JP2002062495A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JP2002062495A
JP2002062495A JP2000249515A JP2000249515A JP2002062495A JP 2002062495 A JP2002062495 A JP 2002062495A JP 2000249515 A JP2000249515 A JP 2000249515A JP 2000249515 A JP2000249515 A JP 2000249515A JP 2002062495 A JP2002062495 A JP 2002062495A
Authority
JP
Japan
Prior art keywords
optical
lens
light
detecting
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000249515A
Other languages
Japanese (ja)
Other versions
JP4148638B2 (en
Inventor
Tatsuya Ito
達也 伊藤
Hiromichi Atsumi
広道 厚海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2000249515A priority Critical patent/JP4148638B2/en
Publication of JP2002062495A publication Critical patent/JP2002062495A/en
Application granted granted Critical
Publication of JP4148638B2 publication Critical patent/JP4148638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical scanner which eliminates the need for detecting operation carried out by repeatedly driving a lens and can greatly shorten the time needed to correct a beam to a proper beam diameter. SOLUTION: A detecting means 10 has two optical sensors Sa and Sb provided on a common base 20 at an interval ΔX in the image height direction (arrow X in Fig.). The shape of an ideal depth curve is previously stored as a table in a memory of a control part 13. The optical sensors Sa and Sd measure beam diameters da' and db' respectively and they are and compared with the previously stored table of the depth curve to compute the waist position where the beam spot diameter become smaller; and the driving quantities of correcting lenses 3 and 4 are calculated from the difference from an image plane position to move them. For confirmation, the optical sensors Sa and Sb measures again the beam spot diameters to judge whether or not they are proper and if they are slightly different, the operation is repeated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザプリンタや
デジタル複写機等の画像形成装置や、さらには計測器、
検査装置に画像印字手段として組み込まれるレーザビー
ム走査光学装置のような光走査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming apparatus such as a laser printer and a digital copying machine, and a measuring instrument,
The present invention relates to an optical scanning device such as a laser beam scanning optical device incorporated as an image printing unit in an inspection device.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
レーザプリンタやデジタル複写機等に画像印字手段とし
て組み込まれるレーザビーム走査光学装置は、画質向上
のために高密度での印字が可能なものが必要とされてい
る。このため、被走査面(感光体)上でのレーザビーム
のスポット径は小さくなり、焦点の許容深度が浅くなっ
てきている。このような装置では、環境の変化、特に、
使用中に光学装置が発熱して光学素子やそのホルダが熱
膨張を生じると、集光位置が被走査面の前後方向にず
れ、高画質を維持するうえで許容できなくなるほどビー
ムスポット径が大きくなるという問題が生じていた。
2. Description of the Related Art In recent years,
In order to improve image quality, a laser beam scanning optical device that is incorporated as an image printing unit in a laser printer, a digital copying machine, or the like is required to be capable of printing at high density. For this reason, the spot diameter of the laser beam on the surface to be scanned (photoreceptor) becomes smaller, and the allowable depth of focus becomes smaller. In such devices, changes in the environment, in particular,
If the optical device generates heat during use and the optical element and its holder undergo thermal expansion, the focusing position shifts in the front-back direction of the surface to be scanned, and the beam spot diameter is so large that it is unacceptable to maintain high image quality. Problem had arisen.

【0003】このような問題に対処するための技術とし
ては、特開平2−58016号公報に開示されているよ
うに、感光体と光学的に等価位置でレーザビームの集光
状態を検出し、フォーカシングレンズを移動させてビー
ム集光位置を補正するというものがある。
As a technique for coping with such a problem, as disclosed in Japanese Patent Application Laid-Open No. 2-58016, a laser beam condensing state is detected at an optically equivalent position with respect to a photosensitive member. There is a method of correcting a beam focusing position by moving a focusing lens.

【0004】ところが最近では、プリントスピードが高
速に設定されるに伴って、ビームスポットの走査速度が
非常に速くなってきており、従来のビーム集光状態検出
手段では検出回路の応答速度を速くしなければならず、
MHz、GHzオーダーの間隔で受光素子の出力をサン
プルできる高速応答性の高い素子を使用する必要があ
り、コストアップを招いていた。
Recently, however, the scanning speed of the beam spot has become extremely high as the printing speed is set to a high speed, and the response speed of the detection circuit is increased in the conventional beam condensing state detecting means. Must be
It is necessary to use an element having a high-speed response that can sample the output of the light receiving element at intervals of the order of MHz and GHz, which has led to an increase in cost.

【0005】そこで、特開平10−20225号公報に
開示されている技術においては、レーザ光源を定点でパ
ルス発光させ、このパルスビームの集光状態を検出する
ようにして、高速走査であっても簡単な構成の検出手段
でレーザビームの集光状態を検出でき、集光状態検出結
果に基づいて光学素子を駆動してレーザビームの集光位
置を調整することにより、常時高品質の画像を得ること
ができるようにしている。
Therefore, in the technique disclosed in Japanese Patent Application Laid-Open No. 10-20225, a laser light source is made to emit a pulse at a fixed point, and the focused state of the pulse beam is detected. The focusing state of the laser beam can be detected by the detecting means with a simple configuration, and the optical element is driven based on the focusing state detection result to adjust the focusing position of the laser beam, thereby always obtaining a high-quality image. Have to be able to.

【0006】ところが、光ビームの結像状態の検知にお
いてパルス発光を前提にしているが、実際にはパルス発
光のタイミングがずれて検知精度が下がり、また、ナイ
フエッジ法を用いているため主走査方向の光ビームの結
像状態は検知できるが、副走査方向の光ビームの結像状
態は検知できないという問題があった。なお本願発明者
等の知るところでは、従来技術において、主走査方向、
副走査方向をそれぞれ独立に検知する技術例はない。ま
た、主走査方向の書込タイミングを制御するために同期
検知素子が必要になるという問題もあった。
However, pulse light emission is premised on the detection of the image formation state of the light beam. However, in actuality, the timing of pulse light emission is shifted to lower the detection accuracy, and since the knife edge method is used, main scanning is performed. There is a problem that the imaging state of the light beam in the sub-scanning direction can be detected, but the imaging state of the light beam in the sub-scanning direction cannot be detected. It should be noted that the inventors of the present application know that in the prior art, the main scanning direction,
There is no example of technology that independently detects the sub-scanning directions. There is also a problem that a synchronous detection element is required to control the write timing in the main scanning direction.

【0007】そこで、簡単な機構で主、副両走査方向で
独立に結像状態を検知することができ、光ビーム検知装
置から出力される検知信号を同期信号として使用するこ
とで同期検知素子を別に設けることなく同期信号を得る
ことができる装置を本願出願人は提案している。
Therefore, the imaging state can be detected independently in both the main and sub scanning directions with a simple mechanism, and the detection signal output from the light beam detection device is used as a synchronization signal, so that the synchronization detection element can be used. The present applicant has proposed a device that can obtain a synchronization signal without providing a separate device.

【0008】この技術は、従来は主走査方向に対して垂
直にスリットを配置していたため主走査方向の光ビーム
の結像状態は検知できるが副走査方向の光ビームの結像
状態は検知できていなかったことにかんがみ、図1に示
すように、受光素子であるフォトダイオード(以下P
D)上に構成されているスリット状の開口を、図示のよ
うに三角形状の開口20とし、その一辺20aは従来と
同様に主走査方向に対して垂直とし、他の一辺20bを
主走査方向、副走査方向のいずれに対しても斜めになる
ように傾け、主、副両方向の光ビームの結像状態をとも
に検知できるようにしている。
In this technique, since the slits are conventionally arranged perpendicular to the main scanning direction, the imaging state of the light beam in the main scanning direction can be detected, but the imaging state of the light beam in the sub-scanning direction can be detected. In consideration of this, as shown in FIG. 1, a photodiode (hereinafter referred to as P
D) The slit-shaped opening formed on the upper side is a triangular opening 20 as shown in the figure, one side 20a of which is perpendicular to the main scanning direction as before, and the other side 20b is the main scanning direction. In addition, the light beam is tilted so as to be inclined with respect to any of the sub-scanning directions, so that both the image forming states of the light beam in the main and sub-directions can be detected.

【0009】すなわち開口20上を光ビームPが走査す
ると、図2のような出力波形が観測される。光ビームP
の移動方向に垂直な辺20aが主走査方向の、斜辺20
bが副走査方向の出力となり、この検知信号が立ち上が
る時間的な速さを検知することによって光ビームPのス
ポットの大きさを検知する。そして、その立ち上がり速
さを判定するために出力信号を微分してピーク値を検知
することにより、最終的にビームスポットの大きさを求
めている。図2においては、図1中の実線で示す光ビー
ムPの出力は実線で、同破線で示す光ビームP’の出力
は破線で示してある。
That is, when the light beam P scans over the opening 20, an output waveform as shown in FIG. 2 is observed. Light beam P
The side 20a perpendicular to the moving direction of the oblique side 20 in the main scanning direction
b indicates an output in the sub-scanning direction, and the size of the spot of the light beam P is detected by detecting the temporal speed at which this detection signal rises. Then, the size of the beam spot is finally determined by differentiating the output signal and detecting the peak value to determine the rising speed. In FIG. 2, the output of the light beam P indicated by a solid line in FIG. 1 is indicated by a solid line, and the output of the light beam P ′ indicated by the broken line is indicated by a broken line.

【0010】すなわち、これらの従来技術においては、
像面におけるビームスポットの大きさを、感光体の像面
と等価な位置に設置された1つの受光センサにより検知
して求めている。ところが、このような方式では、検知
ユニットによって像面上におけるビームの大きさを知る
ことはできるが、その大きさが適切でない場合には、補
正のためにレンズ系の光路中における位置を可変させる
動作を行う必要がある。
That is, in these prior arts,
The size of the beam spot on the image plane is detected and obtained by one light receiving sensor installed at a position equivalent to the image plane of the photoconductor. However, in such a system, the size of the beam on the image plane can be known by the detection unit, but if the size is not appropriate, the position of the lens system in the optical path is varied for correction. Action is required.

【0011】すなわち、図3に示すようなレンズの位置
とビーム径の大きさの関係を求めるために、図4のフロ
ーチャートの動作、特に同フローチャート中のステップ
1から3のループ動作を頻繁に行わなくてはならない。
That is, in order to obtain the relationship between the position of the lens and the size of the beam diameter as shown in FIG. 3, the operation of the flowchart of FIG. 4, particularly the loop operation of steps 1 to 3 in the flowchart, is frequently performed. Must-have.

【0012】図4のフローチャートを説明すると、ビー
ム径を計測して(ステップ1)、メモリに記憶してはレ
ンズを微小駆動し(ステップ2)、図3に示すような深
度カーブを描いたかどうかを判断し(ステップ3)、描
いていなければステップ1へ戻るループ動作を行い、描
いていればメモリに記憶させたデータによってレンズの
移動量を計算し(ステップ4)、計算結果に基づいてレ
ンズを移動させ(ステップ5)、ビーム径を計測し(ス
テップ6)、ビーム径が適正か否かの判断を行い(ステ
ップ7)、適正でなければステップ1へ戻り、適性であ
れば処理を終了する。すなわち、レンズ移動動作(ステ
ップ2)とビーム検知動作(ステップ1)を繰り返しか
つ頻繁に行わなくてはならず、ビームの補正動作に非常
に時間が掛かると同時に回路を駆動するためにエネルギ
ーの消費量が増加すること2つの問題が生じている。
Referring to the flowchart of FIG. 4, the beam diameter is measured (step 1), stored in a memory, and the lens is minutely driven (step 2) to determine whether a depth curve as shown in FIG. 3 has been drawn. Is determined (step 3), and if not drawn, a loop operation returning to step 1 is performed. If drawn, the amount of movement of the lens is calculated based on the data stored in the memory (step 4), and the lens is moved based on the calculation result. Is moved (Step 5), the beam diameter is measured (Step 6), and it is determined whether the beam diameter is appropriate (Step 7). If not, the process returns to Step 1; I do. That is, the lens movement operation (step 2) and the beam detection operation (step 1) must be repeatedly and frequently performed, and it takes a very long time to perform the beam correction operation and at the same time consumes energy to drive the circuit. There are two problems with increasing amounts.

【0013】そこで本発明は、繰り返しレンズを駆動し
て検知を行う動作が不要で、適正なビーム径にビームを
補正するための時間を大幅に短縮でき、したがって従来
より頻繁にビームを補正を行うことが可能で、画像の品
質を向上させ、検知とレンズ駆動に費やす電力量を低減
させ、省エネルギー効果を得られる光走査装置を提供す
ることを目的とする。
Accordingly, the present invention does not require the operation of repeatedly driving and detecting the lens, and can greatly reduce the time required to correct the beam to an appropriate beam diameter. Therefore, the beam is corrected more frequently than before. It is an object of the present invention to provide an optical scanning device capable of improving the quality of an image, reducing the amount of power consumed for detection and driving a lens, and obtaining an energy saving effect.

【0014】[0014]

【課題を解決するための手段】本発明の請求項1に係る
光走査装置は、上記目的を達成するために、光源から射
出された光を偏向手段及び結像素子を介して被走査面へ
走査する走査光学系と、該走査光学系により走査される
光の結像状態を検知する検知手段と、検知される光の結
像状態を調整する調整手段と、上記検知手段からの出力
に基づいて上記調整手段を制御する制御手段とを有する
光走査装置であって、上記検知手段が少なくとも2つ以
上の検知部を備えていることを特徴とする。
In order to achieve the above object, an optical scanning device according to a first aspect of the present invention transmits light emitted from a light source to a surface to be scanned via a deflecting means and an imaging element. A scanning optical system for scanning, a detecting unit for detecting an image forming state of light scanned by the scanning optical system, an adjusting unit for adjusting the image forming state of the detected light, and an output from the detecting unit. And a control means for controlling the adjustment means, wherein the detection means comprises at least two or more detection units.

【0015】同請求項2に係るものは、上記目的を達成
するために、上記2つ以上の検知手段を同一のベース上
に設けてなることを特徴とする。
According to a second aspect of the present invention, in order to achieve the above object, the two or more detecting means are provided on the same base.

【0016】同請求項3に係るものは、上記目的を達成
するために、上記光源から射出された光を分割する素子
を備えることを特徴とする。
According to a third aspect of the present invention, in order to achieve the above object, an element for splitting light emitted from the light source is provided.

【0017】[0017]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。図5は本発明に係る光走査装置の一
実施形態を示す全体構成図(A)と検知部の構成図
(B)である。図中1はレーザ光源、2はカップリング
レンズ、3、4は補正レンズ、5は偏向器、6は結像素
子、7は被走査面である感光体で、補正レンズ3で主走
査方向の焦点位置を調整し、補正レンズ4で副走査方向
の焦点位置を調整する。図中10は光ビームの結像状態
を検知する検知装置である。また11、12はそれぞれ
補正レンズ3、4を光軸方向に移動する機構、13は制
御部である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 5 is an overall configuration diagram (A) showing an embodiment of the optical scanning device according to the present invention, and a configuration diagram (B) of a detection unit. In the figure, 1 is a laser light source, 2 is a coupling lens, 3 and 4 are correction lenses, 5 is a deflector, 6 is an image forming element, 7 is a photosensitive member which is a surface to be scanned, and is a correction lens 3 in the main scanning direction. The focal position is adjusted, and the focal position in the sub-scanning direction is adjusted by the correction lens 4. In the figure, reference numeral 10 denotes a detecting device for detecting an image forming state of a light beam. 11 and 12 are mechanisms for moving the correction lenses 3 and 4 in the optical axis direction, respectively, and 13 is a control unit.

【0018】この検知手段10においては、共通のベー
ス20に2つの光学センサSa、Sbを設けて部品点数
を減らしてコスト低減を図っている。これら光学センサ
Sa、Sbは、像高方向(図中矢印X方向)にΔXだけ
離して設置してある。デフォーカス方向(図中矢印Z方
向)において、Z0は像面位置、Za、Zbは像面位置
Z0からそれぞれla、lb離れた位置であり、光学セ
ンサSaは位置Zaに、光学センサSbは位置Zbに設
置してある。光学センサSa、Sbは、ビーム径の検出
に適する公知の手段を採用すればよい。たとえば光ビー
ムの結像状態を単独で検出できるものでも、あるいは受
光方向前側にスリット状や三角形状の開口を設けてビー
ム径を検出できるようにしたもの等がある。
In this detecting means 10, two optical sensors Sa and Sb are provided on a common base 20 to reduce the number of parts and reduce costs. These optical sensors Sa and Sb are set apart from each other by ΔX in the image height direction (the arrow X direction in the figure). In the defocus direction (arrow Z direction in the figure), Z0 is an image plane position, Za and Zb are la and lb distances from the image plane position Z0, respectively, the optical sensor Sa is at the position Za, and the optical sensor Sb is at the position. Zb. As the optical sensors Sa and Sb, known means suitable for detecting the beam diameter may be used. For example, there is a type that can detect an imaged state of a light beam by itself, or a type in which a slit-shaped or triangular-shaped opening is provided on the front side in a light-receiving direction so that a beam diameter can be detected.

【0019】図6は理想的な深度カーブCが温度変動な
どによりAに移動したときにレンズどれだけ移動すれば
良いかを求めた例を示す図であり、この時の動作の流れ
を図7のフローチャートに示す。まず、深度カーブの形
状には温度が変化した場合もほとんど変化が起こらない
ため、このカーブはあらかじめ制御部13のメモリにテ
ーブル化して記憶しておく。そして、位置Zaの光学セ
ンサSaにてビーム径da’を計測してメモリに記憶さ
せ(ステップ1)、次いで位置Zbの光学センサSbに
てビーム径db’を計測してメモリに記憶させ(ステッ
プ2)、測定したビームスポット径da’、db’をあ
らかじめ記憶させていた深度カーブのテーブルと照らし
合わせてウェスト位置(ビームスポット径がもっとも小
さくなるZ方向の位置)Zpを演算し、像面位置Z0と
の差ΔZからレンズの駆動量を算出し(ステップ3)、
その値に基づいてレンズを移動させる(ステップ4)。
そして、確認のために光学センサSa、Sbによってビ
ームスポット径を再度計測し(ステップ5、6)、ビー
ム径が適正か否かの判断を行い(ステップ7)、適正な
値であれば動作を終了し、微妙に異なっていれば、それ
を補正するためにステップ1へ戻って同じ動作を繰り返
す。
FIG. 6 is a diagram showing an example of how much the lens should be moved when the ideal depth curve C moves to A due to a temperature change or the like. FIG. Is shown in the flowchart of FIG. First, since the shape of the depth curve hardly changes even when the temperature changes, this curve is stored in a table in the memory of the control unit 13 in advance. Then, the beam diameter da 'is measured by the optical sensor Sa at the position Za and stored in the memory (Step 1). Next, the beam diameter db' is measured by the optical sensor Sb at the position Zb and stored in the memory (Step 1). 2) Compute the waist position (the position in the Z direction at which the beam spot diameter becomes the smallest) Zp by comparing the measured beam spot diameters da ′ and db ′ with a depth curve table that has been stored in advance, and calculate the image plane position. The amount of lens drive is calculated from the difference ΔZ from Z0 (step 3),
The lens is moved based on the value (step 4).
Then, for confirmation, the beam spot diameter is measured again by the optical sensors Sa and Sb (steps 5 and 6), and it is determined whether or not the beam diameter is appropriate (step 7). If the processing is slightly different, the process returns to step 1 and the same operation is repeated to correct the difference.

【0020】図8は理想の深度カーブCがBに移動した
ときの例を示すが、補正の動作については上記の方法を
同じである。
FIG. 8 shows an example in which the ideal depth curve C moves to B, but the above-described method is the same as the correction operation.

【0021】すなわちいずれの場合でも図4のステップ
1から3のループ動作が不要になり、ビーム検出動作が
迅速に行われ、ユーザの使用を妨げずにビームの補正が
行え、補正に掛かる時間が短いため頻繁にビームの補正
を行え、ビームの補正精度が向上する。そのため、光学
センサの駆動やレンズ駆動に費やされる電力が節約さ
れ、省エネルギー効果も高まる。
That is, in any case, the loop operation of steps 1 to 3 in FIG. 4 becomes unnecessary, the beam detection operation is performed promptly, the beam can be corrected without hindering the use of the user, and the time required for the correction can be reduced. Since the length is short, the beam can be frequently corrected, and the accuracy of the beam correction is improved. For this reason, power consumed for driving the optical sensor and driving the lens is saved, and the energy saving effect is enhanced.

【0022】図9は、光学センサSa、Sb、Sc、S
d、S0を5個設置し、図10に示すようにデフォーカ
ス方向Zで位置の異なる5点のビームスポット径を測定
するようにした本発明の第2の実施形態の検知手段を示
す。図示のようにデフォーカス方向Zで位置の異なる5
点のビームスポット径を測定すると、ビームウェストの
位置Zpを予測するため2個の光学センサを用いる場合
に比べて精度が良くなる。もちろん光学センサの数を多
くすればそれだけ精度が向上する。
FIG. 9 shows the optical sensors Sa, Sb, Sc, S
FIG. 11 shows a detection unit according to a second embodiment of the present invention in which five d and S0 are provided, and the beam spot diameters at five different positions in the defocus direction Z are measured as shown in FIG. As shown in the figure, 5 different positions in the defocus direction Z
When the beam spot diameter of a point is measured, the accuracy is improved as compared with a case where two optical sensors are used to predict the beam waist position Zp. Of course, the greater the number of optical sensors, the better the accuracy.

【0023】ただし、光学センサを複数設置した場合、
各光学センサのX方向における位置が離れているため、
各光学センサにおいてウェスト位置が微妙に異なる場合
があり、それによる影響が微妙にビームスポット径の補
正精度に影響を与えることがある。本来、各光学センサ
が設置されている位置は画像形成を行わない位置である
ため、このようなウェスト位置の微妙な違いが存在す
る。走査レンズの設計によりこのような違いが無いよう
な走査レンズを設計することも可能であるが、レンズが
大型化したり、製造コストが増加するためあまり好まし
くはない。
However, when a plurality of optical sensors are installed,
Because the position of each optical sensor in the X direction is far away,
The waist position may be slightly different in each optical sensor, and the influence may slightly affect the correction accuracy of the beam spot diameter. Originally, the position where each optical sensor is installed is a position where image formation is not performed, so there is such a subtle difference in the waist position. Although it is possible to design a scanning lens that does not have such a difference by designing the scanning lens, it is not preferable because the lens becomes large and the manufacturing cost increases.

【0024】図11は、このウェスト位置の微妙な違い
の影響を受けない構造とした本発明の第3の実施形態の
検知手段を示す。すなわち本実施形態は、光学センサS
aに入射する光を光学センサSaの前に置いた分割素子
21(ビームスプリッタやハーフミラー等、キューブ型
か平板型かは問わない。)により2つの光束に分割し、
光学センサSa、Sb双方に入射させている。この時、
光学センサSaは位置Zaに、光学センサSbは位置Z
bと等価な位置に設置する。当然、分割素子21の屈折
率等の光学特性を考慮し、Z方向に関しては適正な位置
で検出を行う。
FIG. 11 shows a detecting means according to a third embodiment of the present invention having a structure which is not affected by the slight difference in the waist position. That is, in the present embodiment, the optical sensor S
The light incident on a is split into two luminous fluxes by a splitting element 21 (a beam splitter, a half mirror, etc., whether a cube type or a flat type) placed in front of the optical sensor Sa,
The light is incident on both the optical sensors Sa and Sb. At this time,
The optical sensor Sa is at the position Za, and the optical sensor Sb is at the position Z.
Install at a position equivalent to b. Naturally, detection is performed at an appropriate position in the Z direction in consideration of the optical characteristics such as the refractive index of the splitting element 21.

【0025】上記構成により光学センサSa、Sbにお
いて検出するビームの特性は、全く同じ像高方向(X方
向)位置のものとなり、ウェスト位置のずれの影響を受
けなくなり、ビーム検出の精度が向上し、結果としてビ
ーム補正の精度が向上する。また、走査レンズにより走
査される光の画角を狭くすることが可能となり、走査レ
ンズを小型化でき、開発コストを低減できる。
With the above configuration, the characteristics of the beams detected by the optical sensors Sa and Sb are exactly the same in the image height direction (X direction), and are not affected by the shift of the waist position, thereby improving the accuracy of beam detection. As a result, the accuracy of beam correction is improved. Further, the angle of view of the light scanned by the scanning lens can be narrowed, the size of the scanning lens can be reduced, and the development cost can be reduced.

【0026】[0026]

【発明の効果】本発明の請求項1の光走査装置は、以上
説明してきたように、走査光学系により走査される光の
結像状態を検知する検知手段が少なくとも2つ以上の検
知部を備えるので、繰り返しレンズを駆動して検知を行
う動作が必要なくなり、適正なビーム径にビームを補正
する動作を行うための時間が大幅に短縮され、したがっ
て従来よりも頻繁にビームの補正を行うことが可能にな
り、画像の品質を向上させることができ、検知とレンズ
駆動に費やす電力量を低減でき、省エネルギー効果が得
られるという効果がある。
According to the optical scanning device of the first aspect of the present invention, as described above, the detecting means for detecting the imaging state of the light scanned by the scanning optical system includes at least two or more detecting units. This eliminates the need to repeatedly drive the lens to perform detection, greatly reducing the time required to perform the operation of correcting the beam to an appropriate beam diameter, and therefore performing beam correction more frequently than before. This makes it possible to improve the quality of the image, reduce the amount of power consumed for detection and driving the lens, and obtain an effect of saving energy.

【0027】本発明の請求項2の光走査装置は、以上説
明してきたように、2つ以上の検知手段を同一のベース
上に設けてなるので、上記請求項1の装置と共通の効果
に加え、ベースの共通化による部品点数の削減と、それ
に伴う装置の低コスト化が図れるという効果がある。
According to the optical scanning device of the second aspect of the present invention, as described above, two or more detecting means are provided on the same base. In addition, there is an effect that the number of parts can be reduced by sharing the base, and the cost of the apparatus can be reduced accordingly.

【0028】本発明の請求項3の光走査装置は、以上説
明してきたように、光源から射出された光を分割する素
子を備え、像高が同じ光を2つのセンサーに分割して導
き得るので、上記請求項1または請求項2の装置と共通
の効果に加え、ビームウェスト位置のずれを検知するた
めに像高の違いによるウェスト位置の違いを考慮する必
要が無くなり、ビームウェスト位置の検知精度が向上
し、高品位な画質を得ることが可能となるという効果が
ある。また、走査レンズにより走査される光の画角を狭
くすることが可能となり、走査レンズが小型でき、開発
コストを低減できるという効果がある。
As described above, the optical scanning device according to the third aspect of the present invention includes the element for splitting the light emitted from the light source, and the light having the same image height can be split and guided to two sensors. Therefore, in addition to the same effects as those of the apparatus according to claim 1 or 2, there is no need to consider a difference in waist position due to a difference in image height in order to detect a shift in beam waist position. There is an effect that accuracy is improved and high quality image quality can be obtained. Further, the angle of view of light scanned by the scanning lens can be narrowed, so that the scanning lens can be reduced in size and the development cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の光走査装置の例を示す概念図である。FIG. 1 is a conceptual diagram showing an example of a conventional optical scanning device.

【図2】図1の装置で得られる検知出力を示す図であ
る。
FIG. 2 is a diagram showing a detection output obtained by the device of FIG. 1;

【図3】レンズの位置とビーム径の大きさの関係を示す
図である。
FIG. 3 is a diagram showing the relationship between the position of a lens and the size of a beam diameter.

【図4】図3のレンズの位置とビーム径の大きさの関係
を求めるのに必要な動作を示すフローチャートである。
FIG. 4 is a flowchart showing an operation necessary for obtaining a relationship between a position of a lens and a size of a beam diameter in FIG. 3;

【図5】本発明に係る光走査装置の一実施形態を示す全
体構成図(A)と検知部の構成図(B)である。
FIG. 5 is an overall configuration diagram (A) showing an embodiment of the optical scanning device according to the present invention, and a configuration diagram (B) of a detection unit.

【図6】理想的深度カーブが移動したときにレンズに必
要な移動を求めた例を示す図である。
FIG. 6 is a diagram illustrating an example in which a necessary movement of a lens is obtained when an ideal depth curve moves.

【図7】図6のレンズ移動を行うための動作のフローチ
ャートである。
FIG. 7 is a flowchart of an operation for performing the lens movement of FIG. 6;

【図8】理想的深度カーブが図6と異なる位置に移動し
たときにレンズに必要な移動を求めた例を示す図であ
る。
FIG. 8 is a diagram illustrating an example in which a necessary movement of a lens is obtained when an ideal depth curve moves to a position different from that in FIG. 6;

【図9】本発明の第2の実施形態の検知手段を示す図で
ある。
FIG. 9 is a diagram illustrating a detecting unit according to a second embodiment of the present invention.

【図10】図9の実施形態の検知手段での検知位置を示
す図である。
FIG. 10 is a diagram illustrating a detection position of a detection unit of the embodiment of FIG. 9;

【図11】本発明の第3の実施形態の検知手段を示す図
である。
FIG. 11 is a diagram illustrating a detecting unit according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 カップリングレンズ 3、4 補正レンズ 5 偏向器 6 結像素子 7 被走査面である感光体 10 光ビームの結像状態を検知する手段 11、12 補正レンズを光軸方向に移動する機構 13 制御部 20 ベース 21 分割素子 Sa、Sb、Sc、Sd、S0 光学センサ X 像高方向 Z デフォーカス方向 Z0 像面位置 Za、Zb 位置 Zp ビームのウェスト位置 DESCRIPTION OF SYMBOLS 1 Laser light source 2 Coupling lens 3, 4 Correction lens 5 Deflector 6 Imaging element 7 Photoreceptor which is a surface to be scanned 10 Means for detecting the imaging state of a light beam 11, 12 Move correction lens in the optical axis direction Mechanism 13 Control unit 20 Base 21 Split element Sa, Sb, Sc, Sd, S0 Optical sensor X Image height direction Z Defocus direction Z0 Image plane position Za, Zb position Zp Beam waist position

フロントページの続き Fターム(参考) 2C362 AA20 AA26 AA28 AA29 AA35 AA48 2H045 AA01 CA88 CA98 CB22 CB24 DA02 DA41 5C072 AA03 BA03 BA06 HA02 HA08 HA10 HA13 HB08 HB10 HB20 RA11 XA01 XA05 Continued on the front page F term (reference) 2C362 AA20 AA26 AA28 AA29 AA35 AA48 2H045 AA01 CA88 CA98 CB22 CB24 DA02 DA41 5C072 AA03 BA03 BA06 HA02 HA08 HA10 HA13 HB08 HB10 HB20 RA11 XA01 XA05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源から射出された光を偏向手段及び結
像素子を介して被走査面へ走査する走査光学系と、該走
査光学系により走査される光の結像状態を検知する検知
手段と、検知される光の結像状態を調整する調整手段
と、上記検知手段からの出力に基づいて上記調整手段を
制御する制御手段とを有する光走査装置であって、上記
検知手段が少なくとも2つ以上の検知部を備えているこ
とを特徴とする光走査装置。
1. A scanning optical system for scanning light emitted from a light source onto a surface to be scanned via a deflecting unit and an imaging element, and a detecting unit for detecting an imaging state of light scanned by the scanning optical system. An optical scanning device comprising: an adjusting unit configured to adjust an imaging state of light to be detected; and a control unit configured to control the adjusting unit based on an output from the detecting unit. An optical scanning device comprising at least one detection unit.
【請求項2】 上記2つ以上の検知手段を同一のベース
上に設けてなることを特徴とする請求項1の光走査装
置。
2. The optical scanning device according to claim 1, wherein said two or more detecting means are provided on the same base.
【請求項3】 上記光源から射出された光を分割する素
子を備えることを特徴とする請求項1または2の光走査
装置。
3. The optical scanning device according to claim 1, further comprising an element for splitting light emitted from the light source.
JP2000249515A 2000-08-21 2000-08-21 Optical scanning device Expired - Fee Related JP4148638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000249515A JP4148638B2 (en) 2000-08-21 2000-08-21 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000249515A JP4148638B2 (en) 2000-08-21 2000-08-21 Optical scanning device

Publications (2)

Publication Number Publication Date
JP2002062495A true JP2002062495A (en) 2002-02-28
JP4148638B2 JP4148638B2 (en) 2008-09-10

Family

ID=18739244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000249515A Expired - Fee Related JP4148638B2 (en) 2000-08-21 2000-08-21 Optical scanning device

Country Status (1)

Country Link
JP (1) JP4148638B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178712A (en) * 2005-12-28 2007-07-12 Konica Minolta Business Technologies Inc Optical detector for condensed state, optical scanner and image forming apparatus
JP2010181481A (en) * 2009-02-03 2010-08-19 Ricoh Co Ltd Optical scanner and image-forming device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178712A (en) * 2005-12-28 2007-07-12 Konica Minolta Business Technologies Inc Optical detector for condensed state, optical scanner and image forming apparatus
JP4654910B2 (en) * 2005-12-28 2011-03-23 コニカミノルタビジネステクノロジーズ株式会社 Condensing state detection device, optical scanning device, and image forming device
JP2010181481A (en) * 2009-02-03 2010-08-19 Ricoh Co Ltd Optical scanner and image-forming device using the same

Also Published As

Publication number Publication date
JP4148638B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
US7515167B2 (en) Multi-beam scanning device and image forming apparatus using the scanning device
US5841465A (en) Light beam focal position detecting device, light beam projecting device, and light beam recording apparatus
JP2580933B2 (en) Optical scanning device having jitter amount measuring means
US5283681A (en) Scanning optical equipment
US6191803B1 (en) Multiple light beam scanning optical system
JP4006153B2 (en) Multi-beam optical scanning optical system and image forming apparatus using the same
JP2002062495A (en) Optical scanner
JP3435998B2 (en) Laser beam scanning optical device
KR100522585B1 (en) Optical scanning system for printer
JPH03131817A (en) Light beam scanning optical device
JP2001154126A (en) Beam scanning optical device
JP3521303B2 (en) Optical scanning device
JPH01177511A (en) Scanning optical device
JP3313985B2 (en) Laser beam measuring device
JP4261079B2 (en) Scanning beam measurement evaluation apparatus and image forming apparatus
JP3681547B2 (en) Scanning position measuring device for scanning optical system
JP2002139686A (en) Image-forming device
JP2003307697A (en) Instrument and method for scanning optical system measurement, and scanning optical system adjusting device
JP2002250882A (en) Multibeam scanner
JPH0365920A (en) Scanning optical device having spot detecting mechanism
JP2001194604A (en) Optical scanner
JP2003043389A (en) Scan optical device
JPH09226174A (en) Multiple beam scanning device
JPH0283514A (en) Scanning optical device
JPH02266316A (en) Scanning optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees