JP2002062253A - Method and device for manufacturing colloid probe - Google Patents

Method and device for manufacturing colloid probe

Info

Publication number
JP2002062253A
JP2002062253A JP2000249131A JP2000249131A JP2002062253A JP 2002062253 A JP2002062253 A JP 2002062253A JP 2000249131 A JP2000249131 A JP 2000249131A JP 2000249131 A JP2000249131 A JP 2000249131A JP 2002062253 A JP2002062253 A JP 2002062253A
Authority
JP
Japan
Prior art keywords
probe
adhesive
needle
atomic force
force microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000249131A
Other languages
Japanese (ja)
Inventor
Hidehiro Kamiya
秀博 神谷
Masaya Yoshida
雅矢 吉田
Akira Kobayashi
晃 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2000249131A priority Critical patent/JP2002062253A/en
Publication of JP2002062253A publication Critical patent/JP2002062253A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily manufacture a colloid probe excellent in measuring precision constituted by bonding a spherical sample particle onto a probe of an atomic force microscope. SOLUTION: This method has a process for positioning the probe of the atomic force microscope, a needle for applying an adhesive, and a needle for depositing the spherical sample particle in respective prescribed positions, a process for depositing the adhesive of the adhesive applying needle onto the probe of the atomic force microscope by returning the probe of the microscope to the prescribed position hereinbefore after the adhesive is applied on the adhesive applying needle in the condition where the probe of the atomic force microscope is separated from the adhesive applying needle, and a process for bonding the spherical sample particle onto the probe of the atomic force microscope by bringing the probe of the microscope into contact with the spherical sample particle depositing needle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、球状粒子の付着力
を測定するために用いるコロイドプローブの製造方法及
び製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a colloid probe used for measuring the adhesion of spherical particles.

【0002】[0002]

【従来の技術】粉体を取り扱う分野では、粉体の様々な
特性値を把握することが重要である。粉体の特性値の一
つとして、粒子と粒子が付着している物体間の付着力が
ある。従来より、付着力を測定する方法は種々考案され
ており、1個粒子の付着力測定法としては、スプリング
バランス法、遠心分離法があるが、いずれも接触面にお
ける条件を決めにくく、付着力との厳密な関係を求める
には検討すべき問題点が多くある。
2. Description of the Related Art In the field of handling powder, it is important to grasp various characteristic values of the powder. One of the characteristic values of the powder is an adhesive force between particles and an object to which the particles are attached. Conventionally, various methods for measuring the adhesive force have been devised, and methods for measuring the adhesive force of a single particle include a spring balance method and a centrifugal separation method. There are many issues to consider in seeking a strict relationship with.

【0003】さらに、引張破断法、せん断法、圧裂破断
法に代表される粉体層の引っ張り強さ測定では、1個粒
子の付着力FがRumpfの式σz=(1−ε)/π・
k・F/Dp2(但し、粉体層の引張破断強さ、粉体層
空隙率、1個粒子付着力、粒子配位数、平均粒子径が、
それぞれσz、ε、F、k、Dpとする)により求めら
れるが、粉体層に及ぼす空隙率εの影響が極めて大き
く、そのため測定引張力の範囲が決まると広い空隙範囲
にわたって測定ができない欠点がある。また、極めて弱
い付着力を測定するためには装置の機械的な摩擦抵抗の
影響が無視できなくなるという欠点もある。
Further, in the measurement of the tensile strength of a powder layer typified by the tensile rupture method, the shearing method, and the rupture rupture method, the adhesion F of a single particle is expressed by the Rumpf equation σz = (1−ε) / π・
k · F / Dp 2 (however, the tensile rupture strength of the powder layer, the porosity of the powder layer, the adhesive strength of one particle, the coordination number of particles, and the average particle diameter are
Σz, ε, F, k, and Dp, respectively). However, the influence of the porosity ε on the powder layer is extremely large, and therefore, when the range of the measurement tensile force is determined, it is impossible to perform measurement over a wide void range. is there. In addition, there is a disadvantage that the effect of mechanical frictional resistance of the apparatus cannot be ignored in order to measure an extremely weak adhesive force.

【0004】近年、物体の相互作用力を直接測定する方
法として、原子間力顕微鏡が広く利用され、表面間相互
作用測定が身近になり測定対象が広がりつつある。原子
間力顕微鏡では、一般に、カンチレバーの探針(Si3
4、Si単結晶)が用いられるが、この場合、探針の
形状の確認や同質の材料との相互作用が測れず、測定し
た相互作用力を定量的に求めることが困難である。
In recent years, an atomic force microscope has been widely used as a method of directly measuring the interaction force of an object, and the measurement of the interaction between surfaces has become familiar, and the measurement object has been expanding. In an atomic force microscope, a cantilever probe (Si 3
N 4 , Si single crystal) is used, but in this case, it is difficult to confirm the shape of the probe or to measure the interaction with a homogeneous material, and it is difficult to quantitatively determine the measured interaction force.

【0005】そこで、例えば窒化ケイ素質セラミックス
探針の先端に試料粒子の固定されてなるコロイドプロー
ブが提供されている。しかしながら、このようなコロイ
ドプローブを作製するには、顕微鏡とマイクロメーター
等を用いる手作業であったため、かなりの熟練と手間の
かかる方法であった。また、得られたコロイドプローブ
は、試料粒子の探針への付着の不均一性によって、測定
された付着力の精度があまり良くはなかった。
[0005] Therefore, a colloid probe in which sample particles are fixed to the tip of a silicon nitride ceramic probe is provided. However, producing such a colloid probe was a manual operation using a microscope, a micrometer, and the like, and was a method that required considerable skill and time. Moreover, the obtained colloidal probe did not have very good accuracy of the measured adhesive force due to the non-uniformity of the adhesion of the sample particles to the probe.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記に鑑み
てなされたものであり、その目的は測定精度の良いコロ
イドプローブをわずかな熟練を積むだけで容易に製造で
きるようにすることである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and an object of the present invention is to make it possible to easily produce a colloidal probe having high measurement accuracy with a little skill. .

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、球
状粒子の付着力を測定するために用いるコロイドプロー
ブの製造方法であって、原子間力顕微鏡探針、接着剤塗
布用針及び球状試料粒子付着針を所定位置に位置決めす
る工程と、原子間力顕微鏡探針を接着剤塗布用針から遠
ざけてから、接着剤塗布用針に接着剤を塗布した後、原
子間力顕微鏡探針を上記所定位置にまで戻して接着剤塗
布用針の接着剤を原子間力顕微鏡探針に付着させる工程
と、原子間力顕微鏡探針を球状試料粒子付着針と接触さ
せ、球状試料粒子を原子間力顕微鏡探針に接着させる工
程と、を有することを特徴としているものである。
That is, the present invention relates to a method for producing a colloidal probe for measuring the adhesion of spherical particles, comprising an atomic force microscope probe, an adhesive application needle and a spherical sample. After the step of positioning the particle attachment needle at a predetermined position and moving the atomic force microscope probe away from the adhesive application needle, applying the adhesive to the adhesive application needle, the atomic force microscope probe is moved to the above position. Returning the adhesive to the predetermined position and attaching the adhesive of the adhesive application needle to the atomic force microscope probe; and bringing the atomic force microscope probe into contact with the spherical sample particle attachment needle, thereby causing the spherical sample particle to be subjected to an atomic force. Bonding to a microscope probe.

【0008】また、本発明は、球状粒子の付着力を測定
するために用いるコロイドプローブの製造装置であっ
て、(a)原子間力顕微鏡探針、接着剤塗布用針及び球
状試料粒子付着針を所定位置に位置決めして、それをマ
イクロコンピューターに登録する手段、(b)原子間力
顕微鏡探針を接着剤塗布用針から遠ざけてから、接着剤
塗布用針に接着剤を塗布した後、原子間力顕微鏡探針を
上記登録した位置にまで戻して接着剤塗布用針の接着剤
を原子間力顕微鏡探針に付着させる手段、(c)原子間
力顕微鏡探針を球状試料粒子付着針と接触させ、球状試
料粒子を原子間力顕微鏡探針に接着させる手段、を具備
することを特徴としているものである。
The present invention also relates to an apparatus for producing a colloidal probe for measuring the adhesion of spherical particles, comprising: (a) an atomic force microscope probe, an adhesive application needle, and a spherical sample particle adhesion needle. Means for positioning it in a predetermined position and registering it in a microcomputer; (b) after applying the adhesive to the adhesive application needle after moving the atomic force microscope probe away from the adhesive application needle, Means for returning the atomic force microscope probe to the above registered position to attach the adhesive of the adhesive application needle to the atomic force microscope probe, and (c) attaching the atomic force microscope probe to a spherical sample particle attaching needle. And means for adhering the spherical sample particles to the atomic force microscope probe.

【0009】[0009]

【発明の実施の形態】以下、本発明を図面に基づいて更
に詳しく説明する。図1は、本発明のコロイドプローブ
の製造装置の一例を説明するための概略図である。1は
デジタルマイクロスコープ、2はX−Yステージ、3は
球状試料粒子付着針、4は接着剤塗布用針、5は原子間
力顕微鏡探針(以下、「AFM探針」と称す)、6はマ
イクロマニピュレータ、7はマイクロマニピュレータジ
ョイスティックである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic diagram for explaining an example of the apparatus for producing a colloid probe of the present invention. 1 is a digital microscope, 2 is an XY stage, 3 is a needle for attaching spherical sample particles, 4 is a needle for applying an adhesive, 5 is an atomic force microscope probe (hereinafter, referred to as an “AFM probe”), 6 Is a micromanipulator, and 7 is a micromanipulator joystick.

【0010】本発明が対象としている試料は、球状粒子
であり、接触面における条件を求め易くするため、好ま
しくは球形度が0.75以上の球状粒子である。球形度
が0.75よりも著しく小さい粒子であると、付着対象
物との接触が点接触にならないため、データのばらつき
が大きくなる恐れがある。
The sample targeted by the present invention is a spherical particle, and is preferably a spherical particle having a sphericity of 0.75 or more in order to make it easier to determine the conditions at the contact surface. If the sphericity of the particles is significantly smaller than 0.75, the contact with the object to be adhered does not become a point contact, so that the data may be largely dispersed.

【0011】ここで、球形度は、フロー式粒子像分析装
置(例えば、シスメックス社製「FPIA−100
0」)を用い、次のようにして測定することができる。
すなわち、粒子像から粒子の投影面積(A)と周囲長
(PM)を測定する。周囲長(PM)に対応する真円の
面積を(B)とすると、その粒子の球形度はA/Bとし
て表示できる。そこで、試料粒子の周囲長(PM)と同
一の周囲長を持つ真円(半径r)を想定すると、PM=
2πr、B=πr2であるから、B=π×(PM/2
π)2となり、個々の粒子の球形度は、球形度=A/B
=A×4π/(PM)2として算出することができる。
Here, the sphericity is measured by a flow type particle image analyzer (for example, “FPIA-100” manufactured by Sysmex Corporation).
0 ”) can be measured as follows.
That is, the projected area (A) and the perimeter (PM) of the particle are measured from the particle image. Assuming that the area of a perfect circle corresponding to the perimeter (PM) is (B), the sphericity of the particle can be displayed as A / B. Therefore, assuming a perfect circle (radius r) having the same perimeter as the perimeter (PM) of the sample particles, PM =
Since 2πr and B = πr 2 , B = π × (PM / 2
π) 2 and the sphericity of each particle is sphericity = A / B
= A × 4π / (PM) 2 .

【0012】本発明で使用される接着剤は、測定時の付
着力を正確に検出するため、弾性接着剤は好ましくはな
く、また硬化過程でガスを発生するものは、AFM探針
の先端やレーザー反射部を汚染する恐れがあるので好ま
しくない。本発明においては、硬化時間の調整が可能な
2液常温硬化樹脂系の接着剤が好ましい。
For the adhesive used in the present invention, an elastic adhesive is not preferable because the adhesive force at the time of measurement is accurately detected. It is not preferable because the laser reflecting portion may be contaminated. In the present invention, a two-part cold curing resin-based adhesive capable of adjusting the curing time is preferable.

【0013】また、AFM探針5は窒化ケイ素、Si単
結晶のものを用い、球状試料粒子付着針3及び接着剤塗
布用針4の材質(例えば、タングステン等)は特に限定
しないが、形状については、粒子固定作業を正確に行う
ため、球状試料粒子付着針3及び接着剤塗布用針4の先
端の曲率半径は1μm程度であることが好ましい。これ
らの針は、高さ調整機能を持つホルダーに固定される。
The AFM probe 5 is made of silicon nitride or Si single crystal. The material (for example, tungsten) of the spherical sample particle attaching needle 3 and the adhesive applying needle 4 is not particularly limited. In order to accurately perform the particle fixing operation, it is preferable that the radius of curvature of the tip of the spherical sample particle attaching needle 3 and the tip of the adhesive applying needle 4 is about 1 μm. These needles are fixed to a holder having a height adjustment function.

【0014】本発明に用いるマイクロマニピュレータシ
ステム(マイクロマニピュレータ6及びマイクロマニピ
ュレータジョイスティック7)は、AFM探針5の先端
に粒子を正確に固定するために、最小操作分解能0.1
μm程度以下のものが好ましい。この一例として、島津
製作社製「MMS−77」がある。
The micromanipulator system (micromanipulator 6 and micromanipulator joystick 7) used in the present invention has a minimum operation resolution of 0.1 in order to accurately fix particles to the tip of the AFM probe 5.
It is preferably about μm or less. An example of this is "MMS-77" manufactured by Shimadzu Corporation.

【0015】また、デジタルマイクロスコープ1は、1
50万画素程度の解像度、3000倍程度の倍率をも
ち、探針先端の形状が鮮明に観察できるものが好まし
い。この一例として、KEYENCE社製「VHZ−4
50」がある。デジタルマイクロスコープ1は、X−Y
ステージ2をもつ固定台に据え付けられる。
Further, the digital microscope 1 has
It is preferable that the probe has a resolution of about 500,000 pixels, a magnification of about 3000 times, and allows the shape of the tip of the probe to be clearly observed. As an example of this, "VHZ-4" manufactured by KEYENCE
50 ". Digital microscope 1 is XY
It is installed on a fixed base having a stage 2.

【0016】図1の装置を用いた場合の本発明のコロイ
ドプローブの製造手順は次のとおりである。
The procedure for producing the colloid probe of the present invention using the apparatus shown in FIG. 1 is as follows.

【0017】先ず、AFM探針5、接着剤塗布用針4及
び球状試料粒子付着針3を所定位置に位置決めして、そ
れをマイクロコンピューターに登録する。各針の所定位
置の一例は、AFM探針5と球状試料粒子付着針3は平
行に向かい合わせにし、接着剤塗布用針4はそれと垂直
方向に向かい合わせる。
First, the AFM probe 5, the adhesive applying needle 4, and the spherical sample particle attaching needle 3 are positioned at predetermined positions and registered in the microcomputer. As an example of the predetermined position of each needle, the AFM probe 5 and the spherical sample particle attachment needle 3 face in parallel, and the adhesive application needle 4 faces in the vertical direction.

【0018】なお、球状試料粒子付着針3の先端部分に
予め球状試料粒子を付着させておく。球状試料粒子付着
針3に付着させる球状試料粒子の個数としては、AFM
探針5に球状試料粒子を接着させる際に1個粒子を狙い
易いよう数個とすることが好ましい。球状試料粒子は試
料粉体の入った容器に球状試料粒子付着針3を挿入して
粉体と接触させることにより球状試料粒子付着針3に付
着させ、付着粒子が数個となるよう払い落とす。
The spherical sample particles are previously attached to the tip of the spherical sample particle attaching needle 3. The number of the spherical sample particles to be attached to the spherical sample particle attaching needle 3 is AFM
When bonding the spherical sample particles to the probe 5, it is preferable that the number is set to several so as to easily aim at one particle. The spherical sample particles are attached to the spherical sample particle attaching needles 3 by inserting the spherical sample particle attaching needles 3 into the container containing the sample powder and bringing them into contact with the powder, and are removed so that the number of attached particles becomes several.

【0019】次に、AFM探針5を接着剤塗布用針4か
ら遠ざけてから接着剤塗布用針4に接着剤を塗布した
後、AFM探針5を上記登録した位置にまで戻し、接着
剤塗布用針4の接着剤をAFM探針5に塗布する。ここ
で、AFM探針5への接着剤塗布は、マイクロマニピュ
レータジョイスティック7を用いて正確に操作すること
によって行うことができる。塗布部位は探針先端である
から、接着剤との接触時間は1秒程度であることが好ま
しい。
Next, after the AFM probe 5 is moved away from the adhesive application needle 4 and the adhesive is applied to the adhesive application needle 4, the AFM probe 5 is returned to the above registered position and the adhesive is applied. The adhesive of the application needle 4 is applied to the AFM probe 5. Here, the application of the adhesive to the AFM probe 5 can be performed by accurately operating the micromanipulator joystick 7. Since the application site is the tip of the probe, the contact time with the adhesive is preferably about 1 second.

【0020】次に、AFM探針5を球状試料粒子付着針
3と接触させ、球状試料粒子をAFM探針5に接着しA
FM探針を遠ざける。この操作は、マイクロマニピュレ
ータジョイスティック7によって正確に操作し、1個粒
子に接触させる。
Next, the AFM probe 5 is brought into contact with the spherical sample particle attaching needle 3, and the spherical sample particles are adhered to the AFM probe 5 and
Move the FM probe away. This operation is accurately performed by the micromanipulator joystick 7 to bring one particle into contact.

【0021】最後に、球状試料粒子の接着されたAFM
探針5を固定ホルダーから取り外す。
Finally, AFM with spherical sample particles adhered
Remove the probe 5 from the fixed holder.

【0022】このようにして先端に球状試料粒子が接着
されたAFM探針5は、球状粒子の付着力を測定するた
めのコロイドプローブとして用いることができる。
The AFM probe 5 having the spherical sample particles adhered to the tip as described above can be used as a colloid probe for measuring the adhesive force of the spherical particles.

【0023】本発明で製造されたコロイドプローブを用
いて、球状試料粒子の付着力を測定するには、コロイド
プローブを付着対象物と接触させ、付着対象物をコロイ
ドプローブから徐々に引き離したときのコロイドプロー
ブに加わる力の変化、すなわち相互作用の特性曲線(フ
ォースカーブ)を測定する。付着対象物としては、ステ
ンレス等の鏡面基板ないしは球状試料粒子と同種又は異
種の球状粒子が固定された平滑基板等である。付着対象
物が基板である場合、球状粒子の製造プロセス等におい
て、配管等の基板材質と粉体粒子との付着力が測れ、粒
子−粒子では粉体粒子間の付着力そのものが測れる。
In order to measure the adhesive force of the spherical sample particles using the colloidal probe produced in the present invention, the colloidal probe is brought into contact with an object to be adhered, and the object to be adhered is gradually separated from the colloidal probe. A change in force applied to the colloid probe, that is, a characteristic curve (force curve) of the interaction is measured. The object to be attached is a mirror-like substrate such as stainless steel or a smooth substrate on which spherical particles of the same or different type as the spherical sample particles are fixed. When the object to be adhered is a substrate, the adhesion between the substrate material such as a pipe and the powder particles can be measured in the production process of the spherical particles and the like, and the adhesion itself between the powder particles can be measured in the case of particles.

【0024】図2は、本発明によって得られたコロイド
プローブを用い、付着対象物をステンレス等の鏡面基板
とした場合の球状試料粒子の付着力を測定する方法を示
した概念図である。図2において、11は球状試料粒子
が接着されたAFM探針(コロイドプローブ)、12は
球状試料粒子、13はピエゾ、14は原子間力顕微鏡用
試料固定円板、15は鏡面研磨したステンレス板、16
はフォトダイオードである。
FIG. 2 is a conceptual diagram showing a method for measuring the adhesion of spherical sample particles when the object to be adhered is a mirror surface substrate such as stainless steel using the colloid probe obtained by the present invention. In FIG. 2, 11 is an AFM probe (colloid probe) to which spherical sample particles are adhered, 12 is a spherical sample particle, 13 is a piezo, 14 is a sample fixing disk for an atomic force microscope, and 15 is a mirror-polished stainless steel plate , 16
Is a photodiode.

【0025】図3にフォースカーブの一例を示した。こ
れは、ピエゾ13への印加電圧を変化させてコロイドプ
ローブとステンレス板とのZ軸方向(紙面上下方向)の
距離を変化させたときのAFM探針に働く力(フォース
カーブ)を、フォトダイオード16の出力より測定した
図である。
FIG. 3 shows an example of a force curve. This means that the force (force curve) acting on the AFM probe when the distance between the colloid probe and the stainless steel plate in the Z-axis direction (vertical direction on the paper) is changed by changing the voltage applied to the piezo 13 is represented by the photodiode. It is the figure measured from 16 outputs.

【0026】図3において、AFM探針に力の働かなく
なる点A0を基準とするFA1が球状試料粒子の付着力と
なる。
In FIG. 3, F A1 based on the point A 0 at which no force acts on the AFM probe is the adhesion force of the spherical sample particles.

【0027】[0027]

【実施例】以下、実施例を挙げて更に具体的に本発明を
説明する。
The present invention will be described below more specifically with reference to examples.

【0028】(実施例)本実施例は、図1に示したよう
な装置を用いてコロイドプローブを製造した例である。
なお、試料粒子として球状シリカ粉末を用いた。
(Embodiment) This embodiment is an example in which a colloid probe is manufactured by using an apparatus as shown in FIG.
In addition, spherical silica powder was used as sample particles.

【0029】(コロイドプローブの製造) 手順1:窒化ケイ素製AFM探針5をマイクロマニピュ
レータシステムのホルダーに固定し、接着剤塗布用針4
及び球状試料粒子付着針3を所定位置に位置決めして、
それをマイクロコンピューターに登録した。なお、予め
球状シリカ粉体の入った容器に球状試料粒子付着針3を
挿入して粉体と接触させることにより、球状試料粒子付
着針3にシリカ粒子(球形度0.94、粒子径6.0μ
m)を付着させ、付着粒子が5個となるよう払い落とし
た。 手順2:AFM探針5を接着剤塗布用針4から遠ざけて
から、接着剤塗布用針4に2液常温硬化樹脂接着剤(セ
メダイン社製「EP−330」)を塗布した後、AFM
探針5を上記登録した位置にまで戻してデジタルマイク
ロスコープ1で3000倍程度に拡大しながら接着剤塗
布用針4の接着剤をAFM探針5に付着させた。 手順3:AFM探針5を球状試料粒子付着針3と接触さ
せ、球状シリカ粒子1個をAFM探針5に接着させ、A
FM探針を遠ざけた。 手順4:球状シリカ粒子の接着されたAFM探針5をマ
イクロマニピュレーターシステムのホルダーから取り外
し、室温にて24時間乾燥させてコロイドプローブを製
造した。
(Manufacture of Colloid Probe) Procedure 1: An AFM probe 5 made of silicon nitride is fixed to a holder of a micromanipulator system, and a needle 4 for applying an adhesive is prepared.
And positioning the spherical sample particle attachment needle 3 at a predetermined position,
It was registered in the microcomputer. The spherical sample particle-adhering needle 3 is inserted into a container containing spherical silica powder in advance and brought into contact with the powder, so that the spherical sample particle-adhering needle 3 has silica particles (sphericity: 0.94, particle diameter: 6. 0μ
m) was attached, and the particles were removed so that the number of attached particles was 5. Procedure 2: After separating the AFM probe 5 from the adhesive application needle 4, apply a two-part room temperature curing resin adhesive (“EP-330” manufactured by Cemedine Co.) to the adhesive application needle 4, and then perform AFM.
The probe 5 was returned to the registered position, and the adhesive of the adhesive application needle 4 was adhered to the AFM probe 5 while enlarging about 3000 times with the digital microscope 1. Procedure 3: The AFM probe 5 is brought into contact with the spherical sample particle attachment needle 3, one spherical silica particle is adhered to the AFM probe 5, and A
FM probe was moved away. Procedure 4: The AFM probe 5 to which the spherical silica particles were adhered was removed from the holder of the micromanipulator system and dried at room temperature for 24 hours to produce a colloid probe.

【0030】次に、以上のようにして得られたコロイド
プローブを用い、球状シリカ粉末を製造する際に接触す
ることの機会の多い配管材料(ステンレス)を付着対象
物として付着力の測定を行った。
Next, using the colloidal probe obtained as described above, the adhesive force is measured using a piping material (stainless steel), which is frequently contacted when producing spherical silica powder, as an object to be attached. Was.

【0031】まず、図2に示すように、原子間力顕微鏡
用の試料固定円板14に2液常温硬化樹脂接着剤(セメ
ダイン社製「EP−330」)を用いて表面研磨したス
テンレス板(付着対象物)15を接着固定した。
First, as shown in FIG. 2, a stainless steel plate (surface-polished) using a two-liquid cold-setting resin adhesive ("EP-330" manufactured by Cemedine Co.) on a sample fixing disk 14 for an atomic force microscope. An object to be adhered) 15 was adhesively fixed.

【0032】そして、ステンレス板とコロイドプローブ
との距離をピエゾ印加電圧にて制御して、フォースカー
ブを測定し、シリカ粒子とステンレス板との付着力を以
下のようにして測定した(実験例1)。また、シリカ粒
子の替わりに、金属アルコキシドにて表面処理したシリ
カ粒子についても同様の方法で付着力を測定した(実験
例2)。さらには、窒化ケイ素製AFM探針プローブを
そのまま用いてステンレス板との付着力を測定した(実
験例3)。
Then, the distance between the stainless steel plate and the colloid probe was controlled by the applied piezo voltage, the force curve was measured, and the adhesion between the silica particles and the stainless steel plate was measured as follows (Experimental Example 1). ). In addition, instead of the silica particles, the adhesion was measured by the same method for the silica particles surface-treated with a metal alkoxide (Experimental Example 2). Furthermore, the adhesion to the stainless steel plate was measured using the silicon nitride AFM probe as it was (Experimental Example 3).

【0033】まず、試料間のZ軸方向の距離を制御する
ためにピエゾの伸縮サイクルの速さを5.0Hzに設定
した。次に、コロイドプローブとステンレス板を引き離
し、フォトダイオード16の出力より、Z軸方向の距離
を変化させたときの探針に働く力、フォースカーブを測
定した。その結果の一例を図3に示す。
First, the speed of the piezo expansion / contraction cycle was set to 5.0 Hz in order to control the distance between the samples in the Z-axis direction. Next, the colloid probe and the stainless steel plate were separated, and the force and force curve acting on the probe when the distance in the Z-axis direction was changed were measured from the output of the photodiode 16. FIG. 3 shows an example of the result.

【0034】AFM探針に力の働かなくなる点A0を基
準として付着力(FA1)を測定したところ、実験例1の
付着力は5.75×101nN、実験例2は3.51×
101nN、実験例3は5.19×10-1nNであっ
た。
When the adhesive force (F A1 ) was measured based on the point A 0 at which the force no longer acts on the AFM probe, the adhesive force in Experimental Example 1 was 5.75 × 10 1 nN, and the adhesive force in Experimental Example 2 was 3.51. ×
10 1 nN, Experimental Example 3 was 5.19 × 10 -1 nN.

【0035】以上の結果より、球状シリカ粒子を用いた
実験例1では、表面改質したシリカ粒子(実験例2)に
比べ、付着力が大きく、表面改質による付着力低下を示
唆した。また、窒化ケイ素製AFM探針プローブと比べ
ると、約110倍の付着力が確認され、プローブをその
まま用いた場合との付着力に大きな差があることを示唆
した。このことから、これまでの手作業で製造したコロ
イドプローブでは付着の不均一性によって、測定された
付着力のばらつきがプローブに依存したものなのか、付
着力に依存したものなのかがあまり明確でなかったが、
本発明によって製造したプローブでは付着力の差が明確
になった。
From the above results, in Experimental Example 1 using the spherical silica particles, the adhesive force was larger than that of the surface-modified silica particles (Experimental Example 2), suggesting a decrease in the adhesive force due to the surface modification. In addition, an adhesion of about 110 times was confirmed as compared with the AFM probe made of silicon nitride, which suggested that there was a large difference in the adhesion between the case where the probe was used as it was. From this fact, it is less clear whether the variation in the measured adhesive force depends on the probe or the adhesive force due to the non-uniformity of the adhesion of the manually produced colloidal probe so far. There was no
The difference in adhesion was evident in the probes manufactured according to the present invention.

【0036】[0036]

【発明の効果】本発明によれば、測定精度の良いコロイ
ドプローブをわずかな熟練を積むだけで容易に製造する
ことができる。
According to the present invention, a colloid probe with high measurement accuracy can be easily manufactured with only a little skill.

【0037】本発明によって製造されたコロイドプロー
ブを用いることによって、1個の球状試料粒子の厳密な
付着力を測定することができる。また、液中測定可能な
原子間力顕微鏡を用いれば、条件を調整した溶液中にお
ける粒子1個の厳密な相互作用力を測定することもでき
る。
By using the colloidal probe produced according to the present invention, it is possible to measure the exact adhesion of one spherical sample particle. In addition, if an atomic force microscope that can be measured in a liquid is used, the exact interaction force of one particle in a solution whose conditions have been adjusted can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のコロイドプローブの製造装置の一例を
示す概略図である。
FIG. 1 is a schematic view showing an example of an apparatus for producing a colloid probe of the present invention.

【図2】本発明によって得られたコロイドプローブを用
いて球状試料粒子の付着力を測定する方法を示した概念
図である。
FIG. 2 is a conceptual diagram showing a method for measuring the adhesion of spherical sample particles using a colloid probe obtained according to the present invention.

【図3】フォースカーブの一例を示す図である。FIG. 3 is a diagram illustrating an example of a force curve.

【符号の説明】[Explanation of symbols]

1 デジタルマイクロスコープ 2 X−Yステージ 3 球状試料粒子付着針 4 接着剤塗布用針 5 原子間力顕微鏡探針(AFM探針) 6 マイクロマニピュレータ 7 マイクロマニピュレータジョイスティック 11 球状試料粒子が接着されたAFM探針(コロイド
プローブ) 12 球状試料粒子 13 ピエゾ 14 原子間力顕微鏡用試料固定円板 15 鏡面研磨したステンレス板 16 フォトダイオード
DESCRIPTION OF SYMBOLS 1 Digital microscope 2 XY stage 3 Spherical sample particle attachment needle 4 Adhesive application needle 5 Atomic force microscope probe (AFM probe) 6 Micromanipulator 7 Micromanipulator joystick 11 AFM probe with spherical sample particles adhered Needle (colloid probe) 12 Spherical sample particle 13 Piezo 14 Sample fixing disk for atomic force microscope 15 Mirror-polished stainless steel plate 16 Photodiode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 雅矢 福岡県大牟田市新開町1 電気化学工業株 式会社大牟田工場内 (72)発明者 小林 晃 福岡県大牟田市新開町1 電気化学工業株 式会社大牟田工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaya Yoshida 1 Shinkaicho, Omuta-shi, Fukuoka Denki Kagaku Kogyo Co., Ltd. Inside the Omuta Plant (72) Inventor Akira Kobayashi 1 Shinkaicho, Omuta-shi Fukuoka Pref. Omuta Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 球状粒子の付着力を測定するために用い
るコロイドプローブの製造方法であって、 原子間力顕微鏡探針、接着剤塗布用針及び球状試料粒子
付着針を所定位置に位置決めする工程と、 原子間力顕微鏡探針を接着剤塗布用針から遠ざけてか
ら、接着剤塗布用針に接着剤を塗布した後、原子間力顕
微鏡探針を上記所定位置にまで戻して接着剤塗布用針の
接着剤を原子間力顕微鏡探針に付着させる工程と、 原子間力顕微鏡探針を球状試料粒子付着針と接触させ、
球状試料粒子を原子間力顕微鏡探針に接着させる工程
と、を有することを特徴とするコロイドプローブの製造
方法。
1. A method for producing a colloid probe used for measuring the adhesion of spherical particles, comprising the steps of positioning an atomic force microscope probe, an adhesive application needle, and a spherical sample particle adhesion needle at predetermined positions. After the atomic force microscope probe is moved away from the adhesive application needle, the adhesive is applied to the adhesive application needle, and then the atomic force microscope probe is returned to the predetermined position to apply the adhesive. Attaching the adhesive of the needle to the atomic force microscope probe, contacting the atomic force microscope probe with the spherical sample particle attachment needle,
Bonding a spherical sample particle to an atomic force microscope probe.
【請求項2】 球状粒子の付着力を測定するために用い
るコロイドプローブの製造装置であって、 (a)原子間力顕微鏡探針、接着剤塗布用針及び球状試
料粒子付着針を所定位置に位置決めして、それをマイク
ロコンピューターに登録する手段、 (b)原子間力顕微鏡探針を接着剤塗布用針から遠ざけ
てから、接着剤塗布用針に接着剤を塗布した後、原子間
力顕微鏡探針を上記登録した位置にまで戻して接着剤塗
布用針の接着剤を原子間力顕微鏡探針に付着させる手
段、 (c)原子間力顕微鏡探針を球状試料粒子付着針と接触
させ、球状試料粒子を原子間力顕微鏡探針に接着させる
手段、を具備することを特徴とするコロイドプローブの
製造装置。
2. An apparatus for producing a colloid probe used for measuring the adhesion of spherical particles, comprising: (a) an atomic force microscope probe, an adhesive application needle, and a spherical sample particle adhesion needle at predetermined positions. Means for positioning and registering the same in a microcomputer; (b) after moving the atomic force microscope probe away from the adhesive application needle, applying the adhesive to the adhesive application needle, and then using the atomic force microscope Means for returning the probe to the registered position and attaching the adhesive of the adhesive application needle to the atomic force microscope probe; (c) bringing the atomic force microscope probe into contact with the spherical sample particle attachment needle; Means for adhering spherical sample particles to an atomic force microscope probe.
JP2000249131A 2000-08-21 2000-08-21 Method and device for manufacturing colloid probe Withdrawn JP2002062253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000249131A JP2002062253A (en) 2000-08-21 2000-08-21 Method and device for manufacturing colloid probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000249131A JP2002062253A (en) 2000-08-21 2000-08-21 Method and device for manufacturing colloid probe

Publications (1)

Publication Number Publication Date
JP2002062253A true JP2002062253A (en) 2002-02-28

Family

ID=18738913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000249131A Withdrawn JP2002062253A (en) 2000-08-21 2000-08-21 Method and device for manufacturing colloid probe

Country Status (1)

Country Link
JP (1) JP2002062253A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248289A (en) * 2006-03-16 2007-09-27 Seiko Instruments Inc Cantilever and method for manufacturing same
KR100851396B1 (en) 2006-07-24 2008-08-08 한양대학교 산학협력단 Manipulation system for the colloidal probe and manipulation method thereof
JP2011112450A (en) * 2009-11-25 2011-06-09 Ricoh Co Ltd Apparatus of preparing colloid probe, method of preparing colloid probe, colloid probe, and method of evaluating electrostatic development toner
US8244145B2 (en) 2007-08-29 2012-08-14 Ricoh Company, Ltd. Image forming apparatus including image processing member determined by method of evaluating distribution of adhesion forces of toner thereto
JP2013019714A (en) * 2011-07-08 2013-01-31 Ricoh Co Ltd Adhesion measurement method and adhesion measurement device
JP2014119305A (en) * 2012-12-14 2014-06-30 Ricoh Co Ltd Adhesion measuring device and adhesion measuring method
JP2016156678A (en) * 2015-02-24 2016-09-01 日本ゼオン株式会社 Powder adhesiveness measuring method and thermo-hygrostat room forming jig
CN107796958A (en) * 2017-09-18 2018-03-13 上海理工大学 A kind of preparation method of AFM colloid probe
CN108717130A (en) * 2018-05-08 2018-10-30 清华大学 Detection device, copper sheet and detection method for fixing AFM probe
CN112946321A (en) * 2021-01-30 2021-06-11 南京理工大学 Method for quantifying monomolecular force between ionic liquid and solid interface
CN114280333A (en) * 2021-03-25 2022-04-05 华侨大学 Method for testing adhesion of superfine abrasive and semiconductor wafer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248289A (en) * 2006-03-16 2007-09-27 Seiko Instruments Inc Cantilever and method for manufacturing same
US7823470B2 (en) 2006-03-16 2010-11-02 Seiko Instruments Inc. Cantilever and cantilever manufacturing method
JP4660726B2 (en) * 2006-03-16 2011-03-30 セイコーインスツル株式会社 Cantilever and method for producing cantilever
KR100851396B1 (en) 2006-07-24 2008-08-08 한양대학교 산학협력단 Manipulation system for the colloidal probe and manipulation method thereof
US8244145B2 (en) 2007-08-29 2012-08-14 Ricoh Company, Ltd. Image forming apparatus including image processing member determined by method of evaluating distribution of adhesion forces of toner thereto
JP2011112450A (en) * 2009-11-25 2011-06-09 Ricoh Co Ltd Apparatus of preparing colloid probe, method of preparing colloid probe, colloid probe, and method of evaluating electrostatic development toner
JP2013019714A (en) * 2011-07-08 2013-01-31 Ricoh Co Ltd Adhesion measurement method and adhesion measurement device
JP2014119305A (en) * 2012-12-14 2014-06-30 Ricoh Co Ltd Adhesion measuring device and adhesion measuring method
JP2016156678A (en) * 2015-02-24 2016-09-01 日本ゼオン株式会社 Powder adhesiveness measuring method and thermo-hygrostat room forming jig
CN107796958A (en) * 2017-09-18 2018-03-13 上海理工大学 A kind of preparation method of AFM colloid probe
CN108717130A (en) * 2018-05-08 2018-10-30 清华大学 Detection device, copper sheet and detection method for fixing AFM probe
CN112946321A (en) * 2021-01-30 2021-06-11 南京理工大学 Method for quantifying monomolecular force between ionic liquid and solid interface
CN114280333A (en) * 2021-03-25 2022-04-05 华侨大学 Method for testing adhesion of superfine abrasive and semiconductor wafer

Similar Documents

Publication Publication Date Title
JP2002062253A (en) Method and device for manufacturing colloid probe
CN109461649B (en) Apparatus and method for bonding substrates
US5581083A (en) Method for fabricating a sensor on a probe tip used for atomic force microscopy and the like
JPH0422809A (en) Probe for interatomic power microscope and its manufacture
JP2012533891A (en) Leveling apparatus and method
US5633455A (en) Method of detecting particles of semiconductor wafers
Ito et al. Development of a probing system for a micro-coordinate measuring machine by utilizing shear-force detection
LaVan et al. Cross comparison of direct strength testing techniques on polysilicon films
JPH01262403A (en) Probe and its manufacture
US6813958B2 (en) Method for combinatorially measuring adhesion strength
Holz et al. High throughput AFM inspection system with parallel active cantilevers
Ozaki et al. Biaxial flexure testing of free-standing thin film membrane with nanoindentation system
Jolly et al. Soft‐Chemistry‐Assisted On‐Chip Integration of Nanostructured α‐Quartz Microelectromechanical System
Harley Advances in piezoresistive probes for atomic force microscopy
Gates et al. Accurate flexural spring constant calibration of colloid probe cantilevers using scanning laser Doppler vibrometry
EP1623188B1 (en) Quantum tunnelling transducer device
Ried et al. 5 MHz, 2 N/m piezoresistive cantilevers with INCISIVE tips
Beyder et al. Microfabricated torsion levers optimized for low force and high-frequency operation in fluids
Babij et al. MEMS displacement generator for atomic force microscopy metrology
JPS62245131A (en) Scratch testing machine
JPH10302703A (en) Magnification and inclination angle measurement method
JP2986280B2 (en) Tunnel current sensing micro device
JPH10123154A (en) Probe for scanning type probe microscope and its manufacturing method
JP2021517251A (en) Large radius probe
Wu et al. Fabrication of oriented crystals as force measurement tips via focused ion beam and microlithography methods

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106