JP2002065829A - Method for activating ozone - Google Patents

Method for activating ozone

Info

Publication number
JP2002065829A
JP2002065829A JP2000261970A JP2000261970A JP2002065829A JP 2002065829 A JP2002065829 A JP 2002065829A JP 2000261970 A JP2000261970 A JP 2000261970A JP 2000261970 A JP2000261970 A JP 2000261970A JP 2002065829 A JP2002065829 A JP 2002065829A
Authority
JP
Japan
Prior art keywords
ozone
photocatalyst
activation method
present
active species
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000261970A
Other languages
Japanese (ja)
Inventor
Ryuji Masuda
竜司 増田
Hiroyuki Suetsugu
弘幸 末次
Shigeo Chiba
茂男 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP2000261970A priority Critical patent/JP2002065829A/en
Publication of JP2002065829A publication Critical patent/JP2002065829A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for reducing degradation of a base material caused by ozone. SOLUTION: Activation of ozone by decomposing the ozone by use of a photocatalyst being illuminated to produce an active seed uses a photocatalyst structure in which the photocatalyst is supported on E-vitreous fibers composed chiefly of silicon oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、オゾンを、光照射
下にある光触媒を用いて分解し活性種(ラジカル)を発
生させるための方法に関する。さらに詳しくは、酸化反
応、脱臭、除菌などの反応に有効に働く活性種の生成方
法に関する。
The present invention relates to a method for decomposing ozone using a photocatalyst under light irradiation to generate active species (radicals). More specifically, the present invention relates to a method for producing an active species that effectively works in reactions such as oxidation, deodorization, and sterilization.

【0002】[0002]

【従来の技術】オゾンは、その強い酸化力の点から、各
種の酸化反応や脱臭、除菌といった環境浄化などに広く
利用されている。通常、オゾンは気相中や液相中で徐々
に分解して酸素ラジカルや水酸ラジカルなどの各種活性
種を発生する。これら活性種が反応に寄与し、酸化反応
や脱臭、除菌などの作用を起こすことが知られている。
しかし、オゾンを単独で用いた場合、系内の水分量や分
解しようとする物質の濃度などによって活性種の発生量
が大きく異なり、効率よく活性種を発生させることが困
難であった。そこで、特開平10−174983号公報
に記載されているように、光照射下にある光触媒を用い
て系内の水分量や分解しようとする物質の濃度の影響を
ほとんど受けずに、効率よくオゾンを分解して活性種を
発生させる方法が提案されている。
2. Description of the Related Art Ozone has been widely used for its various oxidizing reactions, deodorization, and bacteria elimination due to its strong oxidizing power. Normally, ozone gradually decomposes in a gas phase or a liquid phase to generate various active species such as oxygen radicals and hydroxyl radicals. It is known that these active species contribute to the reaction and cause actions such as an oxidation reaction, deodorization, and sterilization.
However, when ozone is used alone, the amount of active species generated varies greatly depending on the amount of water in the system and the concentration of the substance to be decomposed, and it has been difficult to generate active species efficiently. Therefore, as described in Japanese Patent Application Laid-Open No. H10-174983, it is possible to efficiently use an ozone efficiently by using a photocatalyst under light irradiation without being substantially affected by the amount of water in the system or the concentration of a substance to be decomposed. There has been proposed a method of generating active species by decomposing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記光
触媒を用いる方法では、通常基材として有機繊維から成
る不織布や金属などが使用されており、この基材がオゾ
ンの強力な酸化力によって劣化してしまうため比較的短
寿命であるといった欠点を有していた。本発明は従来技
術の欠点を解消し、オゾンによる基材劣化を低減する方
法を提案する。
However, in the method using the photocatalyst, a non-woven fabric or a metal made of an organic fiber is usually used as a substrate, and this substrate is deteriorated by the strong oxidizing power of ozone. Therefore, it has a disadvantage that the life is relatively short. The present invention proposes a method for overcoming the disadvantages of the prior art and reducing substrate degradation due to ozone.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記欠点
を解決するために鋭意検討の結果、耐オゾン劣化性繊維
として、酸化珪素を主成分とするEガラス質繊維を基材
とした光触媒構造体を用いることにより、オゾンによる
基材劣化を低減したオゾン活性化法を完成した。即ち、
本発明のオゾン活性化法は、請求項1記載の通り、オゾ
ンを、光照射下にある光触媒を用いて分解し、活性種を
発生させるオゾンの活性化において、光触媒を酸化珪素
を主成分とするEガラス質繊維に担持させた光触媒構造
体を用いることを特徴とする。また、請求項2記載のオ
ゾン活性化法は、光触媒構造体の種類を規定したもの
で、請求項1記載のオゾン活性化法において、前記光触
媒構造体が、スリーブであることを特徴とする。また、
請求項3記載のオゾン活性化法は、光触媒の構成に関す
るもので、請求項1または2記載のオゾン活性化法にお
いて、前記光触媒構造体が、組成式AOxで表される酸
化物を主成分とする無機質繊維を基材とし、該基材にB
Oyで表される光触媒をA−O−Bなる結合層を有して
被覆することを特徴とする。また、請求項4記載のオゾ
ン活性化法は、光触媒の材質を規定したもので、請求項
1乃至3の何れかに記載のオゾン活性化法において、前
記光触媒は、主成分が酸化チタンであることを特徴とす
る。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned drawbacks. As a result, as the ozone-degradation-resistant fiber, an E-glass fiber containing silicon oxide as a main component was used as a substrate. By using a photocatalyst structure, an ozone activation method in which substrate deterioration due to ozone was reduced was completed. That is,
In the ozone activation method of the present invention, as described in claim 1, ozone is decomposed using a photocatalyst under light irradiation, and in activation of ozone to generate active species, the photocatalyst is mainly composed of silicon oxide. The present invention is characterized in that a photocatalyst structure supported on an E glassy fiber is used. In the ozone activation method according to the second aspect, the type of the photocatalyst structure is defined. In the ozone activation method according to the first aspect, the photocatalyst structure is a sleeve. Also,
The ozone activation method according to claim 3 relates to a configuration of a photocatalyst. In the ozone activation method according to claim 1 or 2, the photocatalyst structure mainly includes an oxide represented by a composition formula AOx. Made of inorganic fiber to be used as a base material,
The photocatalyst represented by Oy is coated with a bonding layer of AOB. Further, in the ozone activation method according to the fourth aspect, the material of the photocatalyst is defined. In the ozone activation method according to any one of the first to third aspects, the main component of the photocatalyst is titanium oxide. It is characterized by the following.

【0005】[0005]

【発明の実施の形態】前記耐オゾン劣化性繊維として使
用される酸化珪素を主成分とするEガラス質繊維の平均
繊維径は特に限定されるものではないが、製造可能でし
かも織布、不織布あるいはスリーブなどの構造物に加工
するのが容易であることから、0.1〜20ミクロンが
好ましい。前記光触媒構造体の基材は、織布、不織布あ
るいはスリーブ等任意であり、特に、スリーブを基材と
した光触媒構造体は、形状保持性が高く、そのため高い
反応活性を有するため、その使用が好ましい。このよう
に、比較的軽量な材料で、筒状の形状を達成するために
は予め管状に編んだ繊維加工品であるスリーブを用いる
必要があり、このスリーブの内径(mm)及び単重(g
/m)は、いくらのものでも構わないが、取り扱い性や
酸化物の担持量の関係から1〜100mm、1〜300
g/m、特に2〜50mm、2〜130g/m。が好ま
しい。
BEST MODE FOR CARRYING OUT THE INVENTION The average fiber diameter of E-glass fibers containing silicon oxide as a main component used as the above-mentioned ozone-degradation-resistant fiber is not particularly limited, but it can be produced and is made of woven or non-woven fabric. Alternatively, the thickness is preferably 0.1 to 20 μm because it is easy to process into a structure such as a sleeve. The base material of the photocatalyst structure is arbitrary such as a woven fabric, a nonwoven fabric, or a sleeve.In particular, a photocatalyst structure using a sleeve as a base material has a high shape retention property, and thus has a high reaction activity. preferable. As described above, in order to achieve a cylindrical shape with a relatively lightweight material, it is necessary to use a sleeve which is a fiber processed product previously knitted into a tube, and the inner diameter (mm) and unit weight (g) of the sleeve are required.
/ M) may be any value, but from 1 to 100 mm, 1 to 300 mm
g / m, especially 2 to 50 mm, 2 to 130 g / m. Is preferred.

【0006】前記光触媒としては、酸化チタンや酸化亜
鉛など数多くのものが提案されているが、分解効率や安
全性、安定性の点から酸化チタンの使用が好ましい。ま
た、該酸化チタンに、白金、パラジウム、ロジウム、
金、銀、銅等の貴金属あるいはそれらの貴金属塩類を担
持させてもよい。
Many photocatalysts such as titanium oxide and zinc oxide have been proposed, but titanium oxide is preferably used in view of decomposition efficiency, safety and stability. Further, the titanium oxide, platinum, palladium, rhodium,
A noble metal such as gold, silver, or copper, or a noble metal salt thereof may be supported.

【0007】光触媒を励起させる光源としては、低圧水
銀灯や殺菌灯あるいはブラックライト蛍光灯等を用いる
のが好ましく、反応速度を考慮しなければ一般蛍光灯で
もかまわない。
As a light source for exciting the photocatalyst, a low-pressure mercury lamp, a germicidal lamp, a black light fluorescent lamp, or the like is preferably used, and a general fluorescent lamp may be used if the reaction speed is not taken into consideration.

【0008】オゾンの発生手段としては、一般に放電管
方式、無声放電方式、酸素発生器付無声放電方式などが
用いられる。なお、本発明は、これら発生手段の種類に
ついては特に限定されるものではない。
As a means for generating ozone, a discharge tube system, a silent discharge system, a silent discharge system with an oxygen generator, and the like are generally used. In the present invention, the types of these generating means are not particularly limited.

【0009】以下に、本発明の実施形態を図示する。た
だしこれらは本発明の概念を示したものであり、本発明
はこれに限定されるものではない。図1は本発明のうち
気相中における1パス系のオゾン活性化法の一例を示し
たものである。ここで、1のオゾン発生機によって発生
したオゾンを含む気体は、2の光照射下にある光触媒に
導入され、オゾンの分解が行われ、活性種が生成する。
その後生成した活性種は、3の反応部で各種酸化反応や
脱臭、除菌といった目的に消費される。
An embodiment of the present invention will be described below. However, these show the concept of the present invention, and the present invention is not limited to these. FIG. 1 shows an example of a one-pass ozone activation method in a gas phase in the present invention. Here, the gas containing ozone generated by the first ozone generator is introduced into the photocatalyst under the irradiation of the second light, and the ozone is decomposed to generate active species.
The activated species generated thereafter are consumed in various reaction units for various oxidation reactions, deodorization, and sterilization.

【0010】図2は本発明のうち気相中における閉鎖系
のオゾン活性化法の一例を示したものである。ここで、
1のオゾン発生機によって発生したオゾンを含む気体
は、ファンなどにより2の光照射下にある光触媒に導入
され、オゾンの分解が行われ活性種が生成する。その後
生成した活性種は、3の反応部で各種酸化反応や脱臭、
除菌といった目的に消費される。
FIG. 2 shows an example of a closed ozone activation method in the gas phase in the present invention. here,
The gas containing ozone generated by the ozone generator 1 is introduced into the photocatalyst under irradiation of light 2 by a fan or the like, and the ozone is decomposed to generate active species. The active species generated thereafter are subjected to various oxidation reactions, deodorization,
It is consumed for the purpose of eradication.

【0011】図3は本発明のうち液相中における1パス
系のオゾン活性化法の一例を示したものである。ここ
で、1のオゾン発生機によって発生したオゾンはミキシ
ングや高圧などの手法により液相中に溶解され、2の光
照射下にある光触媒に導入され、オゾンの分解が行われ
活性種が生成する。その後生成した活性種は、4の反応
槽で各種酸化反応や脱臭、除菌といった目的に消費され
る。
FIG. 3 shows an example of a one-pass ozone activation method in a liquid phase in the present invention. Here, the ozone generated by the ozone generator 1 is dissolved in the liquid phase by a method such as mixing or high pressure, and introduced into the photocatalyst under the irradiation of light 2, whereby ozone is decomposed to generate active species. . The activated species generated thereafter are consumed in various reaction tanks for various oxidation reactions, deodorization, and sterilization.

【0012】図4は本発明のうち液相中における閉鎖系
のオゾン活性化法の一例を示したものである。ここで、
1のオゾン発生機によって発生したオゾンはミキシング
や高圧などの手法により液相中に溶解され、攪拌などの
手法により2の光照射下にある光触媒に接触し、オゾン
の分解が行われ活性種が生成する。その後生成した活性
種は、4の反応槽で各種酸化反応や脱臭、除菌といった
目的に消費される。
FIG. 4 shows an example of a closed ozone activation method in a liquid phase in the present invention. here,
The ozone generated by the ozone generator 1 is dissolved in the liquid phase by a method such as mixing or high pressure, and is brought into contact with a photocatalyst under light irradiation 2 by a method such as stirring to decompose the ozone to form active species. Generate. The activated species generated thereafter are consumed in various reaction tanks for various oxidation reactions, deodorization, and sterilization.

【0013】次に、図1の気相中における1パスのオゾ
ン活性化法を用いた場合の、本発明の実施例を比較例と
ともに説明する。 (実施例1)内径40mmφのEガラス繊維スリーブに
酸化チタンを担持させた光触媒構造体を、1000mm
の長さに切断して円筒状光触媒構造体を作製した。この
構造体を内径45mmφの石英ガラス製反応管の中に充
填した。光源は三共電気(株)製殺菌ランプGL−40
を用い反応管の外部に配置した。この反応管にトリクロ
ロエチレンを含む排ガスをファンで送り、このときのト
リクロロエチレン分解率の経時変化を測定した。結果、
第1表に示すように3000h経過後もトリクロロエチ
レン分解率は初期とほとんど同じであった。また基材の
劣化も無く、十分に使用に耐えうる状態であった。
Next, a description will be given of an embodiment of the present invention together with a comparative example when the one-pass ozone activation method in the gas phase shown in FIG. 1 is used. (Example 1) A photocatalyst structure in which titanium oxide was supported on an E glass fiber sleeve having an inner diameter of 40 mmφ was 1000 mm in diameter.
To obtain a cylindrical photocatalyst structure. This structure was filled in a quartz glass reaction tube having an inner diameter of 45 mmφ. The light source is a germicidal lamp GL-40 manufactured by Sankyo Electric Co., Ltd.
And placed outside the reaction tube. Exhaust gas containing trichlorethylene was sent to this reaction tube with a fan, and the time-dependent change in trichlorethylene decomposition rate at this time was measured. result,
As shown in Table 1, after 3000 hours, the trichlorethylene decomposition rate was almost the same as the initial one. In addition, there was no deterioration of the base material, and it was in a state where it could be sufficiently used.

【0014】(実施例2)基材のEガラス繊維スリーブ
をEガラスクロスを円筒状にしたものに変更し、同量の
光触媒を担持させた以外は実施例と同様の方法でトリク
ロロエチレン分解率の経時変化を測定した。結果、第1
表に示すように、3000h経過後もトリクロロエチレ
ン分解率は初期とほとんど同じであった。なお、基材自
体の劣化はないが、端面が若干ほつれていた。
(Example 2) The E glass fiber sleeve of the substrate was changed to a cylindrical E glass cloth and the same amount of photocatalyst was carried thereon, except that the decomposition rate of trichloroethylene was measured in the same manner as in the example. The change over time was measured. As a result, the first
As shown in the table, even after 3000 hours, the trichlorethylene decomposition rate was almost the same as the initial one. In addition, although the base material itself did not deteriorate, the end face was slightly frayed.

【0015】(比較例1)基材のEガラス繊維スリーブ
をステンレス金網に変更し、同量の光触媒を担持させた
以外は実施例と同様の方法でトリクロロエチレン分解率
の経時変化を測定した。結果、第1表に示すように、3
000時間経過後の分解率は、初期の1/2と小さくな
った。また基材のステンレス金網はオゾンや生成物によ
って腐食が進行しており、基材が劣化していることが明
らかになった。
(Comparative Example 1) The change with time of the decomposition rate of trichlorethylene was measured in the same manner as in the Example except that the E glass fiber sleeve as the base material was changed to a stainless steel wire mesh and the same amount of photocatalyst was supported. As a result, as shown in Table 1, 3
The decomposition rate after lapse of 000 hours was reduced to 1/2 of the initial value. In addition, it was revealed that corrosion of the stainless steel wire mesh of the base material was progressed by ozone and products, and the base material was deteriorated.

【0016】(比較例2)基材のEガラス繊維スリーブ
を有機繊維不織布に変更し、同量の光触媒を担持させた
以外は実施例と同様の方法でトリクロロエチレン分解率
の経時変化を測定した。結果、第1表に示すように、3
000時間経過後の分解率は、初期の1/5と小さくな
った。また基材の有機繊維不織布はオゾンや生成物によ
って劣化しており、これ以上の使用には耐えられない状
態であった。
(Comparative Example 2) The change with time of the decomposition rate of trichloroethylene was measured in the same manner as in the Example except that the E glass fiber sleeve as the base material was changed to an organic fiber nonwoven fabric and the same amount of photocatalyst was supported. As a result, as shown in Table 1, 3
The decomposition rate after lapse of 000 hours was as small as 1/5 of the initial value. Moreover, the organic fiber nonwoven fabric of the base material was deteriorated by ozone and products, and was in a state where it could not withstand further use.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】本発明によれば、耐オゾン劣化性繊維と
して酸化珪素を主成分とするEガラス質繊維を基材とす
る光触媒を用いることにより、オゾンによる基材劣化の
影響をほとんど受けずに効率よくオゾンを活性化できる
ため、特に濃度変動が大きい気相中や液相中などのオゾ
ン活性化に効果を発揮する。前記Eガラス質繊維とし
て、スリーブを用いる場合、基材の劣化による光触媒活
性の低下がほとんどなく、長期にわたって優れた光触媒
活性を有するという効果が得られる。
According to the present invention, the use of a photocatalyst based on E-glass fibers containing silicon oxide as a main component as the ozone-degrading resistant fiber makes it hardly affected by deterioration of the substrate due to ozone. Since ozone can be activated efficiently, it is particularly effective in activating ozone in a gas phase or a liquid phase having a large concentration fluctuation. When a sleeve is used as the E glassy fiber, there is almost no decrease in photocatalytic activity due to deterioration of the base material, and an effect of having excellent photocatalytic activity over a long period is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は本発明の一実施の形態の概念図であっ
て、気相中における1パス系のオゾン活性化法を示した
ものである。
FIG. 1 is a conceptual diagram of one embodiment of the present invention, showing a one-pass ozone activation method in a gas phase.

【図2】 図2は本発明の他実施の形態の概念図であっ
て、気相中における閉鎖系のオゾン活性化法を示したも
のである。
FIG. 2 is a conceptual diagram of another embodiment of the present invention, showing a closed ozone activation method in a gas phase.

【図3】 図3は本発明の他実施の形態の概念図であっ
て、液相中における1パス系のオゾン活性化法を示した
ものである。
FIG. 3 is a conceptual view of another embodiment of the present invention, showing a one-pass ozone activation method in a liquid phase.

【図4】 図3は本発明の他実施の形態の概念図であっ
て、液相中における閉鎖系のオゾン活性化法を示したも
のである。
FIG. 3 is a conceptual diagram of another embodiment of the present invention, showing a closed ozone activation method in a liquid phase.

【符号の説明】[Explanation of symbols]

1 オゾン発生機 2 光照射下にある光触媒 3 反応部 4 反応槽 DESCRIPTION OF SYMBOLS 1 Ozone generator 2 Photocatalyst under light irradiation 3 Reaction part 4 Reaction tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 35/06 C02F 1/32 ZAB C02F 1/32 ZAB 1/72 101 1/72 101 1/78 1/78 B01D 53/36 J (72)発明者 千葉 茂男 岐阜県不破郡垂井町630 日本無機株式会 社垂井工場内 Fターム(参考) 4C080 AA07 AA10 BB02 BB05 CC02 HH05 JJ03 KK08 LL10 MM02 MM07 NN02 NN06 QQ17 4D037 AB03 AB04 AB14 BA18 CA12 4D048 AA12 AA22 AB03 AC07 BA06X BA07X BA10X BA13X BA30Y BA31Y BA33Y BA34Y BA42X BB05 BB08 CC32 CC61 EA01 4D050 AB04 AB06 AB19 BB02 BC06 CA07 4G069 AA03 AA11 BA02A BA02B BA04A BA04B BA14A BA14B BA20A BA20B BA48A BB02A BC32A BC33A BC71A BC72A BC75A CA10 CA16 EA03X EA09 EB08 EB14Y ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 35/06 C02F 1/32 ZAB C02F 1/32 ZAB 1/72 101 1/72 101 1/78 1 / 78 B01D 53/36 J (72) Inventor Shigeo Chiba 630 Tarui-cho, Fuwa-gun, Gifu Pref. AB04 AB14 BA18 CA12 4D048 AA12 AA22 AB03 AC07 BA06X BA07X BA10X BA13X BA30Y BA31Y BA33Y BA34Y BA42X BB05 BB08 CC32 CC61 EA01 4D050 AB04 AB06 AB19 BB02 BC06 CA07 4G069 AA03 AA11 BA02A BA02A BABA BAB BAB BAB BAA EA03X EA09 EB08 EB14Y

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 オゾンを、光照射下にある光触媒を用い
て分解し、活性種を発生させるオゾンの活性化におい
て、光触媒を酸化珪素を主成分とするEガラス質繊維に
担持させた光触媒構造体を用いることを特徴とするオゾ
ン活性化法。
1. A photocatalytic structure in which ozone is decomposed by using a photocatalyst under irradiation of light to generate active species, and the photocatalyst is supported on an E-glass fiber containing silicon oxide as a main component in the activation of ozone. An ozone activation method characterized by using a body.
【請求項2】 前記光触媒構造体が、スリーブであるこ
とを特徴とする請求項1記載のオゾン活性化法。
2. The ozone activation method according to claim 1, wherein the photocatalyst structure is a sleeve.
【請求項3】 前記光触媒構造体が、組成式AOxで表
される酸化物を主成分とする無機質繊維を基材とし、該
基材にBOyで表される光触媒をA−O−Bなる結合層
を有して被覆することを特徴とする請求項1または2記
載のオゾン活性化法。
3. The photocatalyst structure is based on an inorganic fiber mainly composed of an oxide represented by a composition formula AOx, and a photocatalyst represented by BOy is bonded to the substrate by AOB. 3. The method for activating ozone according to claim 1, wherein the ozone is coated with a layer.
【請求項4】 前記光触媒は、主成分が酸化チタンであ
ることを特徴とする請求項1乃至3の何れかに記載のオ
ゾン活性化法。
4. The ozone activating method according to claim 1, wherein a main component of the photocatalyst is titanium oxide.
JP2000261970A 2000-08-30 2000-08-30 Method for activating ozone Pending JP2002065829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000261970A JP2002065829A (en) 2000-08-30 2000-08-30 Method for activating ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000261970A JP2002065829A (en) 2000-08-30 2000-08-30 Method for activating ozone

Publications (1)

Publication Number Publication Date
JP2002065829A true JP2002065829A (en) 2002-03-05

Family

ID=18749720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000261970A Pending JP2002065829A (en) 2000-08-30 2000-08-30 Method for activating ozone

Country Status (1)

Country Link
JP (1) JP2002065829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026708A (en) * 2010-07-28 2012-02-09 Panasonic Corp Refrigerator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05201704A (en) * 1992-01-28 1993-08-10 Toto Ltd Method for controlling ozonizer
JPH08299805A (en) * 1995-05-02 1996-11-19 Dkk Corp Photocatalyst and its production
JPH09299456A (en) * 1996-05-20 1997-11-25 Toyoda Gosei Co Ltd Photocatalyst apparatus
JPH09313580A (en) * 1996-06-03 1997-12-09 Nippon Muki Co Ltd Deodorizing method and deodorizing device
JPH10156349A (en) * 1996-12-03 1998-06-16 Tadashi Mochiki Method for sterilizing, deodorizing and purifying air and water and device therefor
JPH11276910A (en) * 1998-03-30 1999-10-12 Nichias Corp Air purifying filter and its production
JP2000121110A (en) * 1998-10-14 2000-04-28 Elmo Co Ltd Air cleaning device
JP2000157621A (en) * 1998-11-25 2000-06-13 Kawasaki Setsubi Kogyo Kk Air cleaner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05201704A (en) * 1992-01-28 1993-08-10 Toto Ltd Method for controlling ozonizer
JPH08299805A (en) * 1995-05-02 1996-11-19 Dkk Corp Photocatalyst and its production
JPH09299456A (en) * 1996-05-20 1997-11-25 Toyoda Gosei Co Ltd Photocatalyst apparatus
JPH09313580A (en) * 1996-06-03 1997-12-09 Nippon Muki Co Ltd Deodorizing method and deodorizing device
JPH10156349A (en) * 1996-12-03 1998-06-16 Tadashi Mochiki Method for sterilizing, deodorizing and purifying air and water and device therefor
JPH11276910A (en) * 1998-03-30 1999-10-12 Nichias Corp Air purifying filter and its production
JP2000121110A (en) * 1998-10-14 2000-04-28 Elmo Co Ltd Air cleaning device
JP2000157621A (en) * 1998-11-25 2000-06-13 Kawasaki Setsubi Kogyo Kk Air cleaner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026708A (en) * 2010-07-28 2012-02-09 Panasonic Corp Refrigerator

Similar Documents

Publication Publication Date Title
JP5493211B2 (en) Water generator with redox activity
JPS63230171A (en) Deodorizing apparatus
KR20100061665A (en) Uv air treatment method and device
JP2006187743A (en) Radical treatment apparatus
EP0997439A2 (en) Method for decomposing bromic acid by photocatalyst and apparatus therefor
JP4787253B2 (en) Alumina coating forming method, alumina fiber, and gas treatment apparatus equipped with the same
JPH11335187A (en) Photocatalyst module and equipment for photocatalyst
JP2002065829A (en) Method for activating ozone
JP4709608B2 (en) Radical treatment equipment
US20180050323A1 (en) Water purification catalyst, water purifier, beverage maker and method
JP2002066309A (en) Method for removing residual ozone
JP2006026194A (en) Organic matter removing apparatus
JPH09192637A (en) Photocatalytic purifier
JP3175168B2 (en) Ozone water generator
JP2005213620A (en) Hypochlorous acid generation method and apparatus for the same
JP2006212216A (en) Deodorization apparatus
JP2002102656A (en) Method and apparatus for decomposing organic substance using photocatalyic structure body
JP2000300982A (en) Chemical substance decomposition method
CN117531345B (en) Electrochemical method for deodorizing, disinfecting and cleaning, and electrolytic cell device and system
JP2002018240A (en) Method and apparatus for treatment for rendering hazardous organic substance harmless
JPH0975959A (en) Treatment of waste water by ozone and photocatalyst
JP2003055107A (en) Water-soluble germicide and method for producing the same
JPH08323346A (en) Method and device for treating dry cleaning waste water
JPH07331121A (en) Coating for decomposing ozone and its use
JPH1128360A (en) Atomic oxygen-generating catalyst and method for generating atomic oxygen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018