JP2002069846A - Polyester fiber structure - Google Patents

Polyester fiber structure

Info

Publication number
JP2002069846A
JP2002069846A JP2000270242A JP2000270242A JP2002069846A JP 2002069846 A JP2002069846 A JP 2002069846A JP 2000270242 A JP2000270242 A JP 2000270242A JP 2000270242 A JP2000270242 A JP 2000270242A JP 2002069846 A JP2002069846 A JP 2002069846A
Authority
JP
Japan
Prior art keywords
fiber structure
fiber
polyester fiber
vinyl monomer
hydrophilic vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000270242A
Other languages
Japanese (ja)
Inventor
Toshinori Hara
稔典 原
Masaki Azuma
雅樹 東
Jiro Amano
慈朗 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000270242A priority Critical patent/JP2002069846A/en
Publication of JP2002069846A publication Critical patent/JP2002069846A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a modified polyester fiber structure causing little lowering of strength by hydrolysis. SOLUTION: This fiber structure comprises a polyester-based fiber containing >=5 wt.% hydrophilic vinyl monomer polymer containing at least one group selected from amide group, sulfonic acid group and pyrrolidone group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維内部が改質さ
れて高い吸湿性を持ちながら、優れた強度を有するポリ
エステル系繊維構造物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester fiber structure which has a high strength while being improved in moisture absorption due to the inside of the fiber being modified.

【0002】[0002]

【従来の技術】ポリエステル系繊維構造物に親水性ビニ
ルモノマーをグラフト重合させて改質する方法は特公昭
59−5126号公報、特開昭51−87592号公報
などに開示されている。このような方法の中で最も多く
検討されているのは親水性モノマーとしてカルボキシル
基を有するモノマーを用いて、これをポリエステル系繊
維構造物にグラフト重合した後にカルボン酸の水素イオ
ンを置換し金属塩とする方法である。しかし、このよう
な方法ではポリエステル繊維中がアルカリ性になるため
経時的にポリエステルの加水分解が進行し強度が大きく
低下するため実用化は非常に困難であった。
2. Description of the Related Art Methods for modifying a polyester fiber structure by graft polymerization of a hydrophilic vinyl monomer onto a polyester fiber structure are disclosed in JP-B-59-5126 and JP-A-51-87592. Among such methods, the most frequently studied method is to use a monomer having a carboxyl group as a hydrophilic monomer, graft-polymerize it onto a polyester-based fiber structure, and then displace hydrogen ions of a carboxylic acid to form a metal salt. It is a method. However, in such a method, the polyester fiber becomes alkaline, so that hydrolysis of the polyester progresses with time and the strength is greatly reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明は、カルボキシ
ル基を有する親水性ビニルモノマーをグラフト重合させ
た場合のような繊維の強度低下を抑制し、実用に耐えう
る強度を有し、かつ、吸湿性にも優れた改質ポリエステ
ル系繊維構造物を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention suppresses a decrease in fiber strength as in the case where a hydrophilic vinyl monomer having a carboxyl group is graft-polymerized, has a strength that can withstand practical use, and has a moisture absorption property. It is an object of the present invention to provide a modified polyester fiber structure having excellent properties.

【0004】[0004]

【課題を解決するための手段】上記課題の達成のため、
本発明のポリエステル系繊維構造物は、以下の構成を有
する。
In order to achieve the above object,
The polyester fiber structure of the present invention has the following configuration.

【0005】すなわち、本発明のポリエステル系繊維構
造物は、アミド基、スルホン酸基およびピロリドン基か
ら選ばれた少なくとも一種を含む親水性ビニルモノマー
重合体が繊維内部に5重量%以上含有されてなるポリエ
ステル系繊維を含んでなるものである。また本発明のポ
リエステル系繊維構造物の吸湿パラメータΔMRは2%
以上であることが望ましい。
[0005] That is, the polyester fiber structure of the present invention contains at least 5% by weight of a hydrophilic vinyl monomer polymer containing at least one selected from an amide group, a sulfonic acid group and a pyrrolidone group in the fiber. It comprises a polyester fiber. The moisture absorption parameter ΔMR of the polyester fiber structure of the present invention is 2%.
It is desirable that this is the case.

【0006】[0006]

【発明の実施の形態】本発明におけるポリエステル系繊
維構造物としては、ポリエステル系繊維からなる糸条、
織物、編物、不織布などの布帛類を挙げることができ
る。また、本発明の効果を妨げない範囲で、綿、羊毛な
どの天然繊維や他の合成繊維等を、本発明で用いるポリ
エステル系繊維と混紡または混繊、交撚、交織、交編な
どすることができる。以下の説明において、このポリエ
ステル系繊維構造物を単に繊維構造物と呼ぶことがあ
る。
BEST MODE FOR CARRYING OUT THE INVENTION As the polyester fiber structure in the present invention, a yarn comprising polyester fibers,
Fabrics such as woven fabric, knitted fabric and non-woven fabric can be mentioned. In addition, as long as the effects of the present invention are not impaired, natural fibers such as cotton and wool and other synthetic fibers are blended or mixed with the polyester fiber used in the present invention, twisted, interwoven, interwoven and the like. Can be. In the following description, this polyester fiber structure may be simply referred to as a fiber structure.

【0007】本発明のポリエステル系繊維としては、ポ
リエチレンテレフタレート、ポリプロピレンテレフタレ
ート、ポリブチレンテレフタレートなどの芳香族ポリエ
ステルやポリ乳酸、ポリカプロラクトンなどの脂肪族ポ
リエステルを基本的な構成単位としてなるポリエステル
繊維を含み、またこれらに何らかの他の成分を共重合し
た共重合体からなる繊維や、これらに他の有機高分子化
合物を少量ブレンドした混合物からなる繊維もこれに含
まれる。さらに本発明のポリエステル系繊維は、本発明
の効果を妨げない範囲で無機微粒子や低分子有機化合物
を含んでいてもよい。
The polyester fibers of the present invention include polyester fibers having aromatic polyesters such as polyethylene terephthalate, polypropylene terephthalate and polybutylene terephthalate, and aliphatic polyesters such as polylactic acid and polycaprolactone as basic constituent units. Also included are fibers made of a copolymer obtained by copolymerizing some other component with these, and fibers made of a mixture obtained by blending a small amount of another organic polymer compound with these. Further, the polyester fiber of the present invention may contain inorganic fine particles and low molecular organic compounds as long as the effects of the present invention are not impaired.

【0008】本発明においては、親水性ビニルモノマー
としてアミド基、スルホン酸基、ピロリドン基のいずれ
かを含むものを用いる。この理由は、カルボキシル基は
弱酸で吸湿性を高めるために金属塩化するとアルカリ性
となり、ポリエステル系繊維内部で基質の加水分解を促
進してしまうのに対し、これらの官能基は電離しない
か、または強酸であるためこの問題を回避できるからで
ある。用いる親水性ビニルモノマーとしては、例えばア
クリルアミド、2−アクリルアミド−2−メチルプロパ
ンスルホン酸、N−ビニルアセトアミド、スチレンスル
ホン酸、ビニルスルホン酸、N−ビニルピロリドンなど
を挙げることができる。
In the present invention, a hydrophilic vinyl monomer containing an amide group, a sulfonic acid group or a pyrrolidone group is used. The reason is that the carboxyl group becomes alkaline when metal salted to increase the hygroscopicity with a weak acid, and promotes the hydrolysis of the substrate inside the polyester fiber, whereas these functional groups do not ionize or have a strong acidity. Therefore, this problem can be avoided. Examples of the hydrophilic vinyl monomer used include acrylamide, 2-acrylamido-2-methylpropanesulfonic acid, N-vinylacetamide, styrenesulfonic acid, vinylsulfonic acid, and N-vinylpyrrolidone.

【0009】本発明の繊維構造物は、このようなアミド
基、スルホン酸基、ピロリドン基を含む親水性ビニルモ
ノマーの重合体が繊維内部に含有されてなるポリエステ
ル系繊維を含むことが特徴である。ここで繊維親水性ビ
ニルモノマー重合体がポリエステル系繊維内部に含有さ
れてなるとは、繊維表面への付着ではなく、繊維断面の
内部に吸尽などされていることをいう。ポリエステル系
繊維の含有量としては、イージーケア性や断面形状の多
様性などのポリエステル系繊維の特徴を活かすため、さ
らには50%以上が望ましい。
The fiber structure of the present invention is characterized in that it contains a polyester fiber in which a polymer of a hydrophilic vinyl monomer containing such an amide group, a sulfonic acid group and a pyrrolidone group is contained inside the fiber. . Here, that the fiber hydrophilic vinyl monomer polymer is contained inside the polyester fiber means that the fiber is not adhering to the fiber surface but is exhausted inside the fiber cross section. The content of the polyester fiber is desirably 50% or more in order to make use of the characteristics of the polyester fiber such as the easy care property and the variety of cross-sectional shapes.

【0010】従来はこれらの基を含む親水性ビニルモノ
マー重合体はポリエステル系繊維内部にはごく少量しか
導入が不可能であったが、本発明では高い吸湿性が得ら
れるよう、この重合体を5重量%以上繊維内部に導入し
たことが特徴である。
Conventionally, it has been impossible to introduce only a small amount of a hydrophilic vinyl monomer polymer containing these groups into the interior of the polyester fiber. However, in the present invention, this polymer is used to obtain high hygroscopicity. A feature is that 5% by weight or more is introduced inside the fiber.

【0011】また該親水性ビニルモノマー重合体が繊維
内部に含有されていることの確認のためには、単純には
導入処理前後の繊維構造物の重量変化を測定することが
挙げられる。また、より精確な方法として、繊維構造物
断面の電子顕微鏡観察により繊維間の空隙に重合体が存
在するかどうかを確認することや、しかるべき方法で重
合体を染色するなどして、断面の顕微鏡観察を行うこと
などの方法も挙げることができる。
In order to confirm that the hydrophilic vinyl monomer polymer is contained in the interior of the fiber, simply measure the weight change of the fiber structure before and after the introduction treatment. In addition, as a more accurate method, the presence or absence of a polymer in the voids between fibers can be confirmed by electron microscopic observation of the cross section of the fiber structure, or the polymer can be dyed by an appropriate method. Methods such as microscopic observation can also be mentioned.

【0012】さらに繊維内部への導入量を定量するに
は、上記の方法で繊維間の空隙や繊維表面に親水性ビニ
ルポリマー重合体が集中していないことを確認した上
で、種々の化学分析手法で内部の親水性ビニルポリマー
量を定量すればよい。用いることができる化学分析手法
としては、例えば繊維構造物の固体NMR測定や繊維構
造物の溶解液のIR測定を行って親水性ビニルポリマー
に起因するピーク強度を測定することや、繊維構造物の
元素分析や質量分析により親水性ビニルポリマーに由来
する化学種を測定することなどが挙げられる。
Further, in order to quantify the amount introduced into the interior of the fiber, various chemical analyzes were carried out after confirming that the hydrophilic vinyl polymer polymer was not concentrated on the space between the fibers or on the fiber surface by the above-mentioned method. The amount of the internal hydrophilic vinyl polymer may be determined by a technique. Examples of the chemical analysis method that can be used include, for example, performing solid-state NMR measurement of a fiber structure or IR measurement of a solution of the fiber structure to measure the peak intensity due to the hydrophilic vinyl polymer, Measurement of a chemical species derived from a hydrophilic vinyl polymer by elemental analysis or mass spectrometry is exemplified.

【0013】本発明では、好ましくは親水性ビニルモノ
マー重合体はポリエステル系繊維を構成する高分子にグ
ラフト重合してなることが望ましい。グラフト重合と
は、ポリエステル系繊維を構成する高分子から分岐した
形態で、化学結合で親水性ビニルモノマー重合体が結合
していることをいう。この理由は親水性ビニルモノマー
重合体が単に吸尽しているのではなく化学的に結合して
いることで、繊維からの脱落がより少なく、耐久性に優
れたものとなるためである。
In the present invention, it is desirable that the hydrophilic vinyl monomer polymer is preferably obtained by graft-polymerizing a polymer constituting a polyester fiber. Graft polymerization means that a hydrophilic vinyl monomer polymer is bonded by a chemical bond in a form branched from the polymer constituting the polyester-based fiber. The reason for this is that the hydrophilic vinyl monomer polymer is not exhausted but is chemically bonded, so that the polymer is less likely to fall off from the fiber and has excellent durability.

【0014】本発明において、吸湿パラメータΔMRと
は、対象素材の30℃、90%RHにおける水分率から
20℃、65%RHにおける水分率を引いた値をいう。
ここでそれぞれの水分率はJIS L−1096の6.
9項記載の方法で求められる。 本発明の繊維構造物の
吸湿パラメータΔMRは、着用時に高い快適性を得るた
めに2%以上であることが好ましい。ΔMRは大きいほ
ど好ましいが、6%程度あれば十分に本発明の効果を発
揮することができる。
In the present invention, the moisture absorption parameter ΔMR is a value obtained by subtracting the moisture content at 20 ° C. and 65% RH from the moisture content of the target material at 30 ° C. and 90% RH.
Here, each water content is based on JIS L-1096 6.
Determined by the method described in Item 9. The moisture absorption parameter ΔMR of the fiber structure of the present invention is preferably 2% or more in order to obtain high comfort when worn. Although ΔMR is preferably as large as possible, the effect of the present invention can be sufficiently exhibited if it is about 6%.

【0015】なお、本発明で用いる親水性高分子の吸湿
特性としては、上記ΔMRに加えて、20℃、65%R
Hにおける水分率(MR)が2〜6%であることが望ま
しい。
The moisture absorption properties of the hydrophilic polymer used in the present invention include, in addition to the above ΔMR, 20 ° C., 65% R
It is desirable that the moisture content (MR) in H is 2 to 6%.

【0016】本発明における強制テストとは、改質ポリ
エステル繊維構造物が長期の使用を受けた場合と同様な
劣化を短時間で起こさせようとするものである。このた
めには高温かつ高湿度の条件に繊維構造物を放置し、加
えて繰り返し洗濯を行う方法を用いることができる。本
発明の強制テストとしては、80℃、65%RHで1週
間放置し、その後に10回の繰り返し洗濯を行うことを
1サイクルとして、それを3サイクル繰り返す方法をと
る。
In the present invention, the compulsory test is intended to cause the modified polyester fiber structure to cause deterioration in a short time in the same manner as in the case where the modified polyester fiber structure has been used for a long time. For this purpose, it is possible to use a method in which the fiber structure is left under conditions of high temperature and high humidity, and washing is performed repeatedly. As a compulsory test of the present invention, a method in which the washing is left for one week at 80 ° C. and 65% RH for one week, and then the washing is repeated 10 times, and the cycle is repeated three times.

【0017】本発明における繊維構造物の構成糸強度と
は、織物、編物などを構成するマルチフィラメント1本
の強度をいう。構成糸強度は、繊維構造物製品を分解し
た後の分解糸の強度を引張試験機などを用いて測定する
ことができる。ここで、繊維構造物を構成する糸の特性
は部分によるムラがあるので、繊維構造物の異なる5カ
所以上の部分から取り出した分解糸の測定結果を平均す
ることが望ましい。本発明においてこの構成糸強度は、
強制テストを行った後で2g/dtex以上であること
が望ましい。
The component yarn strength of the fiber structure in the present invention refers to the strength of one multifilament constituting a woven or knitted fabric. The constituent yarn strength can be measured by using a tensile tester or the like to measure the strength of the decomposed yarn after decomposing the fibrous structure product. Here, since the characteristics of the yarns constituting the fiber structure vary from part to part, it is desirable to average the measurement results of the decomposed yarns taken from five or more different parts of the fiber structure. In the present invention, the component yarn strength is:
It is desirable that it be 2 g / dtex or more after the forced test.

【0018】さらに好ましくは、高品質の商品を得るた
めに、この強制テストを行った後の構成糸強度は3g/
dtex以上であることが望ましい。本発明では適切な
親水性ビニルモノマーを利用することで、このように強
制テスト後の強度低下を大きく抑制することが可能とな
った。
More preferably, in order to obtain a high-quality product, the component yarn strength after the forced test is 3 g /
It is desirable to be dtex or more. In the present invention, by using an appropriate hydrophilic vinyl monomer, it is possible to greatly suppress the strength reduction after the forced test.

【0019】本発明の繊維構造物を製造する方法として
は、例えば親水性ビニルモノマーを超臨界流体またはそ
れに類する流体に含有させ、その中で繊維構造物を処理
するなどの方法を用いればよい。このような方法ではポ
リエステル系繊維が大きく膨潤するために、従来はごく
少量しか繊維内部に導入できなかった親水性ビニルモノ
マー重合体を、多量に導入することが可能になる。
As a method for producing the fiber structure of the present invention, for example, a method in which a hydrophilic vinyl monomer is contained in a supercritical fluid or a fluid similar thereto and the fiber structure is treated therein may be used. In such a method, since the polyester fibers greatly swell, it becomes possible to introduce a large amount of the hydrophilic vinyl monomer polymer which could be introduced into the fiber only in a small amount in the past.

【0020】ここで用いる超臨界流体としては、ポリエ
ステル系繊維の膨潤効果の大きさと取り扱いの容易さと
から、二酸化炭素が最も好ましい。この媒体の中に繊維
構造物と親水性ビニルモノマー、開始剤を含有させ、必
要に応じて界面活性剤などの助剤を添加して処理する。
As the supercritical fluid used here, carbon dioxide is most preferable because of the swelling effect of the polyester fiber and the ease of handling. In this medium, a fiber structure, a hydrophilic vinyl monomer and an initiator are contained, and if necessary, an auxiliary agent such as a surfactant is added for treatment.

【0021】処理温度は開始剤の分解する温度に対応し
て変化させればよいが、好ましくは60〜120℃程度
が望ましい。処理圧力は親水性ビニルモノマーがより溶
解しやすいよう、15MPa〜40MPa程度が望まし
い。
The treatment temperature may be changed in accordance with the temperature at which the initiator decomposes, but is preferably about 60 to 120 ° C. The processing pressure is desirably about 15 MPa to 40 MPa so that the hydrophilic vinyl monomer is more easily dissolved.

【0022】[0022]

【実施例】実施例中の各種測定は以下の方法で行った。 <重量増加率の測定>親水性ビニルモノマーによる超臨
界流体中での処理後のサンプルをメタノールと温水で交
互に3回ずつ洗浄してホモポリマーを完全に除去し、次
の式により重量増加率を算出した。
EXAMPLES Various measurements in the examples were performed by the following methods. <Measurement of Weight Gain> The sample after treatment in a supercritical fluid with a hydrophilic vinyl monomer was washed alternately three times with methanol and hot water to completely remove the homopolymer, and the weight gain was calculated by the following equation. Was calculated.

【0023】 重量増加率(%)=(W1−W0)/W0×100 W0:処理前のサンプルの絶乾重量 W1:処理後のサンプルの絶乾重量 <ΔMRの算出>実施例において用いた高分子が付着し
た繊維構造物のΔMRを以下の方法で測定した。すなわ
ち、試料を秤量ビンに入れ、20℃、65%RHに調整
した恒温恒湿槽中に24時間放置し秤量した。次いで、
30℃、90%RHに調整した恒温恒湿槽中に24時間
放置し、再度秤量した。最後に110℃の乾燥機中で1
時間乾燥し絶乾重量を求めた。水分率の差は下式により
算出した。
Weight increase rate (%) = (W1−W0) / W0 × 100 W0: Absolute dry weight of sample before treatment W1: Absolute dry weight of sample after treatment <Calculation of ΔMR> The ΔMR of the fiber structure to which the molecules were attached was measured by the following method. That is, the sample was put into a weighing bottle, left in a thermo-hygrostat adjusted to 20 ° C. and 65% RH for 24 hours and weighed. Then
It was left for 24 hours in a thermo-hygrostat adjusted to 30 ° C. and 90% RH, and weighed again. Finally, in a dryer at 110 ° C,
After drying for an hour, the absolute dry weight was determined. The difference in the water content was calculated by the following equation.

【0024】ΔMR(%)=((W’−W)/W−
(W”−W)/W)×100 W :試料の絶乾重量(g) W’:30℃、90%RHでの試料の重量(g) W”:20℃、65%RHでの試料の重量(g) <繊維構造物構成糸の糸強度(構成糸強度)>筒編み試
料を分解し、異なる部位から5本の糸を採集した。それ
ぞれの糸について引張試験機で強伸度を測定し、平均値
を求めた。 実施例1 ポリエステルタフタ布帛片(中間セット後布帛、糸使
い:経糸、緯糸とも総繊度75デニール、36マルチフ
ィラメント、織密度:経98×緯84本/inch、目付:
70g/m2)50gを内容積500mlの高圧容器に
充填した後、二酸化炭素を容器に注入しながら温度を4
0℃に上昇させた。さらにその温度を保ったまま二酸化
炭素を継続して注入し、圧力を20Mpaとした。
ΔMR (%) = ((W′−W) / W−
(W ″ −W) / W) × 100 W: Absolute dry weight of sample (g) W ′: Weight of sample at 30 ° C., 90% RH (g) W ″: Sample at 20 ° C., 65% RH <Yarn Strength (Yarn Strength of Yarn Constituting Yarn of Fiber Structure) (Yarn Strength of Yarn)> The tubular knitted sample was disassembled, and five yarns were collected from different portions. The tensile elongation of each yarn was measured with a tensile tester, and the average value was determined. Example 1 A piece of polyester taffeta cloth (cloth after intermediate setting, use of yarn: both warp and weft have a total fineness of 75 denier, 36 multifilaments, woven density: warp 98 x 84 wefts / inch, basis weight:
70 g / m 2 ) After filling 50 g into a high-pressure vessel having an internal volume of 500 ml, the temperature was increased to 4 while pouring carbon dioxide into the vessel.
Increased to 0 ° C. Furthermore, carbon dioxide was continuously injected while maintaining the temperature, and the pressure was set to 20 Mpa.

【0025】次に上記高圧容器に連結された別の内容席
100mlの高圧容器に親水性ビニルモノマーとして2
−アクリルアミド−2−メチルプロパンスルホン酸を
5.0gと、開始剤として有機過酸化物である過酸化ベ
ンゾイルを0.05g充填した後、同様に温度を40
℃、圧力を20Mpaとした。その後、繊維構造物が充
填された高圧容器と親水性モノマーと開始剤が充填され
た高圧容器の間の弁を開き、さらに2つの容器に連結さ
れた循環ポンプを起動して親水性モノマーなどを繊維構
造物が充填された容器に導入した。それから温度を10
0℃に上昇し、その条件を30分保った後、次の30分
で徐々に二酸化炭素を排出した。その後、このサンプル
を5g/lの炭酸ナトリウム中で60℃、30分処理し
てナトリウム塩置換を行った。
Next, 2 liters of hydrophilic vinyl monomer were added to another 100 ml high pressure container connected to the high pressure container.
-After charging 5.0 g of acrylamide-2-methylpropanesulfonic acid and 0.05 g of benzoyl peroxide which is an organic peroxide as an initiator, the temperature was similarly raised to 40 g.
° C and the pressure were 20 MPa. Thereafter, the valve between the high-pressure container filled with the fibrous structure and the high-pressure container filled with the hydrophilic monomer and the initiator is opened, and the circulation pump connected to the two containers is further activated to remove the hydrophilic monomer and the like. It was introduced into a container filled with a fibrous structure. Then set the temperature to 10
After the temperature was raised to 0 ° C. and the condition was maintained for 30 minutes, carbon dioxide was gradually discharged in the next 30 minutes. Thereafter, this sample was treated in sodium carbonate at 5 g / l at 60 ° C. for 30 minutes to replace the sodium salt.

【0026】この処理後のサンプルの重量増加率とΔM
Rの測定結果を表1に示す。またこの布帛の断面を電子
顕微鏡で観察したところ、繊維間の空隙には重合体の付
着は見られなかった。これから、繊維内部にアミド基と
スルホン酸基を有する親水性モノマー重合体が5%以上
含有され、ΔMRが2%以上であるポリエステル系繊維
構造物が得られた。
The weight increase rate of the sample after this treatment and ΔM
Table 1 shows the measurement results of R. When the cross section of this cloth was observed with an electron microscope, no polymer was observed in the gaps between the fibers. As a result, a polyester fiber structure containing 5% or more of a hydrophilic monomer polymer having an amide group and a sulfonic acid group in the fiber and having a ΔMR of 2% or more was obtained.

【0027】またこのサンプルの構成糸強度を測定した
後、強制テストとして、このサンプルを80℃、65%
RHで1週間放置し、その後に10回の繰り返し洗濯を
行うことを1サイクルとして、これを3サイクル繰り返
す処理を行った。この後、同様に構成糸強度を測定し
た。結果を表1に示すが、これから確かに強制テスト後
の構成糸強度が2g/dtex以上であるポリエステル
系繊維構造物が得られた。 実施例2 充填する2−アクリルアミド−2−メチルプロパンスル
ホン酸の量を10.0g、過酸化ベンゾイルの量を0.
1gとする以外は実施例1と同様に行った。
After measuring the component yarn strength of the sample, the sample was subjected to a forced test at 80 ° C. and 65%
A process was repeated for three cycles, in which one cycle was performed by leaving to stand at RH for one week and then performing ten times of repeated washing. Thereafter, the strengths of the constituent yarns were measured in the same manner. The results are shown in Table 1. From this, it was confirmed that a polyester fiber structure having a constituent yarn strength of at least 2 g / dtex after the forced test was obtained. Example 2 The amount of 2-acrylamido-2-methylpropanesulfonic acid to be filled was 10.0 g and the amount of benzoyl peroxide was 0.1 g.
The same procedure was performed as in Example 1 except that the amount was changed to 1 g.

【0028】この処理後のサンプルの重量増加率とΔM
Rの測定結果を表1に示す。またこの布帛の断面を電子
顕微鏡で観察したところ、繊維間の空隙には重合体の付
着は見られなかった。これから、繊維内部に親水性ビニ
ルモノマー重合体が5%以上含有され、ΔMRが2%以
上であるポリエステル系繊維構造物が得られた。
The weight increase rate of the sample after this treatment and ΔM
Table 1 shows the measurement results of R. When the cross section of this cloth was observed with an electron microscope, no polymer was observed in the gaps between the fibers. As a result, a polyester fiber structure containing 5% or more of the hydrophilic vinyl monomer polymer in the fiber and having ΔMR of 2% or more was obtained.

【0029】またこのサンプルについて強制テスト前後
の構成糸強度を測定した結果を表1に示すが、これから
確かに強制テスト後の構成糸強度が2g/dtex以上
であるポリエステル系繊維構造物が得られた。 比較例1 過酸化ベンゾイル0.05gをモノクロロベンゼン1g
に溶解し、それに2−アクリルアミド−2−メチルプロ
パンスルホン酸5.0gとラウリルベンゼンスルホン酸
ナトリウム0.1gを加えた後、水を加えて水系のグラ
フト重合加工処理剤を調整した。この処理剤に実施例1
と同じポリエステルタフタ布帛片50gを加えて100
℃で30分間加熱した。
Table 1 shows the results of measuring the constituent yarn strength of this sample before and after the forced test. From this, it is confirmed that a polyester fiber structure having a constituent yarn strength of at least 2 g / dtex after the forced test was obtained. Was. Comparative Example 1 0.05 g of benzoyl peroxide was added to 1 g of monochlorobenzene
Then, 5.0 g of 2-acrylamido-2-methylpropanesulfonic acid and 0.1 g of sodium laurylbenzenesulfonate were added thereto, and water was added thereto to prepare an aqueous graft polymerization processing agent. Example 1
100 g of the same polyester taffeta cloth piece as
Heated at ° C for 30 minutes.

【0030】結果を表1に示すが、この方法では繊維内
部への多量の重合体の導入はできなかった。 比較例2 親水性ビニルモノマーとしてメタクリル酸を用いること
を除いては比較例1と同様に行った。
The results are shown in Table 1. According to this method, a large amount of polymer could not be introduced into the fiber by this method. Comparative Example 2 The same operation was performed as in Comparative Example 1 except that methacrylic acid was used as the hydrophilic vinyl monomer.

【0031】結果を表1に示すが、この場合は重量増加
率とΔMRは高い値が得られたが、強制テスト後の構成
糸強度は2g/dtex以下であった。 実施例3〜4 親水性ビニルモノマーとしてN−ビニルアセトアミドを
用いる以外は実施例1と同様に行った。
The results are shown in Table 1. In this case, although the weight increase rate and ΔMR were high, the component yarn strength after the forced test was 2 g / dtex or less. Examples 3 and 4 The same procedure as in Example 1 was carried out except that N-vinylacetamide was used as the hydrophilic vinyl monomer.

【0032】結果を表1に示すが、これらの方法でもや
はり、重量増加率とΔMRが高く、かつ強制テスト後の
構成糸強度も高いポリエステル系繊維構造物が得られ
た。 実施例5〜6 親水性ビニルモノマーとしてスチレンスルホン酸を用い
る以外は実施例1と同様に行った。
The results are shown in Table 1. As can be seen from these results, a polyester fiber structure having a high weight increase rate and a high ΔMR and a high component yarn strength after the forced test was obtained by these methods. Examples 5 to 6 The same procedure as in Example 1 was carried out except that styrene sulfonic acid was used as the hydrophilic vinyl monomer.

【0033】結果を表1に示すが、これらの方法でもや
はり、重量増加率とΔMRが高く、かつ強制テスト後の
構成糸強度も高いポリエステル系繊維構造物が得られ
た。 実施例7〜8 親水性ビニルモノマーとしてN−ビニルピロリドンを用
いる以外は実施例1と同様に行った。
The results are shown in Table 1. As can be seen from these results, a polyester fiber structure having a high weight increase rate and a high ΔMR and a high component yarn strength after the forced test was obtained by these methods. Examples 7 to 8 The same procedure as in Example 1 was carried out except that N-vinylpyrrolidone was used as the hydrophilic vinyl monomer.

【0034】結果を表1に示すが、これらの方法でもや
はり、重量増加率とΔMRが高く、かつ強制テスト後の
構成糸強度も高いポリエステル系繊維構造物が得られ
た。
The results are shown in Table 1. As can be seen from these results, a polyester fiber structure having a high weight increase rate and a high ΔMR and a high component yarn strength after the forced test was obtained by these methods.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】本発明によれば、従来のように加水分解
による強度低下の問題がなく、改質されたポリエステル
系繊維構造物を得ることができる。このポリエステル系
繊維構造物は吸湿性が高く、かつ繊維表面に多量の高分
子を付着させずに繊維内部が改質されているため風合い
硬化も小さい。
According to the present invention, a modified polyester fiber structure can be obtained without the problem of a decrease in strength due to hydrolysis as in the prior art. This polyester-based fiber structure has high hygroscopicity and has a small texture hardening because the inside of the fiber is modified without attaching a large amount of polymer to the fiber surface.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L031 AA18 AB32 AB33 AB34 BA08 BA33 BA34 DA08 4L033 AA07 AB05 AB06 AB07 AC07 CA23  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4L031 AA18 AB32 AB33 AB34 BA08 BA33 BA34 DA08 4L033 AA07 AB05 AB06 AB07 AC07 CA23

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アミド基、スルホン酸基およびピロリドン
基から選ばれる少なくとも1種を含む親水性ビニルモノ
マー重合体が繊維内部に5重量%以上含有されてなるポ
リエステル系繊維を含むことを特徴とするポリエステル
系繊維構造物。
1. A fiber comprising a polyester fiber containing at least 5% by weight of a hydrophilic vinyl monomer polymer containing at least one selected from amide group, sulfonic acid group and pyrrolidone group in the fiber. Polyester fiber structure.
【請求項2】吸湿パラメータΔMRが2%以上であるこ
とを特徴とする請求項1記載の繊維構造物。
2. The fibrous structure according to claim 1, wherein the moisture absorption parameter ΔMR is 2% or more.
【請求項3】該親水性ビニルモノマー重合体がポリエス
テル系繊維を構成する高分子にグラフト重合してなるこ
とを特徴とする請求項1または2に記載の繊維構造物。
3. The fiber structure according to claim 1, wherein said hydrophilic vinyl monomer polymer is obtained by graft polymerization of a polymer constituting a polyester fiber.
【請求項4】80℃、65%RHの雰囲気下で1週間放
置した後、10回の繰り返し洗濯を行う操作を1サイク
ルとして、これを3サイクル繰り返す強制テスト後のポ
リエステル系構成糸強度が2g/dtex以上であるこ
とを特徴とする請求項1〜3のいずれかに記載の繊維構
造物。
4. After standing for 1 week in an atmosphere of 80.degree. C. and 65% RH, the operation of repeatedly performing washing 10 times is regarded as one cycle, and this cycle is repeated three times. The fiber structure according to any one of claims 1 to 3, wherein the fiber structure is not less than / dtex.
JP2000270242A 2000-09-06 2000-09-06 Polyester fiber structure Withdrawn JP2002069846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000270242A JP2002069846A (en) 2000-09-06 2000-09-06 Polyester fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000270242A JP2002069846A (en) 2000-09-06 2000-09-06 Polyester fiber structure

Publications (1)

Publication Number Publication Date
JP2002069846A true JP2002069846A (en) 2002-03-08

Family

ID=18756713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000270242A Withdrawn JP2002069846A (en) 2000-09-06 2000-09-06 Polyester fiber structure

Country Status (1)

Country Link
JP (1) JP2002069846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371470A (en) * 2001-06-13 2002-12-26 Komatsu Seiren Co Ltd Modified fiber material and method for producing the same
JP2015527498A (en) * 2012-07-02 2015-09-17 ハンツマン・テキスタイル・エフェクツ(ジャーマニー)・ゲーエムベーハーHuntsman Textile Effects(Germany)Gmbh Methods and compositions for dyeing or finishing fibrous materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371470A (en) * 2001-06-13 2002-12-26 Komatsu Seiren Co Ltd Modified fiber material and method for producing the same
JP4684472B2 (en) * 2001-06-13 2011-05-18 小松精練株式会社 Modified fiber material and manufacturing method thereof
JP2015527498A (en) * 2012-07-02 2015-09-17 ハンツマン・テキスタイル・エフェクツ(ジャーマニー)・ゲーエムベーハーHuntsman Textile Effects(Germany)Gmbh Methods and compositions for dyeing or finishing fibrous materials

Similar Documents

Publication Publication Date Title
Cai et al. Effect of atmospheric plasma treatment on desizing of PVA on cotton
EP1703015B1 (en) Fiber-treating liquid, modified cloth, and process for producing the same
JP2002069846A (en) Polyester fiber structure
JP3196577B2 (en) pH buffering hygroscopic acrylic fiber and method for producing the same
Kawahara et al. Mechanical properties of tussah silk fibers treated with methacrylamide
JP2016084564A (en) Manufacturing method of modified cellulose fiber and modified cellulose fiber manufactured thereby
JP4213976B2 (en) Deodorant fiber
JP6655648B2 (en) Modified cellulose fiber
EP4092185A1 (en) Fibrillated regenerated cellulose fiber, and fabric using same
JP2000017575A (en) Modified polyester-based fiber-structured material and production thereof
JP4904588B2 (en) Amino acid-based organic polymer-containing fabric excellent in washing durability and method for producing such fabric
JP4314501B2 (en) Hygroscopic polyester fiber molded product
JP2007009337A (en) Method for processing polyester/cotton fabric and processed product
WO2004025016A1 (en) Modified fabric and process for its production
JP3235092B2 (en) Basic gas absorbing fiber and method for producing the same
JP4235861B2 (en) Comfortable lightweight bulky polyester fiber molded product
JPH0268365A (en) Graft polymerization processing for silk
JP2000143600A (en) Complex of organic peroxide or azo-based polymerization initiator, fiber structure using the same and its production
JP2001172870A (en) Moisture-absorbing fiber structure
KR101446059B1 (en) Manufacturing method of basis yarns and Multi-function towels improved drying therefrom
KR790001156B1 (en) Finishing method for silk
JPH1136174A (en) Filling of gel into hollow fiber
JP2015166502A (en) polyester fiber structure
JP2003027372A (en) Treating agent for fiber, and fiber structure using the same and its production
JPH0790774A (en) Water-absorption treatment of synthetic fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090327