can be assembled by using a material which has been dissolved in a lithium ion battery and using a known separator or the like. 2. Method for producing positive electrode material for lithium ion secondary battery The method for producing the positive electrode material for lithium ion secondary battery according to the present invention comprises manganese ion (II) and iron ion (III).
After adding a lithium compound, an oxidizing agent and an alkali to the solution containing, the resulting mixed solution is subjected to hydrothermal treatment at 400 ° C. or lower to obtain a composition formula of LiMn 1-y Fe y O 2 (however,
It is characterized by obtaining a lithium-containing composite oxide represented by 0 <y <0.5).

【0023】マンガンイオン(II)及び鉄イオン(II
I)を含む溶液は、特に両イオンを含む水溶液を好適に
使用することができる。このような水溶液は、例えばマ
ンガン化合物及び鉄化合物を水に溶解させることにより
調製することができる。
Manganese ion (II) and iron ion (II
As the solution containing I), an aqueous solution containing both ions can be suitably used. Such an aqueous solution can be prepared, for example, by dissolving a manganese compound and an iron compound in water.

【0024】上記マンガン化合物及び鉄化合物は、それ
ぞれマンガンイオン(II)及び鉄イオン(III)の供給
源となり得るものであれば特に限定されない。
The manganese compound and the iron compound are not particularly limited as long as they can serve as sources of manganese ions (II) and iron ions (III), respectively.

【0025】マンガン化合物としては、例えば硝酸マン
ガン、塩化マンガン、硫酸マンガン等の水可溶性塩、水
酸化マンガン等の水酸化物等、酸化マンガン等の酸化
物、その他にもマンガンを含むアンモニウム塩(硫酸マ
ンガンアンモニウム塩)等が挙げられる。これらは1種
又は2種以上で使用することができる。
Examples of the manganese compound include water-soluble salts such as manganese nitrate, manganese chloride and manganese sulfate; hydroxides such as manganese hydroxide; oxides such as manganese oxide; and ammonium salts containing manganese (sulfuric acid). Manganese ammonium salt) and the like. These can be used alone or in combination of two or more.

【0026】鉄化合物としては、例えば硝酸鉄、塩化
鉄、硫酸鉄等の鉄の水可溶性塩(硝酸塩、硫酸塩、塩化
物等)、水酸化鉄等の水酸化物、酸化鉄等の酸化物等の
ほか、鉄を含むアンモニウム塩(硫酸鉄アンモニウム
塩)等が挙げられる。これらは1種又は2種以上で使用
することができる。
Examples of the iron compound include water-soluble salts of iron such as iron nitrate, iron chloride and iron sulfate (nitrates, sulfates and chlorides), hydroxides such as iron hydroxide and oxides such as iron oxide. And ammonium salts containing iron (ammonium iron sulfate). These can be used alone or in combination of two or more.

【0027】これらのマンガン化合物及び鉄化合物は水
和物であっても良いし、無水物であっても良い。なお、
酸化鉄、酸化マンガン等のように水に溶けにくい化合物
を使用する場合は、例えば塩酸、硝酸等のような適当な
酸を用いて水に溶かして水溶液を調製すれば良い。
These manganese compounds and iron compounds may be hydrates or anhydrides. In addition,
When a compound that is hardly soluble in water such as iron oxide and manganese oxide is used, an aqueous solution may be prepared by dissolving in water using a suitable acid such as hydrochloric acid or nitric acid.

【0028】溶液中のマンガンイオン及び鉄イオンの濃
度は、所望の組成等に応じて適宜設定すれば良いが、両
者の合計濃度(無水物換算)で通常0.01〜2モル/
リットル程度、より好ましくは0.1〜0.5モル/リ
ットルとすれば良い。マンガンイオン及び鉄イオンの割
合は、得られる複合酸化物における鉄の置換割合等に応
じて適宜設定すれば良い。
The concentration of manganese ion and iron ion in the solution may be appropriately set according to the desired composition and the like, but is usually 0.01 to 2 mol / mol in terms of the total concentration of both (in terms of anhydride).
It may be about liter, more preferably 0.1 to 0.5 mol / liter. The proportions of manganese ions and iron ions may be appropriately set according to the substitution ratio of iron in the obtained composite oxide.

【0029】次いで、上記溶液にリチウム化合物、酸化
剤及びアルカリを加える。これらを加える順序は特に限
定的でなく、いずれの順序で添加しても良いし、また同
時に添加しても良い。
Next, a lithium compound, an oxidizing agent and an alkali are added to the above solution. The order in which these are added is not particularly limited, and they may be added in any order, or may be added simultaneously.

【0030】リチウム化合物は特に限定的でなく、水酸
化リチウム(無水物でも水和物いずれでもよい)、塩化
リチウム、硝酸リチウム、炭酸リチウム等が挙げられ
る。これらは1種又は2種以上を使用できる。これらリ
チウム化合物の中でも水酸化リチウムが好ましい。
The lithium compound is not particularly limited, and examples thereof include lithium hydroxide (which may be either anhydrous or hydrate), lithium chloride, lithium nitrate, lithium carbonate and the like. These can be used alone or in combination of two or more. Among these lithium compounds, lithium hydroxide is preferable.

【0031】リチウム化合物の使用量は特に制限されな
いが、通常は上記溶液中にリチウムイオン量で0.1〜
5モル/リットル程度、より好ましくは0.5〜2モル
/リットルとなるようにすれば良い。
The amount of the lithium compound to be used is not particularly limited.
The concentration may be about 5 mol / l, more preferably 0.5 to 2 mol / l.

【0032】酸化剤としては、公知の酸化剤として知ら
れているものを使用できる。例えば、塩素酸カリウム、
塩素酸ナトリウム、過酸化水素等が挙げられる。これら
は1種又は2種以上を使用できる。これら酸化剤の中で
も塩素酸カリウムが好ましい。
As the oxidizing agent, those known as known oxidizing agents can be used. For example, potassium chlorate,
Examples include sodium chlorate, hydrogen peroxide and the like. These can be used alone or in combination of two or more. Of these oxidants, potassium chlorate is preferred.

【0033】酸化剤の使用量は、用いる酸化剤の種類等
によって適宜変更できるが、通常は0.1〜5モル/リ
ットル程度、好ましくは0.5〜2モル/リットルとす
れば良い。
The amount of the oxidizing agent can be appropriately changed depending on the kind of the oxidizing agent to be used and the like, but is usually about 0.1 to 5 mol / l, preferably 0.5 to 2 mol / l.

【0034】アルカリは、公知のものが使用できる。例
えば、水酸化ナトリウム、水酸化カリウム、アンモニア
等を挙げることができる。これらは1種又は2種以上を
使用できる。これらアルカリの中でも水酸化カリウムが
好ましい。
As the alkali, known ones can be used. For example, sodium hydroxide, potassium hydroxide, ammonia and the like can be mentioned. These can be used alone or in combination of two or more. Of these alkalis, potassium hydroxide is preferred.

【0035】アルカリの使用量は、上記溶液が完全にア
ルカリ性になるようにすれば良く、通常は0.5〜50
モル/リットル程度、好ましくは1〜20モル/リット
ルとすれば良い。
The amount of alkali used may be such that the above solution becomes completely alkaline, and is usually 0.5 to 50.
It may be about mol / l, preferably 1 to 20 mol / l.

【0036】上記溶液にリチウム化合物、酸化剤及びア
ルカリを添加した後、400℃以下で水熱処理すること
により、組成式LiMn1-yFey2(但し、0<y<
0.5)で示されるリチウム含有複合酸化物を得る。
After adding a lithium compound, an oxidizing agent and an alkali to the above solution, the solution is subjected to hydrothermal treatment at 400 ° C. or lower to obtain a composition formula LiMn 1-y Fe y O 2 (where 0 <y <
0.5) is obtained.

【0037】水熱処理の温度は通常400℃以下とすれ
ば良いが、好ましくは100〜400℃程度、より好ま
しくは100〜300℃、最も好ましくは150〜25
0℃とすれば良い。水熱処理の時間は、水熱処理温度等
に応じて適宜設定すれば良い。例えば、水熱処理温度が
100〜300℃である場合は通常0.1〜72時間程
度、水熱処理温度が150〜250℃である場合は通常
1〜60時間程度とすれば良い。また、水熱処理の圧力
は飽和水蒸気圧下で実施すれば良い。
The temperature of the hydrothermal treatment may be usually 400 ° C. or lower, preferably about 100 to 400 ° C., more preferably 100 to 300 ° C., and most preferably 150 to 25 ° C.
The temperature may be set to 0 ° C. The duration of the hydrothermal treatment may be appropriately set according to the hydrothermal treatment temperature or the like. For example, when the hydrothermal treatment temperature is 100 to 300 ° C., it is usually about 0.1 to 72 hours, and when the hydrothermal treatment temperature is 150 to 250 ° C., it is usually about 1 to 60 hours. The pressure of the hydrothermal treatment may be performed under a saturated steam pressure.

【0038】水熱処理の方法は、公知の水熱反応装置
(例えば、市販のオートクレーブ等)を用い、上記溶液
を容器ごと装置に装填すれば良い。
The method of hydrothermal treatment may be such that a known hydrothermal reactor (for example, a commercially available autoclave or the like) is used, and the above solution is loaded into the apparatus together with the container.

【0039】水熱反応が終了した後は、必要に応じて水
洗した後、ろ過等の公知の固液分離方法に従って反応生
成物を回収すれば良い。回収後、さらに必要に応じて乾
燥を行っても良い。乾燥は自然乾燥又は加熱乾燥のいず
れでも良く、加熱乾燥の場合の乾燥温度は通常60〜1
00℃程度とすれば良い。
After the completion of the hydrothermal reaction, the reaction product may be washed with water if necessary, and the reaction product may be recovered by a known solid-liquid separation method such as filtration. After the collection, drying may be performed as needed. Drying may be either natural drying or heat drying, and in the case of heat drying, the drying temperature is usually 60 to 1
The temperature may be set to about 00 ° C.

【0040】[0040]

【発明の効果】本発明の正極用材料は、LiMnO2
Mnの一部が安価なFeで置換された構成を有すると同
時に従来の斜方晶LiMnO2を用いた場合と同等以上
の電池特性を得ることができるので、正極用材料ひいて
はリチウムイオン二次電池の低コスト化に貢献すること
ができる。
The positive electrode material according to the present invention has a structure in which a part of Mn of LiMnO 2 is replaced by inexpensive Fe, and at the same time, has the same or better battery characteristics as the case where conventional orthorhombic LiMnO 2 is used. Therefore, it is possible to contribute to the cost reduction of the positive electrode material and eventually the lithium ion secondary battery.

【0041】また、本発明の製造方法は、従来法のよう
な雰囲気制御が不要であり、400℃以下という比較的
低い温度で水熱法により鉄含有LiMnO2を容易に合
成できることから、低コストで正極用材料を提供するこ
とができる。
The production method of the present invention does not require atmosphere control as in the conventional method, and can easily synthesize iron-containing LiMnO 2 by a hydrothermal method at a relatively low temperature of 400 ° C. or less, so that the production method is low in cost. Thus, a positive electrode material can be provided.

【0042】[0042]

【実施例】以下、実施例を示し、本発明の特徴とすると
ころを一層明確にする。本発明の範囲は、これら実施例
の内容に限定されるものではない。
The following examples are provided to further clarify the features of the present invention. The scope of the present invention is not limited to the contents of these examples.

【0043】なお、各実施例で得られた試料の結晶相
は、X線回折分析により同定した。鉄の原子価状態分析
は、57Feメスバウア分光スペクトルにて測定した。マ
ンガンの原子価状態分析は、MnK吸収端でのX線吸収
スペクトルにより測定した。組成分析は、誘導結合プラ
ズマ(ICP)及び原子吸光分析により実施した。
The crystal phases of the samples obtained in the examples were identified by X-ray diffraction analysis. Valence state analysis of iron was measured by 57 Fe Mossbauer spectroscopy. Valence state analysis of manganese was measured by an X-ray absorption spectrum at the MnK absorption edge. Composition analysis was performed by inductively coupled plasma (ICP) and atomic absorption spectrometry.

【0044】実施例1 1%鉄含有LiMnO2(LiFe0.01Mn0.992)の
合成 ポリテトラフルオロエチレン製ビーカー中に硝酸鉄(II
I)9水和物0.101gと硝酸マンガン(II)6水和
物7.104g(Fe:Mnモル比1:99)を入れ、
蒸留水100ml中を加えて攪拌し、完全に溶解させ
た。この混合水溶液に、塩素酸カリウム10g、水酸化
リチウム20g及び水酸化カリウム70gを加え、十分
に攪拌することにより沈殿物を得た。このビーカーを水
熱反応炉(オートクレーブ)内に静置し、220℃で1
時間水熱処理した。水熱処理終了後、水熱反応炉を室温
付近まで冷却した後、容器を炉外に取り出し、生成して
いる沈殿物を蒸留水で洗浄して、過剰に存在する水酸化
リチウム及びその他の塩類を除去した後、濾過・乾燥す
ることにより、粉末状生成物を得た。
Example 1 Synthesis of LiMnO 2 containing 1% iron (LiFe 0.01 Mn 0.99 O 2 ) Iron nitrate (II) was placed in a polytetrafluoroethylene beaker.
I) 0.101 g of 9-hydrate and 7.104 g of manganese (II) nitrate hexahydrate (Fe: Mn molar ratio 1:99) were added,
100 ml of distilled water was added and stirred, and completely dissolved. To this mixed aqueous solution, 10 g of potassium chlorate, 20 g of lithium hydroxide and 70 g of potassium hydroxide were added, and a precipitate was obtained by sufficiently stirring. The beaker was placed in a hydrothermal reactor (autoclave) at 220 ° C. for 1 hour.
Hydrothermal treatment for hours. After the completion of the hydrothermal treatment, the hydrothermal reactor is cooled to around room temperature, the container is taken out of the furnace, and the generated precipitate is washed with distilled water to remove excess lithium hydroxide and other salts. After removal, the mixture was filtered and dried to obtain a powdery product.

【0045】次に、この粉末状生成物のX線回折分析を
行った。その結果を図1(b)に示す。上記方法におい
て硝酸鉄を加えずに合成した無ドープLiMnO2試料
(すなわち、比較例1において得られる試料)のX線回
折パターンを図1(a)に示す。すべてのピークは、参
考文献4(R.Hoppe, G.Brachtel, and M.Jansen, Z.Ano
rg. Allg. Chem., 417, (1975), 1-10.)に記載されて
いる斜方晶系のLiMnO2の単位胞(空間群:Pmn
m, a=2.805Å,b=5.757Å,c=4.
572Å)により指数付けすることができた。また、化
学分析の結果を表1に示す。
Next, X-ray diffraction analysis of this powdery product was performed. The result is shown in FIG. FIG. 1A shows an X-ray diffraction pattern of an undoped LiMnO 2 sample synthesized in the above method without adding iron nitrate (that is, the sample obtained in Comparative Example 1). All peaks are in reference 4 (R. Hoppe, G. Brachtel, and M. Jansen, Z. Ano
rg. Allg. Chem., 417, (1975), 1-10.), a unit cell (space group: Pmn) of orthorhombic LiMnO 2.
m, a = 2.805 °, b = 5.757 °, c = 4.
572 °). Table 1 shows the results of the chemical analysis.

【0046】[0046]

【表1】 [Table 1]

【0047】粉末状生成物における各ピークより計算さ
れる格子定数(a=2.80822(13)Å,b=
5.7457(3)Å,c=4.56991(17)
Å)が元のものと異なること(図2参照)、鉄が仕込量
通り1.1%含まれていること(表1の化学分析)、L
i/(Fe+Mn)値がほぼ1であることから、粉末生
成物は1%鉄含有LiMnO2(LiFe0.01Mn0.99
2)であることが確認された。
The lattice constant calculated from each peak in the powdery product (a = 2.80822 (13) Å, b =
5.7457 (3) Å, c = 4.56991 (17)
Å) is different from the original one (see FIG. 2), 1.1% iron is contained as charged (chemical analysis in Table 1), L
Since the i / (Fe + Mn) value is approximately 1, the powder product is LiMnO 2 containing 1% iron (LiFe 0.01 Mn 0.99
O 2 ).

【0048】実施例2 3%鉄含有LiMnO2(LiFe0.03Mn0.972)の
合成 ポリテトラフルオロエチレン製ビーカー中に、硝酸鉄
(III)9水和物0.303gと硝酸マンガン(II)6
水和物6.960g(Fe:Mnモル比3:97)を入
れ、蒸留水100ml中を加え、攪拌して完全に溶解さ
せた。この混合水溶液に、塩素酸カリウム10g、水酸
化リチウム20g及び水酸化カリウム70gを加え、十
分に攪拌することにより沈殿物を得た。このビーカーを
水熱反応炉(オートクレーブ)内に静置し、220℃で
1時間水熱処理した。水熱処理終了後、反応炉を室温付
近まで冷却した後、容器を炉外に取り出し、生成してい
る沈殿物を蒸留水で洗浄して、過剰に存在する水酸化リ
チウム及びその他の塩類を除去した後、濾過・乾燥する
ことにより、粉末状生成物を得た。この粉末状生成物の
X線回折パターンを図1(c)に示す。すべてのピーク
は参考文献4(R.Hoppe, G.Brachtel, and M.Jansen,
Z. Anorg. Allg. Chem., 417, (1975), 1-10.)に記載
されている斜方晶系のLiMnO2の単位胞(空間群:
Pmnm, a=2.805Å, b=5.757Å,
c=4.572Å)により指数付けすることができ
た。また、化学分析の結果を表1に示す。
Example 2 Synthesis of LiMnO 2 containing 3% iron (LiFe 0.03 Mn 0.97 O 2 ) In a polytetrafluoroethylene beaker, 0.303 g of iron (III) nitrate 9 hydrate and manganese (II) nitrate 6 were added.
6.960 g of hydrate (Fe: Mn molar ratio of 3:97) was added, 100 ml of distilled water was added, and the mixture was stirred and completely dissolved. To this mixed aqueous solution, 10 g of potassium chlorate, 20 g of lithium hydroxide and 70 g of potassium hydroxide were added, and a precipitate was obtained by sufficiently stirring. This beaker was left in a hydrothermal reactor (autoclave) and subjected to hydrothermal treatment at 220 ° C. for 1 hour. After the completion of the hydrothermal treatment, the reactor was cooled to around room temperature, the container was taken out of the furnace, and the generated precipitate was washed with distilled water to remove excess lithium hydroxide and other salts. Thereafter, the resultant was filtered and dried to obtain a powdery product. The X-ray diffraction pattern of this powdery product is shown in FIG. All peaks are listed in reference 4 (R. Hoppe, G. Brachtel, and M. Jansen,
Z. Anorg. Allg. Chem., 417, (1975), 1-10.), An orthorhombic LiMnO 2 unit cell (space group:
Pmnm, a = 2.805 °, b = 5.757 °,
c = 4.572 °). Table 1 shows the results of the chemical analysis.

【0049】粉末状生成物の各ピークより計算される格
子定数(a=2.8133(15)Å,b=5.743
8(12)Å, c=4.5696(8)Å)が元のも
の(LiMnO2)と異なること(図2参照)、鉄がほ
ぼ仕込量通り2.8%含まれていること(表1の化学分
析)、Li/(Fe+Mn)値がほぼ1であることか
ら、粉末状生成物は3%鉄含有LiMnO2(LiFe
0.03Mn0.972)であることが確認できた。
A lattice constant calculated from each peak of the powdery product (a = 2.8133 (15) Å, b = 5.743)
8 (12) Å, c = 4.5696 (8) Å) is different from the original one (LiMnO 2 ) (see FIG. 2), and iron is contained 2.8% substantially as charged (see Table 2 ). 1), and the Li / (Fe + Mn) value is approximately 1, so that the powdery product is LiMnO 2 containing 3% iron (LiFe
0.03 Mn 0.97 O 2 ).

【0050】実施例3 5%鉄含有LiMnO2(LiFe0.05Mn0.952)の
合成 ポリテトラフルオロエチレン製ビーカー中に硝酸鉄(II
I)9水和物0.505gと硝酸マンガン(II)6水和
物6.820g(Fe:Mnモル比5:95)を入れ、
蒸留水100ml中を加え、攪拌して完全に溶解させ
た。この混合水溶液に、塩素酸カリウム10g、水酸化
リチウム20g及び水酸化カリウム70gを加え、十分
に攪拌することにより沈殿物を得た。このビーカーを水
熱反応炉(オートクレーブ)内に静置し、220℃で1
時間水熱処理した。水熱処理終了後、反応炉を室温付近
まで冷却した後、容器を炉外に取り出し、生成している
沈殿物を蒸留水で洗浄して、過剰に存在する水酸化リチ
ウム及びその他の塩類を除去した後、濾過・乾燥するこ
とにより、粉末状生成物を得た。この粉末状生成物のX
線回折パターンを図1(d)に示す。また、化学分析の
結果を表1に示す。
Example 3 Synthesis of LiMnO 2 containing 5% iron (LiFe 0.05 Mn 0.95 O 2 ) Iron nitrate (II) was placed in a polytetrafluoroethylene beaker.
I) 0.505 g of 9-hydrate and 6.820 g of manganese (II) nitrate hexahydrate (Fe: Mn molar ratio of 5:95) were added,
100 ml of distilled water was added, and the mixture was stirred and completely dissolved. To this mixed aqueous solution, 10 g of potassium chlorate, 20 g of lithium hydroxide and 70 g of potassium hydroxide were added, and a precipitate was obtained by sufficiently stirring. The beaker was placed in a hydrothermal reactor (autoclave) at 220 ° C. for 1 hour.
Hydrothermal treatment for hours. After the completion of the hydrothermal treatment, the reactor was cooled to around room temperature, the vessel was taken out of the furnace, and the generated precipitate was washed with distilled water to remove excess lithium hydroxide and other salts. Thereafter, the resultant was filtered and dried to obtain a powdery product. X of this powdery product
The line diffraction pattern is shown in FIG. Table 1 shows the results of the chemical analysis.

【0051】すべてのピークは参考文献4(R.Hoppe,
G.Brachtel, and M.Jansen, Z. Anorg. Allg. Chem., 4
17, (1975), 1-10.)に記載されている斜方晶系のLi
MnO2の単位胞(空間群:Pmnm, a=2.80
5Å,b=5.757Å,c=4.572Å)で、指数
付けすることができた。粉末状生成物の各ピークより計
算される格子定数(a=2.8158(6)Å, b=
5.7423(12)Å,c=4.5589(9)Å)
が元のもの(LiMnO2)と異なること(図2参
照)、鉄がほぼ仕込量通り5.1%含まれていること
(表1の化学分析)、Li/(Fe+Mn)値がほぼ1
であることから、粉末状生成物は5%鉄含有LiMnO
2(LiFe0.05Mn0.952)であることが確認でき
る。
All peaks are in reference 4 (R. Hoppe,
G. Brachtel, and M. Jansen, Z. Anorg. Allg. Chem., 4
17, (1975), 1-10.)
Unit cell of MnO 2 (space group: Pmnm, a = 2.80
5 °, b = 5.757 °, c = 4.572 °) and could be indexed. Lattice constant calculated from each peak of the powdery product (a = 2.8158 (6) Å, b =
5.7423 (12) Å, c = 4.5589 (9) Å)
Is different from the original one (LiMnO 2 ) (see FIG. 2), that iron is contained at 5.1% according to the charged amount (chemical analysis in Table 1), and the Li / (Fe + Mn) value is almost 1
Therefore, the powdery product is LiMnO containing 5% iron.
2 (LiFe 0.05 Mn 0.95 O 2 ).

【0052】実施例4 10%鉄含有LiMnO2(LiFe0.10Mn0.902
の合成 ポリテトラフルオロエチレン製ビーカー中に硝酸鉄(II
I)9水和物1.01gと硝酸マンガン(II)6水和物
6.46g(Fe:Mnモル比10:90)を入れ、蒸
留水100ml中を加え、攪拌して完全に溶解させた。
この混合水溶液に、塩素酸カリウム10g、水酸化リチ
ウム20g、水酸化カリウム70gを加え、十分に攪拌
して沈殿物を得た。このビーカーを水熱反応炉(オート
クレーブ)内に静置し、220℃で1時間水熱処理し
た。水熱処理終了後、反応炉を室温付近まで冷却した
後、容器を炉外に取り出し、生成している沈殿物を蒸留
水で洗浄して、過剰に存在する水酸化リチウム及びその
他の塩類を除去した後、濾過・乾燥することにより、粉
末状生成物を得た。この粉末状生成物のX線回折パター
ンを図1(d)に示す。また、化学分析の結果を表1に
示す。
Example 4 LiMnO 2 containing 10% iron (LiFe 0.10 Mn 0.90 O 2 )
Synthesis of iron nitrate (II) in a polytetrafluoroethylene beaker
I) 1.01 g of 9-hydrate and 6.46 g of manganese (II) nitrate hexahydrate (10:90 molar ratio of Fe: Mn) were added, and 100 ml of distilled water was added, followed by stirring to completely dissolve. .
To this mixed aqueous solution, 10 g of potassium chlorate, 20 g of lithium hydroxide, and 70 g of potassium hydroxide were added, and sufficiently stirred to obtain a precipitate. This beaker was left in a hydrothermal reactor (autoclave) and subjected to hydrothermal treatment at 220 ° C. for 1 hour. After the completion of the hydrothermal treatment, the reactor was cooled to around room temperature, the container was taken out of the furnace, and the generated precipitate was washed with distilled water to remove excess lithium hydroxide and other salts. Thereafter, the resultant was filtered and dried to obtain a powdery product. The X-ray diffraction pattern of this powdery product is shown in FIG. Table 1 shows the results of the chemical analysis.

【0053】すべてのピークは参考文献4(R.Hoppe,
G.Brachtel, and M.Jansen, Z. Anorg. Allg. Chem., 4
17, (1975), 1-10.)に記載されている斜方晶系のLi
MnO 2の単位胞(空間群:Pmnm,a=2.805
Å,b=5.757Å,c=4.572Å)で、指数付
けすることができた。粉末状生成物の各ピークより計算
される格子定数(a=2.8285(6)Å,b=5.
7577(13)Å,c=4.5426(8)Å)が元
のもの(LiMnO2)と異なること(図2参照)、鉄
がほぼ仕込量通り10.1%含まれていること(表1の
化学分析)、Li/(Fe+Mn)値がほぼ1であるこ
とから、粉末状生成物が10%鉄含有LiMnO2(L
iFe0.10Mn0.902)であることを確認した。
All peaks are in reference 4 (R. Hoppe,
G. Brachtel, and M. Jansen, Z. Anorg. Allg. Chem., 4
17, (1975), 1-10.)
MnO TwoUnit cell (space group: Pmnm, a = 2.805)
Å, b = 5.757Å, c = 4.572Å) with index
I was able to kill. Calculated from each peak of powdered product
Lattice constant (a = 2.8285 (6)}, b = 5.
7577 (13) Å, c = 4.5426 (8) Å)
(LiMnOTwo) (See Figure 2), iron
Is contained as 10.1% almost according to the charged amount (Table 1
Chemical analysis), Li / (Fe + Mn) value is almost 1.
From the above, the powder product is LiMnO containing 10% iron.Two(L
ife0.10Mn0.90OTwo).

【0054】比較例1 無ドープLiMnO2の合成 ポリテトラフルオロエチレン製ビーカー中に硝酸マンガ
ン(II)6水和物7.18gを入れ、蒸留水100ml
中を加え、攪拌して完全に溶解させた。この混合水溶液
に、塩素酸カリウム10g、水酸化リチウム20g及び
水酸化カリウム70gを加え、十分に攪拌して沈殿物を
得た。このビーカーを水熱反応炉(オートクレーブ)内
に静置し、220℃で1時間水熱処理した。水熱処理終
了後、反応炉を室温付近まで冷却した後、容器を炉外に
取り出し、生成している沈殿物を蒸留水で洗浄して、過
剰に存在する水酸化リチウム及びその他の塩類を除去し
た後、濾過・乾燥することにより、粉末状生成物を得
た。この粉末状生成物のX線回折パターンを図1(a)
に示す。また、化学分析の結果を表1に示す。
Comparative Example 1 Synthesis of undoped LiMnO 2 In a polytetrafluoroethylene beaker, 7.18 g of manganese (II) nitrate hexahydrate was placed, and 100 ml of distilled water was added.
The mixture was added and stirred to dissolve completely. To this mixed aqueous solution, 10 g of potassium chlorate, 20 g of lithium hydroxide and 70 g of potassium hydroxide were added, and sufficiently stirred to obtain a precipitate. This beaker was left in a hydrothermal reactor (autoclave) and subjected to hydrothermal treatment at 220 ° C. for 1 hour. After the completion of the hydrothermal treatment, the reactor was cooled to around room temperature, the container was taken out of the furnace, and the generated precipitate was washed with distilled water to remove excess lithium hydroxide and other salts. Thereafter, the resultant was filtered and dried to obtain a powdery product. The X-ray diffraction pattern of this powdery product is shown in FIG.
Shown in Table 1 shows the results of the chemical analysis.

【0055】すべてのピークは参考文献4(R.Hoppe,
G.Brachtel, and M.Jansen, Z. Anorg. Allg. Chem., 4
17, (1975), 1-10.)に記載されている斜方晶系のLi
MnO 2の単位胞(空間群:Pmnm, a=2.80
5Å,b=5.757Å,c=4.572Å)により指
数付けすることができた。粉末状生成物の各ピークより
計算される格子定数(a=2.80346(6)Å,b
=5.74304(14)Å,c=4.56889
(8)Å)が上記報告値に近かった。化学分析(表1)
によりLi/Mn値がほぼ1であることから、粉末状生
成物は無ドープLiMnO2であることが確認された。
All peaks are in reference 4 (R. Hoppe,
G. Brachtel, and M. Jansen, Z. Anorg. Allg. Chem., 4
17, (1975), 1-10.)
MnO TwoUnit cell (space group: Pmnm, a = 2.80)
5Å, b = 5.757Å, c = 4.572Å)
Could be numbered. From each peak of powdered product
Calculated lattice constant (a = 2.80346 (6)), b
= 5.734304 (14) Å, c = 4.56889
(8) ②) was close to the above reported value. Chemical analysis (Table 1)
The Li / Mn value is approximately 1
The product is undoped LiMnOTwoWas confirmed.

【0056】試験例1 試料中の鉄の原子価状態を確認するため、3%及び10
%鉄含有LiMnO2試料に対し、室温において57Fe
メスバウワ分光スペクトルを測定した。その結果を図3
に示す。得られたスペクトルは、概ね2本に分裂してい
るダブレットであることから、この試料は室温において
常磁性体であることがわかる。また、このダブレットが
非対称であることから2本ないし3本のダブレット成分
を用いてフィットしたところ、各成分の同位体シフト
(IS)値と四極子分裂(QS)値が異なることが判明
した。この各成分のパラメータを表2に示す。
Test Example 1 In order to confirm the valence state of iron in the sample, 3% and 10%
To% Fe-LiMnO 2 samples, 57 Fe at room temperature
The Mössbauer spectroscopy was measured. The result is shown in FIG.
Shown in The obtained spectrum is a doublet roughly split into two, indicating that this sample is a paramagnetic substance at room temperature. Further, since the doublet was asymmetric, fitting using two or three doublet components revealed that the isotope shift (IS) value and the quadrupole splitting (QS) value of each component were different. Table 2 shows the parameters of these components.

【0057】[0057]

【表2】 [Table 2]

【0058】両成分のIS値は+0.3〜0.4mm/
s程度であり、以前の報告の高スピン鉄3価化合物(L
iFeO2,α−NaFeO2、5%鉄含有LiCoO2
(参考文献5:M.Tabuchi, K.Ado, H.Kobayashi, H.Saka
ebe, H.Kageyama, C.Masquelier, M.Yonemura, A.Hiran
o and R.Kanno, J. Mater. Chem., 9, (1999), 199-20
4.))のIS値に近い。このことから、この試料中の鉄
は高スピン3価の状態を維持していることがわかり、こ
れは組成式(LiFexMn1-x2)からの予想と一致
する。
The IS value of both components is +0.3 to 0.4 mm /
s, and a high spin iron trivalent compound (L
iFeO 2 , α-NaFeO 2 , 5% iron-containing LiCoO 2
(Reference 5: M. Tabuchi, K. Ado, H. Kobayashi, H. Saka
ebe, H. Kageyama, C. Masquelier, M. Yonemura, A. Hiran
o and R. Kanno, J. Mater. Chem., 9, (1999), 199-20
It is close to the IS value of 4.)). From this, it was found that the iron in this sample maintained a high spin trivalent state, which agrees with the expectation from the composition formula (LiFe x Mn 1 -x O 2 ).

【0059】試験例2 試料中のマンガンの原子価状態を検討するため、10%
鉄含有LiMnO2試料に対してMnK吸収端における
X線吸収スペクトル測定を行った。その結果を図4に示
す。標準試料として、比較例1で用いた斜方晶LiMn
2(高スピン3価のマンガン化合物)及び単斜晶Li2
MnO3(4価のマンガン化合物)を用いた。得られた
スペクトルは斜方晶LiMnO2のスペクトルとほぼ重
なるため、鉄含有LiMnO2中でMnは斜方晶LiM
nO2と同様に高スピン3価の状態を保っているものと
解釈できる。このことは鉄含有LiMnO2試料がLi
FexMn1-x2の組成を有していることと矛盾しな
い。
Test Example 2 To examine the valence state of manganese in the sample, 10%
X-ray absorption spectrum measurement at the MnK absorption edge was performed on the iron-containing LiMnO 2 sample. FIG. 4 shows the results. The orthorhombic LiMn used in Comparative Example 1 as a standard sample
O 2 (high spin trivalent manganese compound) and monoclinic Li 2
MnO 3 (tetravalent manganese compound) was used. Since the resulting spectrum substantially overlapping the spectra of orthorhombic LiMnO 2, Mn is orthorhombic in the iron-containing LiMnO 2 LiM
Like nO 2, it can be interpreted as maintaining a high spin trivalent state. This means that the iron-containing LiMnO 2 sample
It is consistent with that has a composition of Fe x Mn 1-x O 2 .

【0060】試験例3 実施例及び比較例で得られた各試料を正極とし、金属リ
チウムを負極とし、電解液として過塩素酸リチウムをエ
チレンカーボネートとジメチルカーボネートの混合溶媒
(体積比1:1)に溶解させて1モル/リットル溶液と
したものを用いてリチウムイオン二次電池(コイン型)
を作製した。セパレータとしては多孔性ポリプロピレン
を用いた。
Test Example 3 Each of the samples obtained in Examples and Comparative Examples was used as a positive electrode, metallic lithium was used as a negative electrode, and lithium perchlorate was used as an electrolytic solution in a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1). Lithium ion secondary battery (coin type) using a 1 mol / liter solution
Was prepared. Porous polypropylene was used as a separator.

【0061】各電池の充放電特性を(2.3〜4.3
V、電流0.15mA)調べた。その結果を表3及び図
5(a)〜(e)に示す。
The charge / discharge characteristics of each battery were determined as (2.3 to 4.3).
V, current 0.15 mA). The results are shown in Table 3 and FIGS. 5 (a) to 5 (e).

【0062】[0062]

【表3】 [Table 3]

【0063】表3又は図5(b)〜(e)の結果から明
らかなように、鉄含有LiMnO2は、約3.5Vの平
坦電位を有し、124〜176mAh/gの初期充電容
量と59〜112mAh/gの初期放電容量(初期充電
容量の47〜64%に相当(表3参照))とを有するこ
とがわかる。
As is clear from the results of Table 3 or FIGS. 5B to 5E, the iron-containing LiMnO 2 has a flat potential of about 3.5 V, and an initial charge capacity of 124 to 176 mAh / g. It can be seen that it has an initial discharge capacity of 59 to 112 mAh / g (corresponding to 47 to 64% of the initial charge capacity (see Table 3)).

【0064】また、鉄含有LiMnO2は、鉄を含まな
い斜方晶LiMnO2の初期充放電容量(図5(a)、
充電時134mAh/g、放電時43mAh/gで充電
時の32%に相当)に比べ、鉄の添加(1〜10%)に
よって容量及び可逆性を改善できることがわかる。
The iron-containing LiMnO 2 is the same as the initial charge / discharge capacity of the orthorhombic LiMnO 2 containing no iron (FIG. 5A,
It can be seen that the capacity and reversibility can be improved by adding iron (1 to 10%) as compared to 134 mAh / g during charging and 43 mAh / g during discharging, which corresponds to 32% during charging.

【0065】このように本発明により、リチウムイオン
二次電池正極材料用の鉄含有リチウムマンガン酸化物を
提供することが可能になる。
As described above, according to the present invention, it is possible to provide an iron-containing lithium manganese oxide for a positive electrode material of a lithium ion secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で得られた斜方晶LiMnO2及び鉄含
有LiMnO2のX線回折パターンを示す図である。
FIG. 1 is a diagram showing an X-ray diffraction pattern of orthorhombic LiMnO 2 and iron-containing LiMnO 2 obtained in the present invention.

【図2】XRDパターンより得られた斜方晶単位胞の格
子定数の鉄含有量依存性を示す図である。
FIG. 2 is a graph showing the iron content dependence of the lattice constant of orthorhombic unit cells obtained from an XRD pattern.

【図3】3%鉄含有LiMnO2及び10%鉄含有Li
MnO257Feメスバウワ分光スペクトルを示す図で
ある。各点が実測値を示し、実線が計算値を示し、破線
が各ダブレット成分を示す。
FIG. 3 LiMnO 2 containing 3% iron and Li containing 10% iron
Is a diagram showing the 57 Fe Mesubauwa spectrum of MnO 2. Each point indicates an actually measured value, a solid line indicates a calculated value, and a broken line indicates each doublet component.

【図4】10%鉄含有LiMnO2のMnK吸収端にお
けるX線吸収スペクトル(黒い四角形)と、斜方晶Li
MnO2、単斜晶Li2MnO3(いずれも実線)との比
較を示す図である。
FIG. 4 shows an X-ray absorption spectrum (black square) at the MnK absorption edge of LiMnO 2 containing 10% iron and orthorhombic Li
MnO 2, a diagram illustrating a comparison between the monoclinic Li 2 MnO 3 (both solid line).

【図5】無ドープLiMnO2及び鉄含有LiMnO2
正極とし、リチウム金属を負極としたコイン型リチウム
電池の初期充放電特性を示す図である。右上がりの曲線
が充電曲線に、左下がりの曲線が放電曲線に対応する。
電位範囲2.3〜4.3V、電流0.15mAである。
FIG. 5 is a diagram showing initial charge / discharge characteristics of a coin-type lithium battery in which undoped LiMnO 2 and iron-containing LiMnO 2 are used as a positive electrode and lithium metal is used as a negative electrode. The upward curve corresponds to the charge curve, and the downward curve corresponds to the discharge curve.
The potential range is 2.3 to 4.3 V and the current is 0.15 mA.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栄部 比夏里 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 蔭山 博之 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 Fターム(参考) 4G002 AA06 AB02 AE05 5H050 AA19 BA17 CA09 FA19 GA02 GA10 GA15 GA27 HA02 HA14 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Sakabe Hikasato 1-3-131 Midorioka, Ikeda-shi, Osaka Inside the Industrial Technology Research Institute Osaka Industrial Research Institute (72) Inventor Hiroyuki Kageyama 1 Midorioka, Ikeda-shi, Osaka No.8-31 F-term in Osaka Institute of Technology (reference) 4G002 AA06 AB02 AE05 5H050 AA19 BA17 CA09 FA19 GA02 GA10 GA15 GA27 HA02 HA14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】組成式LiMn1-yFey2(但し、0<
y<0.5)で示されるリチウム含有複合酸化物であっ
て、実質的に斜方晶相から構成されるリチウムイオン二
次電池正極用材料。
A composition formula LiMn 1-y Fe y O 2 (where 0 <
a lithium-containing composite oxide represented by the formula y <0.5), which is substantially composed of an orthorhombic phase;
【請求項2】マンガンイオン(II)及び鉄イオン(II
I)を含む溶液にリチウム化合物、酸化剤及びアルカリ
を添加・混合した後、得られた混合溶液を400℃以下
で水熱処理することにより、組成式LiMn1-yFey
2(但し、0<y<0.5)で示されるリチウム含有複
合酸化物を得ることを特徴とするリチウムイオン二次電
池正極用材料の製造方法。
2. Manganese ion (II) and iron ion (II)
After adding and mixing a lithium compound, an oxidizing agent and an alkali to the solution containing I), the resulting mixed solution is subjected to hydrothermal treatment at 400 ° C. or lower to obtain a composition formula LiMn 1-y Fe y O
2 A method for producing a positive electrode material for a lithium ion secondary battery, comprising obtaining a lithium-containing composite oxide represented by the following formula (where 0 <y <0.5).
【請求項3】水熱処理を100〜400℃の温度範囲で
行う請求項2記載の製造方法。
3. The method according to claim 2, wherein the hydrothermal treatment is performed in a temperature range of 100 to 400 ° C.
【請求項4】酸化剤が、塩素酸カリウムである請求項2
又は3に記載の製造方法。
4. The method according to claim 2, wherein the oxidizing agent is potassium chlorate.
Or the production method according to 3.
【請求項5】アルカリが、水酸化カリウムである請求項
2〜4のいずれかに記載の製造方法。
5. The method according to claim 2, wherein the alkali is potassium hydroxide.
JP2000254764A 2000-08-25 2000-08-25 Lithium ion secondary battery positive electrode material and method for producing the same Expired - Lifetime JP3407042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000254764A JP3407042B2 (en) 2000-08-25 2000-08-25 Lithium ion secondary battery positive electrode material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000254764A JP3407042B2 (en) 2000-08-25 2000-08-25 Lithium ion secondary battery positive electrode material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002075358A true JP2002075358A (en) 2002-03-15
JP3407042B2 JP3407042B2 (en) 2003-05-19

Family

ID=18743650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000254764A Expired - Lifetime JP3407042B2 (en) 2000-08-25 2000-08-25 Lithium ion secondary battery positive electrode material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3407042B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154256A (en) * 2003-10-01 2005-06-16 National Institute Of Advanced Industrial & Technology Lithium-iron-manganese compound oxide having laminar rock salt structure
WO2008023622A1 (en) * 2006-08-21 2008-02-28 National Institute Of Advanced Industrial Science And Technology Process for producing lithium/manganese composite oxide
JP2010113950A (en) * 2008-11-06 2010-05-20 Sumitomo Chemical Co Ltd Method of manufacturing positive electrode material for non-aqueous electrolytic solution secondary battery
WO2011096236A1 (en) * 2010-02-08 2011-08-11 株式会社豊田自動織機 Process for production of composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2011114534A1 (en) * 2010-03-19 2011-09-22 トヨタ自動車株式会社 Lithium secondary battery and cathode active material for said lithium secondary battery
CN103928670A (en) * 2013-06-26 2014-07-16 华中农业大学 Preparation method for lithium secondary battery cathode material LiMnO2

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154256A (en) * 2003-10-01 2005-06-16 National Institute Of Advanced Industrial & Technology Lithium-iron-manganese compound oxide having laminar rock salt structure
JP4604237B2 (en) * 2003-10-01 2011-01-05 独立行政法人産業技術総合研究所 Lithium-iron-manganese composite oxide having a layered rock salt structure, positive electrode material for lithium ion secondary battery, lithium ion secondary battery
WO2008023622A1 (en) * 2006-08-21 2008-02-28 National Institute Of Advanced Industrial Science And Technology Process for producing lithium/manganese composite oxide
JPWO2008023622A1 (en) * 2006-08-21 2010-01-07 独立行政法人産業技術総合研究所 Method for producing lithium manganese composite oxide
JP4997609B2 (en) * 2006-08-21 2012-08-08 独立行政法人産業技術総合研究所 Method for producing lithium manganese composite oxide
JP2010113950A (en) * 2008-11-06 2010-05-20 Sumitomo Chemical Co Ltd Method of manufacturing positive electrode material for non-aqueous electrolytic solution secondary battery
WO2011096236A1 (en) * 2010-02-08 2011-08-11 株式会社豊田自動織機 Process for production of composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5370501B2 (en) * 2010-02-08 2013-12-18 株式会社豊田自動織機 Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
US9039926B2 (en) 2010-02-08 2015-05-26 Kabushiki Kaisha Toyota Jidoshokki Production process for composite oxide, positive-electrode active material for lithium-ion secondary battery and lithium-ion secondary battery
WO2011114534A1 (en) * 2010-03-19 2011-09-22 トヨタ自動車株式会社 Lithium secondary battery and cathode active material for said lithium secondary battery
US9887430B2 (en) 2010-03-19 2018-02-06 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and positive electrode active material for the lithium secondary battery
CN103928670A (en) * 2013-06-26 2014-07-16 华中农业大学 Preparation method for lithium secondary battery cathode material LiMnO2

Also Published As

Publication number Publication date
JP3407042B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
US8309253B2 (en) Titanium oxide, method for manufacturing the same, and lithium secondary battery using the same as active material
EP2911224B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
JP3500424B2 (en) Single-phase lithium ferrite composite oxide
Tarascon et al. The spinel phase of LiMn2 O 4 as a cathode in secondary lithium cells
EP2910528A1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JPH0837007A (en) Lithium-containing transition metal composite oxide, and its manufacture and use
JP3940788B2 (en) Lithium ferrite composite oxide and method for producing the same
JP6872816B2 (en) Nickel-manganese-based composite oxide and its manufacturing method
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JP5516463B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
TW201736277A (en) Lithium-iron-manganese-based composite oxide
JPH1121128A (en) Production of laminar rock salt type lithium manganese oxide by mixed alkali hydrothermal method
EP0624552A1 (en) Novel method for preparing solid solution materials for secondary non-aqueous batteries
JP4997609B2 (en) Method for producing lithium manganese composite oxide
JP6083556B2 (en) Cathode active material for sodium ion secondary battery
JP2896510B1 (en) Method for producing layered rock salt type lithium cobalt oxide by hydrothermal oxidation method
JP3407042B2 (en) Lithium ion secondary battery positive electrode material and method for producing the same
JP2021160970A (en) Spinel lithium manganate and method for producing the same and applications thereof
JP6466074B2 (en) Cathode active material for sodium ion secondary battery
JP4734672B2 (en) Method for producing lithium-iron-manganese composite oxide
JP4423391B2 (en) Lithium ferrite composite oxide and method for producing the same
JPH08217451A (en) Needle manganese complex oxide, production and use thereof
JP4431785B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP3914981B2 (en) Cubic rock salt type lithium ferrite oxide and method for producing the same
JP4458230B2 (en) Positive electrode active material, method for producing the same, and secondary battery using the positive electrode active material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3407042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term