JP2002063948A - Cylindrical air cell - Google Patents

Cylindrical air cell

Info

Publication number
JP2002063948A
JP2002063948A JP2001205872A JP2001205872A JP2002063948A JP 2002063948 A JP2002063948 A JP 2002063948A JP 2001205872 A JP2001205872 A JP 2001205872A JP 2001205872 A JP2001205872 A JP 2001205872A JP 2002063948 A JP2002063948 A JP 2002063948A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode
cylindrical air
cylindrical
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001205872A
Other languages
Japanese (ja)
Other versions
JP3642298B2 (en
Inventor
Shigeto Noya
重人 野矢
Takafumi Fujiwara
隆文 藤原
Tomoya Watanabe
朋也 渡辺
Isao Kubo
勲 久保
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001205872A priority Critical patent/JP3642298B2/en
Publication of JP2002063948A publication Critical patent/JP2002063948A/en
Application granted granted Critical
Publication of JP3642298B2 publication Critical patent/JP3642298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an air cell superior in an anti-leakage property after discharging wherein an opposing area of an air electrode to a gel zinc negative electrode is made to be increased and a utilization factor of the negative electrode is improved by a gel electrolytic solution containing no zinc powder filled up in the cylindrical cell having a cylindrical air electrode. SOLUTION: It is possible to obtain a cylindrical air cell which contains no zinc powder, which is superior in discharging and also superior in leakage after discharging because the opposing area of the air electrode to the gel zinc negative electrode is increased and the utilization factor of the negative electrode is improved by the gel electrolytic solution 23 filled beforehand into a part opposing an inner side of a metal inner cap 17 inside a separator 8 constituted and inserted inside the cylindrical air electrode 4. In addition, the cylindrical air electrode of a three-layered structure consists of a catalytic layer 1, a current collector layer 2 and a water-repellent fluororesin porous membrane layer 3, and its lower part is inserted into a resin mold 19 coated with a sealer 18 and sealed by an positive electrode can 11 being pressurized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円筒形空気電池に
関し、特に高率放電と放電後の耐漏液性を向上させた円
筒形空気電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical air battery, and more particularly to a cylindrical air battery having improved high-rate discharge and improved liquid leakage resistance after discharge.

【0002】[0002]

【従来の技術】従来の円筒形空気電池では、特開昭60
−1770号などに見られるように放電後の負極亜鉛の
体積膨脹を考慮して、負極活物質の充填可能な内容積に
対して75〜85%の充填率で負極活物質とアルカリ電
解液とを充填し、電池放電後に、外部へアルカリ電解液
が漏れるのを防止していた。
2. Description of the Related Art A conventional cylindrical air battery is disclosed in
In consideration of the volume expansion of the negative electrode zinc after discharge as seen in, for example, No. 1770, the negative electrode active material and the alkaline electrolyte are filled at a filling rate of 75 to 85% with respect to the fillable inner volume of the negative electrode active material. To prevent leakage of the alkaline electrolyte to the outside after battery discharge.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来の方
法において電池を構成する場合、放電後の耐漏液性に関
しては十分な特性が得られる。しかしながら、正極の面
積と正極に対向する負極の面積とができる限り等しくな
るほうが放電時の負極の利用率は高くなる。上述の充填
率から判るように正極に対する負極の対向率は75〜8
5%であり、このため円筒形空気電池の高率放電では負
極利用率は35〜55%と低い。また、従来の円筒形空
気電池では電池内部に充填された負極の放電後の状態を
分析すると内カップの内側に充填されている負極亜鉛は
未放電のままであり、このことも負極の利用率低下の原
因となっている。
When a battery is constructed by the above-mentioned conventional method, sufficient characteristics can be obtained with respect to leakage resistance after discharge. However, when the area of the positive electrode is equal to the area of the negative electrode facing the positive electrode as much as possible, the utilization rate of the negative electrode during discharge increases. As can be seen from the above filling ratio, the facing ratio of the negative electrode to the positive electrode is 75 to 8
Therefore, the negative electrode utilization rate is as low as 35 to 55% in the high rate discharge of the cylindrical air battery. In the conventional cylindrical air battery, when the state of the negative electrode filled inside the battery after discharge is analyzed, the negative electrode zinc filled inside the inner cup remains undischarged, which also indicates the negative electrode utilization rate. It is causing the decline.

【0004】本発明の目的は、従来法での上記課題を解
決し、放電後の耐漏液性に優れ、かつ、高率放電性能に
優れた円筒形空気電池を提供するものである。
An object of the present invention is to solve the above-mentioned problems in the conventional method, and to provide a cylindrical air battery having excellent resistance to liquid leakage after discharge and excellent high-rate discharge performance.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め本発明の円筒形空気電池では、開口端部の片側が金属
製の外カップと内カップとにより封口された円筒状空気
極を有し、前記円筒状空気極内に有底筒状に構成された
セパレータを有する円筒形空気電池であって、前記セパ
レータ内側の前記内カップの内側に対向する部分に負極
を含有していないゲル状電解液が充填され、残りの部分
にゲル状亜鉛負極が充填されていることを特徴とする。
In order to achieve the above object, a cylindrical air battery according to the present invention has a cylindrical air electrode in which one side of an open end is closed by a metal outer cup and an inner cup. And a cylindrical air battery having a separator formed in a cylindrical shape with a bottom in the cylindrical air electrode, wherein the negative electrode is not contained in a portion of the separator facing the inside of the inner cup inside the separator. It is characterized by being filled with an electrolytic solution and filling the remaining part with a gelled zinc negative electrode.

【0006】[0006]

【発明の実施の形態】本発明によれば、電池内部に充填
する負極に関して、セパレータ内側の金属製内カップの
内側に対向する部分に負極を含有していないゲル状電解
液が充填され、残りの部分にゲル状負極が充填されてい
るので、従来の内カップの内側に充填され放電に利用さ
れていなかった負極が無くなり、電池内の負極すべてが
正極と対向するようにして対向率を高めることになり、
高率放電と放電後の耐漏液性とに優れた円筒形空気電池
を得ることができる。
According to the present invention, with respect to the negative electrode to be filled in the battery, a portion of the inside of the separator facing the inside of the metal inner cup is filled with a gel electrolyte containing no negative electrode, and Is filled with a gelled negative electrode, so that the negative electrode that was filled inside the conventional inner cup and not used for discharging is eliminated, and all the negative electrodes in the battery face the positive electrode to increase the facing ratio. That means
A cylindrical air battery excellent in high-rate discharge and leakage resistance after discharge can be obtained.

【0007】[0007]

【実施例】以下に本発明の実施例の円筒形空気電池の実
施例を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a cylindrical air battery according to the present invention will be described below with reference to the drawings.

【0008】(実施例1)図1(A)に本発明を適用し
た単3形空気亜鉛電池の構造の半断面図を示した。図1
(A)中の4は、3層構造の円筒状空気極であり、図1
(B)に示すように、内側から触媒層1、集電体層2、
撥水性フッ素樹脂多孔膜層3からなっている。この空気
極では、ニッケルめっきを施したステンレス製の金網で
ある集電体層に触媒シートをプレスにより圧着してあ
る。この触媒シートは、活性炭、マンガン酸化物、アセ
チレンブラック、フッ素樹脂粉末を混合し、この混合合
剤にエチルアルコールを加え混練した後、押出成形し偏
平形の帯状の合剤とし、さらにこの帯状合剤を加熱した
2本のローラーに通して圧延し、0.6mmのシート状
にしたものである。つぎに、集電体層側にフッ素樹脂微
粉末を含む分散液を塗布し、230℃で乾燥を行う。最
後にフッ素樹脂微粉末分散液を塗布した側に、ガス透過
能を有する撥水性のフッ素樹脂多孔膜をプレスにより圧
着することにより、触媒層、集電体層およびフッ素樹脂
多孔膜層からなる3層構造の平板の空気極を作製する。
このように作製した平板の空気極を触媒層側が内側にな
るように湾曲させ、触媒層とフッ素樹脂多孔膜の両端部
の一部を重ねて筒形とする。ついで、この重なった部分
の触媒層およびフッ素樹脂多孔膜の一部を取り除いて露
出した集電体層をスポット溶接し、気密状態にない溶接
部に合成ゴム系の接着剤を充填し気密に補修する。以上
の工程により、3層構造の円筒状空気極を作る。この3
層構造の円筒状空気極の上部は鋼板にニッケルめっきを
施した金属製の外カップ16と内カップ17とで挟み込
まれ封口されている。正極上部をこのように封口した
後、外カップ底部の3ヶ所に備えたプロジェクション部
と正極缶底部とをスポット溶接することにより集電、導
通させている。円筒状に構成されたセパレータ8、皿底
紙15を順次挿入した後に、負極活物質が充填可能であ
る内容積に対して75%の充填率となるように、まず亜
鉛負極を含まないゲル状電解液23を内カップ17に対
向する部分に充填し、次にゲル状亜鉛負極9を充填す
る。次いで、円筒状空気極の下部に、凹部に合成ゴム系
の封止剤18を塗布した樹脂成形体19を挿入し、次に
この樹脂成形体の内周側に金属製リング22を挿入す
る。さらに、底板20を溶接した集電子21を挿入した
樹脂成形封口体19′を嵌め合わせ、正極缶11を機械
的に押圧して樹脂成形体の凹部を空気極側に密着させ封
口する。円筒状空気極の下部は環状の凹部を有する樹脂
成形体19の合成ゴム系の封止剤18が塗布された凹部
に挿入され、この樹脂成形体と正極缶11とで封口され
ている。図中、10は空気拡散紙、12は絶縁チュー
ブ、13は空気取り入れ孔で電池を使用するまでは密封
シール14でシールされている。
Embodiment 1 FIG. 1A shows a half cross-sectional view of the structure of an AA type zinc-air battery to which the present invention is applied. FIG.
4A is a cylindrical air electrode having a three-layer structure.
As shown in (B), the catalyst layer 1, the current collector layer 2,
It comprises a water-repellent fluororesin porous film layer 3. In this air electrode, a catalyst sheet is pressed by a press onto a current collector layer, which is a nickel-plated stainless steel wire mesh. This catalyst sheet is prepared by mixing activated carbon, manganese oxide, acetylene black, and fluororesin powder, adding ethyl alcohol to the mixed mixture, kneading the mixture, and extruding to form a flat band-shaped mixture. The agent was rolled through two heated rollers to form a 0.6 mm sheet. Next, a dispersion liquid containing fine fluororesin powder is applied to the current collector layer side, and dried at 230 ° C. Finally, a water-repellent fluororesin porous membrane having gas permeability is pressed on the side to which the fluororesin fine powder dispersion is applied by pressing to form a catalyst layer, a current collector layer and a fluororesin porous membrane layer. A flat plate air electrode having a layer structure is manufactured.
The air electrode of the flat plate produced in this manner is curved so that the catalyst layer side is on the inside, and the catalyst layer and a part of both ends of the fluororesin porous membrane are overlapped to form a cylindrical shape. Next, the catalyst layer in the overlapped portion and a part of the fluororesin porous film were removed, and the exposed current collector layer was spot-welded, and a non-hermetic weld was filled with a synthetic rubber-based adhesive to repair the hermetic seal. I do. Through the above steps, a cylindrical air electrode having a three-layer structure is formed. This 3
The upper part of the cylindrical air electrode having a layer structure is sandwiched between an outer cup 16 and an inner cup 17 made of metal plated with nickel on a steel plate and sealed. After sealing the upper part of the positive electrode in this way, current is collected and conducted by spot welding the projection part provided at three places on the bottom of the outer cup and the bottom of the positive electrode can. After the cylindrical separator 8 and the dish bottom paper 15 are sequentially inserted into the cylindrical shape, a gel-like material containing no zinc negative electrode is first provided so as to have a filling rate of 75% with respect to the internal volume that can be filled with the negative electrode active material. The portion facing the inner cup 17 is filled with the electrolytic solution 23, and then the gelled zinc negative electrode 9 is filled. Next, a resin molded body 19 having a concave portion coated with a synthetic rubber-based sealant 18 is inserted below the cylindrical air electrode, and a metal ring 22 is inserted into the inner peripheral side of the resin molded body. Further, the resin-molded sealing body 19 ′ into which the current collector 21 to which the bottom plate 20 is welded is inserted is fitted, and the positive electrode can 11 is mechanically pressed to bring the concave portion of the resin molded body into close contact with the air electrode side to seal. The lower portion of the cylindrical air electrode is inserted into a concave portion of a resin molded body 19 having an annular concave portion to which a synthetic rubber-based sealant 18 has been applied, and is sealed with the resin molded body and the positive electrode can 11. In the drawing, 10 is an air diffusion paper, 12 is an insulating tube, 13 is an air intake hole, which is sealed with a hermetic seal 14 until the battery is used.

【0009】(従来例1)負極活物質の充填率が75%
となるように、ゲル状亜鉛負極だけを用いて上記実施例
1と同様の方法で構成した電池を従来例として作製す
る。
(Conventional Example 1) The filling rate of the negative electrode active material is 75%
Thus, a battery constructed in the same manner as in Example 1 using only the gelled zinc negative electrode is manufactured as a conventional example.

【0010】(比較例1)負極活物質の充填率が95%
となるように、ゲル状亜鉛負極だけを用いて上記実施例
1と同様の方法で構成した電池を比較例として作製す
る。
Comparative Example 1 A filling rate of the negative electrode active material was 95%.
Thus, a battery constructed in the same manner as in Example 1 using only the gelled zinc negative electrode is manufactured as a comparative example.

【0011】以上の実施例1、従来例1、比較例1の電
池を用いて、初期放電試験を実施した。電池内部に充填
する負極の内訳を表1に示し、放電試験の結果を表2に
示した。
Using the batteries of Example 1, Conventional Example 1, and Comparative Example 1, an initial discharge test was performed. Table 1 shows the details of the negative electrode filled in the battery, and Table 2 shows the results of the discharge test.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】実施例1と従来例1の電池の場合、充填す
る負極の構成としては、亜鉛粉末4.1g、ゲル状電解
液2.8gと同じであるが、これらの電池を比較する
と、500〜1000mAの放電電流において実施例1
の方が放電容量が大きくなる。また、実施例1は亜鉛負
極の利用率に関しては比較例1とほぼ同等の値を示す
が、放電後の漏液は認められない。一方、比較例1では
放電後の負極の膨脹を考慮せずに充填しているため、評
価した全ての電流領域に対して放電後の漏液が認められ
た。
In the batteries of Example 1 and Conventional Example 1, the structure of the negative electrode to be filled is the same as that of 4.1 g of zinc powder and 2.8 g of a gel electrolyte. Example 1 at a discharge current of ~ 1000 mA
Has a larger discharge capacity. In Example 1, the utilization rate of the zinc negative electrode is almost the same as that of Comparative Example 1, but no liquid leakage after discharge is observed. On the other hand, in Comparative Example 1, since the negative electrode was filled without taking into account the expansion of the negative electrode after discharge, liquid leakage after discharge was observed in all the evaluated current regions.

【0015】このように本発明による構成の電池の場
合、放電後の漏液を防ぐとともに高率放電における負極
利用率の優れた電池が得られる。
As described above, in the case of the battery having the configuration according to the present invention, it is possible to obtain a battery that prevents leakage after discharge and has excellent negative electrode utilization in high-rate discharge.

【0016】[0016]

【発明の効果】以上の説明で明らかなように本発明によ
れば、空気極内に構成挿入されたセパレータ内側の金属
製内カップの内側に対向する部分に負極を含有していな
いゲル状電解液が充填され残りの部分にゲル状負極が充
填されているため、放電後の耐漏液性に優れ、高率放電
における負極の利用率を向上させた円筒形空気電池を提
供することができる。
As is apparent from the above description, according to the present invention, the gel electrolysis which does not contain the negative electrode in the part facing the inside of the metal inner cup inside the separator inserted in the air electrode. Since the liquid is filled and the remaining part is filled with the gelled negative electrode, it is possible to provide a cylindrical air battery having excellent leakage resistance after discharge and improved utilization of the negative electrode in high-rate discharge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)本発明の実施例1の円筒形空気電池の半
断面図 (B)図1(A)の空気電池に用いた円筒状空気極の部
分拡大断面図
1A is a half sectional view of a cylindrical air battery according to a first embodiment of the present invention; FIG. 1B is a partially enlarged sectional view of a cylindrical air electrode used in the air battery of FIG. 1A;

【符号の説明】[Explanation of symbols]

1 触媒層 2 集電体 3 フッ素樹脂多孔膜 4 円筒状空気極 5 ニッケルめっき層 6 ポリテトラフルオロエチレン粒子 7 ステンレス製集電体 8 セパレータ 9 ゲル状負極亜鉛 10 空気拡散紙 11 正極缶 12 絶縁チューブ 13 空気取り入れ孔 14 密封シール 15 皿底紙 16 金属製外カップ 17 金属製内カップ 18 封止剤 19 樹脂成形体 19′ 樹脂成形封口体 20 底板 21 集電子 22 金属製リング 23 ゲル状電解液 DESCRIPTION OF SYMBOLS 1 Catalyst layer 2 Current collector 3 Fluororesin porous film 4 Cylindrical air electrode 5 Nickel plating layer 6 Polytetrafluoroethylene particles 7 Stainless steel current collector 8 Separator 9 Gelled negative electrode zinc 10 Air diffusion paper 11 Positive electrode can 12 Insulating tube DESCRIPTION OF SYMBOLS 13 Air intake hole 14 Sealing seal 15 Dish bottom paper 16 Metal outer cup 17 Metal inner cup 18 Sealant 19 Resin molded body 19 'Resin molded sealing body 20 Bottom plate 21 Current collector 22 Metal ring 23 Gel electrolyte

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 朋也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 久保 勲 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小林 茂雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H018 AA10 AS03 BB09 CC03 EE02 5H032 AA02 AS03 AS12 CC01 CC06 CC16  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomoya Watanabe 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Isao Kubo 1006 Kadoma Kadoma, Kadoma City Osaka Pref. 72) Inventor Shigeo Kobayashi 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 開口端部の片側が金属製の外カップと内
カップとにより封口された円筒状空気極を有し、前記円
筒状空気極内に有底筒状に構成されたセパレータを有す
る円筒形空気電池であって、前記セパレータ内側の前記
内カップの内側に対向する部分に負極を含有していない
ゲル状電解液が充填され、残りの部分にゲル状亜鉛負極
が充填されていることを特徴とする円筒形空気電池。
1. One end of an open end has a cylindrical air electrode closed by a metal outer cup and an inner cup, and a bottomed cylindrical separator is provided in the cylindrical air electrode. In the cylindrical air battery, a portion facing the inside of the inner cup inside the separator is filled with a gel electrolyte containing no negative electrode, and the remaining portion is filled with a gel zinc negative electrode. A cylindrical air battery characterized by the following.
JP2001205872A 2001-07-06 2001-07-06 Cylindrical air battery Expired - Fee Related JP3642298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001205872A JP3642298B2 (en) 2001-07-06 2001-07-06 Cylindrical air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001205872A JP3642298B2 (en) 2001-07-06 2001-07-06 Cylindrical air battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02412895A Division JP3232936B2 (en) 1995-02-13 1995-02-13 Cylindrical air battery

Publications (2)

Publication Number Publication Date
JP2002063948A true JP2002063948A (en) 2002-02-28
JP3642298B2 JP3642298B2 (en) 2005-04-27

Family

ID=19042103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001205872A Expired - Fee Related JP3642298B2 (en) 2001-07-06 2001-07-06 Cylindrical air battery

Country Status (1)

Country Link
JP (1) JP3642298B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122571A (en) * 2021-12-06 2022-03-01 华东师范大学重庆研究院 Monomer aluminum-air battery and module thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122571A (en) * 2021-12-06 2022-03-01 华东师范大学重庆研究院 Monomer aluminum-air battery and module thereof
CN114122571B (en) * 2021-12-06 2024-02-13 华东师范大学重庆研究院 Single aluminum-air battery and module thereof

Also Published As

Publication number Publication date
JP3642298B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
JP3475527B2 (en) Cylindrical air battery
CN1253385A (en) Air electrode and metal-air battery made of same
US8236444B2 (en) Electrochemical cell having low volume collector assembly
JPH06267594A (en) Air battery
JP2002063948A (en) Cylindrical air cell
JP3232936B2 (en) Cylindrical air battery
JPH08264186A (en) Cylindrical air zinc battery
JP3348236B2 (en) Air electrode current collecting material for air battery using alkaline electrolyte and air battery using alkaline electrolyte provided with the same
JPH08306398A (en) Cylindrical air cell
JP3642297B2 (en) Cylindrical air battery
JP3395440B2 (en) Air electrode current collecting material for air battery and air battery provided with the same
JPH0950828A (en) Rectangular air cell
JPH0831425A (en) Battery
JPH07211322A (en) Air electrode, manufacture thereof, and air battery using the electrode
CN2303390Y (en) External oxygen type cylindrical zinc-air battery
JP2000082503A (en) Air cell
JPH0547388A (en) Cylindrical air-zinc battery
CN214542374U (en) Button cell with but viscidity sealing glue layer subassembly block
JP4395899B2 (en) Air battery
JP2001043864A (en) Cylindrical air electrode and cylindrical air battery
JPH0982372A (en) Button type air-zinc battery
JP3474721B2 (en) Non-melonized air battery
JPH08315870A (en) Cylindrical air zinc battery
JPH0325863A (en) Internally stacked battery
JP2001307692A (en) Flat-type battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

LAPS Cancellation because of no payment of annual fees