JP2002068711A - Method for recovering iodine - Google Patents

Method for recovering iodine

Info

Publication number
JP2002068711A
JP2002068711A JP2000259582A JP2000259582A JP2002068711A JP 2002068711 A JP2002068711 A JP 2002068711A JP 2000259582 A JP2000259582 A JP 2000259582A JP 2000259582 A JP2000259582 A JP 2000259582A JP 2002068711 A JP2002068711 A JP 2002068711A
Authority
JP
Japan
Prior art keywords
iodine
silver
alkali
titanate
alkali titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000259582A
Other languages
Japanese (ja)
Other versions
JP4889139B2 (en
Inventor
Toshimitsu Ishii
利光 石井
Jiro Suzuki
二郎 鈴木
Masahiko Ito
雅彦 伊藤
Norio Shimizu
紀夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GODO SHIGEN SANGYO CO Ltd
GODO SHIGEN SANGYO KK
Original Assignee
GODO SHIGEN SANGYO CO Ltd
GODO SHIGEN SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GODO SHIGEN SANGYO CO Ltd, GODO SHIGEN SANGYO KK filed Critical GODO SHIGEN SANGYO CO Ltd
Priority to JP2000259582A priority Critical patent/JP4889139B2/en
Publication of JP2002068711A publication Critical patent/JP2002068711A/en
Application granted granted Critical
Publication of JP4889139B2 publication Critical patent/JP4889139B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adsorbent which adsorbs iodine selectively from an iodine-containing solution, e.g. salt water, seawater and effluent, and its method. SOLUTION: In the method for recovering iodine from the iodine-containing solution, a feature of the iodine recovery method is that the iodine-containing solution is come in contact with alkali titanate on which silver is carried.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は沃素を含む溶液、例
えば、かん水、海水、廃液から複雑な前処理を必要とす
ることなく沃素を選択的に吸着することを特徴とする沃
素の回収方法に関する。
[0001] The present invention relates to a method for recovering iodine, which comprises selectively adsorbing iodine from a solution containing iodine, for example, brackish water, seawater, or wastewater, without requiring complicated pretreatment. .

【0002】[0002]

【従来の技術】従来より、沃素を含む溶液より沃素を回
収する方法はいろいろと知られている。例えば、沃素を
含むかん水から沃素を回収する方法として、先ず、沃素
化合物を化学反応等で遊離の沃素にし、しかる後、空気
で追い出し、それを吸収するブローアウト法、或いは、
遊離した沃素を活性炭で吸着、回収する活性炭法、又は
イオン交換樹脂で吸着、回収するイオン交換樹脂法があ
る。更に、遊離の沃素を銅又は銀と反応させて沃化銅、
沃化銀の沈殿として回収する銅法、銀法等がある。これ
らの方法は、何れも沃素を含有する溶液を酸化還元して
遊離沃素にし、又は沈殿物を生成して沃素を回収するた
めに複雑な工程が必要となる。
2. Description of the Related Art Various methods have been known for recovering iodine from a solution containing iodine. For example, as a method of recovering iodine from brine containing iodine, first, an iodine compound is converted into free iodine by a chemical reaction or the like, and then expelled with air, and a blow-out method of absorbing the iodine, or
There is an activated carbon method of adsorbing and recovering liberated iodine with activated carbon, or an ion exchange resin method of adsorbing and recovering ionized resin with an ion exchange resin. Further, reacting free iodine with copper or silver, copper iodide,
There are a copper method, a silver method, and the like, which are recovered as a precipitate of silver iodide. All of these methods require complicated steps for redoxing a solution containing iodine to free iodine, or forming a precipitate to recover iodine.

【0003】[0003]

【発明が解決しようとする課題】本発明者は、上記のよ
うな複雑な工程を必要とせずに沃素を選択的に回収する
方法について種々検討した結果、沃素を化学反応により
沃化物にして、銀を担持したチタン酸アルカリと接触さ
せることで本発明の課題が達成されることを見いだし、
本発明を完成するに至ったもので、本発明の目的は沃素
を含む溶液より簡単な方法で沃素を回収する方法を提供
することにある。
As a result of various studies on a method for selectively recovering iodine without requiring the above complicated steps, the present inventors have found that iodine is converted into iodide by a chemical reaction. It has been found that the object of the present invention is achieved by contacting with silver-supported alkali titanate,
The present invention has been completed, and an object of the present invention is to provide a method for recovering iodine by a simpler method than a solution containing iodine.

【0004】[0004]

【課題を解決するための手段】即ち、本発明の要旨は、
沃素を含む溶液より沃素を回収する方法において、前記
沃素を含む溶液を、銀を担持したチタン酸アルカリに接
触させることを特徴とする沃素を回収する方法である。
そして、前記チタン酸アルカリは、アルカリ成分がカリ
ウム及び/又はナトリウムを主体として構成されるもの
であり、アルカリ成分以外にアルカリ土類金属成分を含
むものであっても良い。又、銀の担持量はチタン酸アル
カリに対して0.1〜30重量%、好ましくは1〜10
重量%であることが好ましい。
That is, the gist of the present invention is as follows.
A method for recovering iodine from a solution containing iodine, wherein the method comprises contacting the solution containing iodine with an alkali titanate supporting silver.
The alkali titanate has an alkali component mainly composed of potassium and / or sodium, and may contain an alkaline earth metal component in addition to the alkali component. The amount of silver carried is 0.1 to 30% by weight, preferably 1 to 10% by weight, based on the alkali titanate.
% By weight.

【0005】[0005]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明における沃素を含有する溶液としては特に
限定されるものではないが、例えば、かん水、海水、或
いは沃素含有廃液(例えばレントゲン造影剤製造工程か
ら発生する5−アミノ−N−アルキル−2,4,6−ト
リヨードイソフタルアミド酸0.9g/l及び沃素イオ
ン4.1g/lを含む廃液)等であり、沃素は遊離或い
は化合物の状態の何れでもよく、例えば、アルカリ金属
及びアルカリ土類金属の沃化物、沃素酸塩、沃化水素
酸、有機沃素等の形態であっても良い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The iodine-containing solution in the present invention is not particularly limited, but may be, for example, brackish water, seawater, or an iodine-containing waste liquid (for example, 5-amino-N-alkyl-2,4 generated from a radiographic contrast agent manufacturing process). Effluent containing 0.9 g / l of 1,6-triiodoisophthalamic acid and 4.1 g / l of iodine ions), and iodine may be either free or in the form of a compound. For example, alkali metal and alkaline earth metal Iodide, iodate, hydroiodic acid, organic iodine and the like.

【0006】本発明で使用するチタン酸アルカリは一般
式 MTi2n+1 〔式中、Mはアルカリ金属、は2〜8〕で示される合
成無機化合物である。チタン酸アルカリは、工業的に安
価なものであり、かつ耐薬品性に優れたものである。こ
のチタン酸アルカリの典型的な例として、六チタン酸カ
リウム(KTi13)、六チタン酸ナトリウム
(NaTi13)、八チタン酸力リウム(K
17)、四チタン酸力リウム(KTi
等を挙げることができる。また、本発明において、アル
カリ成分は前記カリウム又はナトリウムの他にリチウ
ム、ルビジウム、セシウム等のアルカリ金属であっても
良い。更に、層構造を有するチタン酸アルカリの誘導体
である水和チタン酸アルカリのようにアルカリ金属量が
少ないものも含まれると解釈されるべきである。また、
本発明において、アルカリ成分が異なった二種以上のチ
タン酸アルカリで構成されても良い。更に、本発明の前
記チタン酸アルカリにおいて、アルカリ成分の一部はマ
グネシウム、カルシウム、バリウム等のアルカリ土類金
属と置換したものであっても良い。
[0006] alkali titanate used in the present invention wherein, M is an alkali metal, n represents 2-8] formula M 2 Ti n O 2n + 1 is a synthetic inorganic compound represented by the. The alkali titanate is industrially inexpensive and has excellent chemical resistance. As typical examples of the alkali titanate, potassium hexatitanate (K 2 Ti 6 O 13 ), sodium hexatitanate (Na 2 Ti 6 O 13 ), potassium octitanate (K 2 T
i 8 O 17 ), potassium tetratitanate (K 2 Ti 4 O 9 )
And the like. In the present invention, the alkali component may be an alkali metal such as lithium, rubidium, and cesium in addition to the potassium or sodium. Furthermore, it should be construed that a substance having a small amount of alkali metal such as a hydrated alkali titanate which is a derivative of an alkali titanate having a layer structure is also included. Also,
In the present invention, the alkali component may be composed of two or more different alkali titanates. Further, in the alkali titanate of the present invention, a part of the alkali component may be replaced with an alkaline earth metal such as magnesium, calcium, barium or the like.

【0007】そして、本発明においては上記チタン酸ア
ルカリの表面に触媒層として作用する銀の担持層を有す
るものである。前記チタン酸アルカリに銀を担持する方
法について具体的に説明するが、一例を示したものにす
ぎず、本発明の範囲はこれによって限定されるものでは
ない。
In the present invention, the surface of the alkali titanate is provided with a silver support layer acting as a catalyst layer. The method of supporting silver on the alkali titanate will be specifically described, but this is merely an example, and the scope of the present invention is not limited thereto.

【0008】硝酸銀5gを400mlのイオン交換水で
溶解する。この硝酸銀水溶液にアンモニア水(28%含
有)40mlを加え、次いでチタン酸アルカリ20gを
加え撹拌する。撹拌し、チタン酸アルカリを溶液中に分
散させながら、ホルマリン(ホルムアルデヒド37%)
40mlを加えることによってチタン酸アルカリの表面
に銀を担持する。
[0008] 5 g of silver nitrate is dissolved in 400 ml of deionized water. 40 ml of aqueous ammonia (containing 28%) is added to the aqueous silver nitrate solution, and then 20 g of alkali titanate is added and stirred. With stirring and dispersing the alkali titanate in the solution, formalin (formaldehyde 37%)
Add silver on the surface of the alkali titanate by adding 40 ml.

【0009】本発明において、前記に記したチタン酸ア
ルカリの表面に担持した銀はそのままでも十分に表面活
性を有するものであるが表面の活性をより高めるために
硫酸、硝酸等の強酸で処理を行い、活性を高めることが
望ましい。
In the present invention, the silver supported on the surface of the alkali titanate described above has a sufficient surface activity as it is. However, in order to further enhance the surface activity, treatment with a strong acid such as sulfuric acid or nitric acid is performed. It is desirable to increase the activity.

【0010】本発明において、チタン酸アルカリの表面
に担持される銀の量は、多ければ多いほど沃素吸着剤と
しての機能が向上するが、銀を過剰に担持すると経済的
効果が薄れてしまうので、チタン酸アルカリに対して
0.1〜30重量%、好ましくは1〜10重量%が望ま
しい。
In the present invention, as the amount of silver supported on the surface of the alkali titanate increases, the function as an iodine adsorbent improves, but the economic effect is diminished if silver is excessively supported. 0.1 to 30% by weight, preferably 1 to 10% by weight, based on alkali titanate.

【0011】本発明の銀担持チタン酸アルカリへの沃素
吸着量は、液中の沃素濃度を測定することにより求めた
が、本発明で使用した沃素濃度分析機器による沃素濃度
の分析検出限界が0.01ppmであり、液中の沃素濃
度があまり薄いと、吸着の判定が不明確であるので、溶
液中に含有される沃素濃度は0.02ppm以上が望ま
しい。しかし、沃素濃度0.02ppm以上に限定され
るものではない。
The amount of iodine adsorbed on the silver-supported alkali titanate of the present invention was determined by measuring the iodine concentration in the solution, and the analytical detection limit of the iodine concentration by the iodine concentration analyzer used in the present invention was 0. If the concentration of iodine in the solution is too low, the determination of adsorption is unclear. Therefore, the concentration of iodine contained in the solution is desirably 0.02 ppm or more. However, the iodine concentration is not limited to 0.02 ppm or more.

【0012】本発明において、チタン酸アルカリに担持
する銀量を選択し、かつ銀担持チタン酸アルカリの使用
量を制御して用いれば、上記のような液中に含まれる沃
素をほとんど回収することが可能になる。
In the present invention, if the amount of silver supported on alkali titanate is selected and the amount of silver-supported alkali titanate used is controlled and used, almost the iodine contained in the above solution can be recovered. Becomes possible.

【0013】本発明のチタン酸アルカリによる沃素回収
方法は、その方法に制約を受けるものではない。例え
ば、銀を担持したチタン酸アルカリを、沃素を含む溶液
に添加し、混合する方法、あるいは前記銀担持チタン酸
アルカリをカラムに充填し、沃素を含む溶液を通液する
等の方法をとることができる。
The method for recovering iodine with an alkali titanate of the present invention is not limited by the method. For example, a method in which an alkali titanate supporting silver is added to a solution containing iodine and mixed, or a method in which the above-described alkali supporting silver titanate is filled in a column and a solution containing iodine is passed through the column is used. Can be.

【0014】[0014]

【実施例】以下、本発明を実施例及び比較例を挙げて具
体的に説明する。なお、以下の各実施例は、その一例を
示したにすぎず、本発明の範囲はこれによって限定され
るものではない。
The present invention will be specifically described below with reference to examples and comparative examples. The following embodiments are merely examples, and the scope of the present invention is not limited thereby.

【0015】実施例1 チタン酸アルカリとして、八チタン酸カリウム(K
17)(川鉄鉱業社製)を用いた。八チタン酸カ
リウムヘの銀担持処理は次のようにして行った。まず、
硝酸銀0.630gを400mlのイオン交換水で溶解
する。この硝酸銀水溶液にアンモニア水(28%含有)
40mlを加え、次いで八チタン酸カリウム20gを加
え撹拌を行い、チタン酸アルカリを溶液中に分散させな
がら、ホルマリン(ホルムアルデヒド37%)20ml
を加え、八チタン酸カリウムの表面に銀を担持した。こ
のようにして得られた銀担持八チタン酸カリウムのAg
量は、高周波誘導結合プラズマ発光分析(以下ICPと
記す)により、1.65%であった。
Example 1 As an alkali titanate, potassium octa titanate (K 2 T
i 8 O 17 ) (manufactured by Kawairon Mining Co., Ltd.). The silver loading treatment on potassium octa titanate was performed as follows. First,
0.630 g of silver nitrate is dissolved in 400 ml of ion-exchanged water. Aqueous ammonia (containing 28%)
40 ml were added, and then 20 g of potassium octitanate was added and stirred, and 20 ml of formalin (formaldehyde 37%) was dispersed while dispersing the alkali titanate in the solution.
Was added to carry silver on the surface of potassium octa titanate. Ag of the silver-carrying potassium octitanate thus obtained
The amount was 1.65% by high frequency inductively coupled plasma emission analysis (hereinafter referred to as ICP).

【0016】実施例2 NaIで沃素濃度が20mg/lになるように調製した
水溶液1lに実施例1の銀担持八チタン酸カリウム3g
加えた。5時間撹拌処理した後濾別し、ICPにより溶
液中の沃素濃度を測定して吸着量を求めた。沃素吸着量
は18mgであり、また沃素吸着率は90%であった。
Example 2 1 g of an aqueous solution prepared with NaI so as to have an iodine concentration of 20 mg / l was added with 3 g of the silver-carrying potassium octitanate of Example 1
added. After stirring for 5 hours, the mixture was filtered off, and the concentration of iodine in the solution was measured by ICP to determine the amount of adsorption. The iodine adsorption amount was 18 mg, and the iodine adsorption rate was 90%.

【0017】実施例3 NaClを3重量%添加し、NaIで沃素濃度が20m
g/lになるように調製した水溶液1lに実施例1の銀
担持八チタン酸カリウム3g加えた。5時間撹拌処理し
た後濾別し、ICPにより溶液中の沃素濃度を測定して
吸着量を求めた。沃素吸着量は20mgであり、また沃
素吸着率は100%であった。
Example 3 3% by weight of NaCl was added, and the iodine concentration was 20 m with NaI.
3 g of the silver-supported potassium octatitanate of Example 1 was added to 1 liter of the aqueous solution prepared to give g / l. After stirring for 5 hours, the mixture was filtered off, and the concentration of iodine in the solution was measured by ICP to determine the amount of adsorption. The iodine adsorption amount was 20 mg, and the iodine adsorption rate was 100%.

【0018】実施例4 NaClを3重量%添加し、NaIで沃素濃度が10m
g/lになるように調製した水溶液1lに実施例1の銀
担持八チタン酸カリウム2g加えた。5時間撹拌処理し
た後濾別し、ICPにより溶液中の沃素濃度を測定して
吸着量を求めた。沃素吸着量は10mgであり、また沃
素吸着率は100%であった。
Example 4 3% by weight of NaCl was added, and the iodine concentration was 10 m with NaI.
2 g of the silver-carrying potassium octatitanate of Example 1 was added to 1 liter of the aqueous solution prepared so as to be g / l. After stirring for 5 hours, the mixture was filtered off, and the concentration of iodine in the solution was measured by ICP to determine the amount of adsorption. The iodine adsorption amount was 10 mg, and the iodine adsorption rate was 100%.

【0019】実施例5 NaIを用いて、表1に示すような沃素濃度の水溶液を
調製した。調製した水溶液1lにNaClを3重量%添
加し、実施例1の銀担持八チタン酸カリウム1g加え
た。沃素濃度の測定はイオンクロマトグラフにより行
い、溶液中の沃素濃度減少量から吸着量を計算した。結
果を表1に示す。
Example 5 An aqueous solution having an iodine concentration as shown in Table 1 was prepared using NaI. To 1 L of the prepared aqueous solution, 3% by weight of NaCl was added, and 1 g of the silver-carrying potassium octitanate of Example 1 was added. The iodine concentration was measured by ion chromatography, and the amount of adsorption was calculated from the decrease in iodine concentration in the solution. Table 1 shows the results.

【0020】[0020]

【表1】 [Table 1]

【0021】表1より、沃素濃度が5mg/l以下に設
定したとき、Clが海水と同程度に存在しているにも
かかわらず、2時間撹拌処理すると濾液中にある沃素は
検出されなかった。従って、Clが沃素に対して大量
に存在しても銀担持チタン酸力リウムは沃素を選択的に
吸着し、回収できることが確認された。
[0021] From Table 1, when the iodine concentration was set below 5 mg / l, Cl - Despite the present to the same degree as seawater, iodine in the filtrate when 2 hours stirring treatment is not detected Was. Therefore, it was confirmed that even if Cl was present in a large amount with respect to iodine, the silver-supported potassium titanate was able to selectively adsorb and recover iodine.

【0022】実施例6 大原港の海水10l(沃素濃度0.05ppm)に実施
例1の銀担持八チタン酸力リウム1gを添加し、5時間
撹拌した。その結果、沃素吸着率は100%であった。
Example 6 1 g of the silver-supported potassium octitanate of Example 1 was added to 10 l of seawater (0.05 ppm iodine concentration) of Ohara Port, and the mixture was stirred for 5 hours. As a result, the iodine adsorption rate was 100%.

【0023】実施例7 直径1cmの透明のカラムに実施例1の銀担持八チタン
酸カリウムを10gを充填した。沃素濃度10mg/l
に調製した水溶液(NaClは3重量%である)を1時
間あたり1lの速度で5時間通液した。その結果、通液
した溶液の沃素濃度をイオンクロマトグラフで測定した
ところ、通過液の平均沃素濃度は0.05ppmであつ
た。吸着率は99.5%であった。
Example 7 A transparent column having a diameter of 1 cm was filled with 10 g of the silver-carrying potassium octitanate of Example 1. Iodine concentration 10mg / l
(3% by weight of NaCl) was passed at a rate of 1 liter per hour for 5 hours. As a result, when the iodine concentration of the passed solution was measured by ion chromatography, the average iodine concentration of the passed solution was 0.05 ppm. The adsorption rate was 99.5%.

【0024】実施例8 チタン酸アルカリを水和四チタン酸カリウム(KTi
・2.7HO)、水和チタン酸カリウム(K
1.70.3Ti・2.3HO)、水和二酸
化チタン(K0.0121.988Ti・1.
8HO)に変えた他は実施例1と同様にして銀を担持
した。これらの銀担持チタン酸アルカリ1g中のAg量
をICPにより求めた結果を表2に示す。
Example 8 An alkali titanate was hydrated with potassium tetratitanate (K 2 Ti
4 O 9 · 2.7H 2 O) , hydrated potassium titanate (K
1.7 H 0.3 Ti 4 O 9 · 2.3H 2 O), hydrated titanium dioxide (K 0.012 H 1.988 Ti 4 O 9 · 1.
8H 2 O), except that silver was carried in the same manner as in Example 1. Table 2 shows the results of the Ag content in 1 g of the silver-supported alkali titanate determined by ICP.

【0025】上記3種類の銀担持チタン酸アルカリを用
いて実施例2と同一の条件で反応させた。反応後、濾液
中の沃素濃度を表2に示す。またそのときの吸着率も表
2に併せて示した。
The reaction was carried out under the same conditions as in Example 2 using the above three kinds of alkali metal titanates carrying silver. After the reaction, the iodine concentration in the filtrate is shown in Table 2. The adsorption rate at that time is also shown in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】比較例 前記実施例1と同一の沃素濃度で銀担持八チタン酸力リ
ウムの代わりに銀を担持していない普通の八チタン酸力
リウムを用いて実施例1と同じ条件で反応させた後、濾
液中の沃素濃度は反応前と変わらず、吸着率0%であっ
た。従って、チタン酸アルカリの表面に銀を担持するこ
とで沃素を選択的に吸着することができ、沃素の回収が
可能となる。
COMPARATIVE EXAMPLE The reaction was carried out under the same conditions as in Example 1 except that the normal iodide containing no silver was used instead of the silver-supported potassium pentatitanate at the same iodine concentration as in Example 1. After the reaction, the iodine concentration in the filtrate was the same as before the reaction, and the adsorption rate was 0%. Therefore, by supporting silver on the surface of the alkali titanate, iodine can be selectively adsorbed and iodine can be recovered.

【0028】[0028]

【発明の効果】本発明は、沃素を含む溶液から沃素を選
択的に吸着することを特徴とする沃素回収方法として、
表面に銀を担持したチタン酸アルカリに沃素を含む溶液
を接触させることを特徴とした沃素を含む溶液から沃素
を選択的に吸着する方法を提供するものである。本発明
により、沃素を含む溶液から複雑な工程を必要とせずに
沃素を選択的に吸着することで沃素を回収でき、貴重な
資源を有効に利用できる。
The present invention provides a method for recovering iodine, which comprises selectively adsorbing iodine from a solution containing iodine.
An object of the present invention is to provide a method for selectively adsorbing iodine from a solution containing iodine, which comprises contacting a solution containing iodine with an alkali titanate carrying silver on the surface. According to the present invention, iodine can be recovered by selectively adsorbing iodine from a solution containing iodine without requiring a complicated process, and valuable resources can be effectively used.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D024 AA04 AA09 AB11 BA05 BA14 BB07 BC01 BC04 4G066 AA02D AA13B AA16B AA23B BA36 CA31 DA07 DA08 FA03 FA37  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4D024 AA04 AA09 AB11 BA05 BA14 BB07 BC01 BC04 4G066 AA02D AA13B AA16B AA23B BA36 CA31 DA07 DA08 FA03 FA37

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】沃素を含む溶液より沃素を回収する方法に
おいて、前記沃素を含む溶液を、銀を担持したチタン酸
アルカリに接触させることを特徴とする沃素を回収する
方法。
1. A method for recovering iodine from a solution containing iodine, which comprises contacting the solution containing iodine with an alkali titanate supporting silver.
【請求項2】銀の担持量はチタン酸アルカリに対して
0.1〜30重量%、好ましくは1〜10重量%である
請求項1記載の沃素を回収する方法。
2. The method for recovering iodine according to claim 1, wherein the amount of silver supported is 0.1 to 30% by weight, preferably 1 to 10% by weight, based on the alkali titanate.
【請求項3】前記チタン酸アルカリは、アルカリ成分が
カリウム及び/又はナトリウムを主体として構成される
ものである請求項1記載の沃素を回収する方法。
3. The method for recovering iodine according to claim 1, wherein said alkali titanate is mainly composed of potassium and / or sodium.
【請求項4】前記チタン酸アルカリは、アルカリ成分以
外にアルカリ土類金属成分を含むものである請求項1記
載の沃素を回収する方法。
4. The method for recovering iodine according to claim 1, wherein the alkali titanate contains an alkaline earth metal component in addition to the alkali component.
JP2000259582A 2000-08-29 2000-08-29 Iodine recovery Expired - Lifetime JP4889139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000259582A JP4889139B2 (en) 2000-08-29 2000-08-29 Iodine recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000259582A JP4889139B2 (en) 2000-08-29 2000-08-29 Iodine recovery

Publications (2)

Publication Number Publication Date
JP2002068711A true JP2002068711A (en) 2002-03-08
JP4889139B2 JP4889139B2 (en) 2012-03-07

Family

ID=18747742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000259582A Expired - Lifetime JP4889139B2 (en) 2000-08-29 2000-08-29 Iodine recovery

Country Status (1)

Country Link
JP (1) JP4889139B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544890A (en) * 1977-06-15 1979-01-13 Hitachi Ltd Adsorbent
JPS55138700A (en) * 1979-04-14 1980-10-29 Doryokuro Kakunenryo Method of removing radioactive iodine in gas
JPS6312345A (en) * 1986-07-02 1988-01-19 Toray Ind Inc Scavenging material of iodine compound
JPH0884926A (en) * 1994-08-20 1996-04-02 Sued Chemie Ag Iodine adsorbent
JPH1184084A (en) * 1997-09-02 1999-03-26 Co-Op Chem Co Ltd Removal method for radioactive iodine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544890A (en) * 1977-06-15 1979-01-13 Hitachi Ltd Adsorbent
JPS55138700A (en) * 1979-04-14 1980-10-29 Doryokuro Kakunenryo Method of removing radioactive iodine in gas
JPS6312345A (en) * 1986-07-02 1988-01-19 Toray Ind Inc Scavenging material of iodine compound
JPH0884926A (en) * 1994-08-20 1996-04-02 Sued Chemie Ag Iodine adsorbent
JPH1184084A (en) * 1997-09-02 1999-03-26 Co-Op Chem Co Ltd Removal method for radioactive iodine

Also Published As

Publication number Publication date
JP4889139B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
US5055199A (en) Method for reducing the amount of anionic metal-ligand complex in a solution
JPH0688277A (en) Lithium recovering method and electrode used therefor
US4867882A (en) Method for reducing the amount of anionic metal ligand complex in a solution
JP3749941B2 (en) Method for producing cesium separator
US3970737A (en) Metal, particularly gold, recovery from adsorbed cyanide complexes
US4692431A (en) Hydrous oxide activated charcoal
CN107486165A (en) A kind of preparation method of@FP composite adsorbing materials of ZIF 67 and its application in separation and concentration high-salt wastewater containing cadmium
CN1763232A (en) Apparatus for recovering Hg from Hg-containing sludge and waste water
JP2008031014A (en) Method for producing high purity alkali metal hydroxide
JP2002068711A (en) Method for recovering iodine
US4396585A (en) Silver removal with halogen impregnated non-carbon adsorbents
JPH01261224A (en) Production of alkali iodide
JPS6324431B2 (en)
EP0010367B1 (en) Method of recovering metal values
JP2539413B2 (en) Adsorbent for gallium recovery
JP3390148B2 (en) Purification treatment method for salt water for electrolysis
JP2007297653A (en) Metal separation method and metal recovery method
SU1309914A3 (en) Method of extracting non-ferrous and/or noble metals from aqueous solutions
AU2018232890A1 (en) Catalytic Regeneration of Resin for Antimony Removal
JPH0218906B2 (en)
US5429660A (en) Method for the recovery of gold value
JPH0310378B2 (en)
JP2005232026A (en) Method for purifying taurine
JPH06106031A (en) Lithium isotope separating agent and separation of lithium isotope using the same
GB1573685A (en) Recovery of metal values

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Ref document number: 4889139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term