JP2002071585A - Method and device for measuring oil content in soil - Google Patents

Method and device for measuring oil content in soil

Info

Publication number
JP2002071585A
JP2002071585A JP2000257560A JP2000257560A JP2002071585A JP 2002071585 A JP2002071585 A JP 2002071585A JP 2000257560 A JP2000257560 A JP 2000257560A JP 2000257560 A JP2000257560 A JP 2000257560A JP 2002071585 A JP2002071585 A JP 2002071585A
Authority
JP
Japan
Prior art keywords
soil
sample
neutron
microwave
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
JP2000257560A
Other languages
Japanese (ja)
Inventor
Hiroshi Tominaga
洋 富永
Michio Tsuchihiro
道夫 土弘
Noboru Tachikawa
登 立川
Isamu Ishikawa
勇 石川
Hiroshi Sasaki
宏 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TOKUSHU KEISOKUKI SEISA
NIPPON TOKUSHU KEISOKUKI SEISAKUSHO KK
OYO RYOSHI KEISOKU KENKYUSHO K
OYO RYOSHI KEISOKU KENKYUSHO KK
Kajima Corp
Japan Atomic Energy Agency
Original Assignee
NIPPON TOKUSHU KEISOKUKI SEISA
NIPPON TOKUSHU KEISOKUKI SEISAKUSHO KK
OYO RYOSHI KEISOKU KENKYUSHO K
OYO RYOSHI KEISOKU KENKYUSHO KK
Kajima Corp
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TOKUSHU KEISOKUKI SEISA, NIPPON TOKUSHU KEISOKUKI SEISAKUSHO KK, OYO RYOSHI KEISOKU KENKYUSHO K, OYO RYOSHI KEISOKU KENKYUSHO KK, Kajima Corp, Japan Atomic Energy Research Institute filed Critical NIPPON TOKUSHU KEISOKUKI SEISA
Priority to JP2000257560A priority Critical patent/JP2002071585A/en
Publication of JP2002071585A publication Critical patent/JP2002071585A/en
Revoked legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To make measurable oil contents in soil with an apparatus. SOLUTION: A sample soil is irradiated with fast neutrons from a neutron source. The counted value of thermal neutrons in which the fast neutrons are scattered and decelerated is measured by a proportional counter tube. As guiding part of resonance microwaves inside a cavity resonator into the sample soil, the attenuation value of the resonance microwaves is measured. The sum content of moisture content and oil content in the sample soil is estimated from the measured value of the thermal neutrons, and the moisture content in the sample soil is estimated from the attenuation value of the microwaves. The oil content in the sample soil is estimated from both estimated contents in the method for measuring oil content in soil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,土壌中油分の測定
法および装置に関する。
The present invention relates to a method and an apparatus for measuring oil content in soil.

【0002】[0002]

【従来の技術】原油や重油などの油類で汚染した土壌の
環境への影響を把握したり,その汚染土壌を対象として
浄化処理する場合には,先ずその油汚染の程度や汚染の
分布状態を知ることが肝要である。また,浄化処理後に
おいても,除染後の残留油分量を測定することも必要と
される。
2. Description of the Related Art When assessing the environmental impact of soil contaminated with oils such as crude oil or heavy oil, and when purifying the contaminated soil, first, the degree of oil contamination and the state of distribution of the contamination. It is important to know It is also necessary to measure the residual oil content after decontamination even after the purification treatment.

【0003】土壌油分の分析には化学的分析法と物理的
分析法が知られているが,通常の化学分析法で油分を定
量分析するには分析操作におよそ1日を要する。したが
って,広範囲の土壌から多数の試料を採取して油分の汚
染分布を知るには多大の時間と労力を必要とするし,汚
染が発生したときに分析結果に基いてその場で何らかの
処置をとる必要があるときなどは,分析に手間が掛かっ
て適切な対応ができない場合もある。
[0003] A chemical analysis method and a physical analysis method are known for the analysis of soil oil content. Quantitative analysis of oil content by a usual chemical analysis method requires about one day for the analysis operation. Therefore, it takes a great deal of time and effort to obtain a large number of samples from a wide range of soils to determine the distribution of oil contamination, and when contamination occurs, take some action on the spot based on the analysis results. When it is necessary, it may take time and effort to perform the analysis, making it impossible to take appropriate measures.

【0004】他方,物理的方法としては,光の照射によ
り生ずる油の蛍光を測定する機器分析法が知られている
が,土壌中への光の透過力が小さいので,土壌試料の表
面だけの測定しかできない。このため,或る大きさをも
ったバルク(体積)試料の含有する全体あるいは平均の
油分を求めることが出来ず,汚染土壌の油分測定手段と
しては殆んど機能し得ないのが実状である。
On the other hand, as a physical method, an instrumental analysis method for measuring the fluorescence of oil generated by light irradiation is known. However, since the light transmission power into soil is small, only the surface of a soil sample is measured. You can only measure. For this reason, it is not possible to determine the total or average oil content of a bulk (volume) sample having a certain size, and it can hardly function as a means of measuring oil content in contaminated soil. .

【0005】[0005]

【発明が解決しようとする課題】このように,これまで
土壌中油分を迅速かつ充分良い精度で測定できる適当な
方法・装置がないのが実状であり,このことが原油や重
油などで汚染した土壌に対して適切で必要十分な対策を
採ることに支障となっていた。本発明はこの問題の解決
を課題としたものであり,土壌油分を原位置でリアルタ
イムで定量分析できるような土壌油分の測定方法および
装置を提供しようとするものである。
As described above, there is no appropriate method and apparatus for measuring oil content in soil quickly and sufficiently with good accuracy. Thus, contamination by crude oil or heavy oil has occurred. This was an obstacle to taking appropriate and necessary measures for the soil. An object of the present invention is to solve this problem, and an object of the present invention is to provide a method and an apparatus for measuring a soil oil content which enable real-time quantitative analysis of the soil oil content in situ.

【0006】[0006]

【課題を解決するための手段】本発明によれば,中性子
源から試料土壌に高速中性子を照射し,当該高速中性子
が散乱減速した熱中性子の計数値を比例計数管で計測
し,他方,空洞共振器内の共振マイクロ波の一部を試料
土壌中に導きながら共振マイクロ波の減衰値を計測し,
前者の熱中性子の計数値から試料土壌中の水分と油分の
合計量を,後者のマイクロ波の減衰値から土壌試料中の
水分量を推定し,両者の推定量から土壌試料中の油分を
推定することからなる土壌中油分の測定法を提供する。
According to the present invention, sample soil is irradiated with fast neutrons from a neutron source, and the fast neutrons are scattered and decelerated, and the thermal neutron count is measured by a proportional counter. Measure the attenuation value of the resonant microwave while guiding a part of the resonant microwave in the resonator into the sample soil,
Estimate the total amount of water and oil in the sample soil from the former thermal neutron count, and estimate the amount of moisture in the soil sample from the microwave attenuation value of the latter, and estimate the oil content in the soil sample from both estimates. And a method for measuring oil content in soil.

【0007】また,本発明によれば,管状の試料容器を
中心として,これを取り囲むように中性子水素計センサ
部およびマイクロ波水分計を設けた土壌油分の測定装置
であって,前記の中性子水素計センサ部が,試料容器の
外側近傍に取付けた中性子源と,この中性子源を包み込
むように試料容器の外側に配置された所定の厚みをもつ
中性子反射板と,試料容器の外側に配置され且つ中性子
反射板の厚み内に配置された比例計数管とからなり,前
記のマイクロ波水分計が,試料容器の外周に取付けられ
た空洞共振器と,こ空洞共振器内に所定周波数のマイク
ロ波を導くためのマイクロ波アンテナと,空洞共振器内
の共振マイクロ波を試料容器内に導くための共振導波口
と,空洞共振器内のマイクロ波の強度を計測する検波器
とからなることを特徴とする土壌中油分の測定装置を提
供する。
Further, according to the present invention, there is provided an apparatus for measuring a soil oil content comprising a neutron hydrogen meter sensor section and a microwave moisture meter surrounding a tubular sample container as a center, wherein the neutron hydrogen A neutron source mounted near the outside of the sample container, a neutron reflector having a predetermined thickness disposed outside the sample container so as to enclose the neutron source, a neutron reflector disposed outside the sample container, It consists of a proportional counter arranged within the thickness of the neutron reflector, and the microwave moisture meter described above transmits a cavity resonator attached to the outer periphery of the sample container and a microwave of a predetermined frequency into the cavity resonator. A microwave antenna for guiding the antenna, a resonant waveguide for guiding the resonant microwave in the cavity into the sample container, and a detector for measuring the intensity of the microwave in the cavity. To provide a measuring device in the soil oil to butterflies.

【0008】[0008]

【発明の実施の形態】分析対象となる通常の土壌試料に
は油分のほかに水分が同時に含有されている。したがっ
てその条件下では油分・水分の同時分析を行わなければ
ならない。しかし,土壌中のこの2種の成分を同時に分
析する適当な方法または機器が無い。すなわち,土壌中
の油分だけを選択的に分析する適当な手段はない。そこ
で,本発明は,異種の2つの物理的手段を組み合わせる
ことにより,土壌中の油分と水分とを同時に分析しよう
とするものであり,試料中の全水素量を中性子の散乱減
速を利用する方法で測定すると同時に,遊離水分をマイ
クロ波の吸収減衰により選択的に測定し,この2種類の
測定結果から差し引き演算(単なる引算ではない)を行
って油分を求める点に特徴がある。
BEST MODE FOR CARRYING OUT THE INVENTION An ordinary soil sample to be analyzed contains water in addition to oil. Therefore, simultaneous analysis of oil and moisture must be performed under these conditions. However, there is no suitable method or equipment to simultaneously analyze these two components in soil. That is, there is no suitable means for selectively analyzing only the oil content in soil. Therefore, the present invention is to simultaneously analyze the oil content and the water content in soil by combining two different kinds of physical means, and to determine the total amount of hydrogen in the sample by utilizing the neutron scattering slowdown. At the same time, the free water is selectively measured by the absorption attenuation of microwaves, and a subtraction operation (not just a subtraction) is performed from these two types of measurement results to determine the oil content.

【0009】中性子を利用するのは,その水素原子核に
よる散乱減速の効果が,水素の化学結合状態の影響を殆
んど受けることなく,従って,油分と水分の含有量の如
何にかかわらず,全水素量に対応した低速中性子計数が
得られるためである。他方,マイクロ波は,その周波数
を選定するとともに空洞共振現象を利用することで,殆
んど遊離水分に対してのみ選択的に高感度の測定が可能
となるゆえに,これを採用した。
[0009] The use of neutrons has the effect that the effect of slowing down the scattering by hydrogen nuclei is hardly affected by the state of chemical bonding of hydrogen, and therefore, irrespective of the oil and water contents, This is because a slow neutron count corresponding to the amount of hydrogen can be obtained. On the other hand, microwaves were selected because their frequencies can be selected and the use of the cavity resonance phenomenon enables selective high-sensitivity measurement of almost only free moisture.

【0010】本発明は,このように,中性子の散乱減速
効果とマイクロ波の吸収減衰現象との2種類の測定結果
から差し引き演算によって,油分と水分を求めるもので
あるため,最終精度を保証するには,その基となる両測
定の精度を充分に良いものとすることが肝要であり,ま
た演算の仕方で誤差が増加しないようにすることも必要
である。
As described above, according to the present invention, the oil content and the water content are obtained by the subtraction operation from the two types of measurement results of the neutron scattering moderation effect and the microwave absorption attenuation phenomenon, so that the final accuracy is guaranteed. It is important to ensure that the accuracy of the two measurements on which the measurement is based is sufficiently high, and it is also necessary to prevent errors from increasing in the calculation method.

【0011】以下に本発明の実施例について,図面を参
照して説明する。図1は,本発明に従う土壌油分測定器
の要部を示したもので,管状の試料容器1を中心とし
て,これを取り囲むように,中性子水素計センサ部2
と,マイクロ波水分計3を並設した簡単な構造を有して
おり,図示の例では試料容器1の下部半身に中性子水素
計センサ部2を,上部半身にマイクロ波水分計3を配置
してあるが,この配置関係は逆であってもよい。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a main part of a soil oil content measuring device according to the present invention. A neutron hydrogen meter sensor unit 2 is provided around a tubular sample container 1 so as to surround it.
And a simple structure in which a microwave moisture meter 3 is juxtaposed. In the illustrated example, the neutron hydrogen meter sensor unit 2 is arranged in the lower half of the sample container 1, and the microwave moisture meter 3 is arranged in the upper half. However, this arrangement may be reversed.

【0012】試料容器1は樹脂製であるのがよく,図例
では,底4を持ち上端が開口した内径49mmのポリ塩
化ビニールの管(長さ500mm)を使用している。
The sample container 1 is preferably made of resin. In the example shown in the figure, a polyvinyl chloride tube (length: 500 mm) having a bottom 4 and an open upper end is used.

【0013】中性子水素計センサ部2は,試料容器1の
外側近傍に取付けた中性子源5と,この中性子源5を包
み込むように試料容器1の外側に配置された所定の厚み
をもつ中性子反射板6と,試料容器1の外側に試料容器
1と平行配置され且つ中性子反射板6の厚み内に配置さ
れたHe−3(ヘリウム−3)比例計数管7とからなっ
ている。図例のものでは,中性子源5としては,3.7
MBqのカルホルニウム−252が使用されており,中
性子反射板6としては高さが200mmでリング厚み6
0mmの鋳鉄製の中ぐり円柱(リング)が使用されてい
る。この鉄製リングの中心穴に試料容器1が隙間をあけ
ずに嵌装される。またこの鉄製リングの中に,中性子源
5用の巣穴と,He−3比例計数管7を据え付ける穴が
穿ってあり,これらの穴にそれらが装着される。He−
3比例計数管7の自由端8はこの鉄製反射板6の外側に
露出しており,この自由管8は図示しない計測計に接続
されている。
The neutron hydrogen meter sensor section 2 includes a neutron source 5 mounted near the outside of the sample container 1 and a neutron reflector having a predetermined thickness disposed outside the sample container 1 so as to surround the neutron source 5. 6 and a He-3 (helium-3) proportional counter tube 7 arranged outside the sample container 1 in parallel with the sample container 1 and within the thickness of the neutron reflector 6. In the illustrated example, the neutron source 5 is 3.7
MBq of calcium-252 is used. The neutron reflector 6 has a height of 200 mm and a ring thickness of 6 mm.
A 0 mm cast iron boring cylinder (ring) is used. The sample container 1 is fitted into the center hole of the iron ring without leaving a gap. In the iron ring, nest holes for the neutron source 5 and holes for installing the He-3 proportional counter 7 are formed, and these holes are attached to these holes. He-
The free end 8 of the three-proportional counter tube 7 is exposed outside the iron reflector 6, and the free tube 8 is connected to a measuring instrument (not shown).

【0014】マイクロ波水分計3は,試料容器1の外周
に取付けられた空洞共振器9からなる。この空洞共振器
9は,試料容器1と同軸の二重円筒(内筒10と外筒1
1)と下板12および上板13で囲われた中抜き円柱形
の空洞14を有する。この空洞14は金属板で形成され
ており,内筒10には共振マイクロ波を試料容器1内に
導くための共振導波口15が設けてある。この共振導波
口15は,図例では下板12から上板13に至る距離
(軸長Lと言う)の半距離(2/L)位置において内筒
10を分断した,軸と直交する隙間として形成してあ
る。16はマイクロ波発振器であり,2Lが波長の整数
倍となるように周波数調整されたマイクロ波をアンテナ
17から該空洞14内に導入する。18は検波器であ
り,この検波器18では共振マイクロ波を検波しその減
衰値を計測する。
The microwave moisture meter 3 comprises a cavity resonator 9 mounted on the outer periphery of the sample container 1. This cavity resonator 9 is a double cylinder coaxial with the sample container 1 (the inner cylinder 10 and the outer cylinder 1).
1) and a hollow cylindrical cavity 14 surrounded by a lower plate 12 and an upper plate 13. The cavity 14 is formed of a metal plate, and the inner tube 10 is provided with a resonance waveguide port 15 for guiding a resonance microwave into the sample container 1. In the illustrated example, the resonance waveguide port 15 has a gap perpendicular to the axis which divides the inner cylinder 10 at a half distance (2 / L) of the distance from the lower plate 12 to the upper plate 13 (referred to as the axial length L). It is formed as A microwave oscillator 16 introduces a microwave whose frequency has been adjusted so that 2L becomes an integral multiple of the wavelength from the antenna 17 into the cavity 14. Reference numeral 18 denotes a detector, which detects the resonant microwave and measures its attenuation value.

【0015】このように構成した中性子水素計センサ部
2およびマイクロ波水分計3の作用効果を以下に説明す
る。
The operation and effect of the neutron hydrogen meter sensor unit 2 and the microwave moisture meter 3 configured as described above will be described below.

【0016】中性子水素計センサ部2においては,中性
子源5(3.7MBqのカリホルニウム−252)から
放出された高速中性子が,試料容器1中の土壌試料20
に照射される。このとき,試料中に水素が存在すれば,
中性子は水素原子核と衝突して弾性散乱され,1回の散
乱ごとにそのエネルギーが平均的に1/2に減少する。
従って,はじめ約2MeVあった高速中性子の平均エネ
ルギーが20回前後の散乱で,ほぼ熱中性子(≒0.0
25eV)となる。この熱中性子近くまで減速された低
速中性子が比例計数管4(低速中性子検出器)で検出さ
れ計数される。この計数値は試料中の水素量とともに増
加するので,これによって水素含有量の測定ができる。
In the neutron hydrogen meter sensor section 2, high-speed neutrons emitted from the neutron source 5 (3.7 MBq of Californium-252) are transferred to the soil sample 20 in the sample container 1.
Is irradiated. At this time, if hydrogen exists in the sample,
Neutrons collide with hydrogen nuclei and are elastically scattered, and the energy is reduced by half on average for each scattering.
Therefore, the average energy of fast neutrons, which was initially about 2 MeV, was scattered about 20 times, and almost all thermal neutrons (≒ 0.0
25 eV). The slow neutrons slowed down to near the thermal neutrons are detected and counted by the proportional counter 4 (slow neutron detector). Since this count value increases with the amount of hydrogen in the sample, the hydrogen content can be measured thereby.

【0017】しかし,高速中性子の大部分は,単に試料
に照射するだけでは,試料中で少数回の散乱反応を起こ
しただけで試料の外に出てゆき,熱中性子になる確率は
小さい。このため,本発明では鉄製の中性子反射板6を
使用し,この反射板6によって試料容器1,中性子源5
および比例計数管7を取り囲むと共にその厚みも中性子
を反射できるに十分なものとしてある。したがって,試
料容器1の外側に向かった中性子は,反射板6によって
効率良く反射され,試料内に何回も帰って来る。すなわ
ち,反射板6による多数回反射の作用で,中性子は試料
内を多数繰返して通過することとなり,中性子の水素と
の衝突確率が増え,熱中性子生成の効率も著しく増大す
る。このため,単位水素量あたりに生ずる熱中性子の計
数値が大きくなり水素測定の感度と安定度を向上させる
ことができる。
However, if most of the fast neutrons are simply irradiated on the sample, the neutrons will go out of the sample only by causing a small number of scattering reactions in the sample, and the probability of becoming thermal neutrons is small. For this reason, in the present invention, a neutron reflector 6 made of iron is used.
And the thickness of the counter tube 7 is sufficient to reflect neutrons. Therefore, the neutrons directed to the outside of the sample container 1 are efficiently reflected by the reflector 6 and return to the sample many times. That is, neutrons pass through the sample a number of times due to the effect of multiple reflections by the reflector 6, and the probability of collision of neutrons with hydrogen increases, and the efficiency of thermal neutron generation also increases significantly. For this reason, the count value of thermal neutrons generated per unit hydrogen amount increases, and the sensitivity and stability of hydrogen measurement can be improved.

【0018】また,試料容器1が水素含有化合物である
プラスチック(図例ではポリ塩化ビニール)で構成され
ていることにより,試料中の水素含有量があまり多くな
い場合にも,この部分で散乱・減速が促進される効果が
ある。この効果の程度は容器1の水素含有化合物の量と
試料の体積及び水素含有量の相対割合に依存するが,そ
の相対割合が適正であれば,プラスチック材による中性
子減速の促進を効果的に活用することができる。
Further, since the sample container 1 is made of a plastic (polyvinyl chloride in the illustrated example) which is a hydrogen-containing compound, even if the hydrogen content in the sample is not so large, scattering and scattering at this portion are not possible. There is an effect that deceleration is promoted. The extent of this effect depends on the amount of the hydrogen-containing compound in container 1 and the relative proportions of the sample volume and the hydrogen content. If the relative proportions are appropriate, the promotion of neutron deceleration by plastic materials can be effectively used. can do.

【0019】したがって,本発明に従う中性子水素計セ
ンサ部2では,反射板6による中性子の多重反射とプラ
スチック材による中性子減速促進の作用により,比較的
少量の試料を用いた場合にも充分な水素測定感度が得ら
れる。
Therefore, in the neutron hydrogen meter sensor unit 2 according to the present invention, due to the multiple reflection of neutrons by the reflector 6 and the action of accelerating the neutron deceleration by the plastic material, sufficient hydrogen measurement can be performed even when a relatively small amount of sample is used. Sensitivity is obtained.

【0020】このようにして測定される熱中性子計数値
は,試料中の水素含有量と容器を構成する化合物の水素
含有量の総和に対応する。試料中の水素含有量は,油類
を構成する化合物の水素含有量と,試料中のその他の水
素化合物(殆んどが水分のもの)との和であり,容器を
構成する化合物の水素量は一定であるから,試料中の水
分量が別途に測定されれば,油類を構成する化合物の水
素含有量の相対値ひいては土壌中の油分含有量が検出で
きることになる。
The thermal neutron count value thus measured corresponds to the sum of the hydrogen content in the sample and the hydrogen content of the compound constituting the container. The hydrogen content in the sample is the sum of the hydrogen content of the compounds that make up the oils and the other hydrogen compounds (mostly water) in the sample, and the hydrogen content of the compounds that make up the container. Since is constant, if the amount of water in the sample is separately measured, the relative value of the hydrogen content of the compounds constituting the oils, and thus the oil content in the soil, can be detected.

【0021】土壌中水分を計測するための本発明に従う
マイクロ波水分計3の作用効果を次に説明すると,この
マイクロ波水分計3においては,軸長L(図例では17
6mm)の中抜き円柱形の空洞14に,その距離Lで共
振する周波数をもつマイクロ波を導入する。すると,共
振導波口15が共振位置に設けられているので,この共
振導波口15から共振マイクロ波の一部が試料容器1の
内部に送り込まれる。そのさい,土壌試料20内に水分
があるときは,試料容器1の内部に送り込まれた共振マ
イクロ波は吸収され,その吸収の程度は水分量が多いほ
ど大きくなる。そして,その吸収の効果は空洞共振器9
の全体に波及するので,検波器18によって,共振マイ
クロ波の強度を監視すると,土壌試料20の水分量が多
いほど,その強度の減衰の程度が大きくなる。すなわ
ち,共振マイクロ波の減衰の度合は水分量に応じて変化
するので,これによって土壌試料20内の水分量が計測
される。空洞共振器9の役割は,共振現象の作用でマイ
クロ波が試料中に多重回通過し,一回通過の場合の何十
倍もマイクロ波の吸収減衰の度合いを増倍させることに
ある。これによって,水分測定の感度を向上させること
ができる。
The operation and effect of the microwave moisture meter 3 according to the present invention for measuring moisture in the soil will be described below. In the microwave moisture meter 3, the axial length L (17 in the illustrated example) is set.
A microwave having a frequency that resonates at the distance L is introduced into the hollow cylindrical cavity 14 (6 mm). Then, since the resonance waveguide 15 is provided at the resonance position, a part of the resonance microwave is sent from the resonance waveguide 15 into the sample container 1. At that time, when there is moisture in the soil sample 20, the resonant microwave sent into the sample container 1 is absorbed, and the degree of absorption increases as the amount of moisture increases. The effect of the absorption is the cavity resonator 9
Therefore, when the intensity of the resonant microwave is monitored by the detector 18, as the moisture content of the soil sample 20 increases, the degree of attenuation of the intensity increases. In other words, the degree of attenuation of the resonant microwave changes according to the amount of water, whereby the amount of water in the soil sample 20 is measured. The role of the cavity resonator 9 is to allow the microwave to pass multiple times through the sample by the action of the resonance phenomenon, and to increase the degree of absorption and attenuation of the microwave by several tens of times in the case of a single pass. Thereby, the sensitivity of the moisture measurement can be improved.

【0022】図1の機器を用いて,その基本的特性を実
験的に調べた結果を図2および図3に示した。試料20
としては,川砂と蒸留水との混合物を使用し,混合物中
の蒸留水の含有量を2.5%,5.0%,7.5%,10
%と変化させた。
FIGS. 2 and 3 show the results of an experimental investigation of the basic characteristics of the apparatus shown in FIG. Sample 20
Is used as a mixture of river sand and distilled water, and the content of distilled water in the mixture is 2.5%, 5.0%, 7.5%, 10%.
%.

【0023】まず,試料の装填に際して,試料容器の上
部と底部に重力による衝撃を加えることで,各水分量の
試料とも試料充填の程度をかなり変化させて試験したと
ころ,中性子水素計センサ部2の比例計数管7による熱
中性子計数値(カウント/2分)は,図2に見られるよ
うに,充填度の影響を受けるが,単位容積当りの水分量
(g/cm3)に換算すれば,水分量と中性子計数値との間
には良好な相関が見られ,中性子水素計の検量曲線が作
成できた。他方,マイクロ波水分計3における検波器1
8でのマイクロ波減衰値は,図3に見られるように,充
填度にかなりな影響を受ける。しかし,ある程度飽和に
近い高充填度にすれば,変化が少なくなり,充填度がほ
ぼ一定となるように管理すれば,良い再現性が得られる
ことが確認された。この場合の検量線を実線で示した。
First, when a sample was loaded, a shock was applied to the upper and lower portions of the sample container by gravity to test the sample of each water content with the degree of sample filling considerably changed. As shown in FIG. 2, the thermal neutron count value (count / 2 minutes) by the proportional counter 7 is affected by the degree of filling, but when converted to the amount of water per unit volume (g / cm 3 ) A good correlation was observed between the water content and the neutron count, and a calibration curve for the neutron hydrogen meter was created. On the other hand, the detector 1 in the microwave moisture meter 3
The microwave attenuation value at 8 is significantly affected by the degree of filling, as seen in FIG. However, it was confirmed that a good reproducibility can be obtained if the filling degree is close to a certain degree of saturation and the change is reduced, and if the filling degree is controlled to be almost constant. The calibration curve in this case is shown by a solid line.

【0024】そこで,同じ図1の機器を用いて,蒸留水
5%の川砂試料をベースにし,これにA重油を3%,4
%,5%と逐次追加混合した試料を作成し,これらにつ
いて図2〜3と同様に中性子計数値とマイクロ波減衰値
を計測した。その結果を図4に総括して示した。図4の
上下各図には,図2〜3で得られた各々の水分だけの検
量線も併せて表示した。ただし,横軸には水分と油分の
合計のg/cm3を採ってある。また図中に油分3%のプロ
ット群,4%のプロット群および5%のプロット群を表
示した。
Therefore, using the same apparatus shown in FIG. 1, a river sand sample of 5% distilled water was used as a base, and 3% of heavy oil A was added thereto.
%, 5%, and 5%, and neutron counts and microwave attenuation values were measured in the same manner as in FIGS. The results are summarized in FIG. In each of the upper and lower diagrams of FIG. 4, the calibration curves of only the water obtained in FIGS. However, the horizontal axis shows the total g / cm 3 of water and oil. In addition, a plot group of 3%, a plot group of 4%, and a plot group of 5% are shown in the figure.

【0025】図4の結果から明らかなように,中性子計
数値では,検量線勾配が油分と水分とでは大きく違わな
いのに対して,マイクロ波減衰値では,油分による変化
は水分の場合と大きく異なり,非常に小さくなった。た
だし,試料充填度の影響は,油分が存在する場合にはマ
イクロ波減衰値で見掛上より顕著に現れたので,その充
填度を容器上端から測った試料レベルの距離(沈み度
合)で区別して表示した(120mmと103mm)。
As is clear from the results shown in FIG. 4, the calibration curve gradient is not significantly different between oil and moisture in the neutron count value, whereas the change due to the oil content in the microwave attenuation value is larger than that in the moisture case. Unlikely, it has become very small. However, the effect of the sample filling degree was more pronounced in the microwave attenuation value when oil was present, so the degree of filling was determined by the distance of the sample level measured from the top of the container (the degree of sinking). They are shown separately (120 mm and 103 mm).

【0026】この試験結果から,実用的な油分の求め方
としては,まず,水分の検量線だけを用いて,中性子計
数値から水分・油分の合計含有量を求め,マイクロ波減
衰値から得た水分量を差し引くことで,「油分の第1近
似値」が得られることがわかる。すなわち,測定対象試
料の中性子計数値から,図4上段の水分検量線を用い
て,対応する(水分+油分)(g/cm3)を求めると共
に,当該試料のマイクロ波減衰値から図3の水分検量線
を用いて当該試料中の水分量を求め,前者から後者を差
し引くことで油分の第1近似値が得られる。この油分の
第1近似値は,中性子計数値を水分だけの検量線を使用
して(水分+油分)を算出しているので,若干の偏りを
生じているが,この油分の第1近似値に適当な補正を加
えることで,より確かな油分の値を算定することが可能
である。この補正を行った結果を図5に示した。
From the test results, as a practical method of obtaining the oil content, first, using only the water calibration curve, the total content of water and oil was obtained from the neutron count value, and obtained from the microwave attenuation value. It can be seen that “the first approximation of the oil content” is obtained by subtracting the water content. That is, the corresponding (moisture + oil) (g / cm 3 ) is obtained from the neutron count value of the sample to be measured using the moisture calibration curve in the upper part of FIG. 4, and the microwave attenuation value of the sample is used as shown in FIG. The first approximate value of the oil content can be obtained by obtaining the amount of water in the sample using the water calibration curve and subtracting the latter from the former. The first approximation of this oil content is slightly biased because the neutron count value is calculated using the calibration curve of moisture only (moisture + oil content). It is possible to calculate a more reliable oil content by making an appropriate correction to the oil content. The result of this correction is shown in FIG.

【0027】図5の上段のグラフは,横軸に試料中の油
分含有量(wt%)を採り,縦軸に前記油分の第1近似値
の真値からの偏り誤差(油分定量偏り誤差)を示したも
のである。第1近似値は水分検量線を使用している関係
上,試料の充填度が103mmでは図中の上の線に見ら
れような誤差が発生し,同120mmでは下の線に見ら
れような誤差が発生している。したがって,この第1近
似値に適正な補正を加えると真の値に近いものが得られ
る。
In the upper graph of FIG. 5, the horizontal axis represents the oil content (wt%) in the sample, and the vertical axis represents the deviation error from the true value of the first approximation value of the oil (oil component deviation error). It is shown. Because the first approximation value uses a moisture calibration curve, when the sample filling degree is 103 mm, an error occurs as shown in the upper line in the figure, and when the sample filling degree is 120 mm, an error appears as in the lower line. An error has occurred. Therefore, if an appropriate correction is applied to the first approximate value, a value close to the true value can be obtained.

【0028】その補正を行った場合の誤差を図5の下段
のグラフに示した。補正式としては,単に係数(1−
α)(L120/L103)を乗じた。L120およびL103はそ
れぞれ試料の正味高さであり,αの値はこの場合0.0
6とした。この補正後では,図5の下段のグラフのよう
に充填度が103mm,120mmの場合とも油分定量
偏り誤差は±0.1%以内となった。なお,図4の水分
+油分単位(g/cm3)から図5の横軸の油分単位(wt
%)に変換するには,試料の正味体積と重量から求めた
嵩密度で割ればよい。
The error when the correction is performed is shown in the lower graph of FIG. The correction equation is simply a coefficient (1-
α) (L 120 / L 103 ). L120 and L103 are the respective net heights of the sample, the value of α in this case being 0.0
6. After this correction, as shown in the lower graph of FIG. 5, even when the filling degree was 103 mm or 120 mm, the deviation error of the fixed amount of oil was within ± 0.1%. The unit of oil content (wt / wt 3 ) on the horizontal axis in FIG.
%) Can be divided by the bulk density determined from the net volume and weight of the sample.

【0029】このようにして,本発明によると土壌試料
中の油分量を精度良く測定できる。なお,図例の中性子
水素計センサ部2およびマイクロ波水分計3はいずれも
筒状容器1に対応できる形態のものを使用しているが,
必ずしもこの形態に限られない。例えば空洞共振器9に
ついては図例の中抜き円柱形状のほか,試料容器の形状
に応じて大型対象物の表面対応型や挿入形のものでもよ
い。しかし,中性子水素計センサ部を構成するには測定
感度,精度等性能を問題にする限り,鉄(グラファイト
も可)などの中性子反射材ブロックと適度の量の減速材
を加えた高速中性子多重反射型で散乱・減速を利用する
方式とすることが必要である。
As described above, according to the present invention, the amount of oil in a soil sample can be accurately measured. The neutron hydrogen meter sensor unit 2 and the microwave moisture meter 3 in the example shown in FIG.
It is not necessarily limited to this mode. For example, the cavity resonator 9 may be of a hollow cylindrical shape as shown in the figure, a surface-compatible type of a large object or an insertion type depending on the shape of the sample container. However, as long as performance, such as measurement sensitivity and accuracy, is not an issue in configuring the neutron hydrogen meter sensor section, high-speed neutron multiple reflection with a neutron reflector block such as iron (or graphite) and an appropriate amount of moderator are added. It is necessary to use scattering and deceleration in the mold.

【0030】[0030]

【発明の効果】以上説明したように,本発明によると,
従来はその機器測定が困難であった土壌中油分を簡易且
つ精度よく計測できる。このため,例えば汚染土壌の洗
浄プラントにおける途中工程および洗浄後の土壌中の残
留油分をリアルタイムに迅速測定が可能となり,同プラ
ントの運転条件を最適化できるとともに,処理済土壌の
品質を確認管理が容易になる。また,野外の堆積土壌に
対して広範囲かつ迅速に油汚染の程度および分布状態を
知ることも出来るようになり,土壌の処理や環境管理に
大きく貢献できる。
As described above, according to the present invention,
Conventionally, it is possible to easily and accurately measure the oil content in soil, which has been difficult to measure with an instrument. Therefore, for example, it is possible to quickly measure the residual oil content in soil during and after cleaning in a contaminated soil cleaning plant, optimize the operating conditions of the plant, and check and control the quality of treated soil. It will be easier. In addition, the extent and distribution of oil pollution can be quickly and widely known for sedimentary soil in the field, greatly contributing to soil treatment and environmental management.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う土壌油分の測定装置の要部を示す
略断面図である。
FIG. 1 is a schematic sectional view showing a main part of a soil oil content measuring device according to the present invention.

【図2】試料土壌を図1の装置で計測する場合の試料土
壌中の水分量と中性子計数値との関係図(中性子水素計
の検量曲線)である。
2 is a diagram showing the relationship between the amount of water in the sample soil and the neutron count value when the sample soil is measured by the apparatus shown in FIG. 1 (calibration curve of a neutron hydrogen meter).

【図3】試料土壌を図1の装置で計測する場合の試料土
壌中の水分量とマイクロ波減衰値との関係図(マイクロ
波水分計の検量曲線)である。
3 is a diagram showing the relationship between the amount of water in the sample soil and the microwave attenuation value when the sample soil is measured by the apparatus shown in FIG. 1 (calibration curve of a microwave moisture meter).

【図4】油分量を変えた試料土壌についての(水分+油
分)と中性子計数中性子との関係(上段)と,マイクロ
波減衰値との関係(下段)を,水分のみの試料土壌につ
いてのものとを対比して示した図である。
Fig. 4 shows the relationship between (moisture + oil content) and neutron counting neutrons (upper row) and the relationship between microwave attenuation values (lower row) for sample soil with changed oil content, for sample soil with only water. And FIG.

【図5】試料中の油分含有量(wt%)と油分定量偏り誤
差との関係を示すもので,上段のものは油分の第1近似
値の真値からの偏り誤差との関係を,下段のものはそれ
に補正を行った場合の偏り誤差との関係を示す図であ
る。
Fig. 5 shows the relationship between the oil content (wt%) in the sample and the deviation error of the oil content. The upper column shows the relationship between the first approximation of the oil component and the deviation error from the true value. FIG. 7 is a diagram showing the relationship between the correction and the bias error when the correction is performed.

【符号の説明】[Explanation of symbols]

1 試料容器 2 中性子水素計センサ 3 マイクロ波水分計 5 中性子源 7 比例計数管(He-3) 9 空洞共振器 14 空洞 15 共振導波口 16 発振器 17 マイクロ波アンテナ 18 検波器 20 土壌試料 DESCRIPTION OF SYMBOLS 1 Sample container 2 Neutron hydrogen meter sensor 3 Microwave moisture meter 5 Neutron source 7 Proportional counter tube (He-3) 9 Cavity resonator 14 Cavity 15 Resonant waveguide 16 Oscillator 17 Microwave antenna 18 Detector 20 Soil sample

───────────────────────────────────────────────────── フロントページの続き (71)出願人 500403918 株式会社日本特殊計測器製作所 東京都港区芝5丁目33番7号 (72)発明者 富永 洋 茨城県ひたちなか市大字中根3600番地の 172 (72)発明者 土弘 道夫 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 立川 登 茨城県東茨城郡大洗町成田町字新堀3607 日本原子力研究所内 (72)発明者 石川 勇 茨城県東茨城郡大洗町成田町字新堀3607 日本原子力研究所内 (72)発明者 佐々木 宏 埼玉県与野市本町西3−11−8 Fターム(参考) 2G001 AA04 AA07 BA11 BA14 CA04 CA07 DA01 GA01 HA01 KA01 LA03 MA04 NA01 NA19 SA04 SA12  ──────────────────────────────────────────────────続 き Continuing from the front page (71) Applicant 500403918 Japan Special Measurement Instruments Co., Ltd. 5-33-7, Shiba, Minato-ku, Tokyo (72) Inventor Hiroshi Tominaga 172 (72) Inventor Michio Tsuchihiro Kashima Construction Co., Ltd. 1-2-7 Moto-Akasaka, Minato-ku, Tokyo Inventor Isamu Ishikawa 3607 Niibori, Narita-cho, Oarai-machi, Higashi-Ibaraki-gun DA01 GA01 HA01 KA01 LA03 MA04 NA01 NA19 SA04 SA12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 中性子源から試料土壌に高速中性子を照
射し,当該高速中性子が散乱減速した熱中性子の計数値
を比例計数管で計測し,他方,空洞共振器内の共振マイ
クロ波の一部を試料土壌中に導きながら共振マイクロ波
の減衰値を計測し,前者の熱中性子の計数値から試料土
壌中の水分と油分の合計量を,後者のマイクロ波の減衰
値から土壌試料中の水分量を推定し,両者の推定量から
土壌試料中の油分を推定することからなる土壌中油分の
測定法。
1. A sample soil is irradiated with fast neutrons from a neutron source, and the fast neutrons are scattered and decelerated and the thermal neutron count is measured by a proportional counter. On the other hand, a part of the resonant microwave in the cavity resonator is measured. The attenuation value of the resonant microwave is measured while the water is introduced into the sample soil, and the total amount of water and oil in the sample soil is determined from the former thermal neutron count value, and the moisture content in the soil sample is determined from the latter microwave attenuation value. A method for measuring the amount of oil in soil by estimating the amount of oil and estimating the amount of oil in a soil sample from both estimates.
【請求項2】 試料容器の近傍に中性子水素計センサ部
およびマイクロ波水分計を設けた土壌中油分の測定装置
であって,前記の中性子水素計センサ部が,試料容器の
外側近傍に取付けた中性子源と,中性子源を包み込むよ
うに試料容器の外側に配置された所定の厚みをもつ中性
子反射板と,試料容器の外側に配置され且つ中性子反射
板の厚み内に配置された比例計数管とからなり,前記の
マイクロ波水分計が,試料容器の外周に取付けられた空
洞共振器と,空洞共振器内に所定周波数のマイクロ波を
導くためのマイクロ波アンテナと,空洞共振器内の共振
マイクロ波を試料容器内に導くための共振導波口と,空
洞共振器内のマイクロ波の強度を計測する検波器とから
なることを特徴とする土壌中油分の測定装置。
2. An apparatus for measuring oil content in soil comprising a neutron hydrogen meter sensor section and a microwave moisture meter near a sample container, wherein the neutron hydrogen meter sensor section is mounted near the outside of the sample container. A neutron source, a neutron reflector having a predetermined thickness arranged outside the sample container so as to enclose the neutron source, and a proportional counter arranged outside the sample container and arranged within the thickness of the neutron reflector. A microwave resonator mounted on the outer periphery of the sample container, a microwave antenna for guiding microwaves of a predetermined frequency into the cavity, and a resonant microwave in the cavity resonator. An apparatus for measuring oil content in soil, comprising: a resonant waveguide for guiding a wave into a sample container; and a detector for measuring the intensity of microwaves in a cavity resonator.
【請求項3】 試料容器は筒状容器からなり,この筒状
容器を取り巻くように中性子水素計センサ部およびマイ
クロ波水分計が設けられる請求項2に記載の土壌中油分
の測定装置。
3. An apparatus for measuring oil content in soil according to claim 2, wherein the sample container comprises a cylindrical container, and a neutron hydrogen meter sensor section and a microwave moisture meter are provided so as to surround the cylindrical container.
【請求項4】 試料容器は樹脂からなる請求項2または
3に記載の土中油分の測定装置。
4. The apparatus according to claim 2, wherein the sample container is made of a resin.
JP2000257560A 2000-08-28 2000-08-28 Method and device for measuring oil content in soil Revoked JP2002071585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000257560A JP2002071585A (en) 2000-08-28 2000-08-28 Method and device for measuring oil content in soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000257560A JP2002071585A (en) 2000-08-28 2000-08-28 Method and device for measuring oil content in soil

Publications (1)

Publication Number Publication Date
JP2002071585A true JP2002071585A (en) 2002-03-08

Family

ID=18746001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000257560A Revoked JP2002071585A (en) 2000-08-28 2000-08-28 Method and device for measuring oil content in soil

Country Status (1)

Country Link
JP (1) JP2002071585A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227199A (en) * 2004-02-16 2005-08-25 Central Res Inst Of Electric Power Ind Method for measuring concentration of boron and measuring instrument therefor
DE102007058836A1 (en) * 2007-12-05 2009-06-10 Forschungszentrum Jülich GmbH Method and device for determining biomass and determining the moisture content of soil by means of dielectric measurements in the microwave resonator
RU2568678C2 (en) * 2014-02-06 2015-11-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Method for determining availability of suspended moisture in liquid hydrocarbons
WO2015181702A1 (en) * 2014-05-25 2015-12-03 United Arab Emirates University Method and system for characterization of microalgal lipid content
RU2571631C1 (en) * 2014-11-25 2015-12-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Microwave technique for determining precipitated moisture in liquid hydrocarbons
US10436772B2 (en) 2014-08-25 2019-10-08 United Arab Emirates University Method and system for counting white blood cells electrically
US10564123B2 (en) 2014-05-25 2020-02-18 United Arab Emirates University Bioreactor system and method of operating same for cellular composition identification and quantification
JP2022081096A (en) * 2020-11-19 2022-05-31 国立研究開発法人 海上・港湾・航空技術研究所 Exploration device and exploration method for ground sample

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227199A (en) * 2004-02-16 2005-08-25 Central Res Inst Of Electric Power Ind Method for measuring concentration of boron and measuring instrument therefor
DE102007058836A1 (en) * 2007-12-05 2009-06-10 Forschungszentrum Jülich GmbH Method and device for determining biomass and determining the moisture content of soil by means of dielectric measurements in the microwave resonator
RU2568678C2 (en) * 2014-02-06 2015-11-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Method for determining availability of suspended moisture in liquid hydrocarbons
WO2015181702A1 (en) * 2014-05-25 2015-12-03 United Arab Emirates University Method and system for characterization of microalgal lipid content
US10416093B2 (en) 2014-05-25 2019-09-17 United Arab Emirates University Method and system for characterization of microalgal lipid content
US10564123B2 (en) 2014-05-25 2020-02-18 United Arab Emirates University Bioreactor system and method of operating same for cellular composition identification and quantification
US10436772B2 (en) 2014-08-25 2019-10-08 United Arab Emirates University Method and system for counting white blood cells electrically
RU2571631C1 (en) * 2014-11-25 2015-12-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Microwave technique for determining precipitated moisture in liquid hydrocarbons
JP2022081096A (en) * 2020-11-19 2022-05-31 国立研究開発法人 海上・港湾・航空技術研究所 Exploration device and exploration method for ground sample
JP7426028B2 (en) 2020-11-19 2024-02-01 国立研究開発法人 海上・港湾・航空技術研究所 Ground sample exploration device and exploration method

Similar Documents

Publication Publication Date Title
KR102442077B1 (en) Method and apparatus for multi-element analysis based on neutron activation, and usage
JP5797265B2 (en) Neutron activation analysis to measure neutron flux using a standard sample vessel
US4499380A (en) Apparatus and method for determining the hydrogen content of a substance
AU2001265285B2 (en) Apparatus and method for gamma-ray determination of bulk density of samples
KR0171081B1 (en) Apparatus and method for measuring physical characteristics of materials
JP2002071585A (en) Method and device for measuring oil content in soil
US3492479A (en) Apparatus for measuring hydrogenous material utilizing radioactive source
Fityus et al. Water content measurement in expansive soils using the neutron probe
US6452992B1 (en) Method and device for measuring the relative proportions of plutonium and uranium in a body
US3213280A (en) Method and apparatus for measuring hydrogenous material
US9158011B2 (en) In situ system for direct measurement of alpha radiation, and related method for quantifying the activity of alpha-emitting radionuclides in solution
JP2002350369A (en) Measuring method of boron concentration and measuring apparatus utilizing the same
CN104634795A (en) Environmental pore pressure probe capable of effectively detecting heavy metal elements in deep soil body
JP2867891B2 (en) Measurement method of cement content in soil cement
AU2019313201B2 (en) Density analysis of geological sample
Stillwater et al. Improved methodology for a collinear dual‐energy gamma radiation system
KR20000076439A (en) A procedure to measure the radioactivity of radioactive material enclosed in a container
Silvestri et al. Laboratory and field calibration of a neutron depth moisture gauge for use in high water content soils
An et al. Geometrical influence on Hg determination in wet sediment using K‐shell fluorescence analysis
JPH10507522A (en) Nuclear gauge to compensate for sample variation
Widagdo Development of a Density Gauge for Measuring Water and Mud Density based on a Radioactive Technique
Hanson et al. When measuring soil water content, field practices affect neutron moisture meter accuracy
Shanklin et al. William F. Troxler Sr. ¹ Development and Industry Acceptance of Nuclear Gauges
KR101322412B1 (en) Apparatus and method of detecting radioactivity using dielectric resonator
JP2008064541A (en) Method and device for measuring radioactivity of radioactive waste

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060228

AA91 Notification of revocation by ex officio

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20060425