JP2002065719A - Cornea operation device - Google Patents

Cornea operation device

Info

Publication number
JP2002065719A
JP2002065719A JP2000268437A JP2000268437A JP2002065719A JP 2002065719 A JP2002065719 A JP 2002065719A JP 2000268437 A JP2000268437 A JP 2000268437A JP 2000268437 A JP2000268437 A JP 2000268437A JP 2002065719 A JP2002065719 A JP 2002065719A
Authority
JP
Japan
Prior art keywords
cornea
corneal
shape
optical system
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000268437A
Other languages
Japanese (ja)
Other versions
JP4021136B2 (en
JP2002065719A5 (en
Inventor
Hirotsugu Nakamura
拓亜 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2000268437A priority Critical patent/JP4021136B2/en
Priority to US09/940,935 priority patent/US6669684B2/en
Publication of JP2002065719A publication Critical patent/JP2002065719A/en
Publication of JP2002065719A5 publication Critical patent/JP2002065719A5/ja
Application granted granted Critical
Publication of JP4021136B2 publication Critical patent/JP4021136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00804Refractive treatments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • A61F2009/00846Eyetracking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00855Calibration of the laser system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laser Surgery Devices (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cornea operation device capable of performing an operation properly by improving correcting precision by the removal of a cornea. SOLUTION: The cornea operation device for removing the cornea by laser beams is provided with an arithmetic means for calculating the removing quantity of the cornea based on the ametropia of an eye to be examined and dividing the removing quantity into the steps of plural times for obtaining the removing quantities at the respective steps, a controlling data deciding means for deciding the controlling data of the device at the respective steps based on the respective removing quantity, a cornea shape measuring means having an image forming optical system for forming an index for measuring the shape of the cornea on the cornea, an image pickup optical system for picking up the index image formed on the cornea and a shape arithmetic means for processing the picked-up image to detect the index image to obtain the shape of the cornea, and a correction means which compares an actually removing quantity at the step with a planed removing schedule based on the shape of the cornea measured after finishing irradiation with laser at a step by using the cornea shape measuring means and correcting controlling data at the next step based on the comparison.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光により患
者眼角膜を切除(アブレーション)して患者眼の屈折矯
正を行う角膜手術装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corneal surgery apparatus for ablating (ablating) a cornea of a patient's eye with a laser beam to correct the refractive of the patient's eye.

【0002】[0002]

【従来技術】エキシマレーザを用いて患者眼角膜を切除
し、角膜の屈折力を変化させて近視、遠視、乱視等の屈
折異常を矯正するレーザ角膜手術装置が知られている。
この屈折矯正手術では、角膜上皮を剥いだ後にレーザ照
射を行うPRK手術(photorefractive keratectomy)
と、角膜上皮から実質に至る部分を層状に切開してフラ
ップを形成し、その後にレーザ照射によって実質を切除
し、再びそのフラップを戻すLASIK手術(laser as
sisted in-situ keratomileusis)が行われている。
2. Description of the Related Art There is known a laser corneal surgery apparatus in which a cornea of a patient's eye is excised using an excimer laser and the refractive power of the cornea is changed to correct refractive errors such as myopia, hyperopia, and astigmatism.
In this refractive surgery, PRK surgery (photorefractive keratectomy) in which laser irradiation is performed after the corneal epithelium is peeled off
LASIK surgery (laser as), in which a layer from the corneal epithelium to the parenchyma is incised in layers to form a flap, and then the parenchyma is excised by laser irradiation and the flap is returned again.
sisted in-situ keratomileusis).

【0003】また、この種の装置による屈折矯正では、
手術段階に入る前の角膜形状、矯正屈折力、光学領域の
大きさ等の屈折矯正に関するデータから切除量が設定さ
れ、その切除量に基づいてレーザ照射が行われる。角膜
形状の測定には、一般に、プラチドリングを角膜に投影
し、角膜での鏡面反射光を検出することで角膜形状を測
定する装置が用いられており、この測定装置は手術装置
とは分離されたものである。
[0003] In addition, in refraction correction using this type of device,
An ablation amount is set from data related to refraction correction such as a corneal shape, a corrective refractive power, and a size of an optical region before the operation stage, and laser irradiation is performed based on the ablation amount. For measuring the corneal shape, a device that measures the corneal shape by projecting a placido ring onto the cornea and detecting specularly reflected light from the cornea is generally used.This measuring device is separated from the surgical device. It is a thing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、鏡面反
射光を利用した角膜形状測定では、レーザ照射直前(P
RKでは角膜の上皮を剥いだ後、LASIKではフラッ
プを形成した後)、及びレーザ照射直後の形状を測定す
ることができず、設定された切除量通りに角膜が切除さ
れているか否かを知ることができなかった。このため、
従来は、手術前後で屈折力測定を行うことで手術の適否
を判断し、所期する矯正が行われていない場合は、患者
眼の回復を待って再手術を行っていた。これは患者にと
って負担となる。
However, in the measurement of the corneal shape using specular reflected light, the corneal shape measurement immediately before the laser irradiation (P
In RK, after removing the corneal epithelium, in LASIK, after forming a flap), and the shape immediately after laser irradiation cannot be measured, and it is known whether or not the cornea has been ablated according to the set ablation amount. I couldn't do that. For this reason,
Conventionally, the refraction is measured before and after the operation to judge the appropriateness of the operation, and if the desired correction has not been made, the operation is performed again after the patient's eye is recovered. This is burdensome for the patient.

【0005】本発明は、上記従来技術の問題点に鑑み、
角膜切除による矯正精度を向上させ、より適切に手術を
行える角膜手術装置を提供することを技術課題とする。
The present invention has been made in view of the above-mentioned problems of the prior art,
It is an object of the present invention to provide a corneal surgery apparatus capable of improving correction accuracy by corneal ablation and performing a more appropriate operation.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は以下のような構成を備えることを特徴とす
る。
Means for Solving the Problems In order to solve the above problems, the present invention is characterized by having the following configuration.

【0007】(1) レーザ光によって角膜を切除する
角膜手術装置において、被検眼の屈折異常に基づいて角
膜の切除量を演算し,かつ切除量を複数回のステップに
分割し各ステップでの切除量を求める演算手段と、各切
除量に基づいて各ステップでの装置の制御データを決め
る制御データ決定手段と、角膜形状測定用の指標を角膜
上に結像する結像光学系,角膜に形成された指標像を撮
像する撮像光学系,及び撮像された画像を処理して指標
像を検知して角膜の形状を得る形状演算手段とを有する
角膜形状測定手段と、該角膜形状測定手段を使ってある
ステップのレーザ照射終了後に測定された角膜形状に基
づいてそのステップでの実切除量と予定切除量を対比
し,その対比に基づいて次のステップの制御データを補
正する補正手段と、を備えることを特徴とする。
(1) In a corneal surgery apparatus for ablating a cornea by a laser beam, an ablation amount of the cornea is calculated based on a refractive error of the eye to be examined, and the ablation amount is divided into a plurality of steps to perform ablation in each step. Calculating means for calculating the amount, control data determining means for determining control data of the apparatus in each step based on each ablation amount, an imaging optical system for forming an index for measuring a corneal shape on the cornea, and forming on the cornea A corneal shape measuring means having an imaging optical system for picking up the obtained target image, a shape calculating means for processing the picked-up image and detecting the target image to obtain a shape of the cornea; Correction means for comparing the actual ablation amount in the step with the planned ablation amount based on the corneal shape measured after the laser irradiation in the certain step, and correcting the control data in the next step based on the comparison. It is characterized by having.

【0008】(2) (1)の角膜手術装置において、
前記角膜形状測定用の指標はスリット光による指標であ
り、前記角膜形状測定手段は結像光学系を角膜に対して
距離方向に所定ステップで移動させる手段と、各移動位
置で角膜に形成されたスリット指標を前記撮像光学系に
より撮像する手段を備えることを特徴とする。
(2) In the corneal surgery apparatus of (1),
The index for measuring the corneal shape is an index based on slit light, and the corneal shape measuring means is a means for moving the imaging optical system in a distance direction with respect to the cornea in predetermined steps, and is formed on the cornea at each moving position. The image forming apparatus further includes a unit that captures an image of the slit index using the imaging optical system.

【0009】(3) (1)の角膜手術装置において、
前記角膜形状測定用の指標を格子パターンとしたことを
特徴とする。
(3) In the corneal surgery apparatus of (1),
The index for measuring the corneal shape is a lattice pattern.

【0010】(4) (1)の角膜手術装置において、
前記結像光学系は角膜に対する装置の距離方向をアライ
メントするためのアライメント光学系として兼用される
ことを特徴とする。
(4) In the corneal surgery apparatus of (1),
The imaging optical system is also used as an alignment optical system for aligning a distance direction of the apparatus with respect to the cornea.

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施例を図面に
基づいて説明する。図1はレーザビームにより角膜の屈
折矯正を行う角膜手術装置の外観図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an external view of a corneal surgery apparatus that performs a corneal refractive correction using a laser beam.

【0012】1は手術装置本体であり、エキシマレーザ
光源等が内蔵されている。エキシマレーザ光源からのレ
ーザ光は後述する本体1内のレーザ照射用光学系を通
り、アーム部2に導かれる。アーム部2の内部はレーザ
光の光路を持ち、ミラー等の光学素子が配置されてい
る。アーム部2のアーム先端部5には、患者眼を観察す
るための双眼の顕微鏡部3、照明部4等が設けられてい
る。
Reference numeral 1 denotes a main body of a surgical apparatus, which includes an excimer laser light source and the like. Laser light from the excimer laser light source passes through a laser irradiation optical system in the main body 1 described later, and is guided to the arm 2. The inside of the arm portion 2 has an optical path of a laser beam, and an optical element such as a mirror is arranged. A binocular microscope unit 3 for observing a patient's eye, an illumination unit 4, and the like are provided at an arm tip 5 of the arm unit 2.

【0013】アーム部2は、図2に示すように、X方向
アーム駆動部51により図1の方向(術者に対して左右
方向)に、Y方向駆動部52によりY方向(術者に対し
て前後方向)に移動可能である。また、アーム先端部5
はZ方向先端駆動部53によりZ方向(上下方向)に移
動可能である。各駆動部51,52,53はモータやス
ライド機構から構成される。
As shown in FIG. 2, the arm 2 is moved in the direction of FIG. 1 (left and right directions with respect to the operator) by an X-direction arm drive unit 51 and in the Y direction (with respect to the operator) by a Y-direction drive unit 52. (In the front-back direction). Also, the arm tip 5
Can be moved in the Z direction (vertical direction) by the Z-direction tip drive section 53. Each of the drive units 51, 52, 53 is composed of a motor and a slide mechanism.

【0014】6はコントローラであり、アーム部2をX
Y方向に駆動するための信号を与えるジョイスティック
7や、Z方向のアライメントを行うためのフォーカス調
整スイッチ6a、角膜形状の測定を開始するスイッチ6
b等の操作スイッチを備える。8はレーザ照射信号を送
るためのフットスイッチ、9は必要な手術条件の各種デ
ータ入力やレーザ照射制御データの演算、表示、記憶等
を行うコンピュータである。コンピュータ9は、本体9
0、モニタ91、キーボード92、マウス93等により
構成される。
Reference numeral 6 denotes a controller which controls the arm 2 to X
A joystick 7 for giving a signal for driving in the Y direction, a focus adjustment switch 6a for performing alignment in the Z direction, and a switch 6 for starting measurement of the corneal shape
b. Reference numeral 8 denotes a foot switch for transmitting a laser irradiation signal, and 9 denotes a computer for inputting various data of necessary surgical conditions and calculating, displaying, and storing laser irradiation control data. The computer 9 has a main body 9
0, a monitor 91, a keyboard 92, a mouse 93, and the like.

【0015】手術装置本体1の光学系及び制御系の概略
構成を図3に基づいて説明する。10は193nmの波
長を持つエキシマレーザを出射するレーザ光源である。
レーザ光源10から水平方向に出射されたレーザビーム
は、ミラー11、12により反射され、平面ミラー13
でさらに90度方向に反射される。平面ミラー13はミ
ラー駆動部14により図における矢印方向に移動可能で
あり、レーザビームをガウシアン分布方向に平行移動し
て対象物を均一に切除できる。この点は、特開平4−2
42644号に詳細に記載されているので、詳しくはこ
れを参照されたい。
A schematic configuration of an optical system and a control system of the surgical apparatus main body 1 will be described with reference to FIG. A laser light source 10 emits an excimer laser having a wavelength of 193 nm.
The laser beam emitted in the horizontal direction from the laser light source 10 is reflected by mirrors 11 and 12 and
At 90 degrees. The plane mirror 13 can be moved in the direction of the arrow in the figure by the mirror driving unit 14, and the laser beam can be moved in parallel in the Gaussian distribution direction to uniformly cut the object. This point is described in Japanese Patent Laid-Open No.
No. 42644, which is described in detail.

【0016】15はイメージローテータであり、イメー
ジローテーター駆動部16により中心光軸を中心にして
回転駆動され、レーザビームを光軸周りに回転させる。
17はミラーである。
Reference numeral 15 denotes an image rotator, which is driven to rotate about the central optical axis by an image rotator driving unit 16, and rotates the laser beam around the optical axis.
17 is a mirror.

【0017】18はアブレーション領域を円形に制限す
る可変円形アパーチャであり、アパーチャ駆動部19に
よりその開口径が変えられる。20はアブレーション領
域をスリット状に制限する可変のスリットアパーチャで
あり、アパーチャ駆動部21により開口幅とスリット開
口の方向が変えられる。22、23はビームの方向を変
えるミラーである。24は円形アパーチャ18およびス
リットアパーチャ20を患者眼の角膜Ec上に投影する
ための投影レンズである。
Reference numeral 18 denotes a variable circular aperture for limiting the ablation area to a circular shape. The aperture diameter of the aperture is changed by an aperture driving unit 19. Reference numeral 20 denotes a variable slit aperture that limits the ablation region to a slit shape. The aperture width and the direction of the slit opening can be changed by an aperture driving unit 21. 22 and 23 are mirrors for changing the direction of the beam. Reference numeral 24 denotes a projection lens for projecting the circular aperture 18 and the slit aperture 20 onto the cornea Ec of the patient's eye.

【0018】25は193nmのエキシマレーザビーム
を反射して可視光を通過する特性を持つダイクロイック
ミラーであり、投影レンズ24を経たレーザビームはダ
イクロイックミラー25により90°偏向されて角膜E
cへと導光される。
Reference numeral 25 denotes a dichroic mirror having a characteristic of reflecting a 193 nm excimer laser beam and transmitting visible light. The laser beam having passed through the projection lens 24 is deflected by 90 ° by the dichroic mirror 25, and becomes a cornea E.
The light is guided to c.

【0019】ダイクロイックミラー25の上方には固視
灯26、対物レンズ27、顕微鏡部3が配置される。3
0は顕微鏡部3の双眼光路の間に配置されたミラーであ
り、ミラー30の反射側光路には結像レンズ31、ミラ
ー32、CCDカメラ33が配置されている。CCDカ
メラ33の出力は画像解析部34に接続されており、角
膜形状の解析結果はコンピュータ9に入力される。
Above the dichroic mirror 25, a fixation lamp 26, an objective lens 27, and a microscope section 3 are arranged. 3
Reference numeral 0 denotes a mirror disposed between the binocular optical paths of the microscope unit 3, and an imaging lens 31, a mirror 32, and a CCD camera 33 are disposed on the reflection-side optical path of the mirror 30. The output of the CCD camera 33 is connected to an image analyzer 34, and the corneal shape analysis result is input to the computer 9.

【0020】ダイクロイックミラー25の下方には、照
明部4内に配置されるスリット投影光学系40a,40
bが、対物レンズ27の光軸を挟んで左右対称に配置さ
れている。このスリット投影光学系40a,40bは、
アライメント光の投影光学系として使用する他、角膜形
状測定用の指標を投影する測定光学系として兼用され
る。各スリット投影光学系40a,40bは、可視光を
発する照明ランプ41a,41b、コンデンサレンズ4
2a,42b、十字スリットを持つスリット板43a,
43b、投影レンズ44a,44bから構成される。ス
リット板43a,43bは、特に十字スリットでなく他
形状のスリットでも良い。スリット板43a,43bは
投影レンズ44a,44bに対して角膜Ecと共役な位
置関係にあり、その十字スリットの像は対物レンズ27
の光軸上のピント位置に常に結像するようになってい
る。また、CCDカメラ33の撮像面も結像レンズ31
により対物レンズ27の光軸上のピント位置と共役にさ
れており、CCDカメラ33はスリット投影像の検出光
学系として使用される。
Below the dichroic mirror 25, slit projection optical systems 40a, 40
b are arranged symmetrically with respect to the optical axis of the objective lens 27. These slit projection optical systems 40a and 40b
In addition to being used as a projection optical system for alignment light, it is also used as a measurement optical system for projecting an index for measuring a corneal shape. Each of the slit projection optical systems 40a and 40b includes illumination lamps 41a and 41b that emit visible light, a condenser lens 4
2a, 42b, slit plate 43a having a cross slit,
43b and projection lenses 44a and 44b. The slit plates 43a and 43b may be slits of other shapes instead of the cross slits. The slit plates 43a and 43b are in a positional relationship conjugate with the cornea Ec with respect to the projection lenses 44a and 44b.
An image is always formed at a focus position on the optical axis of the camera. Also, the imaging surface of the CCD camera 33 is
And the focus position on the optical axis of the objective lens 27 is conjugated with the CCD camera 33. The CCD camera 33 is used as a slit projection image detection optical system.

【0021】50はレーザ光源10や各駆動部等を制御
する制御部である。また、制御部50にはコンピュータ
9、フットスイッチ8、コントローラ6が接続されてい
る。
Reference numeral 50 denotes a control unit for controlling the laser light source 10 and each drive unit. The computer 9, the foot switch 8, and the controller 6 are connected to the control unit 50.

【0022】なお、実施形態では図示を省略したが、装
置にはアイトラッキング機能(アライメント中やレーザ
照射中に患者眼が動いた場合に、その動きを追尾してレ
ーザ照射位置を合せる機能)を搭載することが好まし
い。これは本出願人による特開平9−149914号公
報に記載したものを使用できる。
Although not shown in the embodiment, the apparatus has an eye tracking function (a function of tracking the movement of a patient's eye and aligning the laser irradiation position when the patient's eye moves during alignment or laser irradiation). It is preferable to mount it. For this, the one described in Japanese Patent Application Laid-Open No. 9-149914 by the present applicant can be used.

【0023】次に、本発明に係る装置の動作を説明す
る。ここでは近視の球面矯正を行うものとして説明す
る。
Next, the operation of the device according to the present invention will be described. Here, a description will be given assuming that spherical correction of myopia is performed.

【0024】まず、矯正屈折力や切除領域の大きさ等の
手術条件をコンピュータ9に入力する。コンピュータ9
は入力されたデータに基づいて角膜切除量データを算出
する。また、PRK手術を行う場合、術者はレーザ照射
前に患者眼の角膜上皮を剥いでおく処置を行う。
First, operating conditions such as the correction refractive power and the size of the resection area are input to the computer 9. Computer 9
Calculates corneal ablation amount data based on the input data. In addition, when performing the PRK operation, the surgeon performs a procedure in which the corneal epithelium of the patient's eye is peeled off before laser irradiation.

【0025】術者は、顕微鏡部3により患者眼の前眼部
像を観察しながら、ジョイスティック7を操作してアー
ム部2を移動して図示なきレチクルと瞳孔とが所定の関
係になるようにXY方向のアライメントを行い、フォー
カス調整スイッチ6aを操作してアーム先端部5を上下
に移動し、Z方向のアライメントを行う。
The operator operates the joystick 7 to move the arm 2 while observing the anterior eye image of the patient's eye with the microscope 3 so that the reticle (not shown) and the pupil have a predetermined relationship. Alignment in the X and Y directions is performed, and the focus adjustment switch 6a is operated to move the arm tip 5 up and down to perform alignment in the Z direction.

【0026】Z方向のアライメントは、スリット投影光
学系40a,40bによって投影されるスリット像を観
察して、次のように行う。図3上の左側のスリット投影
光学系40aからのスリット光の大部分は角膜Ecを通
過するが、その一部は角膜Ecで散乱して顕微鏡部3を
介して図4(a)の円弧状のスリットライン71aとし
て観察される。また、右側のスリット投影光学系40b
からのスリット光も同様に、図4(a)の円弧状のスリ
ットライン71bとして観察される。72は、スリット
ライン71a、71bの中心で直交するクロスラインで
ある。いま、角膜Ecの頂点が顕微鏡部3のピント位置
にあると、左からのスリットライン71aと右からのス
リットライン71bは、図4(a)のように角膜頂点位
置で重なる。しかし、角膜Ecがピント位置より遠い側
にあると、図4(b)のように2本のスリットライン7
1a,71bは離れて見える。また角膜Ecが図2の上
側、つまり近い側にあるときには図4(c)のように2
本のスリットライン71a,71bが交差して見える。
従って、図4(b)のように見えるときには、アーム先
端部5を下降させ、図4(c)のように見えるときに
は、反対に、アーム先端部5を上昇させる。このように
して、図4(a)の状態になるように装置と角膜Ecと
の距離を調整することによって、角膜Ec上に顕微鏡部
3のピントを合わせることができる。
The alignment in the Z direction is performed as follows while observing the slit images projected by the slit projection optical systems 40a and 40b. Most of the slit light from the slit projection optical system 40a on the left side in FIG. 3 passes through the cornea Ec, but a part of the slit light is scattered by the cornea Ec and passes through the microscope unit 3 to form an arc in FIG. Is observed as the slit line 71a. The right slit projection optical system 40b
Similarly, the slit light from is observed as an arc-shaped slit line 71b in FIG. Reference numeral 72 denotes a cross line orthogonal to the center of the slit lines 71a and 71b. Now, if the vertex of the cornea Ec is at the focus position of the microscope unit 3, the slit line 71a from the left and the slit line 71b from the right overlap at the cornea vertex position as shown in FIG. However, when the cornea Ec is farther from the focus position, as shown in FIG.
1a and 71b appear apart. When the cornea Ec is on the upper side of FIG. 2, that is, on the near side, as shown in FIG.
The book slit lines 71a and 71b appear to intersect.
Therefore, when it looks like FIG. 4B, the arm tip 5 is lowered, and when it looks like FIG. 4C, on the contrary, the arm tip 5 is raised. In this way, by adjusting the distance between the apparatus and the cornea Ec so as to obtain the state shown in FIG. 4A, the microscope unit 3 can be focused on the cornea Ec.

【0027】アライメントを完了させたら、コントロー
ラ6のスイッチ6bを押して、レーザ照射前に角膜形状
の測定を行う。好ましくは、図4(a)の状態を装置が
検出して自動的に測定を開始するようにする。角膜上に
形成されたスリットライン71a,71bはCCDカメ
ラ33に撮像され、その画像は画像解析部34に入力さ
れる。また、制御部50の制御によってアーム先端部5
がアライメント位置を基準として所定量づつ上方向及び
下方向に順次移動され、各移動毎にCCDカメラ33に
撮像された画像が画像解析部34に入力される。
When the alignment is completed, the switch 6b of the controller 6 is pressed to measure the corneal shape before laser irradiation. Preferably, the apparatus detects the state of FIG. 4A and automatically starts measurement. The slit lines 71a and 71b formed on the cornea are imaged by the CCD camera 33, and the image is input to the image analysis unit. Further, the arm tip 5
Are sequentially moved upward and downward by a predetermined amount based on the alignment position, and an image captured by the CCD camera 33 is input to the image analysis unit 34 for each movement.

【0028】角膜上に形成されたスリットライン71
a,71bによって角膜形状を測定する方法を説明す
る。いま、スリット投影光学系40a,40bからのス
リットを平板上に投影したとする。平板が基準高さ位置
(ピント位置)にあるときには、図5(a)のように2
本のスリットライン71a,71bは中心軸線Lo上で
一致する。平板が基準高さ位置より下方にあるときに
は、図5(b)のように2本のスリットライン71a,
71bは中心軸線Loから離れる。このとき、中心軸線
からの各スリットライン71a,71bの距離Qa,Q
bは高さ方向の基準高さ位置からの高低差に比例して変
化する。
Slit line 71 formed on cornea
The method of measuring the corneal shape using a and 71b will be described. Now, it is assumed that the slits from the slit projection optical systems 40a and 40b are projected on a flat plate. When the flat plate is at the reference height position (focus position), as shown in FIG.
The slit lines 71a and 71b coincide with each other on the central axis Lo. When the flat plate is below the reference height position, as shown in FIG. 5B, two slit lines 71a,
71b is away from the central axis Lo. At this time, the distances Qa, Q of the respective slit lines 71a, 71b from the center axis line
b changes in proportion to the height difference from the reference height position in the height direction.

【0029】このスリットを略球面である角膜上に投影
すると、その形状は図6のように曲線となる。図6にお
いて、中心軸線Loとスリットライン71aの内側エッ
ジとの間隔Qxを順次検出すれば、このときの形成され
たスリットライン71a上の多数の点における角膜高さ
情報が得られる。そして、角膜に対するスリット投影位
置を上下させれば、先の図4(b)及び(c)で示した
如く、スリットライン71a,71bの座標位置が変わ
るので、角膜上の各点での高さ情報を得ることが可能と
なる。なお、この算出においてはスリット投影位置を上
下させるためのアーム先端部5の移動量分を補正する。
When this slit is projected onto a substantially spherical cornea, its shape becomes a curve as shown in FIG. In FIG. 6, if the interval Qx between the central axis Lo and the inner edge of the slit line 71a is sequentially detected, corneal height information at many points on the slit line 71a formed at this time can be obtained. If the slit projection position with respect to the cornea is raised or lowered, the coordinate positions of the slit lines 71a and 71b change as shown in FIGS. 4B and 4C, so that the height at each point on the cornea is changed. Information can be obtained. In this calculation, the amount of movement of the arm tip 5 for raising and lowering the slit projection position is corrected.

【0030】このような原理を用い、画像解析部34で
スリット画像が解析された後、コンピュータ9によって
各座標の角膜高さ情報から角膜形状が求められる。な
お、撮影画像には虹彩で散乱するスリット画像も含まれ
るが、角膜で散乱するスリット像との位置関係や輝度等
の違いを基に画像処理により区別する。
After the slit image is analyzed by the image analysis unit 34 using such a principle, the computer 9 determines the corneal shape from the corneal height information of each coordinate. Note that the captured image includes a slit image scattered by the iris, but is distinguished by image processing based on a difference in the positional relationship with the slit image scattered by the cornea, brightness, and the like.

【0031】角膜形状の測定後、フットスイッチ8を押
してレーザ照射を行う。近視矯正では、円形アパーチャ
18によりレーザビームを制限し、平面ミラー13を順
次移動してレーザビームをガウシアン分布方向に移動す
る。そして、レーザビームが1面を移動し終わる(1ス
キャンする)ごとに、イメージローテータ15の回転に
よりレーザビームの移動方向を変更して(例えば、12
0度間隔の3方向)、円形アパーチャ18により制限さ
れた領域を略均一にアブレーションする。これを円形ア
パーチャ18の開口径の大きさを順次変えるごとに行う
ことにより、角膜の曲率半径を大きくする近視矯正が行
える(特開平6−114083号公報を参照)。
After measuring the corneal shape, the foot switch 8 is pressed to perform laser irradiation. In myopia correction, the laser beam is limited by the circular aperture 18 and the plane mirror 13 is sequentially moved to move the laser beam in the Gaussian distribution direction. Then, each time the laser beam moves on one surface (one scan), the moving direction of the laser beam is changed by rotation of the image rotator 15 (for example, 12
In three directions at 0-degree intervals), a region limited by the circular aperture 18 is ablated substantially uniformly. By performing this every time the size of the opening diameter of the circular aperture 18 is sequentially changed, myopia correction that increases the radius of curvature of the cornea can be performed (see Japanese Patent Application Laid-Open No. 6-114083).

【0032】ここで、本実施形態の装置では、レーザ照
射を2段階に分けて行うようプログラムされている。例
えば、1回目のレーザ照射は総予定切除量(矯正量)の
内の7割を行うように設定されている。1回目のレーザ
照射が終了したら、アライメントを行った後にスイッチ
6bを押して、上記と同様に角膜形状を測定する。コン
ピュータ9はレーザ照射後の角膜形状を得ると、レーザ
照射前の角膜形状からレーザ照射後の角膜形状を差引く
ことで1回目のレーザ照射による実際の切除量(実切除
量)を求める。そして、1回目のレーザ照射で予定する
切除量と実切除量とを比較し、その比較に基づいて2回
目のレーザ照射で設定すべき予定切除量を算出する。こ
のデータに基づいて2回目のレーザ照射の制御データが
補正される。
Here, the apparatus of the present embodiment is programmed to perform laser irradiation in two stages. For example, the first laser irradiation is set to perform 70% of the total planned excision amount (correction amount). When the first laser irradiation is completed, after performing alignment, the switch 6b is pressed, and the corneal shape is measured in the same manner as described above. When the computer 9 obtains the corneal shape after the laser irradiation, the computer 9 subtracts the corneal shape after the laser irradiation from the corneal shape before the laser irradiation to obtain the actual ablation amount (actual ablation amount) by the first laser irradiation. Then, the planned ablation amount to be set in the second laser irradiation is calculated based on the comparison between the scheduled ablation amount and the actual ablation amount in the first laser irradiation. The control data of the second laser irradiation is corrected based on this data.

【0033】2回目のレーザ照射における予定切除量の
算出について説明する。総予定切除量をSt、1回目の
レーザ照射時の予定切除量をS1、その実切除量をS1
´とすると、1回目のレーザ照射による切除誤差比K
は、 K=S1´/S1 で表される。
The calculation of the scheduled ablation amount in the second laser irradiation will be described. The total planned ablation amount is St, the planned ablation amount at the first laser irradiation is S1, and the actual ablation amount is S1.
′, The ablation error ratio K by the first laser irradiation
Is represented by K = S1 ′ / S1.

【0034】2回目のレーザ照射で切除されるべき量は
St−S1´であり、2回目のレーザ照射でも同じ切除
誤差比Kで誤差が発生するものとすれば、2回目に設定
すべき予定切除量Sxは、 Sx=(St−S1´)/K となる。
The amount to be ablated by the second laser irradiation is St-S1 '. If an error occurs at the same ablation error ratio K in the second laser irradiation, the amount to be ablated will be set to the second time. The ablation amount Sx is as follows: Sx = (St−S1 ′) / K

【0035】このようにして2回目のレーザ照射での予
定切除量Sxが得られた後、再びフットスイッチ8を押
すと、予定切除量Sxを切除するための補正された制御
データがコンピュータ9から制御部50に送られ、制御
部50によりレーザ光源10及び各駆動部が制御され
る。レーザ照射の制御は、予定切除量Sxから屈折力に
換算して円形アパーチャ18の開口径をコントロールす
る方法で行う。あるいは、予定切除量Sxから各点の切
除深度を調べ、それを円形アパーチャ18の開口径でコ
ントロールする方法で行うこともできる。2回目のレー
ザ照射は、1回目のレーザ照射の誤差分を考慮している
ので、設定した総予定切除量により近い手術を行うこと
ができる。
After the expected ablation amount Sx in the second laser irradiation is obtained in this manner, when the foot switch 8 is pressed again, the computer 9 outputs corrected control data for ablating the expected ablation amount Sx. It is sent to the control unit 50, and the control unit 50 controls the laser light source 10 and each driving unit. The laser irradiation is controlled by a method of controlling the opening diameter of the circular aperture 18 by converting the expected ablation amount Sx into a refractive power. Alternatively, it is also possible to examine the excision depth of each point from the planned excision amount Sx and control it by the opening diameter of the circular aperture 18. Since the second laser irradiation takes into account the error of the first laser irradiation, it is possible to perform an operation closer to the set total planned excision amount.

【0036】2回目のレーザ照射後、再度アラメントを
して角膜形状の測定を上記と同方法で行う。その結果を
モニタ91に表示することにより、手術の出来栄えを確
認することができる。ここで切除量(矯正量)が不足し
ていれば、続けてレーザ照射を実行するようにしても良
い。
After the second laser irradiation, the alignment is performed again, and the corneal shape is measured by the same method as described above. By displaying the result on the monitor 91, it is possible to confirm the quality of the operation. Here, if the resection amount (correction amount) is insufficient, the laser irradiation may be continuously performed.

【0037】以上の矯正手術においては、レーザ照射を
2回より多くの段階に分割して行っても良く、その場合
はある段階でのレーザ照射後に角膜形状の測定を行い、
上記と同様な方法で次ぎの段階でのレーザ照射制御デー
タを補正していく。
In the above corrective surgery, laser irradiation may be divided into more than two stages, in which case the corneal shape is measured after laser irradiation at a certain stage,
The laser irradiation control data at the next stage is corrected in the same manner as described above.

【0038】以上、近視矯正にいて説明したが、乱視矯
正、遠視矯正についても同様な考えで行うことができ
る。
The correction of myopia has been described above, but correction of astigmatism and correction of hyperopia can be performed in the same way.

【0039】また、上記ではPRKについて説明した
が、LASIK手術の場合もフラップを剥いだ後のレー
ザ照射前後の角膜形状を上記同様に測定し、次のレーザ
照射にフィードバックさせることができる。
Although PRK has been described above, in the case of LASIK surgery, the corneal shape before and after laser irradiation after the flap is stripped can be measured in the same manner as described above and fed back to the next laser irradiation.

【0040】また、上記の実施形態での角膜形状測定光
学系は、対物レンズ27の光軸回りにスリット投影光学
系40a,40bを回転する機構を設け、スリット投影
の角度を所定ステップで順次変えながらスリット像を撮
影することで角膜の全体形状を測定するようにしても良
い。
The corneal shape measuring optical system in the above embodiment is provided with a mechanism for rotating the slit projection optical systems 40a and 40b around the optical axis of the objective lens 27, and sequentially changes the slit projection angle in predetermined steps. The entire shape of the cornea may be measured by taking a slit image while taking the image.

【0041】また、角膜形状測定光学系は、アライメン
ト光の投影光学系40a,40bと兼用せずに専用に設
けても良く、次のようにすることできる。図7におい
て、100は指標投影光学系で、101は細かな格子パ
ターン(ドット状の格子パターンも含む)が形成された
指標板であり、背後の照明光源102から指標板101
を照明し、投影レンズ103によって対物レンズ27の
光軸上のピント位置に格子パターンを結像する。指標検
出用のCCDカメラ105は、対物レンズ27の光軸を
挟んで指標投影光学系100と対称な光軸上に配置され
ており、角膜上に投影された格子パターンを撮影する。
画像解析部34はCCDカメラ105で撮影した格子パ
ターン間の距離の変化を検出することで角膜形状を測定
する。こうした測定光学系では角膜の全面を1回の撮影
画像から測定できる。また、図示を略したアライメント
のスリット光がノイズとならないようにするために、測
定時にはスリット投影光学系40a,40bの照明ラン
プ41a,41bを消灯する。あるいは、照明光源10
2を赤外光源とし、CCDカメラ105の前に可視光を
カットするフィルタを設けて、赤外光での格子パターン
を検出する構成としても良い。
Further, the corneal shape measuring optical system may be provided exclusively without being used also as the projection optical systems 40a and 40b for the alignment light, and may be as follows. In FIG. 7, reference numeral 100 denotes an index projection optical system; 101, an index plate on which a fine lattice pattern (including a dot-like lattice pattern) is formed;
And the projection lens 103 forms an image of a lattice pattern at a focus position on the optical axis of the objective lens 27. The index detection CCD camera 105 is arranged on an optical axis symmetrical to the index projection optical system 100 with the optical axis of the objective lens 27 interposed therebetween, and takes an image of a lattice pattern projected on the cornea.
The image analyzer 34 measures the corneal shape by detecting a change in the distance between the lattice patterns captured by the CCD camera 105. With such a measurement optical system, the entire surface of the cornea can be measured from one captured image. Also, in order to prevent the slit light for alignment not shown from becoming noise, the illumination lamps 41a and 41b of the slit projection optical systems 40a and 40b are turned off during measurement. Alternatively, the illumination light source 10
2 may be an infrared light source, and a filter for cutting visible light may be provided in front of the CCD camera 105 to detect a lattice pattern using infrared light.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
角膜切除による矯正精度を向上させることができ、より
適切に手術を行える。
As described above, according to the present invention,
Correction accuracy by corneal resection can be improved, and surgery can be performed more appropriately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態である角膜手術装置の外観図
である。
FIG. 1 is an external view of a corneal surgery apparatus according to an embodiment of the present invention.

【図2】X、Y方向アーム駆動部、Z方向先端駆動部の
機構を示す図である。
FIG. 2 is a diagram illustrating a mechanism of an X- and Y-direction arm drive unit and a Z-direction tip drive unit.

【図3】本発明の実施形態である角膜手術装置の光学系
及び制御系概略図である。
FIG. 3 is a schematic diagram of an optical system and a control system of a corneal surgery apparatus according to an embodiment of the present invention.

【図4】アライメント状態におけるスリットラインを説
明する図である。
FIG. 4 is a diagram illustrating a slit line in an alignment state.

【図5】平板上に投影したスリットラインを説明する図
である。
FIG. 5 is a diagram illustrating a slit line projected on a flat plate.

【図6】角膜上に投影したスリットラインを説明する図
である。
FIG. 6 is a diagram illustrating a slit line projected on the cornea.

【図7】角膜形状測定光学系の別の例を示す概略図であ
る。
FIG. 7 is a schematic view showing another example of a corneal shape measuring optical system.

【符号の説明】[Explanation of symbols]

1 手術装置本体 3 顕微鏡部 9 コンピュータ 33 CCDカメラ 34 画像解析部 40a,40b スリット投影光学系 50 制御部 53 Z方向先端駆動部 71a,71b スリットライン 100 指標投影光学系 105 CCDカメラ DESCRIPTION OF SYMBOLS 1 Surgery apparatus main body 3 Microscope part 9 Computer 33 CCD camera 34 Image analysis part 40a, 40b Slit projection optical system 50 Control part 53 Z-direction tip drive part 71a, 71b Slit line 100 Index projection optical system 105 CCD camera

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光によって角膜を切除する角膜手
術装置において、被検眼の屈折異常に基づいて角膜の切
除量を演算し,かつ切除量を複数回のステップに分割し
各ステップでの切除量を求める演算手段と、各切除量に
基づいて各ステップでの装置の制御データを決める制御
データ決定手段と、角膜形状測定用の指標を角膜上に結
像する結像光学系,角膜に形成された指標像を撮像する
撮像光学系,及び撮像された画像を処理して指標像を検
知して角膜の形状を得る形状演算手段とを有する角膜形
状測定手段と、該角膜形状測定手段を使ってあるステッ
プのレーザ照射終了後に測定された角膜形状に基づいて
そのステップでの実切除量と予定切除量を対比し,その
対比に基づいて次のステップの制御データを補正する補
正手段と、を備えることを特徴とする角膜手術装置。
In a corneal surgery apparatus for ablating a cornea by a laser beam, an ablation amount of a cornea is calculated based on a refractive error of an eye to be examined, and the ablation amount is divided into a plurality of steps, and the ablation amount in each step is calculated. Calculating means for determining the control data of the apparatus at each step based on each ablation amount; an imaging optical system for forming an index for measuring a corneal shape on the cornea; A corneal shape measuring means having an imaging optical system for picking up the target image, a shape calculating means for processing the picked-up image and detecting the target image to obtain the shape of the cornea, and using the corneal shape measuring means. Correction means for comparing the actual ablation amount in the step with the planned ablation amount based on the corneal shape measured after the laser irradiation in the step, and correcting the control data in the next step based on the comparison A corneal surgery device, characterized in that:
【請求項2】 請求項1の角膜手術装置において、前記
角膜形状測定用の指標はスリット光による指標であり、
前記角膜形状測定手段は結像光学系を角膜に対して距離
方向に所定ステップで移動させる手段と、各移動位置で
角膜に形成されたスリット指標を前記撮像光学系により
撮像する手段を備えることを特徴とする角膜手術装置。
2. The corneal surgery apparatus according to claim 1, wherein the index for measuring the corneal shape is an index based on slit light,
The corneal shape measuring means includes means for moving the imaging optical system in a distance direction with respect to the cornea at predetermined steps, and means for imaging the slit index formed on the cornea at each movement position by the imaging optical system. Characterized corneal surgery device.
【請求項3】 請求項1の角膜手術装置において、前記
角膜形状測定用の指標を格子パターンとしたことを特徴
とする角膜手術装置。
3. The corneal surgery apparatus according to claim 1, wherein the corneal shape measurement index is a grid pattern.
【請求項4】 請求項1の角膜手術装置において、前記
結像光学系は角膜に対する装置の距離方向をアライメン
トするためのアライメント光学系として兼用されること
を特徴とする角膜手術装置。
4. The corneal surgery apparatus according to claim 1, wherein the imaging optical system is also used as an alignment optical system for aligning a distance direction of the apparatus with respect to the cornea.
JP2000268437A 2000-08-31 2000-08-31 Cornea surgery device Expired - Fee Related JP4021136B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000268437A JP4021136B2 (en) 2000-08-31 2000-08-31 Cornea surgery device
US09/940,935 US6669684B2 (en) 2000-08-31 2001-08-29 Corneal surgery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000268437A JP4021136B2 (en) 2000-08-31 2000-08-31 Cornea surgery device

Publications (3)

Publication Number Publication Date
JP2002065719A true JP2002065719A (en) 2002-03-05
JP2002065719A5 JP2002065719A5 (en) 2005-05-12
JP4021136B2 JP4021136B2 (en) 2007-12-12

Family

ID=18755221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000268437A Expired - Fee Related JP4021136B2 (en) 2000-08-31 2000-08-31 Cornea surgery device

Country Status (2)

Country Link
US (1) US6669684B2 (en)
JP (1) JP4021136B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092565A1 (en) * 2002-04-30 2003-11-13 Nidek Co., Ltd. Ablation method using laser beam, and device for ablation

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1274401A (en) * 1999-10-21 2001-04-30 Technolas Gmbh Ophthalmologische Systeme Multi-step laser correction of ophthalmic refractive errors
US7048735B2 (en) 2002-02-04 2006-05-23 Smith & Nephew External fixation system
US7083609B2 (en) * 2002-06-13 2006-08-01 Visx, Incorporated Corneal topography-based target warping
US7201766B2 (en) * 2002-07-03 2007-04-10 Life Support Technologies, Inc. Methods and apparatus for light therapy
US7001413B2 (en) * 2002-07-03 2006-02-21 Life Support Technologies, Inc. Methods and apparatus for light therapy
US7131990B2 (en) * 2002-10-07 2006-11-07 Natus Medical Inc. Phototherapy system and device
US8251057B2 (en) * 2003-06-30 2012-08-28 Life Support Technologies, Inc. Hyperbaric chamber control and/or monitoring system and methods for using the same
US7761945B2 (en) 2004-05-28 2010-07-27 Life Support Technologies, Inc. Apparatus and methods for preventing pressure ulcers in bedfast patients
ITMI20041625A1 (en) * 2004-08-06 2004-11-06 Roberto Pinelli PRESBYOPIA CORRECTION APPARATUS
JP4492874B2 (en) * 2005-03-31 2010-06-30 株式会社ニデック Ophthalmic laser treatment device
EP1876987A4 (en) * 2005-04-26 2009-11-18 Biolase Tech Inc Methods for treating eye conditions
US7281799B2 (en) * 2005-07-21 2007-10-16 Bausch & Lomb Incorporated Corneal topography slit image alignment via analysis of half-slit image alignment
DE102005053297A1 (en) * 2005-11-08 2007-05-10 Bausch & Lomb Inc. System and method for correcting ophthalmic refractive errors
US20070173796A1 (en) * 2006-01-25 2007-07-26 Ralf Kessler Device and method for calibrating a laser system
DE102006036085A1 (en) * 2006-08-02 2008-02-07 Bausch & Lomb Incorporated Method and apparatus for calculating a laser shot file for use in an excimer laser
DE102006036086A1 (en) * 2006-08-02 2008-02-07 Bausch & Lomb Incorporated Method and apparatus for calculating a laser shot file for use in a refractive excimer laser
DE102008028509A1 (en) * 2008-06-16 2009-12-24 Technolas Gmbh Ophthalmologische Systeme Treatment pattern monitoring device
DE102008035995A1 (en) * 2008-08-01 2010-02-04 Technolas Perfect Vision Gmbh Combination of excimer laser ablation and femtosecond laser technique
EP2330967A1 (en) * 2008-08-28 2011-06-15 Technolas Perfect Vision GmbH Eye measurement and modeling techniques
DE102008053827A1 (en) 2008-10-30 2010-05-12 Technolas Perfect Vision Gmbh Apparatus and method for providing a laser shot file
US20120240939A1 (en) * 2011-03-24 2012-09-27 Jochen Kandulla Apparatus and Method for Control of Refractive Index Changes in a Material
US9265458B2 (en) 2012-12-04 2016-02-23 Sync-Think, Inc. Application of smooth pursuit cognitive testing paradigms to clinical drug development
US9380976B2 (en) 2013-03-11 2016-07-05 Sync-Think, Inc. Optical neuroinformatics
US9380937B2 (en) * 2013-04-03 2016-07-05 Kabushiki Kaisha Topcon Ophthalmologic apparatus
EP3609448B1 (en) * 2017-04-11 2023-11-29 Motwani, Manoj System for corneal laser ablation
US10857033B2 (en) 2017-05-05 2020-12-08 Manoj Motwani Systems and methods for corneal laser ablation
CN115666466A (en) * 2020-05-24 2023-01-31 卡尔蔡司医疗技术股份公司 UV laser-based system for impaired vision correction and method for centering thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310045B1 (en) * 1987-09-30 1993-02-03 Canon Kabushiki Kaisha Ophthalmologic apparatus
WO1992001417A1 (en) 1990-07-19 1992-02-06 Horwitz Larry S Vision measurement and correction
JP3199124B2 (en) 1990-12-28 2001-08-13 株式会社ニデック Laser ablation equipment
CA2073802C (en) 1991-08-16 2003-04-01 John Shimmick Method and apparatus for combined cylindrical and spherical eye corrections
US5637109A (en) 1992-02-14 1997-06-10 Nidek Co., Ltd. Apparatus for operation on a cornea using laser-beam
JP2965101B2 (en) 1992-07-31 1999-10-18 株式会社ニデック Ophthalmic equipment
JP2907656B2 (en) * 1992-08-31 1999-06-21 株式会社ニデック Laser surgery device
US5350374A (en) * 1993-03-18 1994-09-27 Smith Robert F Topography feedback control system for photoablation
CO4230054A1 (en) 1993-05-07 1995-10-19 Visx Inc METHOD AND SYSTEMS FOR LASER TREATMENT OF REFRACTIVE ERRORS USING TRAVELING IMAGES FORMATION
AU716040B2 (en) 1993-06-24 2000-02-17 Bausch & Lomb Incorporated Ophthalmic pachymeter and method of making ophthalmic determinations
US5500697A (en) 1993-07-30 1996-03-19 Nidek Co., Ltd. Ophthalmic apparatus for measuring refractive characteristic of eye to be measured
US5800424A (en) 1994-06-24 1998-09-01 Nidek Co., Ltd. Apparatus for use in operating upon a cornea
US5569238A (en) 1994-10-19 1996-10-29 Shei; Sun-Sheng Energy delivery system controllable to continuously deliver laser energy in performing photorefractive keratectomy
US6159202A (en) 1995-09-29 2000-12-12 Nidex Co., Ltd. Corneal surgery apparatus
JPH11128264A (en) * 1997-10-24 1999-05-18 Nidek Co Ltd Ablation rate meter and ablation device with the same
US6033075A (en) 1998-03-31 2000-03-07 Nidek Co., Ltd. Ophthalmic apparatus
US6004313A (en) * 1998-06-26 1999-12-21 Visx, Inc. Patient fixation system and method for laser eye surgery
US6419671B1 (en) * 1999-12-23 2002-07-16 Visx, Incorporated Optical feedback system for vision correction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092565A1 (en) * 2002-04-30 2003-11-13 Nidek Co., Ltd. Ablation method using laser beam, and device for ablation
US7278989B2 (en) 2002-04-30 2007-10-09 Nidek Co. Ltd. Method for analysis of an ablated surface, analysis on inconsistency in a laser beam, and calibration of laser beam irradiation data

Also Published As

Publication number Publication date
JP4021136B2 (en) 2007-12-12
US20020026180A1 (en) 2002-02-28
US6669684B2 (en) 2003-12-30

Similar Documents

Publication Publication Date Title
JP4021136B2 (en) Cornea surgery device
US6159202A (en) Corneal surgery apparatus
JP3655022B2 (en) Ophthalmic surgery equipment
JP3828626B2 (en) Ophthalmic surgery equipment
US6605081B1 (en) Systems and methods for imaging corneal profiles
US20090275929A1 (en) System and method for controlling measurement in an eye during ophthalmic procedure
JP4086667B2 (en) Cornea surgery device
AU772600B2 (en) Amount-of-cornea-to-be-excised determining device and cornea surgery device
JP4080379B2 (en) Ophthalmic laser equipment
JP4162450B2 (en) Cornea surgery device
EP0983757A2 (en) Corneal surgery apparatus
JP3679331B2 (en) Refractive correction device
KR20020070262A (en) Two camera off-axis eye tracker
EP0911001A2 (en) Apparatus for measuring an optical characteristic parameter
JP2001218738A (en) Ophthalmologic device
JP4481537B2 (en) Cornea surgery device
JP3921375B2 (en) Ophthalmic device and corneal surgery device
JP4837840B2 (en) Corneal resection data determination device and corneal resection data determination program
JP2007054423A (en) Corneal surgery apparatus
JP3675852B2 (en) Ophthalmic surgery equipment
JPH10192333A (en) Ophthalmic operation device
JP3872228B2 (en) Laser surgical device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees