JP2002069505A - Granulation of metal powder or ceramic powder, its production method and method for producing sintered material using the granulated powder as raw material - Google Patents

Granulation of metal powder or ceramic powder, its production method and method for producing sintered material using the granulated powder as raw material

Info

Publication number
JP2002069505A
JP2002069505A JP2000255702A JP2000255702A JP2002069505A JP 2002069505 A JP2002069505 A JP 2002069505A JP 2000255702 A JP2000255702 A JP 2000255702A JP 2000255702 A JP2000255702 A JP 2000255702A JP 2002069505 A JP2002069505 A JP 2002069505A
Authority
JP
Japan
Prior art keywords
powder
granulated
binder
viscosity
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000255702A
Other languages
Japanese (ja)
Inventor
Yoshihisa Noro
良久 野呂
Yoshinari Amano
良成 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIMIZU SHOKUHIN KK
Shimizu Shokuhin Kaisha Ltd
Allied Material Corp
Original Assignee
SHIMIZU SHOKUHIN KK
Shimizu Shokuhin Kaisha Ltd
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIMIZU SHOKUHIN KK, Shimizu Shokuhin Kaisha Ltd, Allied Material Corp filed Critical SHIMIZU SHOKUHIN KK
Priority to JP2000255702A priority Critical patent/JP2002069505A/en
Priority to CN 01121760 priority patent/CN1272126C/en
Publication of JP2002069505A publication Critical patent/JP2002069505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problems that, in a sintered material used in the process of granulating the fine powder of metal powder, there has been a danger of causing ignition or vaporization, further, there has been no binders having low concentration and exhibiting high viscosity, whereby the formation of a homogeneous slurried viscous liquid with metal powder having remarkably different specific gravity has been impossible, moreover, there has been a need of performing a degreasing stage in the existent binders, additionally, there has been a need of using die steel withstanding high pressure in the conventional powder metallurgy method, and further, the formation of a product having a complicated shape has been impossible. SOLUTION: As a binder, natural high-molecular polysaccharides having sol viscosity of 2% concentration and exhibiting viscosity of >=300 mPa.s are used. As the natural high-molecular polysaccharides, particularly, high viscosity agar is desirable. The granulated body using the above binder has the characteristics of being extremely high in rigidity and further has the characteristics of being enough in workability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本件発明は一般には金属粉末
やセラミック粉末を圧縮して成形体を形成し、当該成形
体を燒結して剛性のある燒結品を製造する粉末冶金法に
関する。より詳細には成形前の原料粉末の新規な造粒方
法や、該造粒方法によって得られた造粒粉末を圧縮成形
する方法や、更には、該成形体に機械加工を施すことに
よって、より複雑な形状の燒結品を得ることに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a powder metallurgy method for compressing metal powder or ceramic powder to form a compact, and sintering the compact to produce a rigid sintered product. More specifically, a novel granulation method of the raw material powder before molding, a method of compression-molding the granulated powder obtained by the granulation method, and further, by subjecting the molded body to mechanical processing, It relates to obtaining complex shaped sinters.

【0002】[0002]

【従来の技術】金属粉末を造粒して金属造粒粉を形成
し、その造粒粉を用いて圧縮成型/脱脂/燒結の諸工程
を経ることによって所望の部品を形成する粉末冶金法の
基本的な技術はかなり以前から開発され産業界で広く使
用されている。その一方で、金属の熔製材を機械加工に
よって所定の形状に削り出す切削加工法はそれ以前から
より広く使用されている。
2. Description of the Related Art In a powder metallurgy method for forming a desired part by granulating a metal powder to form a metal granulated powder and performing various steps of compression molding / degreasing / sintering using the granulated powder. Basic technologies have been developed for quite some time and are widely used in industry. On the other hand, a cutting method of cutting a molten metal into a predetermined shape by machining has been widely used from before.

【0003】金属の熔製材を機械加工によって所定の形
状に削り出す切削加工法では、切削屑が大量に発生す
る。一般にこれらの切削屑は、スクラップ価格の暴落以
降、経済的な理由により、リサイクルされることなく埋
め立て等の方法で処理されている。しかし最近では環境
保護の観点から、特に、産業廃棄物の処理問題等の解決
策の一つの方法として、切削屑を大量に発生するような
切削加工法よりも、切削屑の発生が極めて少ないという
利点を持つ粉末冶金法による燒結部品の大量使用が真剣
に検討されている。
[0003] In a cutting method in which a molten metal is cut into a predetermined shape by machining, a large amount of cutting chips is generated. Generally, these chips are disposed of by landfill or the like without being recycled for economic reasons after the fall in scrap prices. However, recently, from the viewpoint of environmental protection, in particular, as one of the solutions to the problem of treating industrial waste, the generation of cutting chips is extremely small as compared with a cutting method that generates a large amount of cutting chips. The mass use of sintered parts by powder metallurgy with advantages has been seriously considered.

【0004】これまで粉末冶金法では金属粉末の微細粉
を有機高分子や有機溶剤を結合材として造粒し、金属粉
末の流動性を高め、こうして得られた金属造粒粉を使用
することで自動計量や自動成型が可能となり、これによ
り一層均質な圧縮成型体が得られている。その後、この
成型体を脱脂処理し、焼結炉内にて焼結することにより
燒結体を得ている。一軸成型では得られない複雑な形状
の燒結体を製造する場合には、本燒結の前に仮燒結の工
程を設け、仮燒結で得られた仮燒結体を機械加工し、そ
の後、該機械加工体を本焼結することにより複雑な形状
の燒結体を製造している。
Heretofore, in the powder metallurgy method, a fine powder of a metal powder is granulated by using an organic polymer or an organic solvent as a binder to increase the fluidity of the metal powder, and the thus obtained metal granulated powder is used. Automatic weighing and automatic molding have become possible, which has resulted in a more homogeneous compression molded body. Thereafter, the molded body is degreased and sintered in a sintering furnace to obtain a sintered body. When manufacturing a sintered body having a complicated shape that cannot be obtained by uniaxial molding, a pre-sintering step is provided before the main sintering, and the pre-sintered body obtained by the pre-sintering is machined. By sintering the body, a sintered body with a complicated shape is manufactured.

【0005】[0005]

【発明が解決しようとする課題】粉末冶金法で使用され
る原料粉末の粒径は数ミクロンから数十ミクロンと幅広
いが、粒径が数ミクロンの微粉の場合は特に粉末の流動
性が悪く、成型体の密度がばらつき、それが原因で焼結
収縮が不均一となり、焼結体の寸法精度は所定の値より
悪化する。この問題を解決するために金属粉末を予め造
粒しこの造粒した粉末を使用して焼結成形している。金
属粉末の微粉を造粒する過程で、結合材として、ワック
スや、アクリル樹脂、樟脳等の水に溶解しない有機高分
子化合物を、メチレンクロライド等の有機溶剤に溶かし
て使用している。有機高分子化合物に由来する残留炭素
が過剰に存在すると焼結時の収縮阻害を引き起こした
り、焼結体の機械的特性値を低下させる。この問題を解
決するため、結合材として使用したワックス、アクリル
樹脂や樟脳等の水に溶解しない有機高分子化合物を取除
く脱脂工程が必須であり、更にこの工程は特殊な設備と
技術を要したり、有害な分解ガスを放出したり、又は悪
臭発生の原因となっている。更に有機溶剤は発火の危険
性があったり、大気中に気化して放出され易く、大気汚
染の要因となり易いという課題がある。
The particle size of the raw material powder used in the powder metallurgy method is as wide as several microns to several tens of microns, but in the case of fine powder having a particle size of several microns, the fluidity of the powder is particularly poor. The density of the molded body varies, which causes uneven sintering shrinkage, and the dimensional accuracy of the sintered body becomes worse than a predetermined value. In order to solve this problem, a metal powder is granulated in advance, and sinter molding is performed using the granulated powder. In the process of granulating the fine metal powder, an organic polymer compound that does not dissolve in water, such as wax, an acrylic resin, or camphor, is dissolved in an organic solvent such as methylene chloride and used as a binder. Excessive residual carbon derived from the organic polymer compound causes inhibition of shrinkage during sintering and lowers the mechanical properties of the sintered body. In order to solve this problem, a degreasing process for removing the organic polymer compounds that do not dissolve in water such as wax, acrylic resin and camphor used as a binder is indispensable, and this process requires special equipment and technology. It emits harmful decomposition gas or generates odor. Further, there is a problem that the organic solvent has a risk of ignition, is easily vaporized and released into the atmosphere, and easily causes air pollution.

【0006】粉末冶金法の特長の一つに、複数の金属材
料を任意の割合で混ぜあわせることにより、特異な性質
を有する合金を容易に得ることが出来るということがあ
る。しかしそのためには、合金形成に必要な素材で極端
に比重の異なる金属粉末、例えば、タングステンと銅、
モリブデンと銅、更にはタングステンとアルミニューム
等の混合粉でも均質に造粒されなければならない。例え
ば噴霧乾燥法で均質に造粒するためには、極端に比重の
異なる金属粉末の混合体と結合材とからなるスラリ−状
粘性液体をポンプで吸い上げ、これを高速度回転する噴
霧装置へ供給しなければならない。このような金属粉末
の混合体や結合材が均質なスラリー状粘性液体を構成す
るためには、低濃度で高粘度を示す結合材を選定しなけ
ればならないと言う課題がある。
One of the features of the powder metallurgy method is that an alloy having specific properties can be easily obtained by mixing a plurality of metal materials at an arbitrary ratio. However, for that purpose, metal powders with extremely different specific gravities in the materials necessary for alloy formation, for example, tungsten and copper,
Even a powder mixture of molybdenum and copper, or even a mixture of tungsten and aluminum, must be uniformly granulated. For example, in order to granulate uniformly by the spray drying method, a slurry-like viscous liquid consisting of a mixture of metal powders having extremely different specific gravities and a binder is sucked up by a pump and supplied to a spraying device rotating at a high speed. Must. In order for such a mixture of metal powders and binder to form a homogeneous slurry-like viscous liquid, there is a problem that a binder having low concentration and high viscosity must be selected.

【0007】噴霧乾燥法では、金属粉末の混合体へ、結
合材としての機能を果たす有機高分子化合物と成形時の
充填性の改善や金型のかじりを防止する目的でワックス
や脂肪酸類とを混合して造粒しているが、これらの結合
材を使用した時は燒結前に脱脂工程を経なければならな
いと言う課題がある。
In the spray drying method, an organic polymer compound which functions as a binder and a wax or a fatty acid are added to a mixture of a metal powder for the purpose of improving the filling property during molding and preventing galling of a mold. Although they are mixed and granulated, there is a problem that when these binders are used, a degreasing step must be performed before sintering.

【0008】鉄系の合金で塑性変形し易い粉末を原料と
する場合、燒結密度を高めるためには原料金属粉末が塑
性変形する程度の高圧例えば500〜700MPaの高
い圧力で成形する必要がある。そのため金型を製作する
場合にはこのような高圧に耐え得る金型鋼材を選択しな
ければならないと言う課題がある。
In the case of using a powder of an iron-based alloy which is easily plastically deformed as a raw material, it is necessary to form the raw metal powder at a high pressure such as a plastic deformation of the raw metal powder, for example, a high pressure of 500 to 700 MPa in order to increase the sintering density. Therefore, when manufacturing a mold, there is a problem that a mold steel material capable of withstanding such a high pressure must be selected.

【0009】成形作業は基本的には一軸方向から加圧し
て成形している。しかし、最近ではスライド機構を組み
込んだ複雑な型構造を有する金型を用いて、より複雑な
形状の成型品を得るための努力が行われているが、それ
にも限界がある。更に複雑な形状を得るためには成型品
を機械加工することが考えられる。しかし、成型品の強
度が低いため切削工具の回転に伴う破壊力に耐えられな
かったり、切削工具の摩擦熱で成形体が膨れたり割れた
りすると言う課題がある。
In the molding operation, the molding is basically performed by applying a pressure from a uniaxial direction. However, recently, efforts have been made to obtain a molded product having a more complicated shape using a mold having a complicated mold structure incorporating a slide mechanism, but there is a limit to that. In order to obtain a more complicated shape, it is conceivable to machine a molded product. However, there is a problem that the strength of the molded product is low, such that the molded product cannot withstand the destructive force caused by the rotation of the cutting tool, or the molded body expands or cracks due to frictional heat of the cutting tool.

【0010】タングステン系の金属粉末を原料とする場
合を除いて、圧縮成型では得られなかった複雑な形状の
物を得るため、本燒結の前に通常の燒結温度よりも低い
温度での仮燒結体を得、この仮燒結体を機械加工してい
る。しかしこの機械加工に伴って発生する切削屑はリサ
イクルには適さず、埋立て処分をしなければならないと
言う課題がある。
[0010] Except for the case where a tungsten-based metal powder is used as a raw material, in order to obtain a product having a complicated shape that cannot be obtained by compression molding, pre-sintering is performed at a temperature lower than a normal sintering temperature before main sintering. The body is obtained and the calcined body is machined. However, there is a problem that the cutting waste generated by this machining is not suitable for recycling and must be landfilled.

【0011】[0011]

【課題を解決するための手段】上記諸課題を解決するた
め、本件発明においては、結合材として、ゾル粘度が2
%濃度で、300mPa・s以上の粘性を示す天然高分
子多糖類を使用する。とりわけ天然高分子多糖類の一種
である高粘度寒天が望ましい。
In order to solve the above-mentioned problems, in the present invention, a sol having a sol viscosity of 2 is used as a binder.
A natural high molecular weight polysaccharide having a viscosity of 300 mPa · s or more at a% concentration is used. In particular, high-viscosity agar which is a kind of natural high molecular polysaccharide is desirable.

【0012】[0012]

【発明の実施の形態】以下に本発明の好ましい実施例に
ついて述べる。しかしながら、本発明はこれらの実施形
態に限定されるものではないことは理解されるべきであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. However, it should be understood that the invention is not limited to these embodiments.

【実施例1】には比重の極端に異なる原料粉の圧縮成形
について述べる。
Example 1 describes compression molding of raw material powders having extremely different specific gravities.

【実施例2】では高比重の炭化タングステン系の圧縮成
形について述べる。
Embodiment 2 In the second embodiment, compression molding of a tungsten carbide material having a high specific gravity will be described.

【実施例3】では塑性変形しやすいステンレス材のSU
S316Lの粗大粉を原料とする圧縮成形について述べ
る。
[Embodiment 3] In the case of stainless steel SU which is easily plastically deformed
The compression molding using the coarse powder of S316L as a raw material will be described.

【0013】[0013]

【実施例1】平均粒径2.0ミクロンのタングステン粉
末に平均粒径2.0ミクロンのカーボニルニッケル及カ
ーボニル鉄粉末をそれぞれが3重量%、1.5重量%に
なるように添加し、アトライタ-を用いて湿式混合を2
時間行った後、乾燥して原料粉末とする。次に、この原
料粉末9.05kgにゾル粘度が2%濃度で900mP
a・sの粘性を示す高粘度寒天溶液1.72kgを加
え、60℃付近の温度で保温しながら攪拌して泥状液体
にした。この泥状液体を25000rpm、入口温度1
60℃、出口温度78℃の条件のスプレ-ドライヤ−に
噴霧して30〜50ミクロンの球状の造粒粉末を作成し
た。この造粒粉末を使用した成形体の耐圧縮強度を表−
1に示す。更に、比較のために、従来から通常の粉末冶
金法で使用されているアクリル樹脂とメチレンクロライ
ドを結合材とする100MPaと300MPaの成形圧
力で得られた成形体の耐圧縮強度も示す。
EXAMPLE 1 Carbonyl nickel and carbonyl iron powder having an average particle size of 2.0 micron were added to tungsten powder having an average particle size of 2.0 micron so as to be 3% by weight and 1.5% by weight, respectively. -Use 2 for wet mixing
After performing for a time, it is dried to obtain a raw material powder. Next, 9.05 kg of this raw material powder had a sol viscosity of 900 mP at a 2% concentration.
1.72 kg of a high-viscosity agar solution having a viscosity of a · s was added, and the mixture was stirred at a temperature of about 60 ° C. while keeping the temperature at around 60 ° C. to form a muddy liquid. This muddy liquid was supplied at 25,000 rpm and the inlet temperature was 1
It was sprayed to a spray dryer at 60 ° C. and an outlet temperature of 78 ° C. to form a spherical granulated powder of 30 to 50 μm. Table 1 shows the compressive strength of compacts using this granulated powder.
It is shown in FIG. Further, for comparison, the compressive strength of a molded body obtained at a molding pressure of 100 MPa and 300 MPa using an acrylic resin and methylene chloride as binders, which has been conventionally used in a normal powder metallurgy method, is also shown.

【表1】 この表−1からも明らかなように本件発明の結合材の7
0MPaの耐圧縮強度は従来からの結合材の300MP
aの耐圧縮強度よりも高い値を示した。
[Table 1] As is clear from Table 1, 7 of the binder of the present invention was used.
Compressive strength of 0MPa is 300MP of conventional binder
A value higher than the compressive strength of a.

【0014】この造粒粉末を所定の形状の金型に入れ3
00MPaの圧力で加圧成形して成形体を得た後、この
成形体を400℃の水素雰囲気中で寒天を分解除去した
結果、この脱ガス体の残留炭素量を測定すると、0.0
01wt%であり出発原料中のタングステンと同等のレ
ベルであった。
The granulated powder is placed in a mold having a predetermined shape and
After obtaining a molded body by pressure molding at a pressure of 00 MPa, agar was decomposed and removed in a hydrogen atmosphere at 400 ° C. As a result, the residual carbon content of the degassed body was measured.
01 wt%, which was equivalent to the level of tungsten in the starting material.

【0015】次に、この脱ガス体を水素雰囲気中、14
60℃の炉中で焼結させて、ニッケル-鉄の結合層が溶
融する液相焼結を行い、タングステン粒径が50ミクロ
ンの焼結体を得た。燒結品の寸法精度は±0.01mm
以下と極めて精度の高い燒結品が得られ、燒結品の硬度
はビッカ−ス硬さで330を示し、カシメ加工に十分耐
える塑性変形能を有しており、実用に耐える物であっ
た。
Next, this degassed body is placed in a hydrogen atmosphere at 14
Sintering was performed in a furnace at 60 ° C. to perform liquid phase sintering in which the nickel-iron bonding layer was melted to obtain a sintered body having a tungsten particle size of 50 μm. The dimensional accuracy of sintered products is ± 0.01mm
A sintered product with extremely high accuracy as shown below was obtained, and the hardness of the sintered product was 330 in Vickers hardness, and it had plastic deformability enough to withstand caulking and was practically usable.

【0016】[0016]

【実施例2】平均粒径2.5ミクロンのタングステンカ
−バイト粉末を82%、炭化チタン粉末を8%、及び平
均粒径2.0ミクロンのコバルト粉末を10%割合で秤
量し、アトライタ-を用いて湿式混合を50時間行った
後、乾燥して原料粉末とする。次に、この原料粉末7.
5kgにゾル粘度が2%濃度で900mPa・sの粘性
を示す高粘度寒天溶液1.72kgを加え、60℃付近
の温度で保温しながら攪拌して泥状液体にした。この泥
状液体を25000rpm、入口温度160℃、出口温
度78℃の条件のスプレ-ドライヤ−に噴霧して20〜
30ミクロンの球状の造粒粉末を作成した。
EXAMPLE 2 82% of a tungsten carbide powder having an average particle size of 2.5 microns, 8% of a titanium carbide powder, and 10% of a cobalt powder having an average particle size of 2.0 microns were weighed at a ratio of attritor. After performing wet mixing for 50 hours using, is dried to obtain a raw material powder. Next, this raw material powder 7.
To 5 kg, 1.72 kg of a high-viscosity agar solution having a sol viscosity of 2% and a viscosity of 900 mPa · s was added, and the mixture was stirred at a temperature of about 60 ° C. while stirring to form a muddy liquid. This muddy liquid is sprayed onto a spray dryer having a condition of 25000 rpm, an inlet temperature of 160 ° C. and an outlet temperature of 78 ° C.
A 30 micron spherical granulated powder was prepared.

【0017】この造粒粉末を所定の形状の金型に入れ1
00MPaの圧力で加圧成形して成形体を得た後、この
成形体を水素雰囲気中、400℃の炉中を通過させて寒
天を分解除去し、真空中で1450℃で焼結させた。そ
の後、1350℃、1時間、100MPa、アルゴン中
でHIP処理を施し燒結品を得た。この燒結品の抗折力
を測定した結果、3〜3.7GPaであり、通常の超硬
合金と同等であった。
The granulated powder is placed in a mold having a predetermined shape.
After molding under pressure at a pressure of 00 MPa to obtain a molded body, the molded body was passed through a furnace at 400 ° C. in a hydrogen atmosphere to decompose and remove agar and sintered at 1450 ° C. in a vacuum. Thereafter, HIP treatment was performed at 1350 ° C. for 1 hour in argon at 100 MPa to obtain a sintered product. As a result of measuring the transverse rupture strength of this sintered product, it was 3-3.7 GPa, which was equivalent to that of a normal cemented carbide.

【0018】[0018]

【実施例3】平均粒径66ミクロンのSUS316Lの
水アトマイズ粉1kgにゾル粘度が2%濃度で900m
Pa・sの粘性を示す高粘度寒天溶液を0.4kgを加
え十分に攪拌して冷却固化させた後、この固化したブロ
ックを粉砕してから60〜80℃で乾燥させる。更に粉
砕と篩い分けを繰り返して297ミクロン以下の粒径の
造粒粉を作成した。このSUS316Lのステンレス造
粒粉を200MPa、400MPa及び600MPaで
加圧成形した成形体の圧縮強さを測定した結果を表−2
に示す。更に、比較のために、従来から通常の粉末冶金
法で使用されているポリビニルアルコールとステアリン
酸を結合材とする600MPaの成形圧力で得られた成
形体の耐圧縮強度を示す。
Example 3 1 kg of SUS316L water atomized powder having an average particle diameter of 66 microns has a sol viscosity of 900 m at a concentration of 2%.
After adding 0.4 kg of a high-viscosity agar solution having a viscosity of Pa · s, sufficiently stirring and solidifying by cooling, the solidified block is pulverized and dried at 60 to 80 ° C. Further, pulverization and sieving were repeated to prepare a granulated powder having a particle size of 297 microns or less. Table 2 shows the results of measuring the compressive strength of a compact obtained by press-molding this SUS316L stainless steel granulated powder at 200 MPa, 400 MPa, and 600 MPa.
Shown in Further, for comparison, the compressive strength of a molded body obtained at a molding pressure of 600 MPa using polyvinyl alcohol and stearic acid as a binder, which has been conventionally used in a normal powder metallurgy method, is shown.

【表2】 この表−2からも明きらかなように、本件発明の結合材
の200〜600MPaの耐圧縮強度は従来からの結合
材の600MPaの耐圧縮強度よりも遥かに高い値を示
した。更に、本件発明の方法による造粒粉を400MP
aで圧縮成形した成型品をエンドミルで高速切削した状
態を下記写真(1)に示す。 この写真に示すように、エッジ部にも欠けが認められな
い事は明らかである。
[Table 2] As is clear from Table 2, the compressive strength of the binder of the present invention at 200 to 600 MPa was much higher than the compressive strength of 600 MPa of the conventional binder. Further, the granulated powder obtained by the method of the present invention is 400MP.
The following photograph (1) shows a state where the molded product obtained by compression molding in a is cut at a high speed by an end mill. As shown in this photograph, it is clear that no chipping is observed in the edge portion.

【0019】この造粒粉末を20×60mmの投影寸法
の形状の金型に造粒粉を90g入れ、400MPaの圧
力で加圧成形して成形体を得た後、直径8mmの2枚刃
ハイス鋼エンドミルを用いて、切り込み深さ4mm、エ
ンドミルの回転数2000rpm、1刃当たりの送り
0.05mmの加工条件で溝切り加工を行い、真空中で
1350℃で2時間保持して焼結品を得た。焼結収縮率
9.65%、密度6.85g/mm3の焼結品が得ら
れ、従来の粉末冶金法による焼結品と同等であった。
90 g of the granulated powder is placed in a mold having a projection size of 20 × 60 mm, and is pressed under a pressure of 400 MPa to obtain a compact. Then, a two-blade high-speed steel sheet having a diameter of 8 mm is obtained. Using a steel end mill, grooving is performed under the processing conditions of a cutting depth of 4 mm, a rotation speed of the end mill of 2,000 rpm, and a feed of 0.05 mm per tooth, and the sintered product is held at 1350 ° C. for 2 hours in a vacuum. Obtained. A sintered product with a sintering shrinkage of 9.65% and a density of 6.85 g / mm 3 was obtained, which was equivalent to a sintered product by a conventional powder metallurgy method.

【0020】[0020]

【発明の効果】金属粉末の微粉を造粒する課程で、結合
材として使用するワックス、アクリル樹脂や樟脳等の水
に溶解しない有機高分子化合物を取除く脱脂工程が必須
であり、更に、この工程では特殊な設備と技術を要した
り、有害な分解ガスを放出したり、悪臭の原因となって
いるという課題、更には有機溶剤が発火の危険性があっ
たり、大気中に気化して放出され易く大気汚染の要因と
なり易いと言う諸課題は、天然高分子多糖類を結合材と
して使用することにより全て解決出来る。天然高分子多
糖類とりわけ寒天は水のみを溶媒としており、発火の危
険性もなければ大気中に揮発して大気を汚染する恐れは
全くないからである。
In the process of granulating the fine metal powder, a degreasing step for removing organic high molecular compounds which are not dissolved in water, such as wax, acrylic resin and camphor, used as a binder is essential. The process requires special equipment and technology, releases harmful decomposition gases, causes odors, and has the danger of ignition of organic solvents and vaporization into the atmosphere The problems of being easily released and causing air pollution can be all solved by using a natural high molecular polysaccharide as a binder. This is because natural high molecular polysaccharides, especially agar, use only water as a solvent, and there is no risk of volatilizing into the atmosphere and polluting the atmosphere without danger of ignition.

【0021】また、ゾル粘度が2%濃度300mPa・
sの粘性を示す天然高分子多糖類の一種類である高粘度
寒天を結合材として使用することにより、極端に比重の
異なる金属粉末と、2%寒天溶液と、の混合物であるス
ラリ−状粘性液体の70℃における粘度は、500mP
a・s以上の高い粘性を示し、更に100rpm以上の
回転数を有する攪拌機の助けを借りることにより、上述
の極端に比重の異なる金属粉末が噴霧乾燥中に偏在して
造粒されたり、結合材の比率の異なる造粒粉になるとい
う課題は完全に解消出来る。
The sol has a 2% concentration of 300 mPa.
The use of high-viscosity agar, which is a kind of natural high molecular polysaccharide exhibiting viscosity of s, as a binder makes it possible to obtain a slurry-like viscous mixture of a metal powder having an extremely different specific gravity and a 2% agar solution. The viscosity of the liquid at 70 ° C. is 500 mP
With the help of a stirrer having a high viscosity of not less than a · s and further having a rotation speed of not less than 100 rpm, the above-mentioned metal powders having extremely different specific gravities are unevenly distributed during spray drying and granulated, Can be completely solved.

【0022】噴霧乾燥法において、有機高分子化合物
や、ワックスや、脂肪酸類等を混合した結合材を使用し
て造粒した時は燒結前に脱脂行程を経なければならなか
ったが、本件発明のように結合材として寒天を使用する
ことにより脱脂工程を完全に省略することが出来ること
を発明者は既に知得している(特公平7−68566
号)。
In the spray drying method, when granulation was performed using a binder mixed with an organic polymer compound, wax, fatty acid, etc., a degreasing step had to be performed before sintering. The inventor has already known that the degreasing step can be omitted completely by using agar as a binder as described above (Japanese Patent Publication No. Hei 7-68566).
issue).

【0023】鉄系の合金で塑性変形し易い粉末を原料と
する場合、燒結密度を高めるためには高圧に耐える金型
鋼材を選択しなければならなかったが、天然高分子多糖
類を結合材として使用することにより、かかる選択は不
要となった。上記表−1からも明らかなように、本件発
明の結合材の70MPaの耐圧縮強度は従来からの結合
材の300MPaの耐圧縮強度よりも高い値を示してい
るからである。
When using a powder of an iron-based alloy that is easily deformed by plastics as a raw material, a mold steel material that can withstand high pressure had to be selected in order to increase the sintering density. As a result, such a selection became unnecessary. As is clear from the above Table 1, the 70 MPa compressive strength of the binder of the present invention is higher than the 300 MPa compressive strength of the conventional binder.

【0024】更に、天然高分子多糖類を結合材として使
用し、平均粒径66ミクロンのSUS316Lの水アト
マイズ粉1kgにゾル粘度が2%濃度で900mPa・
sの粘度を示す高粘度寒天溶液を0.4kgを加え十分
に撹拌して冷却固化させた後、この固化したブロックを
粉砕してから60〜80℃で乾燥させ、粉砕と篩い分け
を繰り返して297ミクロン以下の粒径の造粒粉を作成
し、このSUS316Lのステンレス造粒粉を200M
Pa、400MPa及び600MPaで加圧成形した成
形体を形成することにより、上記表−2に示すように、
従来の結合材を使用した成形体の耐圧縮強度よりも遥か
に高い値を有する成形体の製造が可能となった。従っ
て、本件発明によれば、一層複雑な形状を得るために、
高い耐圧縮強度を有する成形体を機械加工した場合にお
いても、膨れや割れを発生することない機械加工体を得
ることが可能となったのである。
Further, using a natural polymer polysaccharide as a binder, 1 kg of SUS316L water atomized powder having an average particle size of 66 microns has a sol viscosity of 900 mPa · s at a 2% concentration.
After adding 0.4 kg of a high-viscosity agar solution having a viscosity of s and sufficiently stirring and cooling and solidifying, the solidified block is pulverized and dried at 60 to 80 ° C., and the pulverization and sieving are repeated. A granulated powder having a particle size of 297 microns or less is prepared.
By forming a molded body under pressure at Pa, 400 MPa and 600 MPa, as shown in Table 2 above,
It has become possible to produce a molded article having a value much higher than the compressive strength of a molded article using a conventional binder. Therefore, according to the present invention, in order to obtain a more complicated shape,
Even when a compact having high compression strength is machined, it is possible to obtain a machined body that does not cause swelling or cracking.

【0025】更に、本件発明において開示するように、
天然高分子多糖類とりわけ寒天を結合材とするSUS3
16Lのステンレス造粒粉を、400MPaで加圧成形
した成形体をエンドミルで高速切削する時に発生する切
削屑は、仮燒結のような弱い燒結状態で元の原料粉とは
形態をまったく異にしてしまう事はないため、そのまま
回収することにより、圧縮成型の造粒粉として再使用し
たり、または、造粒行程に戻して新規の原料粉に混ぜて
再使用出来る。よってこれまでのように、切削屑を埋め
立て処分することによる環境汚染の問題は確実に解消す
ることが出来るのである。
Further, as disclosed in the present invention,
SUS3 using natural polymer polysaccharides, especially agar as binder
Chips generated when 16L stainless steel granulated powder is pressed at 400MPa with an end mill at a high speed are cut in a weakly sintering state such as temporary sintering and have completely different form from the original raw material powder. Since it is not lost, it can be reused as granulated powder for compression molding by collecting it as it is, or can be returned to the granulation process and mixed with new raw material powder for reuse. Therefore, the problem of environmental pollution caused by landfill disposal of cutting chips can be surely solved as before.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年8月28日(2000.8.2
8)
[Submission date] August 28, 2000 (2008.2.
8)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】[0018]

【実施例3】平均粒径66ミクロンのSUS316Lの
水アトマイズ粉1kgにゾル粘度が2%濃度で900m
Pa・sの粘性を示す高粘度寒天溶液を0.4kgを加
え十分に攪拌して冷却固化させた後、この固化したブロ
ックを粉砕してから60〜80℃で乾燥させる。更に粉
砕と篩い分けを繰り返して297ミクロン以下の粒径の
造粒粉を作成した。このSUS316Lのステンレス造
粒粉を200MPa、400MPa及び600MPaで
加圧成形した成形体の圧縮強さを測定した結果を表−2
に示す。更に、比較のために、従来から通常の粉末冶金
法で使用されているポリビニルアルコールとステアリン
酸を結合材とする600MPaの成形圧力で得られた成
形体の耐圧縮強度を示す。 この表−2からも明きらかなように、本件発明の結合材
の200〜600MPaの耐圧縮強度は従来からの結合
材の600MPaの耐圧縮強度よりも遥かに高い値を示
した。更に、本件発明の方法による造粒粉を400MP
aで圧縮成形した成型品をエンドミルで高速切削した状
態を下記写真(1)に示す。 この写真に示すように、エッジ部にも欠けが認められな
い事は明らかである。
Example 3 1 kg of SUS316L water atomized powder having an average particle diameter of 66 microns has a sol viscosity of 900 m at a concentration of 2%.
After adding 0.4 kg of a high-viscosity agar solution having a viscosity of Pa · s, sufficiently stirring and solidifying by cooling, the solidified block is pulverized and dried at 60 to 80 ° C. Further, pulverization and sieving were repeated to prepare a granulated powder having a particle size of 297 microns or less. Table 2 shows the results of measuring the compressive strength of a compact obtained by press-molding this SUS316L stainless steel granulated powder at 200 MPa, 400 MPa, and 600 MPa.
Shown in Further, for comparison, the compressive strength of a molded body obtained at a molding pressure of 600 MPa using polyvinyl alcohol and stearic acid as a binder, which has been conventionally used in a normal powder metallurgy method, is shown. As is clear from Table 2, the compressive strength of the binder of the present invention at 200 to 600 MPa was much higher than the compressive strength of 600 MPa of the conventional binder. Further, the granulated powder obtained by the method of the present invention is 400MP.
The following photograph (1) shows a state where the molded product obtained by compression molding in a is cut at a high speed by an end mill. As shown in this photograph, it is clear that no chipping is observed in the edge portion.

フロントページの続き (72)発明者 天野 良成 山形県酒田市大浜二丁目1番12号 東京タ ングステン株式会社酒田事務所内 Fターム(参考) 4G030 GA01 GA05 GA14 4K018 BA09 BA11 BA13 BC11 CA07Continued on the front page (72) Inventor Yoshinari Amano 2-1-1, Ohama, Sakata-shi, Yamagata F-term (reference) in Sakata Office, Tokyo Tungsten Co., Ltd. 4G030 GA01 GA05 GA14 4K018 BA09 BA11 BA13 BC11 CA07

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 燒結材料として使用するための金属粉末
又はセラミック粉末より成る造粒粉末であって、天然高
分子多糖類を結合材として造粒したことを特徴とする造
粒粉末。
1. A granulated powder comprising a metal powder or a ceramic powder for use as a sintering material, characterized by being granulated using a natural polymer polysaccharide as a binder.
【請求項2】 請求項1に記載の造粒粉末を成形する造
粒粉末成形方法であって、天然高分子多糖類を結合材と
して使用することを特徴とする造粒粉末成形方法。
2. A granulated powder molding method for molding the granulated powder according to claim 1, wherein a natural polymer polysaccharide is used as a binder.
【請求項3】 請求項2において、天然高分子多糖類が
寒天であることを特徴とする造粒粉末成形方法。
3. The granulated powder molding method according to claim 2, wherein the natural high molecular polysaccharide is agar.
【請求項4】 請求項2又は3において、噴霧乾燥法を
用いて造粒することを特徴とする造粒粉末成形方法。
4. The granulated powder molding method according to claim 2, wherein the granulation is performed using a spray drying method.
【請求項5】 請求項3において、金属粉末又はセラミ
ック粉末に寒天水溶液を添加し、これらが均質に混合す
るまで撹拌した後、乾燥及び粉砕を行うことにより造粒
することを特徴とする造粒粉末成形方法。
5. The granulation according to claim 3, wherein an agar aqueous solution is added to the metal powder or the ceramic powder, and the mixture is stirred until they are homogeneously mixed, and then dried and pulverized to perform granulation. Powder molding method.
【請求項6】 請求項2―5のいずれか1に記載の方法
により成形された造粒粉末を圧縮成形方法及び/又は燒
結方法によって燒結材を製造する製造方法。
6. A production method for producing a sintered material by a compression molding method and / or a sintering method from the granulated powder molded by the method according to claim 2.
【請求項7】 請求項6に記載の製造方法により成形さ
れた成形体に切削加工を行い、圧縮成形のみでは得られ
ない形状を加工した後、更に燒結することによって最終
燒結材を製造する製造方法。
7. A method for producing a final sintered material by subjecting a compact formed by the production method according to claim 6 to a cutting process, processing a shape which cannot be obtained only by compression molding, and further sintering. Method.
JP2000255702A 2000-08-25 2000-08-25 Granulation of metal powder or ceramic powder, its production method and method for producing sintered material using the granulated powder as raw material Pending JP2002069505A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000255702A JP2002069505A (en) 2000-08-25 2000-08-25 Granulation of metal powder or ceramic powder, its production method and method for producing sintered material using the granulated powder as raw material
CN 01121760 CN1272126C (en) 2000-08-25 2001-07-06 Prilling of metal powder or ceramic powder and its making method and manufacture method of sintered material with prilling powder as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000255702A JP2002069505A (en) 2000-08-25 2000-08-25 Granulation of metal powder or ceramic powder, its production method and method for producing sintered material using the granulated powder as raw material

Publications (1)

Publication Number Publication Date
JP2002069505A true JP2002069505A (en) 2002-03-08

Family

ID=18744436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000255702A Pending JP2002069505A (en) 2000-08-25 2000-08-25 Granulation of metal powder or ceramic powder, its production method and method for producing sintered material using the granulated powder as raw material

Country Status (2)

Country Link
JP (1) JP2002069505A (en)
CN (1) CN1272126C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107583111A (en) * 2017-10-31 2018-01-16 张蕴萍 A kind of micro- profitization processing method of catheter surface
CN109534828B (en) * 2019-01-10 2021-08-31 广东昭信照明科技有限公司 Granulation method of silicon carbide composite ceramic material
CN111116211A (en) * 2019-12-27 2020-05-08 中铭瓷(苏州)纳米粉体技术有限公司 Preparation method of ternary nano lamellar MAX phase powder and product thereof

Also Published As

Publication number Publication date
CN1340392A (en) 2002-03-20
CN1272126C (en) 2006-08-30

Similar Documents

Publication Publication Date Title
JP3142828B2 (en) Binder system for powder injection molding
González-Gutiérrez et al. Powder injection molding of metal and ceramic parts
CA2488364C (en) Method for producing highly porous metallic moulded bodies close to the desired final contours
JPS6237302A (en) Production of metallic or alloy article
JP2006503188A (en) Near net shape metal and / or ceramic member manufacturing method
Vervoort et al. Overview of powder injection molding
CN1044727C (en) Semi-solid processed magnesium-beryllium alloys
US6554882B1 (en) Rapid tooling sintering method and compositions therefor
Basir et al. Process parameters used in macro/micro powder injection molding: an overview
JP2004517215A (en) Powder metallurgy for producing high density molded parts.
JP2002069505A (en) Granulation of metal powder or ceramic powder, its production method and method for producing sintered material using the granulated powder as raw material
JPH04329801A (en) Production of sintered parts
JP2004190051A (en) Iron based powdery mixture for power metallurgy, and production method therefor
JP2751966B2 (en) Injection molding composition
JP3569019B2 (en) Powder injection molding composition and method for producing the same
CN1121289C (en) Technology for making mechanical part
CN115283662B (en) Metal injection molding binder, feed and preparation method thereof
WO2006114849A1 (en) Miniature bearing and method for manufacturing the same
KR101115225B1 (en) Feedstock composition and method of using same for powder metallurgy forming of reactive metals
Mendonça et al. Comparison of the effect of carbide addition on particle size reduction on UNS S31803 steel chip millings
JPS5926653B2 (en) How to form cemented carbide
Heaney et al. Using Binder Jet 3D Metal Printing to Advance Metal Injection Molding
JP2002275501A (en) Method for manufacturing sintered article
CN114086015A (en) Copper-tungsten alloy part and manufacturing method thereof
CN114599466A (en) Binder composition for metal powder injection molding

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20031219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040129