JP2002061586A - Spherical rotating piston pump and compressor - Google Patents

Spherical rotating piston pump and compressor

Info

Publication number
JP2002061586A
JP2002061586A JP2000197673A JP2000197673A JP2002061586A JP 2002061586 A JP2002061586 A JP 2002061586A JP 2000197673 A JP2000197673 A JP 2000197673A JP 2000197673 A JP2000197673 A JP 2000197673A JP 2002061586 A JP2002061586 A JP 2002061586A
Authority
JP
Japan
Prior art keywords
spherical
housing
plate
axis
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000197673A
Other languages
Japanese (ja)
Other versions
JP3484604B2 (en
Inventor
Tomio Okura
富美夫 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000197673A priority Critical patent/JP3484604B2/en
Publication of JP2002061586A publication Critical patent/JP2002061586A/en
Application granted granted Critical
Publication of JP3484604B2 publication Critical patent/JP3484604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C9/00Oscillating-piston machines or engines
    • F01C9/005Oscillating-piston machines or engines the piston oscillating in the space, e.g. around a fixed point

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spherical fluid pump with a rotating piston and a compressor. SOLUTION: To a housing 1 having a spherical inner wall 7, a rotating piston 3 of a rotating plate, which has an input shaft 2 inserted therethrough on a line passing through a spherical center O of the spherical inner wall 7, a spherical arc face 13 on the outer periphery face for slidably contacting the spherical inner wall 7 and a cylindrical intermediate shaft 4 integrally laid on the chord side of the spherical arc face 13 as a segment arc, is pivotally connected rockingly in a range of angle θ×2 with a line perpendicular to the input shaft 2 at the spherical center O, as a connecting base axis. On the intermediate axis 4 of the rotating piston 3, an oblique plate 5 is provided which is constrained by a track gap 9 formed by engraving the circumference of the inner wall 7 of the housing 1 on a plane with a line crossing the input shaft 2 at a angle θ to the spherical center O, as an axis, and which is connected across the rotating piston rockingly in a range of angle θ×2. Then, the spherical inner wall 7 of the housing 1 is formed into an interdigital operation chamber Fu with the oblique plate 5 and the rotating piston closed. A suction hole In and a discharge hole Out are provided facing the interdigital operation chamber Fu.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、外部から供給され
る動力によって密閉容器内を真空にして流体を吸い込
み、且つ圧力を加えて別の場所に移動させる装置とし
て、又は気体を圧縮する装置として、球形状のハウジン
グ1内に対遇して回転する回転ピストン3と斜行板5と
の回転板を組込み、その二つの回転板間を真空部分に形
成すると共に、その間隙容積を変化させて吸い込みと吐
き出しとをさせる新規な流体ポンプ、及び圧縮機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for sucking a fluid by evacuating a closed container by power supplied from the outside and sucking the fluid and applying pressure to the device, or as a device for compressing a gas. A rotating plate of a rotating piston 3 and a skew plate 5 which rotate in the spherical housing 1 is assembled, a space between the two rotating plates is formed as a vacuum portion, and the gap volume is changed. The present invention relates to a novel fluid pump for performing suction and discharge and a compressor.

【0002】[0002]

【従来の技術】従来技術における容積形ポンプには、外
接形や内接形の歯車ポンプ、平衡形や非平衡形のベーン
ポンプ、アキシャル形やラジアル形やレシプロ形に大別
されるピストンポンプ等がある。その中で油圧ポンプと
して、歯車ポンプでは殆どが外接形歯車ポンプが使われ
ており、ベーンポンプでは平衡形(定吐出量形)ポンプ
が一般に使用され、またピストンポンプではアキシャル
形ポンプの斜軸式(ベント・アクシス式)や斜板固定式
(スワッシュ・プレート式)が代表的である。
2. Description of the Related Art Conventionally, positive displacement pumps include circumscribed and inscribed gear pumps, balanced and unbalanced vane pumps, and piston pumps classified into axial, radial and reciprocating pumps. is there. Among them, as a hydraulic pump, most of the gear pumps are circumscribed gear pumps, the vane pumps are generally equilibrium type (constant discharge type) pumps, and the piston pumps are axial type pump oblique shaft type ( Typical examples are a vent axis type and a swash plate fixed type (swash plate type).

【0003】外接形歯車ポンプは、噛み合う1対の外接
歯車がその外周と側面とを密接させたケーシングの中で
回転すると、歯車の噛み合いの離れ部に真空部分(空
間)が出来て吸い込み口から作動流体が吸い込まれると
共に、この作動流体は吸入口の歯溝に充満し、この歯溝
に溜まった作動流体が歯車の回転によってケーシングの
内周に沿って吐出口まで運ばれ、吐出口の歯車の噛み合
いによる容積の減少により押し出されるものである。こ
の歯車ポンプは、ピストンポンプやベーンポンプに比較
して構造が単純で部品点数も少なく製造コストも低い
が、他の2種類のポンプと異なり可変吐出量ポンプを作
ることが出来ない。
[0003] In the external gear pump, when a pair of meshing external gears rotate in a casing in which the outer circumference and the side face are in close contact with each other, a vacuum portion (space) is formed at a separated portion of the meshing of the gears, and a vacuum portion (space) is formed from the suction port. As the working fluid is sucked, the working fluid fills the tooth space of the suction port, and the working fluid accumulated in the tooth space is carried to the discharge port along the inner periphery of the casing by the rotation of the gear, and the gear at the discharge port is rotated. Are pushed out due to a decrease in volume due to the meshing of. This gear pump has a simple structure, a small number of parts, and a low manufacturing cost as compared with a piston pump or a vane pump. However, unlike the other two types of pumps, a variable discharge pump cannot be manufactured.

【0004】平衡形ベーンポンプは、定吐出量形ポンプ
であるが非平衡形の可変吐出量形ベーンポンプよりも高
い圧力で使用が可能である。この平衡形ベーンポンプ
は、ケーシングの中に固定されたカムリングと、そのカ
ムリングの側面に押し付け固定したブッシングと、その
カムリングとブッシングとに囲われた中に駆動軸(入力
軸)に固定したローター、及びベーンが組込まれて構成
される。ローターには半径方向に切り込んだ溝があって
この中でベーンが自由に滑動するが、それは軸とロータ
ーとカムリングとが同心であってカムリングの内側の曲
線がほぼ楕円形をしているために駆動される遠心力によ
ってベーンは常にカムリング内側に密着し、吸入・吐出
作用を行いながら回転するものである。尚、この平衡形
ベーンポンプは、二つずつの吸入・吐出ポートのそれぞ
れが対称な位置にある為、圧力分布が軸対称になって軸
に直角の荷重がかからない。
An equilibrium vane pump is a constant discharge pump, but can be used at a higher pressure than a non-equilibrium variable discharge vane pump. The balanced vane pump includes a cam ring fixed in a casing, a bushing pressed and fixed to a side surface of the cam ring, a rotor fixed to a drive shaft (input shaft) while being surrounded by the cam ring and the bushing, and Vane is built in and configured. The rotor has a groove cut in the radial direction and the vane slides freely in this groove, because the shaft, rotor and cam ring are concentric and the curve inside the cam ring is almost elliptical. The driven centrifugal force causes the vane to always adhere to the inside of the cam ring and rotate while performing suction / discharge operations. In this balanced vane pump, since each of the two suction / discharge ports is located at a symmetrical position, the pressure distribution is axisymmetric, and a load perpendicular to the axis is not applied.

【0005】アキシャル形斜軸式ピストンポンプは、ポ
ンプハウジングの中に駆動軸と回転するシリンダーブロ
ックとが一定角度(20〜30度)を持って装着され、
そのシリンダーブロック内には軸平行にシリンダーが円
周上等間隔に形成され、その各々にピストンが挿入され
る。そのピストンの各々はピストンロッド、及びピスト
ンロッド端部のピストンロッドエンドベアリングを介し
て駆動軸の駆動軸フランジと連結すると共に、シリンダ
ーブロックの中で往復運動をして吸入・吐出作用を行う
が、傾転角度は固定されずに0〜±25度、又は30度
に連続的に変化させることによってピストンのストロー
クを変え、吐出流量を可変にするものである。
[0005] In the axial type oblique-axis piston pump, a drive shaft and a rotating cylinder block are mounted in a pump housing at a fixed angle (20 to 30 degrees).
Cylinders are formed in the cylinder block at equal circumferential intervals in parallel with the axis, and a piston is inserted into each of the cylinders. Each of the pistons is connected to a drive shaft flange of a drive shaft via a piston rod and a piston rod end bearing at the end of the piston rod, and performs reciprocating motion in a cylinder block to perform a suction / discharge operation. The tilt angle is not fixed, but is continuously changed from 0 to ± 25 degrees or 30 degrees, thereby changing the stroke of the piston and making the discharge flow rate variable.

【0006】また、アキシャル形斜板式(スワッシュ・
プレート式)ピストンポンプは、上記斜軸式ピストンポ
ンプと同様にピストンがシリンダーブロック内を往復運
動をするが、斜軸式ピストンポンプと違うのはシャフト
が駆動されるとシリンダーブロックが回転し、且つ中に
配列されたピストンの各々がシューを介して傾転可能な
斜板上を摺動し、斜板の傾きに応じたストロークで往復
運動をして吸入・吐出のポンプ作用を行うものである。
この斜板式ピストンポンプは、斜軸式ピストンポンプに
比べて部品点数が少なく小形であり、機構も簡単で可変
吐出量形にするにも斜板の傾きを変えるだけで可能であ
る。
Also, an axial type swash plate type (swash,
The plate pump) has a piston reciprocating in a cylinder block in the same manner as the above-described oblique-axis piston pump, but differs from the oblique-axis piston pump in that the cylinder block rotates when the shaft is driven, and Each of the pistons arranged therein slides on a tiltable swash plate via a shoe, and reciprocates with a stroke corresponding to the tilt of the swash plate to perform a suction / discharge pump action. .
This swash plate type piston pump has a smaller number of parts and a smaller size than a swash plate type piston pump, and has a simple mechanism and can be changed into a variable discharge type by simply changing the inclination of the swash plate.

【0007】これらのピストンポンプは、歯車ポンプや
ベーンポンプに比べてシリンダーとピストンとの摺動部
分が長いために作動流体の漏れが少く高い圧力で使用が
可能であると共に、軽量小形で高速回転が可能であるか
ら原動機や直流電動機に直結することが出来る。また、
ピストンポンプは、プランジャ形であるから理論的に9
0%以上の効率が得られると同時に、吐出流体の脈動が
殆どなく吐出量を無段階に調整することや吐出を逆にす
ることも出来る可変吐出量形のポンプであり、騒音が小
さく寿命が長いポンプである反面、以下のような欠点や
問題点を包含する。
Since these piston pumps have a longer sliding portion between the cylinder and the piston than a gear pump or a vane pump, they can be used at a high pressure with little leakage of working fluid, and are lightweight, compact and capable of high-speed rotation. Because it is possible, it can be directly connected to the prime mover or DC motor. Also,
Since the piston pump is of the plunger type, theoretically 9
It is a variable discharge rate type pump that can achieve 0% or more efficiency, can adjust the discharge amount steplessly with little pulsation of the discharge fluid and can reverse the discharge, and has low noise and long life. Although it is a long pump, it has the following disadvantages and problems.

【0008】[0008]

【従来技術の問題点】即ち、従来の流体ポンプ、取り分
け油圧ポンプにおけるピストンポンプは、歯車ポンプや
ベーンポンプよりも複雑な構造で部品点数も多く、特殊
材料を必要とする上、精密加工を要するのでコスト高で
ある。また、このピストンポンプは、ピストン、又はプ
ランジャの往復運動によって吸入・吐出のサイクルを繰
り返すものであるから、この運動機構、並びに吸入・吐
出弁の摩耗や故障が多く、機構上、或は脈動や吐出量の
変動を抑えるためにシリンダーブロック内に5〜9本の
ピストンが差し込まれるもので、ポンプ全体の容積に対
して行程体積の有効容量が小さくポンプ本体の寸法が大
きい。更に、このピストンポンプにおいては、長時間の
使用による油性の変質や、分解、組立て、運転に際して
は塵挨混入に細心の注意を要するものである。
Problems of the prior art That is, a conventional fluid pump, especially a piston pump in a hydraulic pump, has a more complicated structure and a larger number of parts than a gear pump or a vane pump, requires special materials, and requires precision machining. High cost. Further, since this piston pump repeats a suction / discharge cycle by reciprocating motion of a piston or a plunger, the motion mechanism and the suction / discharge valve are often worn or broken, and mechanically or pulsating or pulsating. 5 to 9 pistons are inserted into the cylinder block in order to suppress the fluctuation of the discharge amount. The effective volume of the stroke volume is small with respect to the volume of the entire pump, and the size of the pump body is large. Further, in this piston pump, it is necessary to pay close attention to oily deterioration due to long-term use, and to dust mixing during disassembly, assembly and operation.

【0009】因にベーンポンプにおいては、ベーン、及
びローターはカムリングとブッシングに挟まれて回転す
るのでその接触面積が大きく、各部の直角度、寸法等に
高い工作精度が要求される上に加工面の粗さが問題にな
ることが多く、ベーンは回転毎に繰り返し応力を受ける
ので破損する恐れがある。また、接触面積が大きいので
体積効率をよくするためには油の粘度を定めて隙間を小
さくさせる必要から作動油の粘度が制限されると共に、
使用油に塵挨が混入したり、油自身が劣化しているとそ
の機能を著しく阻害するから油の保守には注意が必要で
ある。即ち、前記歯車ポンプは一部を除いて大体が低圧
・低速回転の小馬力のところで使用され、アキシャル形
等のピストンポンプは高圧・高速回転のところで運転さ
れ、またベーンポンプはそれらの中間的性能である。
In the vane pump, the vane and the rotor rotate between the cam ring and the bushing, so that the contact area is large. Roughness is often a problem, and the vanes are subject to repeated stresses with each revolution, which can lead to breakage. In addition, since the contact area is large, in order to improve the volumetric efficiency, it is necessary to determine the viscosity of the oil and reduce the gap, thereby limiting the viscosity of the hydraulic oil,
Care must be taken when maintaining oil because dust can be mixed into the oil used, or if the oil itself has deteriorated, it can significantly impair its function. That is, the gear pump is generally used at low horsepower of low pressure and low speed rotation except for a part, the piston pump of the axial type or the like is operated at high pressure and high speed rotation, and the vane pump has an intermediate performance between them. is there.

【0010】加えて、圧縮機において述べれば、容積圧
縮機としてベーン圧縮機、ルーツブロワー、ナッシュポ
ンプ、スクリュー圧縮機等の他に最も広く使用されてい
る往復動圧縮機がある。その往復動圧縮機の圧縮機本体
は、ピストンを駆動する往復動部分、シリンダー、シリ
ンダーヘッド等の容器部分、吸入弁・吐出弁、及びこれ
に接続する配管等の部分とに分かれるが、クランク軸の
回転はコネクティングロッド、ピストンロッドを経てピ
ストンに往復運動をさせ、そのピストンの往復動によっ
て吸入口から流入した空気(或はガス体)が圧縮される
と共に、吐出口から高圧・高温となって吐出されるもの
である。この往復動圧縮機は、他の圧縮機に比べて構造
が強固で故障も少ない上に取扱い保守管理も比較的楽で
効率もよいが、構造が複雑で部品数も多く大型になり、
製造コストも高く、而も振動が大きく、概して基礎、据
付けに大きな工事を要し、保守管理がよくないと過熱し
て爆発や火災を起こす危険もある。
[0010] In addition, regarding the compressor, as the positive displacement compressor, there is a reciprocating compressor most widely used in addition to a vane compressor, a roots blower, a Nash pump and a screw compressor. The compressor body of the reciprocating compressor is divided into a reciprocating part for driving a piston, a container part such as a cylinder and a cylinder head, a suction valve / discharge valve, and a pipe and the like connected thereto. The reciprocation of the piston causes the piston to reciprocate via the connecting rod and the piston rod, and the reciprocating motion of the piston compresses the air (or gas) flowing from the suction port and generates high pressure and high temperature from the discharge port. It is to be ejected. This reciprocating compressor has a stronger structure and fewer failures than other compressors, and is relatively easy and efficient to handle and maintain.However, the structure is complicated, the number of parts is large, and the size is large.
The production cost is high, the vibration is large, and generally large works are required for foundation and installation. If the maintenance is poor, there is a danger of overheating and explosion or fire.

【0011】[0011]

【発明が解決しようとする課題】上記の従来の流体ポン
プ、及び圧縮機が抱えている多くの問題点に鑑み、球状
のハウジングとその中で回転する1対の回転板とで構成
される本発明の流体ポンプは、吐出される作動流体(吐
出油)の脈動が少ない上に、吐出圧力が変わっても吐出
量に変化が少なく、また圧力が高くなったときのポンプ
内部の吐出側から低圧の吸入側、又はケース内への漏れ
も少なく、低速・高速域でも高い自吸性能と高い全効率
(ポンプ効率)を示すものである。また、圧縮機として
も、回転するピストンは高速・高圧運転を容易にして高
い圧縮効率と機械効率を示すもので多段の必要がなく、
軽量コンパクトであり運転経費が安い等、従来の歯車ポ
ンプ、ベーンポンプ、ピストンポンプ、及び往復動圧縮
機等の圧縮機よりも優れた各種性能を有する全く新規な
球形基本構造の流体ポンプ、及び圧縮機を提供するもの
である。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the conventional fluid pump and compressor, a book comprising a spherical housing and a pair of rotary plates rotating therein. The fluid pump of the invention has a small pulsation of the working fluid (discharge oil) to be discharged, a small change in the discharge amount even if the discharge pressure changes, and a low pressure from the discharge side inside the pump when the pressure increases. It has little leakage on the suction side or inside the case, and exhibits high self-priming performance and high overall efficiency (pump efficiency) even in low-speed / high-speed ranges. Also, as a compressor, the rotating piston facilitates high-speed and high-pressure operation and exhibits high compression efficiency and mechanical efficiency, eliminating the need for multiple stages.
A completely new fluid pump with a basic spherical structure and various performances superior to conventional gear pumps, vane pumps, piston pumps, reciprocating compressors, etc. Is provided.

【0012】[0012]

【課題を解決するための手段】本発明は、上記課題を解
決する為に、球面の内壁面7を有する密閉したハウジン
グ1内に互いが蝶番状動作のみ可能に同軸的に連結して
交差する回転ピストン3と斜行板5との二つの回転板を
組込み、且つその回転ピストン3を入力軸2上に水平方
向にのみ揺動可能に取付けると共に、斜行板5を固定軸
線上で回転するように取付けると、その回転ピストン3
と斜行板5との板面が回転に伴って接近と離間とを繰り
返すから、互いの板面が離間して間隙を拡張増大させる
時に吸入行程をさせ、互いの板面が接近して間隙を縮小
減少させる時に吐出行程をさせるものであるが、本発明
においては概ね以下の4通りの解決手段を有する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention coaxially connects and intersects each other in a sealed housing 1 having a spherical inner wall surface 7 so that only hinge-like operation is possible. Two rotating plates, a rotating piston 3 and a skewing plate 5, are incorporated, and the rotating piston 3 is mounted on the input shaft 2 so as to be swingable only in the horizontal direction, and the skew plate 5 is rotated on a fixed axis. When installed, the rotating piston 3
When the plate surfaces of the skew plate 5 and the skew plate 5 repeat approaching and separating with rotation, the suction stroke is performed when the plate surfaces are separated from each other to expand and increase the gap, and the plate surfaces of the two approach and close each other. In the present invention, there are generally the following four solutions.

【0013】[0013]

【解決手段1】解決手段の一つは、内壁面に球面を有す
るハウジング1において、その球面内壁7の球心Oを通
る直線上のハウジング1壁に主軸受8を貫設して直軸状
をなす入力軸2の軸頸を回転自由に嵌挿させ、且つその
入力軸2に角度θを有して球心Oで交差する軸線の垂直
平面上のハウジング1内壁面に周回溝の軌道隙9を削設
する。
A first aspect of the present invention is a housing 1 having a spherical surface on an inner wall surface. Of the input shaft 2 is rotatably inserted into the input shaft 2 and has an angle θ with the input shaft 2. 9 is cut.

【0014】また、ハウジング1内には、前記入力軸2
と球心Oで直交する直線を連結軸線として入力軸2上を
水平方向に少なくとも角度(θ×2)の範囲を揺動し、
且つ外周面を前記球面内壁7と摺接する球弧面13に形
成すると共に、その球弧面13を弓形の弧とする弦側に
円柱状の中間軸4を合体させて板面に弓形面14を持つ
略板状の回転ピストン3を入力軸2の球心Oの部分に枢
結する。
In the housing 1, the input shaft 2 is provided.
And a straight line orthogonal to the spherical center O as a connection axis, and swings horizontally on the input shaft 2 at least in the range of an angle (θ × 2),
In addition, the outer peripheral surface is formed on a spherical arc surface 13 which is in sliding contact with the spherical inner wall 7, and the cylindrical intermediate shaft 4 is combined with the chord side having the arc surface 13 as an arc of an arc to form an arcuate surface 14 on the plate surface. Is pivotally connected to the spherical center O of the input shaft 2.

【0015】その上、ハウジング1内には、前記中間軸
4上において前記回転ピストン3と蝶番状に交差し、縁
部外周を環状に形成した斜行板環24が前記軌道隙9に
回転可能に嵌合して拘束されると共に、中間軸4の両底
面とその両底面に対接する斜行板環24の対向両側部と
の各々にピンとピン受孔の互いに与する連結素子を有し
て互いが少なくとも角度(θ×2)範囲を擺動可能に連
結し、且つ板面に弓形面22を持つ円形状板の斜行板5
を設ける。
In addition, in the housing 1, a skewed plate ring 24 hingedly intersecting with the rotary piston 3 on the intermediate shaft 4 and having an annular outer periphery is rotatable in the raceway gap 9. And a connecting element for providing a pin and a pin receiving hole to each of both bottom surfaces of the intermediate shaft 4 and opposing opposite side portions of the oblique plate ring 24 which are in contact with the both bottom surfaces. The oblique plates 5 are circular plates that are connected to each other at least in an angle (θ × 2) range and that have an arcuate surface 22 on the plate surface.
Is provided.

【0016】すると、その斜行板5がハウジング1の前
記球面内壁7を閉鎖して半球状空間の半月状作動室Ha
を形成し、且つその半月状作動室Haを回転ピストン3
が櫛形状空間の櫛形状作動室Fuに形成する。更に、そ
の櫛形状作動室Fuに臨ませて吸入孔Inと吐出孔Out
とを適宜設けたことを特徴とする球形の回転ピストンポ
ンプ、圧縮機である。
Then, the inclined plate 5 closes the spherical inner wall 7 of the housing 1 to form a semi-lunar working chamber Ha of a hemispherical space.
And the half-moon shaped working chamber Ha is
Are formed in the comb-shaped operation chamber Fu in the comb-shaped space. Further, the suction hole In and the discharge hole Out are exposed to the comb-shaped working chamber Fu.
And a spherical rotary piston pump and a compressor provided as appropriate.

【0017】[0017]

【解決手段2】解決手段のもう一つとして、内壁面に球
面を有するハウジング1において、その球面内壁7の球
心Oを通る直線上のハウジング1壁に主軸受8を貫設し
て直軸状をなす入力軸2の軸頸を回転自由に嵌挿させ、
且つその入力軸2に角度θを有して球心Oで交差する軸
線の垂直平面上のハウジング1内壁面7円周に輪体状の
軌道環10を突設する。
As another solution, in a housing 1 having a spherical surface on an inner wall surface, a main bearing 8 is provided through a wall of the housing 1 on a straight line passing through a spherical center O of the spherical inner wall 7 so as to form a straight shaft. The shaft neck of the input shaft 2 in the shape of
In addition, a ring-shaped orbital ring 10 is protruded from a circumference of the inner wall surface 7 of the housing 1 on a vertical plane of an axis intersecting the spherical axis O at an angle θ with respect to the input shaft 2.

【0018】また、ハウジング1内には、前記入力軸2
と球心Oで直交する直線を連結軸線として入力軸2上を
水平方向に少なくとも角度(θ×2)の範囲を揺動し、
且つ外周面を前記球面内壁7と摺接する球弧面13に形
成して板面に弓形面14を持つ略板状の回転ピストン3
を入力軸2の球心Oの部分に枢結する。
In the housing 1, the input shaft 2 is provided.
And a straight line orthogonal to the spherical center O as a connection axis, and swings horizontally on the input shaft 2 at least in the range of an angle (θ × 2),
A substantially plate-shaped rotary piston 3 having an outer peripheral surface formed on a spherical arc surface 13 which is in sliding contact with the spherical inner wall 7 and having an arcuate surface 14 on the plate surface.
Is connected to the portion of the input shaft 2 at the spherical center O.

【0019】その上、ハウジング1内には、前記回転ピ
ストン3と蝶番状に交差して弓形面22の板面と外周面
に周回する溝の軌道受25とを有し、その軌道受25に
前記軌道環10が回転摺動関係に嵌合する円形状板の斜
行板5を設ける。
In addition, the housing 1 has a raceway bearing 25 of a groove which intersects the rotary piston 3 in a hinged manner and circulates around the plate surface of the arcuate surface 22 and the outer peripheral surface. A skew plate 5 of a circular plate into which the race ring 10 is fitted in a rotational sliding relationship is provided.

【0020】その斜行板5と回転ピストン3の交差部分
には、円柱状の中間軸4を両底面に平行な切り口面で分
割すると共に、その各々を斜行板5と回転ピストン3の
競合しない何れかに固着させ、且つその分割接合面の各
々にピンとピン受孔の互いに与する連結素子を有して互
いが少なくとも角度(θ×2)範囲を擺動可能に連結す
る。
At the intersection of the skew plate 5 and the rotary piston 3, a columnar intermediate shaft 4 is divided by cut surfaces parallel to both bottom surfaces, and each of them is divided by the skew plate 5 and the rotary piston 3. Each of the divided joining surfaces is provided with a connecting element for providing a pin and a pin receiving hole to each other, and the connecting surfaces are slidably connected at least in an angle (θ × 2) range.

【0021】すると、斜行板5がハウジング1の前記球
面内壁7を閉鎖して半球状空間の半月状作動室Haを形
成し、且つその半月状作動室Haを回転ピストン3が櫛
形状空間の櫛形状作動室Fuに形成する。更に、その櫛
形状作動室Fuに臨ませて吸入孔Inと吐出孔Outとを
適宜設けたことを特徴とする球形の回転ピストンポン
プ、圧縮機である。
Then, the swash plate 5 closes the spherical inner wall 7 of the housing 1 to form a hemispherical working chamber Ha of a hemispherical space. It is formed in a comb-shaped working chamber Fu. Furthermore, a spherical rotary piston pump and a compressor are provided with a suction port In and a discharge port Out appropriately facing the comb-shaped working chamber Fu.

【0022】[0022]

【解決手段3】また別の解決手段は、内壁面に球面を有
するハウジング1において、その球面内壁7の球心Oを
通る直線上のハウジング1壁に主軸受8を貫設して直軸
状をなす入力軸2の軸頸を回転自由に嵌挿させ、且つそ
の入力軸2に角度θを有して球心Oで交差する軸線と入
力軸2の軸線との双方に球心Oで直交する直線上のハウ
ジング1対向両壁に軌道環軸受12の円孔を設け、その
両軌道環軸受12にはハウジング1の球面内壁7内で回
動可能に設けた輪体からなる軌道環6の直径上対向外周
面に固着する柄状の軌道環軸11を回動自由に軸承させ
る。
Another solution is that in a housing having a spherical surface on an inner wall surface, a main bearing is provided in a wall of the housing on a straight line passing through a spherical center of the spherical inner wall, and a main bearing is penetrated. The input and output shaft 2 is rotatably fitted with the shaft and neck, and the input shaft 2 has an angle θ and intersects with the input shaft 2 at an angle θ. A circular hole of a race ring bearing 12 is provided on both opposite walls of the housing 1 on a straight line, and the race ring 6 is formed of a ring body rotatably provided in the spherical inner wall 7 of the housing 1. A handle-shaped orbital ring shaft 11 fixed to the diametrically opposed outer peripheral surface is rotatably supported.

【0023】また、ハウジング1内には、前記入力軸2
と球心Oで直交する直線を連結軸線として入力軸2上を
水平方向に少なくとも角度(θ×2)の範囲を揺動し、
且つ外周面を前記球面内壁7と摺接する球弧面13に形
成して板面に弓形面14を持つ略板状の回転ピストン3
を入力軸2の球心Oの部分に枢結する。
In the housing 1, the input shaft 2 is provided.
And a straight line orthogonal to the spherical center O as a connection axis, and swings horizontally on the input shaft 2 at least in the range of an angle (θ × 2),
A substantially plate-shaped rotary piston 3 having an outer peripheral surface formed on a spherical arc surface 13 which is in sliding contact with the spherical inner wall 7 and having an arcuate surface 14 on the plate surface.
Is connected to the portion of the input shaft 2 at the spherical center O.

【0024】その上、ハウジング1内には、前記回転ピ
ストン3と蝶番状に交差して弓形面22の板面と外周面
に周回する溝の軌道受25とを有し、その軌道受25に
前記軌道環6が回転摺動関係に嵌合する円形状板の斜行
板5を設ける。
In addition, the housing 1 has a track bearing 25 of a groove intersecting the rotary piston 3 in a hinge shape and orbiting on the plate surface of the arcuate surface 22 and the outer peripheral surface. The swash plate 5 of a circular plate into which the race ring 6 is fitted in a rotational sliding relationship is provided.

【0025】その斜行板5と回転ピストン3の交差部分
には、円柱状の中間軸4を両底面に平行な切り口面で分
割すると共に、その各々を斜行板5と回転ピストン3の
競合しない何れかに固着させ、且つその分割接合面の各
々にピンとピン受孔の互いに与する連結素子を有して互
いが少なくとも角度(θ×2)範囲を擺動可能に連結す
る。
At the intersection of the swash plate 5 and the rotary piston 3, a columnar intermediate shaft 4 is divided by a cut surface parallel to both bottom surfaces, and each of them is divided by the skew plate 5 and the rotary piston 3. Each of the divided joining surfaces is provided with a connecting element for providing a pin and a pin receiving hole to each other, and the connecting surfaces are slidably connected at least in an angle (θ × 2) range.

【0026】そして、前記軌道環6には、前記入力軸2
に対してその軌道環6の傾転角度を角度0から角度±θ
範囲の何れかを選択する制御装置CAを前記軌道環軸1
1に装着して連動させる。
The orbital ring 6 has the input shaft 2
From the angle 0 to the angle ± θ
The control device CA for selecting any one of the ranges is
Attach to 1 and link.

【0027】すると、斜行板5がハウジング1の前記球
面内壁7を閉鎖して半球状空間の半月状作動室Haを形
成し、且つその半月状作動室Haを回転ピストン3が櫛
形状空間の櫛形状作動室Fuに形成する。更に、その櫛
形状作動室Fuに臨ませて吸入孔Inと吐出孔Outとを
適宜設けたことを特徴とする球形の回転ピストンポン
プ、圧縮機である。
Then, the swash plate 5 closes the spherical inner wall 7 of the housing 1 to form a hemispherical working chamber Ha of a hemispherical space, and the rotating piston 3 forms the semi-lunar working chamber Ha of the comb-shaped space. It is formed in a comb-shaped working chamber Fu. Furthermore, a spherical rotary piston pump and a compressor are provided with a suction port In and a discharge port Out appropriately facing the comb-shaped working chamber Fu.

【0028】[0028]

【解決手段4】更に別の解決手段は、内壁面に球面を有
するハウジング1において、その球面内壁7の球心Oを
通る直線上のハウジング1壁に主軸受8を貫設して直軸
状をなす入力軸2の軸頸を回転自由に嵌挿させ、且つそ
の入力軸2に角度θを有して球心Oで交差する直線上の
ハウジング1壁にも斜行板軸受29の円孔を主軸受8の
対向側に設ける。
A further solution is to provide a housing 1 having a spherical surface on an inner wall surface, wherein a main bearing 8 is provided through a wall of the housing 1 on a straight line passing through a spherical center O of the spherical inner wall 7 to form a straight shaft. The shaft neck of the input shaft 2 is rotatably inserted, and the wall of the housing 1 on the straight line which intersects with the input shaft 2 at an angle θ at the spherical center O is also formed in the circular hole of the oblique plate bearing 29. Are provided on the opposite side of the main bearing 8.

【0029】また、ハウジング1内には、前記入力軸2
と球心Oで直交する直線を連結軸線として入力軸2上を
水平方向に少なくとも角度(θ×2)の範囲を揺動し、
且つ外周面を前記球面内壁7と摺接する球弧面13に形
成して板面に弓形面14を持つ半円状板の回転ピストン
3を入力軸2の球心Oの部分に枢結する。
In the housing 1, the input shaft 2 is provided.
And a straight line orthogonal to the spherical center O as a connection axis, and swings horizontally on the input shaft 2 at least in the range of an angle (θ × 2),
The outer peripheral surface is formed on a spherical arc surface 13 which is in sliding contact with the spherical inner wall 7, and the rotary piston 3 of a semicircular plate having an arcuate surface 14 on the plate surface is pivotally connected to the portion of the spherical center O of the input shaft 2.

【0030】その上、ハウジング1内には、前記回転ピ
ストン3と蝶番状に交差して球面のハウジング1内壁面
7に摺接する外周面と板面に弓形面22とを有し、且つ
その弓形面22の裏面側中心部に前記斜行板軸受29を
回転自由に嵌挿する柄状の斜行板軸28を有して円形板
状をなす斜行板5を設ける。
In addition, the housing 1 has an outer peripheral surface which intersects the rotary piston 3 in a hinge-like manner and slides on the inner wall surface 7 of the spherical housing 1 and an arcuate surface 22 on the plate surface. A circular plate-shaped swash plate 5 having a skewing plate shaft 28 into which the skewing plate bearing 29 is rotatably inserted is provided at the center of the rear surface side of the surface 22.

【0031】その斜行板5と回転ピストン3の交差部分
には、円柱状の中間軸4を両底面に平行な切り口面で分
割すると共に、その各々を斜行板5と回転ピストン3の
競合しない何れかに固着させ、且つその分割接合面の各
々にピンとピン受孔の互いに与する連結素子を有して互
いが少なくとも角度(θ×2)範囲を擺動可能に連結す
る。
At the intersection of the swash plate 5 and the rotary piston 3, a columnar intermediate shaft 4 is divided by a cut surface parallel to both bottom surfaces, and each of them is divided by the skew plate 5 and the rotary piston 3. Each of the divided joining surfaces is provided with a connecting element for providing a pin and a pin receiving hole to each other so as to be slidable at least in an angle (θ × 2) range.

【0032】すると、斜行板5がハウジング1の前記球
面内壁7を閉鎖して半球状空間の半月状作動室Haを形
成し、且つその半月状作動室Haを回転ピストン3が櫛
形状空間の櫛形状作動室Fuに形成する。更に、その櫛
形状作動室Fuに臨ませて吸入孔Inと吐出孔Outとを
適宜設けたことを特徴とする球形の回転ピストンポン
プ、圧縮機である。
Then, the swash plate 5 closes the spherical inner wall 7 of the housing 1 to form a hemispherical working chamber Ha of a hemispherical space. It is formed in a comb-shaped working chamber Fu. Furthermore, a spherical rotary piston pump and a compressor are provided with a suction port In and a discharge port Out appropriately facing the comb-shaped working chamber Fu.

【0033】[0033]

【幾何学的構成】尚、本発明の回転ピストンポンプ、及
び圧縮機は、その原理において相互に関係する点、線、
面の幾何図形上に成り立つ基本的構造の特質がある。そ
の相互に関係する幾何図形における本発明の構造を以下
詳しく説明する。
[Geometric configuration] The rotary piston pump and the compressor of the present invention are based on the points, lines,
There is a characteristic of the basic structure that is established on the surface geometrical figure. The structure of the present invention in its interrelated geometric figures will be described in detail below.

【0034】まず、本発明を規定する相互関係の図形を
図1に示すと、球心Oから半径rを有して球面Gをなす
内壁面に形成したハウジング1には、角度θをなし球心
Oにおいて交差する直線をX軸線、Y軸線とし、そのX
軸線が球面Gに交わる点をPとし、またY軸線が球面G
に交わる点をQとし、その点P、点Q間を底面の直径と
して球心Oを頂点とする円錐形の円錐母線が側面円周を
周回する円錐軌跡をUとし、そして球心OにおいてX軸
線に直交する軸直線をM軸線とし、X,Y軸線の双方に
球心O上で直角に交わる軸直線をZ軸線とし、そのZ軸
線が球面Gに交わる両点をe,eとし、X軸線に水平面
をなしてその直径線分の軸線Lを自転軸とする球面G内
の大円平面をR円面とし、且つY軸線を鉛直軸線として
球面G内に球心Oを通って形成される大円平面をS円面
とし、そのR円面とS円面とが球心Oにおいて交差する
交差割線を軸線Kとし、その交差割線Kの両端を点K
a、点Kbとし、そのように点、線、面の各関係を設定
する。
First, FIG. 1 shows an interrelation pattern defining the present invention. A housing 1 formed on an inner wall surface forming a spherical surface G having a radius r from a spherical center O has a spherical surface with an angle θ. The straight lines that intersect at the center O are defined as the X axis and the Y axis, and the X
Let P be the point where the axis intersects the spherical surface G, and let the Y axis be the spherical surface G
Is defined as Q, a point between the point P and the point Q is defined as a diameter of the bottom surface, and a conical trajectory of a conical cone having a vertex at the sphere O is defined as U. An axis straight line orthogonal to the axis is defined as an M axis, an axis straight line that intersects both the X and Y axes at right angles on the spherical center O is defined as a Z axis, and both points where the Z axis intersects the spherical surface G are defined as e and e. A large circular plane in a spherical surface G having a horizontal plane with its axis L as a rotation axis and a large circular plane in a spherical surface G having an axis L as a rotation axis, and a Y axis line as a vertical axis are formed through the spherical center O in the spherical surface G. A large circle plane is defined as an S-plane, an intersection line where the R-plane and the S-plane intersect at the spherical center O is defined as an axis K, and both ends of the intersection K are points K.
a, a point Kb, and the respective relationships among the point, the line, and the surface are set as described above.

【0035】そして、X軸線とY軸線を固定位置の定位
な軸線と見なして、そのX,Y軸線に同時に回転を与え
れば、Y軸線の垂直平面であるS円面は、その位相を保
持したまま転回し、軸線Lを自転軸とするR円面は、
X,Y軸線の点P,Q間を底面直径として球心Oを円錐
の頂点とする円錐形の円錐軌跡U上を図1から図2を経
て図3の順に自転しながら旋回する。すると、その自転
の90度分の転回において、R円面の自転軸LはX軸線
上にある図1から図3に半円分を公転してY軸線上に移
動する。更に90度分の自転において、そのY軸線上か
ら図4を経て残りの半円軌跡を描いて図5のX軸線上に
戻る。即ち、R円面の自転軸Lが円錐軌跡Uの円周分を
転回(公転)すれば、その公転に伴ってR円面は半回転
である180度分の自転をして表裏を変える。
If the X-axis and the Y-axis are regarded as fixed-position fixed axes, and the X- and Y-axes are simultaneously rotated, the S-circle, which is a vertical plane of the Y-axis, retains its phase. R circle surface with the axis L as the axis of rotation
It turns while rotating in the order of FIG. 3 through FIGS. 1 and 2 through FIG. 1 through FIG. Then, in the rotation by 90 degrees of the rotation, the rotation axis L of the R-circular surface revolves around the semicircle in FIGS. 1 to 3 on the X-axis and moves on the Y-axis. Further, in the rotation by 90 degrees, the remaining semicircular locus is drawn from the Y-axis line through FIG. 4 and returns to the X-axis line in FIG. That is, if the rotation axis L of the R-circle revolves (revolves) around the circumference of the conical trajectory U, the R-circle rotates 180 degrees, which is a half rotation, to change the front and back with the revolution.

【0036】その時、R円面の自転軸Lと交差割線Kと
は球心Oにおいて常に直交し、且つ交差するR円面とS
円面との円面間に形成される間隙は、R円面の自転軸L
がX軸線上にある時の鈍角側の対頂角が90+θ角度に
なって最大(図1の空間B,Dと図5の空間A,C)と
なり、同じく鋭角側の対頂角が90−θ角度になって最
小(図1の空間A,Cと図5の空間B,D)となる。つ
まり、R円面とS円面とが交差割線Kを蝶着の軸、支点
として互いの半回転で接近し、次の半回転で離間し、そ
の1回転毎において近付いたり離れたりを組とする離合
を繰り返す。
At this time, the rotation axis L of the R-circle and the intersection secant K are always orthogonal to the spherical center O and intersect with the intersecting R-circle.
The gap formed between the circular surface and the circular surface is the rotation axis L of the R circular surface.
When the angle is on the X-axis, the vertical angle on the obtuse angle side becomes 90 + θ angle and becomes the maximum (spaces B and D in FIG. 1 and the spaces A and C in FIG. 5), and the vertical angle on the acute angle side becomes 90-θ angle. 1 (spaces A and C in FIG. 1 and spaces B and D in FIG. 5). In other words, the R-circle surface and the S-circle surface approach each other at a half turn, separate at the next half turn, and approach or separate at each turn as a hinge axis and a fulcrum of the intersection line K as a hinge. Repeat the separation.

【0037】また、球面GとR円面とS円面とで囲われ
て密閉された空間A,B,C,Dをみると、図1におけ
る自転軸Lが図2,3,4を経て半回転をする図5にお
いて空間Aは拡張して空間Bは収縮し、空間Cは拡張し
て空間Dは収縮する。更に、図5から図6,7,8を経
て元の図1の半回転においては、空間Aは収縮して空間
Bは拡張し、空間Cは収縮して空間Dは拡張する。つま
り、空間Aが拡張すると空間Bは収縮して空間Cが拡張
すると空間Dは収縮し、また空間Aの拡張に対して空間
Dが収縮し、空間Bの収縮に対して空間Cが拡張する関
係にある。従って、空間AとBは互いの体積の増減を反
比例に変化させて対をなし、空間CとDも互いの体積の
増減を反比例に変化させて対偶し、空間AとC、空間B
とDは互いの体積変化を正比例させる順と逆の関係にあ
る。
When looking at the closed spaces A, B, C, and D surrounded by the spherical surface G, the R circular surface, and the S circular surface, the rotation axis L in FIG. In FIG. 5 which makes a half rotation, the space A expands and the space B contracts, the space C expands and the space D contracts. Further, in the half rotation of the original FIG. 1 through FIGS. 5 to 6, 7, and 8, the space A contracts and the space B expands, and the space C contracts and the space D expands. That is, when the space A expands, the space B contracts, and when the space C expands, the space D contracts. In addition, the space D contracts when the space A expands, and the space C expands when the space B contracts. In a relationship. Therefore, the spaces A and B form a pair by changing the volume increase / decrease in inverse proportion to each other, and the spaces C and D also pair by changing the volume increase / decrease in inverse proportion to each other, and the spaces A and C and the space B
And D have a relationship opposite to the order in which the volume change is directly proportional to each other.

【0038】このように設定した点、線、面の各関係に
おいて、ハウジング1球面内壁7は上記図形による球面
Gを有し、その球面Gの球心Oを通るX軸線上の入力軸
2を点P位置の主軸受8に嵌挿させて軸受け支持させ
る。また、幾何図形におけるR円面上には、軸線Mを関
節の基軸線とするピン継手関節16を組成して入力軸2
に連結する回転ピストン3を配置し、且つY軸線を回転
軸線とするS円面上には斜行板5が置かれる。そのR円
面上の回転ピストン3とS円面上の斜行板5は、K軸線
上に中間軸4を形成して交差すると共に、互いがその中
間軸4に交差割線Kを関節の連結軸線とする蝶番関節1
9を組成して連結する。尚、幾何図形における空間A,
B,C,Dは、二つの半月状作動室Ha,Ha内に形成
される二つずつの櫛形状作動室Fu,Fu、Fu,Fu
である。
In each of the relations of points, lines and surfaces set in this manner, the housing 1 spherical inner wall 7 has a spherical surface G according to the above figure, and the input shaft 2 on the X axis passing through the spherical center O of the spherical surface G The main bearing 8 at the point P is inserted into the main bearing 8 to support the bearing. A pin joint joint 16 having the axis M as a base axis of the joint is formed on the R-circular surface of the geometric figure to form the input shaft 2.
And a skew plate 5 is placed on an S-circle surface with the Y-axis as the rotation axis. The rotating piston 3 on the R-circle and the skew plate 5 on the S-circle form an intermediate shaft 4 on the K axis and intersect with each other. Hinge joint 1 with axis
9 are combined and connected. Note that the space A in the geometric figure,
B, C, and D are two comb-shaped working chambers Fu, Fu, Fu, and Fu formed in the two half-moon working chambers Ha, Ha, respectively.
It is.

【0039】[0039]

【発明の実施の形態】本発明では、上記解決手段1乃至
4のそれぞれの構成に基づく実施の形態があり、その各
種実施の形態を上記幾何図形において設定した点、線、
面の各関係をもとに以下図によって説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, there is an embodiment based on the structure of each of the above-mentioned solving means 1 to 4. The various embodiments are described with respect to points, lines,
A description will be given below with reference to the drawings based on each relationship between the surfaces.

【0040】[0040]

【実施の形態1】その形態の一つは、上記解決手段1の
構成である。即ち、この形態1は図9,10と図15と
図18,19と図20の各図に示すように球面Gの内壁
面を有するハウジング1において、その球面内壁7の球
心Oを通ってX軸線が貫通するハウジング1壁の点P位
置に軸受円孔の主軸受8を貫設し、その主軸受8にX軸
線を回転軸線とする直軸状をなす入力軸2の軸頸を回転
自由に嵌挿させて軸承させる。また、X軸線上の入力軸
2に角度θを有して球心Oで交差するY軸線の垂直平面
であるS円面延長上のハウジング1内壁を周回溝の軌道
隙9に削成する。
[Embodiment 1] One of the embodiments is the configuration of the above-mentioned solution 1. That is, in the first embodiment, as shown in FIGS. 9, 10, 15, 18, 19, and 20, the housing 1 having the inner wall surface of the spherical surface G passes through the spherical center O of the inner surface 7 of the spherical surface. A main bearing 8 having a bearing hole is provided at a position P on the wall of the housing 1 through which the X-axis passes, and the main body 8 rotates the shaft and neck of the input shaft 2 having a linear shape with the X-axis as a rotation axis. Freely insert and allow bearing. Also, the inner wall of the housing 1 on the extension of the S-circle which is the vertical plane of the Y-axis crossing the spherical axis O at an angle θ with the input shaft 2 on the X-axis at an angle θ is formed in the raceway gap 9 of the orbital groove.

【0041】そして、ハウジング1内のR円面上には、
半月状の弓形面14を板面に有して外周面を前記球面内
壁7に摺接契合する球弧面13に形成し、その球弧面1
3を弓形の弧とする弓形面14の弦側に軸線Kを取付け
軸線とした円柱状の中間軸4を合体させた略板状の回転
ピストン3を配置して前記入力軸2の球心O位置に枢結
させるが、この回転ピストン3と入力軸2は、X軸線と
球心Oで直交するM軸線を連結の中心軸線として回転ピ
ストン3が入力軸2上を水平方向に少なくとも角度(θ
×2)の範囲を揺動可能なピンとそのピン受からなるピ
ン継手関節16を組成して連結する。
Then, on the R-circular surface in the housing 1,
A semicircular arcuate surface 14 is provided on the plate surface, and an outer peripheral surface is formed on the spherical arc surface 13 which comes into sliding contact with the spherical inner wall 7.
A substantially plate-shaped rotary piston 3 is disposed on the chord side of an arcuate surface 14 having an arcuate arc 3 and having a columnar intermediate shaft 4 with an axis K attached to the chord side. The rotary piston 3 and the input shaft 2 are connected to each other at an angle (θ) in the horizontal direction on the input shaft 2 with the M axis perpendicular to the X axis and the sphere O being the center axis of the connection.
The range of × 2) is combined with a pin joint joint 16 composed of a swingable pin and its pin receiver.

【0042】また、ハウジング1内のS円面上には、板
面に回転ピストン3の弓形面14に対応する弓形面22
を有し、且つ縁部外周を環状に形成した斜行板環24が
前記軌道隙9に嵌合してY軸線を中心に回転可能に拘束
される円形状板の斜行板5を回転ピストン3に前記中間
軸4上で蝶番状に交差させて配置すると共に、中間軸4
の両底面とその両底面に対接する斜行板環24の対向両
側部との点Ka,Kb側に、ピンとピン受け孔からなる
互いの両片を以てK軸線を関節基軸線とする蝶番関節1
9を組成して斜行板5に回転ピストン3が少なくとも角
度(θ×2)範囲を擺動可能に連結する。
On the S-circular surface in the housing 1, an arcuate surface 22 corresponding to the arcuate surface 14 of the rotary piston 3 is formed on a plate surface.
A skew plate 5 having a circular shape and having an outer periphery formed in an annular shape is fitted into the raceway gap 9 and is constrained to be rotatable about the Y axis. 3 on the intermediate shaft 4 so as to intersect with each other in a hinge shape.
The hinge 1 having the K-axis as the joint base axis with the two pieces of the pin and the pin receiving hole on the sides Ka and Kb of the two bottom surfaces of the pair and the opposite side portions of the oblique plate ring 24 which are in contact with the both bottom surfaces.
9, the rotating piston 3 is connected to the swash plate 5 so as to be able to slide at least in an angle (θ × 2) range.

【0043】すると、S円面上の斜行板5がハウジング
1の前記球面Gをなす内壁面7を閉鎖して半球状の定積
空間からなる半月状作動室Haを形成し、且つその半月
状作動室HaをR円面上の回転ピストン3が容積変化を
する櫛形状空間の櫛形状作動室Fuに形成する。更に、
その半月状作動室Haの櫛形状作動室Fuに臨ませて吸
込み孔Inと吐出孔Outとを適宜設ける。
Then, the oblique plate 5 on the S-circle surface closes the inner wall surface 7 forming the spherical surface G of the housing 1 to form a semi-lunar working chamber Ha consisting of a hemispheric constant volume space. The working chamber Ha is formed as a comb-shaped working chamber Fu in a comb-shaped space in which the volume of the rotating piston 3 on the R-circular surface changes. Furthermore,
The suction hole In and the discharge hole Out are appropriately provided facing the comb-shaped operation chamber Fu of the half-moon-shaped operation chamber Ha.

【0044】[0044]

【実施の形態2】形態のもう一つは、上記解決手段2の
構成である。即ち、この形態2は図11,12と図16
と図21の各図に示すように球面Gの内壁面を有するハ
ウジング1において、その球面内壁7の球心Oを通って
X軸線が貫通するハウジング1壁の点P位置に主軸受8
を貫設し、その主軸受8にX軸線を回転軸線とする直軸
状をなす入力軸2の軸頸を嵌挿させて軸承させる。ま
た、X軸線上の入力軸2に角度θを有して球心Oで交差
するY軸線の垂直平面であるS円面縁部円周上のハウジ
ング1内壁面円周に輪体の軌道環10を突設形成する。
Second Embodiment Another embodiment is the configuration of the above-mentioned solution 2. That is, this embodiment 2 is shown in FIGS.
As shown in FIG. 21 and FIG. 21, in the housing 1 having the inner surface of the spherical surface G, the main bearing 8 is located at a point P on the wall of the housing 1 through which the X axis passes through the spherical center O of the inner surface 7 of the spherical surface.
And the main bearing 8 is fitted with the shaft neck of the input shaft 2 having a linear shape with the X-axis as the rotation axis, and the main bearing 8 is supported. Also, the raceway ring of the ring is formed on the inner wall surface of the housing 1 on the periphery of the S-circumferential edge which is a vertical plane of the Y-axis crossing the input axis 2 on the X-axis at an angle θ at the spherical center O at the spherical center O. 10 is formed in a protruding manner.

【0045】そして、ハウジング1内のR円面上には、
外周面を前記球面内壁7に摺接契合する球弧面13に形
成すると共に、板面を半月状の弓形面14に形成した略
板状の回転ピストン3を配置して前記入力軸2の球心O
位置に枢結させる。この回転ピストン3と入力軸2は、
X軸線と球心Oで直交するM軸線を連結軸として回転ピ
ストン3が入力軸2上を水平方向に少なくとも角度(θ
×2)の範囲を揺動可能に互いの両片を以てピン継手関
節16を組成して連結する。
Then, on the R-circular surface in the housing 1,
The spherical surface of the input shaft 2 is formed by arranging a substantially plate-shaped rotary piston 3 having an outer peripheral surface formed on a spherical arc surface 13 that comes into sliding contact with the spherical inner wall 7 and a plate surface formed on a semicircular arcuate surface 14. Heart O
Pivot to a position. The rotating piston 3 and the input shaft 2
The rotating piston 3 has a horizontal axis on the input shaft 2 at least at an angle (θ
A pin joint joint 16 is formed and connected to each other so as to be swingable in the range of × 2).

【0046】また、ハウジング1内のS円面上には、板
面に前記回転ピストン3の弓形面14に対応する弓形面
22を有し、且つ外周面の同一円周上を周回溝に削成し
た軌道受25を有する円形状板の斜行板5を回転ピスト
ン3に蝶番状に交差させて配置し、尚この斜行板5は、
前記軌道環10に軌道受25の周回溝を摺接関係に嵌合
させてY軸線を中心に回転可能に拘束される。
On the S-circular surface in the housing 1, an arcuate surface 22 corresponding to the arcuate surface 14 of the rotary piston 3 is formed on the plate surface, and the same circumference of the outer peripheral surface is cut into a circular groove. A circular plate skewing plate 5 having the formed track bearing 25 is arranged so as to intersect the rotating piston 3 in a hinge-like manner.
The orbital groove of the raceway support 25 is fitted into the raceway ring 10 in a sliding contact relation, and is constrained to be rotatable about the Y axis.

【0047】そのS円面上の斜行板5とR円面上の回転
ピストン3との交差部分は、その交差割線Kを取付け軸
線として介在させた円柱状の中間軸4を両底面に平行な
切り口面で複数個に分割すると共に、それを回転ピスト
ン3に固着させたピストン中間軸4aの部分と斜行板5
に固着させた斜行板中間軸4bの部分とに区分し、且つ
そのピストン中間軸4aと斜行板中間軸4bとの接合部
分に、ピンとピン受孔からなる互いの両片でK軸線を関
節基軸線とする蝶番関節19を組成して斜行板5に回転
ピストン3が少なくとも角度(θ×2)範囲を擺動可能
に連結する。
At the intersection of the skew plate 5 on the S-circle and the rotating piston 3 on the R-circle, a columnar intermediate shaft 4 with its intersection line K interposed as an attachment axis is parallel to both bottom surfaces. And a skew plate 5 which is divided into a plurality of cut surfaces and which is fixed to the rotating piston 3 at a piston intermediate shaft 4a.
And a skew plate intermediate shaft 4b secured to the skewed plate intermediate shaft 4b, and a K axis line formed by a pin and a pin receiving hole at the joint between the piston intermediate shaft 4a and the skew plate intermediate shaft 4b. The rotating piston 3 is connected to the swash plate 5 so as to be able to slide at least in an angle (θ × 2) range by forming a hinge joint 19 serving as a joint base axis.

【0048】すると、S円面上の斜行板5がハウジング
1の前記球面Gをなす内壁面7を閉鎖して半球状の定積
空間からなる半月状作動室Haを形成し、且つその半月
状作動室HaをR円面上の回転ピストン3が容積変化を
する櫛形状空間の櫛形状作動室Fuに形成する。更に、
その半月状作動室Haの櫛形状作動室Fuに臨ませて吸
込み孔Inと吐出孔Outとを適宜設ける。
Then, the oblique plate 5 on the S-shaped surface closes the inner wall surface 7 forming the spherical surface G of the housing 1 to form a semi-lunar working chamber Ha composed of a hemispheric constant volume space, and the half-moon is formed. The working chamber Ha is formed as a comb-shaped working chamber Fu in a comb-shaped space in which the volume of the rotating piston 3 on the R-shaped surface changes. Furthermore,
The suction hole In and the discharge hole Out are appropriately provided facing the comb-shaped operation chamber Fu of the half-moon-shaped operation chamber Ha.

【0049】[0049]

【実施の形態3】また別の実施の形態は、上記解決手段
3の構成である。即ち、この形態3は図13,14と図
17と図22の各図に示すように球面Gの内壁面を有す
るハウジング1において、その球面内壁7の球心Oを通
ってX軸線が貫通するハウジング1壁の点P位置に主軸
受8を貫設し、その主軸受8にX軸線を回転軸線とする
直軸状をなす入力軸2の軸頸を嵌挿させて軸承させる。
また、X軸線とY軸線との双方に球心Oで直交するZ軸
線上の点e,e側のハウジング1対向両壁にZ軸線を軸
受軸線とする軌道環軸受12を設ける。その上、対向外
周面の各々に柄状の軌道環軸11を固着させてハウジン
グ1内壁面7内で回動可能な輪体の軌道環6を設け、そ
の軌道環6の軌道環軸11を前記軌道環軸受12に嵌挿
させて回動自由に軸承させる。
[Embodiment 3] Still another embodiment is the structure of the above-mentioned solution means 3. That is, in the third embodiment, in the housing 1 having the inner wall surface of the spherical surface G as shown in FIGS. 13 and 14 and FIGS. 17 and 22, the X axis passes through the spherical center O of the spherical inner wall 7. A main bearing 8 is provided at a point P on the wall of the housing 1, and the shaft and neck of the input shaft 2 having a linear shape with the X axis as a rotation axis is fitted into the main bearing 8 to be supported.
A track ring bearing 12 having a Z-axis as a bearing axis is provided on both opposing walls of the housing 1 on points e and e on a Z-axis orthogonal to the spherical axis O at both the X-axis and the Y-axis. In addition, a handle-shaped orbital ring shaft 11 is fixed to each of the opposed outer peripheral surfaces to provide a ring-shaped orbital ring 6 rotatable within the inner wall surface 7 of the housing 1. The bearing is inserted into the race ring bearing 12 and is rotatably supported.

【0050】そして、ハウジング1内のR円面上には、
外周面を前記球面内壁7に摺接契合する球弧面13に形
成し、且つ板面を半月状の弓形面14に形成した略板状
の回転ピストン3を配置して前記入力軸2の球心O位置
に枢結させるが、この回転ピストン3と入力軸2は、X
軸線と球心Oで直交するM軸線を連結軸として回転ピス
トン3が入力軸2上を水平方向に少なくとも角度(θ×
2)の範囲を揺動可能に互いの両片を以てピン継手関節
16を組成して連結する。
Then, on the R-circular surface in the housing 1,
A substantially plate-shaped rotary piston 3 having an outer peripheral surface formed on a spherical arc surface 13 which comes into sliding contact with the spherical inner wall 7 and a plate surface formed on a semi-moon-shaped arcuate surface 14 is disposed, and the spherical surface of the input shaft 2 is arranged. The rotary piston 3 and the input shaft 2 are connected to the center O position.
The rotating piston 3 has a horizontal axis on the input shaft 2 at least at an angle (θ ×
A pin joint joint 16 is formed and connected with both pieces to be able to swing in the range of 2).

【0051】また、ハウジング1内のS円面上には、板
面に前記回転ピストン3の弓形面14に対応する弓形面
22を有し、且つ外周面の同一円周上を周回溝に削成し
た軌道受25を有する円形状板の斜行板5が回転ピスト
ン3に蝶番状に交差して配置されるが、この斜行板5
は、前記軌道環6に軌道受25の周回溝を摺接関係に嵌
合させてY軸線を中心に回転可能に拘束される。
The S-shaped surface in the housing 1 has an arcuate surface 22 corresponding to the arcuate surface 14 of the rotary piston 3 on the plate surface, and the same circumference of the outer peripheral surface is cut into a circular groove. A circular plate skewing plate 5 having a formed track bearing 25 is arranged to intersect the rotary piston 3 in a hinged manner.
Is engaged with the orbital ring 6 in a slidable relationship with the orbital groove of the orbital bearing 25 so as to be rotatable about the Y axis.

【0052】そのS円面上の斜行板5とR円面上の回転
ピストン3の交差部分は、その交差割線Kを取付け軸線
として介在させた円柱状の中間軸4を両底面に平行な切
り口面で複数個に分割すると共に、それを回転ピストン
3に固着させたピストン中間軸4aの部分と斜行板5に
固着させた斜行板中間軸4bの部分とに区分し、且つそ
のピストン中間軸4aと斜行板中間軸4bとの接合部分
に、ピンとピン受孔からなる互いの両片でK軸線を関節
基軸線とする蝶番関節19を組成して斜行板5に回転ピ
ストン3が少なくとも角度(θ×2)範囲を擺動可能に
連結する。
At the intersection of the skew plate 5 on the S-circle and the rotary piston 3 on the R-circle, a columnar intermediate shaft 4 with the intersection K as an attachment axis is parallel to both bottom surfaces. It is divided into a plurality of cut surfaces, and is divided into a portion of a piston intermediate shaft 4a fixed to the rotary piston 3 and a portion of a swash plate intermediate shaft 4b fixed to the swash plate 5, and the piston At the joint between the intermediate shaft 4a and the swash plate intermediate shaft 4b, a hinge joint 19 having a K-axis as a joint base axis is formed by both pieces of a pin and a pin receiving hole. Are connected so that at least the angle (θ × 2) range can be slid.

【0053】尚、前記軌道環6には、その軌道環6の傾
転角度を自由に変化させる軌道環6位相の制御装置CA
を前記軌道環軸11に装着して連動させ、その前記Z軸
線上の軌道環軸11を中心として軌道環6の傾転を前記
入力軸2のX軸線に対して角度0から角度±θの範囲の
何れかを自動的に制御装置CAに選択させる。
The orbital ring 6 has a orbital ring 6 phase control device CA for freely changing the tilt angle of the orbital ring 6.
Is attached to and linked to the orbital ring 11, and the tilt of the orbital ring 6 about the orbital ring 11 on the Z axis is shifted from the angle 0 to the angle ± θ with respect to the X axis of the input shaft 2. The control device CA automatically selects any of the ranges.

【0054】すると、S円面上の斜行板5がハウジング
1の前記球面Gをなす内壁面7を閉鎖して半球状の定積
空間からなる半月状作動室Haを形成し、且つその半月
状作動室HaをR円面上の回転ピストン3が容積変化を
する櫛形状空間の櫛形状作動室Fuに形成する。更に、
その半月状作動室Haの櫛形状作動室Fuに臨ませて吸
込み孔Inと吐出孔Outとを適宜設ける。
Then, the sloping plate 5 on the S-circle surface closes the inner wall surface 7 forming the spherical surface G of the housing 1 to form a semi-lunar working chamber Ha composed of a hemispheric constant volume space. The working chamber Ha is formed as a comb-shaped working chamber Fu in a comb-shaped space in which the volume of the rotating piston 3 on the R-circular surface changes. Furthermore,
The suction hole In and the discharge hole Out are appropriately provided facing the comb-shaped operation chamber Fu of the half-moon-shaped operation chamber Ha.

【0055】[0055]

【実施の形態4】更に別の実施の形態は、上記解決手段
4の構成である。即ち、この形態4は図23と図24に
示すように球面Gの内壁面を有するハウジング1におい
て、その球面内壁7の球心Oを通ってX軸線が貫通する
ハウジング1壁の点P側に主軸受8を貫設し、その主軸
受8にX軸線を回転軸線とする直軸状をなす入力軸2の
軸頸を嵌挿させて軸承させ、且つX軸線上の入力軸2に
角度θを有して球心Oで交差するY軸線上のハウジング
1壁にも斜行板軸受29の円孔を主軸受8の対向側に設
ける。
[Fourth Embodiment] Still another embodiment is the configuration of the above-mentioned solution means 4. That is, in the fourth embodiment, as shown in FIGS. 23 and 24, in the housing 1 having the inner wall surface of the spherical surface G, on the point P side of the wall of the housing 1 through which the X axis passes through the spherical center O of the spherical inner wall 7. A main bearing 8 is penetrated, a shaft neck of a linear input shaft 2 having an X-axis as a rotation axis is inserted into the main bearing 8 and supported, and an angle θ is formed on the input shaft 2 on the X-axis. Also, a circular hole of the oblique plate bearing 29 is provided on the opposite side of the main bearing 8 on the wall of the housing 1 on the Y axis line intersecting with the ball center O.

【0056】そして、ハウジング1内のR円面上には、
外周面を前記球面内壁7に摺接契合する球弧面13に形
成し、且つ板面を半月状の弓形面14に形成した半円状
板の回転ピストン3を配置して前記入力軸2の球心O位
置に枢結させる。この回転ピストン3と入力軸2は、X
軸線と球心Oで直交するM軸線を連結軸として回転ピス
トン3が入力軸2上を水平方向に少なくとも角度(θ×
2)の範囲を揺動可能に互いの両片を以てピン継手関節
16を組成して連結する。
Then, on the R-circular surface in the housing 1,
The input shaft 2 is provided with a semicircular plate rotating piston 3 having an outer peripheral surface formed on a spherical arc surface 13 in sliding contact with the spherical inner wall 7 and a plate surface formed on a semicircular arcuate surface 14. It is pivoted to the ball center O position. The rotating piston 3 and the input shaft 2 are X
The rotating piston 3 has a horizontal axis on the input shaft 2 at least at an angle (θ ×
A pin joint joint 16 is formed and connected with both pieces to be able to swing in the range of 2).

【0057】また、ハウジング1内のS円面上には、球
面Gをなすハウジング1内壁面7に回転摺接する外周面
と板面に前記回転ピストン3の弓形面14に対応する弓
形面22とを有し、且つその弓形面22の裏面側中心部
に柄状丸柱の斜行板軸28を固着させた円形状板の斜行
板5を回転ピストン3に蝶番状に交差させて配置すると
共に、この斜行板5は前記斜行板軸受29にY軸線を回
転軸線とする斜行板軸28を嵌挿させて回転自在に支持
される。
On the S-circular surface in the housing 1, there are an outer peripheral surface which is in sliding contact with the inner wall surface 7 of the housing 1 forming a spherical surface G, and an arcuate surface 22 corresponding to the arcuate surface 14 of the rotary piston 3 on the plate surface. And a skew plate 5 of a circular plate having a swash plate shaft 28 of a pattern-shaped circular column fixed to the center of the back surface side of the arcuate surface 22 is arranged so as to intersect the rotary piston 3 in a hinge-like manner. The skew plate 5 is rotatably supported by inserting a skew plate shaft 28 having a Y-axis as a rotation axis into the skew plate bearing 29.

【0058】そのS円面上の斜行板5とR円面上の回転
ピストン3との交差部分は、その交差割線Kを取付け軸
線として介在させた円柱状の中間軸4を両底面に平行な
切り口面で複数個に分割すると共に、それを回転ピスト
ン3に固着させたピストン中間軸4aの部分と斜行板5
に固着させた斜行板中間軸4bの部分とに区分し、且つ
そのピストン中間軸4aと斜行板中間軸4bとの接合部
分に、ピンとピン受孔からなる互いの両片でK軸線を関
節基軸線とする蝶番関節19を組成して斜行板5に回転
ピストン3が少なくとも角度(θ×2)範囲を擺動可能
に連結する。
At the intersection of the skew plate 5 on the S-circle and the rotary piston 3 on the R-circle, a columnar intermediate shaft 4 having its intersection line K as an attachment axis is parallel to both bottom surfaces. And a skew plate 5 which is divided into a plurality of cut surfaces and which is fixed to the rotating piston 3 at a piston intermediate shaft 4a.
And a skew plate intermediate shaft 4b secured to the skewed plate intermediate shaft 4b, and a K axis line formed by a pin and a pin receiving hole at the joint between the piston intermediate shaft 4a and the skew plate intermediate shaft 4b. The rotating piston 3 is connected to the swash plate 5 so as to be able to slide at least in an angle (θ × 2) range by forming a hinge joint 19 serving as a joint base axis.

【0059】すると、S円面上の斜行板5がハウジング
1の前記球面Gをなす内壁面7を閉鎖して半球状の定積
空間からなる半月状作動室Haを形成し、且つその半月
状作動室HaをR円面上の回転ピストン3が容積変化を
する櫛形状空間の櫛形状作動室Fuに形成する。更に、
その半月状作動室Haの櫛形状作動室Fuに臨ませて吸
込み孔Inと吐出孔Outとを適宜設ける。
Then, the oblique plate 5 on the S-circle surface closes the inner wall surface 7 forming the spherical surface G of the housing 1 to form a semi-lunar working chamber Ha composed of a hemispheric constant volume space, and the half-moon is formed. The working chamber Ha is formed as a comb-shaped working chamber Fu in a comb-shaped space in which the volume of the rotating piston 3 on the R-circular surface changes. Furthermore,
The suction hole In and the discharge hole Out are appropriately provided facing the comb-shaped operation chamber Fu of the half-moon-shaped operation chamber Ha.

【0060】[0060]

【各実施の形態の共通態様(作動室の形成とθ角度)】
本発明では、上記実施の形態1乃至3、及び実施の形態
1乃至4における共通の態様としてハウジング1内に形
成される作動室の数は以下の3通りがある。共通態様1
(4作動室).上記実施の形態1乃至3において、斜行
板5の両側に半月状作動室Ha,Haを形成し、その二
つの半月状作動室Ha,Haの各々を円形状板の回転ピ
ストン3が二つずつの櫛形状作動室Fu,Fu、Fu,
Fu(空間A,B,C,D)に形成する。共通態様2
(回転軸に対して水平方向に並ぶ2作動室).上記実施
の形態1乃至3において、斜行板5の両側に半月状作動
室Ha,Haを形成し、その二つの半月状作動室Ha,
Haの各々を半球状板の回転ピストン3が櫛形状作動室
Fu,Fu(空間A,Dか、又は空間B,C)に形成す
る。共通態様3(回転軸に対して垂直方向に並ぶ2作動
室).上記実施の形態1乃至4において、斜行板5両側
の何れか一方側にのみ半月状作動室Haを形成し、その
半月状作動室Haを半円状板の回転ピストン3が二つの
櫛形状作動室Fu,Fu(空間A,Bか、又は空間C,
D)に形成する。
[Common Mode of Each Embodiment (Formation of Working Chamber and θ Angle)]
In the present invention, the number of working chambers formed in the housing 1 is the following three as a common aspect in the first to third embodiments and the first to fourth embodiments. Common mode 1
(4 working chambers). In the first to third embodiments, the half-moon-shaped working chambers Ha, Ha are formed on both sides of the swash plate 5, and each of the two half-moon-shaped working chambers Ha, Ha is provided with two circular plate rotating pistons 3. Each of the comb-shaped working chambers Fu, Fu, Fu,
Fu (spaces A, B, C, D). Common mode 2
(Two working chambers arranged horizontally with respect to the rotation axis). In the first to third embodiments, the half-moon-shaped working chambers Ha, Ha are formed on both sides of the swash plate 5, and the two half-moon-shaped working chambers Ha, Ha are formed.
Each of the Ha is formed in a comb-shaped working chamber Fu, Fu (spaces A, D or spaces B, C) by a hemispherical plate rotating piston 3. Common mode 3 (two working chambers arranged in a direction perpendicular to the rotation axis). In the first to fourth embodiments, the semi-lunar working chamber Ha is formed only on one of the two sides of the skewing plate 5, and the semi-circular working chamber Ha is formed by a semi-circular plate-like rotating piston 3 having two comb-like shapes. Working chamber Fu, Fu (space A, B or space C,
D).

【0061】また、上記何れの実施の形態においても、
X軸線とY軸線とが球心Oにおいて交差して創出する傾
転角度θは10°<θ<60°が実用範囲であり、その
最適角度は25°〜35°である。
In any of the above embodiments,
The practical range of the tilt angle θ created by crossing the X axis and the Y axis at the spherical center O is 10 ° <θ <60 °, and the optimum angle is 25 ° to 35 °.

【0062】[0062]

【作動原理】上記構成による本発明の球形の回転ピスト
ンポンプ、圧縮機の作動原理を、回転ピストン3と斜行
板5の回転連動と、それに伴って生じる各作動室Fuの
容積変化とにおいて図25,26に基づき上記実施の形
態1、及び上記共通態様1を例とし、且つ動作流体の出
入孔In,Outの取付けと吸入、吐出行程の全作動を図
27に基づいて以下説明する。
[Principle of Operation] The principle of operation of the spherical rotary piston pump and the compressor according to the present invention having the above-described structure will be described with reference to the rotation interlock between the rotary piston 3 and the swash plate 5 and the resulting change in the volume of each working chamber Fu. Based on FIGS. 25 and 26, taking the first embodiment and the common mode 1 as examples, the mounting of the working fluid inlet / outlets In and Out, and the full operation of the suction and discharge strokes will be described below with reference to FIG.

【0063】図25(a)における入力軸2と回転ピス
トン3と斜行板5の三者が前記ピン継手関節16と前記
蝶番関節19とを介在させて係合状態にある時、入力軸
2に電動機、又は内燃機関等の原動機によって回転を与
えれば、回転ピストン3は斜行板5の回転平面上を誘導
されて三者共通の中心であるハウジング1内壁面7の球
心Oを旋回の中心として円錐軌跡U上に沿って円錐運動
をする。即ち、図25,26(a)〜(l)は協働回転
をする回転ピストン3と斜行板5との半回転(180
度)分に相当する作動を示すものである。
When the input shaft 2, the rotary piston 3 and the swash plate 5 in FIG. 25A are engaged with the pin joint 16 and the hinge 19 interposed therebetween, the input shaft 2 Is rotated by an electric motor or a prime mover such as an internal combustion engine, the rotating piston 3 is guided on the rotation plane of the swash plate 5 and turns the spherical center O of the inner wall surface 7 of the housing 1 which is the common center of the three members. A conical motion is made along the conical locus U as a center. That is, FIGS. 25 and 26 (a) to (l) show a half rotation (180
It shows the operation corresponding to (degrees) minutes.

【0064】また、図示される櫛形状の作動室Fuは、
まずハウジング1の円球内が斜行板5によって凹面内壁
面7を閉鎖した二つの半月状の空間Ha,Haに形成さ
れ、更にそこに組込まれる回転ピストン3によってハウ
ジング1の内壁面7と斜行板5板面の弓形面22と中間
軸4柱面を含む回転ピストン3の弓形面14とに囲われ
た櫛形状の空間A,B,C,Dであるが、その同一半月
状作動室Ha内に形成される櫛形状作動室のAとB、又
はCとDは、互いが反比例に作動室体積を変化させて作
動する。
The comb-shaped working chamber Fu shown in FIG.
First, the inside of the sphere of the housing 1 is formed into two half-moon-shaped spaces Ha, Ha in which the concave inner wall surface 7 is closed by the skew plate 5, and the inner wall surface 7 of the housing 1 is inclined by the rotating piston 3 incorporated therein. Comb-shaped spaces A, B, C, and D surrounded by the arcuate surface 22 of the row plate 5 and the arcuate surface 14 of the rotary piston 3 including the four intermediate shafts. The comb-shaped working chambers A and B or C and D formed in Ha operate by changing the working chamber volume in inverse proportion to each other.

【0065】つまり、斜行板5によってダブルエンドに
形成された半月状作動室Ha,Haの各々にダブルエン
ドのピストンとして構成する回転ピストン3を組込んで
作動させれば、同一半月状作動室Ha内の二つの櫛形状
作動室AとB、又はCとDの何れか一方側の空間が拡張
して体積を増加させると反対側の空間は収縮して体積を
減少させ、また斜行板5の同一弓形面22を挟む二つの
作動室AとD、又はBとCの空間も互いが反比例に体積
を変化させて作動する。尚、斜行板5を斜めに挟んで対
向する二つの作動室AとC、BとDは、互いの体積が常
に正比例する増減関係を有して変化する。
In other words, if the rotary piston 3 which is a double-end piston is incorporated into each of the half-moon working chambers Ha, Ha formed at the double end by the skewing plate 5 and operated, the same half-moon working chamber is obtained. When the space on either side of the two comb-shaped working chambers A and B or C and D in Ha expands to increase the volume, the space on the other side contracts to reduce the volume, and the skew plate The two working chambers A and D or the spaces B and C sandwiching the same arcuate surface 22 of 5 also operate by changing the volume in inverse proportion to each other. Note that the two working chambers A and C, and B and D, which face each other with the swash plate 5 obliquely interposed therebetween, change in such a manner that their volumes always increase and decrease in direct proportion.

【0066】結局、櫛形状空間の形成は相対する回転ピ
ストン3と斜行板5との板面の間隙であり、互いの板面
の離合によってその空間体積が増減する。従って、その
板面間隙を作動室Fu空間とすれば、互いに与する回転
ピストン3と斜行板5との互いの板面の接近は、その板
面間が形成する間隙の収縮であると共に作動室Fu空間
における体積の減少であって、往復ピストンポンプ、及
び往復動圧縮機におけるピストン、或はプランジャがシ
リンダー内を二つのデッドポイントの下死点から上死点
に向かう過程の作動に相当する。反対に互いに与する回
転ピストン3と斜行板5との板面の離間は、その空間体
積の増加であって往復ピストンポンプ、往復動圧縮機に
おけるピストン、或はプランジャが上死点から下死点に
移動する過程に相当し、互いの板面間に形成される間隙
の弛緩と収縮が各作動室Fuにおける体積の増加と減少
である。
After all, the formation of the comb-shaped space is a gap between the plate surfaces of the rotating piston 3 and the swash plate 5 facing each other. Therefore, assuming that the gap between the plate surfaces is the working chamber Fu space, the approach between the plate surfaces of the rotating piston 3 and the skewing plate 5 given to each other is the contraction of the gap formed between the plate surfaces and the operation is performed. Reduction of the volume in the chamber Fu space, which corresponds to the operation of the reciprocating piston pump and the piston or plunger of the reciprocating compressor in the process of moving two dead points from bottom dead center to top dead center in the cylinder. . On the other hand, the separation of the rotating piston 3 and the swash plate 5 from each other gives rise to an increase in the space volume, and the reciprocating piston pump, the piston in the reciprocating compressor, or the plunger moves from the top dead center to the bottom dead center. This corresponds to the process of moving to the point, and the relaxation and contraction of the gap formed between the plate surfaces are the increase and decrease of the volume in each working chamber Fu.

【0067】図25(a)において、作動室Aはその作
動室間隙を収縮させていて最小体積であり、その作動室
Aの対称位置にある作動室Cも同様に作動室間隙を収縮
させていて体積も最小であるが、作動室Aと共に同一の
半月状作動室Haを共有する作動室Bと、もう一方の半
月状作動室Haを作動室Cと共に共有する作動室Dは共
に作動室間隙を拡張させた上限の体積を持っている。こ
の図25(a)における回転ピストン3は入力軸2上に
左右対称な平衡に置かれて入力軸2に中間軸4が直交
し、且つ入力軸2の軸線とピストン通軸孔15の中心線
とが重なった状態にある。
In FIG. 25 (a), the working chamber A has its working chamber gap contracted and has a minimum volume, and the working chamber C at a symmetrical position of the working chamber A also has its working chamber gap contracted. The working chamber B, which shares the same semi-lunar working chamber Ha with the working chamber A, and the working chamber D, which shares the other half-moon working chamber Ha with the working chamber C, both have the smallest working volume. Has an upper limit volume. 25 (a), the rotating piston 3 is placed on the input shaft 2 in a symmetrical equilibrium, the intermediate shaft 4 is orthogonal to the input shaft 2, and the axis of the input shaft 2 and the center line of the piston passage hole 15 are provided. And are in an overlapping state.

【0068】この場合、回転ピストン3は入力軸2を振
幅の基線として入力軸2上の平面方向に揺動するが、入
力軸2に矢印方向の回転を与えると、ピストン通軸孔1
5の中心を通る回転ピストン3の水平平衡線(軸線L)
が次第に入力軸2上から外れて偏り、図25(a)から
(b),(c),(d),(e)の順に作動室A,Cは
作動室空間が押し広げられて体積を増加させ、それとは
逆に作動室B,Dは回転ピストン3と斜行板5との板面
が近付いて互いの作動室空間を収縮させ、その体積を減
少させる。
In this case, the rotating piston 3 swings in a plane direction on the input shaft 2 with the input shaft 2 as the amplitude base line.
5 horizontal equilibrium line of the rotating piston 3 passing through the center of 5 (axis L)
Are gradually deviated from the input shaft 2 and are biased, and the working chambers A and C have their working chamber spaces expanded in the order of FIGS. On the contrary, in the working chambers B and D, the plate surfaces of the rotary piston 3 and the swash plate 5 approach each other, and the working chamber spaces shrink, and their volumes are reduced.

【0069】そして、図26(g)に至って回転ピスト
ン3は入力軸2と斜行板5との軸線間に創出される開角
度(傾転角度θ)分を移動するが、それは入力軸2の回
転角90度分に相当し、四つの作動室空間A,B,C,
Dの体積変化が中位になって各々の体積は等量になる
が、更に図26(h)乃至(k)の方向に順次作動が進
行すれば、作動室A,Cの各作動室間隙は更に広がって
体積を拡大させ、反対に作動室B,Dの体積を更に縮小
させる。つまり、図25(a)における回転ピストン3
が180度分である半回転をすると、図26(l)に示
すように回転ピストン3の表裏が入れ替わって、作動室
A,Cは共に作動室間隙を拡張させて体積が最大量にな
り、反対に作動室B,Dはその体積を上限値から下限値
へと共に収縮させる。
Then, as shown in FIG. 26 (g), the rotating piston 3 moves by an opening angle (tilt angle θ) created between the axis of the input shaft 2 and the swash plate 5, which is caused by the input shaft 2 Of 90 degrees, and four working chamber spaces A, B, C,
Although the volume change of D becomes medium and the respective volumes become equal, if the operation proceeds further in the directions shown in FIGS. 26 (h) to 26 (k), the gaps between the working chambers A and C become smaller. Expands further to increase the volume, and conversely, further reduces the volumes of the working chambers B and D. That is, the rotating piston 3 in FIG.
Makes a half turn of 180 degrees, the front and back of the rotating piston 3 are switched as shown in FIG. 26 (l), and the working chambers A and C both expand the working chamber gap to have a maximum volume. Conversely, the working chambers B and D contract their volumes from the upper limit to the lower limit.

【0070】また、図25(a)から図26(l)まで
の各作動室A,B,C,Dの体積変化は180度の回転
分であるが、図26(l)における作動室A,Cの間隙
が共に下限になるまでと作動室B,Dの間隙が共に上限
になるまで更に180度分の回転を加えれば、図25
(a)からでは360度分である1回転を行ったことに
なり、作動室A,B,C,Dの各々が吸い込みと吐き出
しとの二つずつの行程を完了させる分の回転をしたこと
になる。従って、ハウジング1の適位置に吸入孔Inと
吐出孔Outとを穿設して動作流体を供給し、且つ上述の
如くの2行程サイクルを繰り返せば本発明の球形の回転
ピストンポンプ、圧縮機は流体ポンプ、及び圧縮機とし
て作動する。その時、特に圧縮機としては、吐出孔Out
側にチェックバルブ(逆止弁)等の弁を取付けるとよ
い。
The volume change of each of the working chambers A, B, C and D from FIG. 25 (a) to FIG. 26 (l) corresponds to a rotation of 180 degrees, but the working chamber A in FIG. , C until the gaps of the working chambers B and D reach the lower limit, and the gaps of the working chambers B and D both reach the upper limit.
From (a), one rotation which is 360 degrees is performed, and each of the working chambers A, B, C, and D has rotated enough to complete two strokes of suction and discharge. become. Therefore, if a suction fluid In and a discharge hole Out are formed at appropriate positions in the housing 1 to supply a working fluid, and the above-described two-stroke cycle is repeated, the spherical rotary piston pump and compressor of the present invention can be provided. Operates as a fluid pump and compressor. At that time, especially for the compressor, the discharge holes Out
A valve such as a check valve (check valve) may be attached to the side.

【0071】[0071]

【行程】本発明の球形の回転ピストンポンプ、圧縮機で
は、最小から最大、最大から最小に交番する櫛形状作動
室Fuの体積変化が上述したように入力軸2回転角の1
80度毎に行われ、従来の往復ピストンポンプ、圧縮
機、或は定吐出容量のベーンポンプと同じように吸込み
行程と吐出し(圧縮)行程との2行程を有し、その2行
程の全作動が軸回転の360度、即ち入力軸2の1回転
の間に行われる。また、本発明の球形の回転ピストンポ
ンプ、圧縮機においては、液体、気体の何れの動作流体
に拘らず、その流体が流出入する流路孔は各半月状作動
室Haに吸入孔Inと吐出孔Outの少なくとも1穴ずつ
がハウジング1壁のほぼ対向位置に穿設されるが、その
場合の出入孔In,Out口は、幾何学的構成において示
したX,Z軸線の双方を通る平面上のハウジング1内壁
面7に開口する。
In the spherical rotary piston pump and compressor according to the present invention, the volume change of the comb-shaped working chamber Fu which alternates from the minimum to the maximum and from the maximum to the minimum corresponds to one rotation angle of the input shaft two rotation angles as described above.
It is performed every 80 degrees and has two strokes, a suction stroke and a discharge (compression) stroke, like a conventional reciprocating piston pump, compressor, or vane pump with a constant displacement. Is performed during 360 degrees of the shaft rotation, that is, during one rotation of the input shaft 2. Further, in the spherical rotary piston pump and the compressor of the present invention, the flow holes through which the fluid flows in and out of each of the working fluids of the liquid and the gas are discharged into the respective half-moon-shaped working chambers Ha and the discharge holes In. At least one hole Out is drilled at a position substantially opposite to the wall of the housing 1, in which case the inlet and outlet In and Out are located on a plane passing through both the X and Z axes shown in the geometric configuration. To the inner wall surface 7 of the housing 1.

【0072】図27は、本発明の球形の回転ピストンポ
ンプ、圧縮機の作動経過を示したものであるが、以下吸
入、吐出の各行程を説明する。 〔吸入行程(〜)〕図27(A)のの状態は、作
動室Fuの容積が最小であり、吸入側の上死点に相当し
て(B)〜(D)の〜と回転ピストン3の回転に伴
って作動室Fuは順次大きくなり、開口した吸入孔In
から動作流体が吸い込まれる。そして、(A)のの状
態になると、作動室Fu容積は最大となって吸入行程が
終了するが、尚この状態は吸入側の下死点位置に相当す
る。 〔吐出行程(〜)〕吸入行程の終りの(A)におけ
るの下死点付近で吐出孔Outが開口して吸入した流体
を圧縮し始めると同時に、流体が液体においては吐出さ
れ始め、気体では吐出孔Outに取付けた吐出弁や逆止弁
等によって吐出時期が調時され、(B)〜(D)の〜
を経て(A)の付近まで吐出が続けられる。
FIG. 27 shows the operation of the spherical rotary piston pump and compressor according to the present invention. The respective steps of suction and discharge will be described below. [Suction stroke (-)] In the state shown in FIG. 27A, the working chamber Fu has the minimum volume, and corresponds to (B)-(D) and the rotary piston 3 corresponding to the top dead center of the suction side. With the rotation of the working chamber Fu, the working chamber Fu gradually increases, and the opened suction port In is opened.
The working fluid is sucked from. Then, in the state of (A), the volume of the working chamber Fu becomes maximum and the suction stroke ends, but this state corresponds to the bottom dead center position on the suction side. [Discharge stroke (-)] At the end of the suction stroke (A), near the bottom dead center in (A), the discharge hole Out opens and begins to compress the sucked fluid, and at the same time, the fluid starts to be discharged in the liquid, The discharge timing is timed by a discharge valve, a check valve, or the like attached to the discharge hole Out.
The discharge is continued to the vicinity of FIG.

【0073】以上のように、本発明の球形の回転ピスト
ンポンプ、圧縮機は、回転ピストン3が1回転する間に
各半月状作動室Ha内の二つの櫛形状作動室Fu,Fu
のそれぞれが吸入、吐出の各行程を完了するため、回転
ピストン3、及び入力軸2の1回転に1回の吐出行程を
有する特長がある。尚、本発明の球形の回転ピストンポ
ンプ、圧縮機における押しのけ容積は作動室Fu全体の
体積に比例する。
As described above, the spherical rotary piston pump and the compressor of the present invention provide two comb-shaped operating chambers Fu, Fu in each half-moon shaped operating chamber Ha while the rotary piston 3 makes one rotation.
Has a characteristic that each rotation of the rotary piston 3 and the input shaft 2 has one discharge stroke for each rotation of the rotary piston 3 and the input shaft 2. The displacement of the spherical rotary piston pump and compressor of the present invention is proportional to the volume of the entire working chamber Fu.

【0074】[0074]

【性能計算】また、本発明の球形の回転ピストンポン
プ、圧縮機の性能計算を流体ポンプにおいて述べれば、
従来のポンプと同じようにその性能は吐出量Q〔l/mi
n〕で表わされ、その吐出量Qは次式で表わされる。 Q=(ηυ・qp・N)/1000 ηυ ポンプの容積効率 qp ポンプの1回転当たりの押しのけ容積〔cm3/re
v〕 N 入力回転数〔r.p.m〕 この時、本発明の球形の回転ピストンポンプに仕事をさ
せるために必要な入力Ln〔kW〕も、従来ポンプと同
じく次式によって計算される。 Ln=(P・Q)/(60・η)P 吐出圧力〔MP
a〕(=100/9.8〔kgf/cm2〕) η 全効率(ポンプ効率) Q 吐出量〔l/min〕 尚、全効率ηは、容積効率ηυに機械効率ηmを乗じた
ものである。
[Performance calculation] In addition, if the performance calculation of the spherical rotary piston pump and the compressor of the present invention is described in a fluid pump,
As with the conventional pump, the performance is the discharge rate Q [l / mi
n], and the discharge amount Q is represented by the following equation. Q = (ηυ · qp · N) / 1000 ηυ Volumetric efficiency of pump qp Displacement volume per rotation of pump [cm 3 / re
v] N Input rotation speed [rpm] At this time, the input Ln [kW] necessary for causing the spherical rotary piston pump of the present invention to work is also calculated by the following equation, similarly to the conventional pump. Ln = (P · Q) / (60 · η) P Discharge pressure [MP
a] (= 100 / 9.8 [kgf / cm 2 ]) η Total efficiency (pump efficiency) Q Discharge rate [l / min] The total efficiency η is obtained by multiplying the volumetric efficiency ηυ by the mechanical efficiency ηm.

【0075】[0075]

【実施例】本発明の球形の回転ピストンポンプ、圧縮機
は、上述したように各種実施の形態(1〜4)における
共通の態様1乃至3の各々が上記作動原理に基づいて流
体ポンプ、及び圧縮機として作動するものである。即
ち、本発明においては、ハウジング1内に一つの櫛形状
作動室乃至四つの櫛形状作動室(Fuか、又はFu,F
uか、又はFu,Fu,Fuか、又はFu,Fu,F
u,Fu)を有する実施の形態があるが、取り分け上記
形態1乃至3において一つのハウジング1内に対向両側
の四つの櫛形状作動室Fu,Fu、Fu,Fu(空間
A,B,C,D)を形成するか、或は上記形態1乃至3
において一つのハウジング1内に回転軸に対して水平方
向に並ぶ二つの櫛形状作動室Fu,Fu(空間A,D
か、又は空間B,C)を形成するか、或は又、上記形態
1乃至4において一つのハウジング1内に回転軸に対し
て垂直並びの二つの櫛形状作動室Fu,Fu(空間A,
Bか、又は空間C,D)を形成する3種類の形態を、以
下の各実施例に基づき図面を参照して詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the spherical rotary piston pump and the compressor according to the present invention have a fluid pump, and It operates as a compressor. That is, in the present invention, one to four comb-shaped operating chambers (Fu or Fu, F
u, or Fu, Fu, Fu, or Fu, Fu, F
u, Fu), there are four comb-shaped working chambers Fu, Fu, Fu, Fu (spaces A, B, C, D) is formed, or the above-mentioned first to third embodiments
, Two comb-shaped operating chambers Fu, Fu (spaces A, D)
Or the spaces B, C) are formed, or two comb-shaped operation chambers Fu, Fu (spaces A,
The three forms of forming the space B or the spaces C and D) will be described in detail based on the following embodiments with reference to the drawings.

【0076】[0076]

【実施例1】まず、一つのハウジング1内に四つの櫛形
状作動室A,B,C,Dを形成した形態の実施例を説明
する。図9、及び図10に示すこの実施例は、前記実施
の形態1、及び共通態様1の構成に基づく実施例であ
る。例えば、前記解決手段において点、線、面の各関係
を設定したハウジング1を図9に示すa−a,b−bの
S円面を跨ぐ平行な二つの切り口平面によって分離した
とすると、ハウジング1は3分割されて筒状、又は環状
からなるS円面上の中央部分と各々が半球より小さい球
冠からなる両側部分とに区分されるが、その中央部分を
斜行板5を回転可能に拘束する斜行板ハウジング1bと
して球面Gより大きいS円面同心の内壁面に形成し、両
側の各々を円形状回転ピストン3の半円ずつを内包する
回転ピストンハウジング1a,1aとして球面Gからな
る対称形の凹面内壁7a,7aに形成する。
Embodiment 1 First, an embodiment in which four comb-shaped working chambers A, B, C, and D are formed in one housing 1 will be described. This example shown in FIGS. 9 and 10 is an example based on the configuration of the first embodiment and the common mode 1. For example, assuming that the housing 1 in which the relations of points, lines, and planes are set in the above solution is separated by two parallel cut planes straddling the S-circle surfaces aa and bb shown in FIG. 1 is divided into three parts, which are divided into a cylindrical or annular central portion on an S-circle surface and two side portions each composed of a crown smaller than a hemisphere. Is formed on the inner wall surface concentric with the S-plane larger than the spherical surface G as a skew plate housing 1b confined to the spherical surface G. Symmetrical concave inner walls 7a, 7a.

【0077】その斜行板ハウジング1bと両側の回転ピ
ストンハウジング1a,1aとを合一させて球状の一体
構造に形成すると、斜行板ハウジング1bの内部面を溝
底とする両回転ピストンハウジング1a,1a凹面内壁
7a,7aの円周縁間が前記軌道隙9としてS円面の延
長平面に沿って周回する溝状間隙に形成される。その上
で、その軌道隙9中心線のY軸線に球心Oで角度θを有
して交差するX軸線上の回転ピストンハウジング1a,
1aの対向両壁に軸受孔の主軸受8,8を貫設すると共
に、その両主軸受8,8にはX軸線を回転軸線として直
軸状をなす入力軸2の両側軸頸を嵌挿させて回転自在に
軸承させる。この入力軸2には、球心Oに位置してM軸
線を連結の軸とする前記ピン継手関節16のピン柱、又
はピン受孔の何れかからなる連結素子(この図9,10
においてはピン受孔である)の軸央枢17を有する。
When the oblique plate housing 1b and the rotary piston housings 1a, 1a on both sides are united to form a spherical integrated structure, the two rotary piston housings 1a having the inner surface of the oblique plate housing 1b as the groove bottom. , 1a are formed between the circumferential edges of the concave inner walls 7a, 7a in the groove-shaped gap orbiting along the extension plane of the S-circle surface as the raceway gap 9. Then, the rotating piston housing 1a on the X-axis crosses the Y-axis of the center line of the raceway 9 at an angle θ at the spherical center O with the spherical axis O.
Main bearings 8 and 8 having bearing holes are provided through the opposing walls of 1a, and both main bearings 8 and 8 are fitted with both-side shaft necks of the input shaft 2 having a linear axis with the X axis as a rotation axis. To allow the bearing to rotate freely. The input shaft 2 is provided with a connection element (see FIGS. 9 and 10) formed of either a pin post of the pin joint joint 16 or a pin receiving hole which is located at the ball center O and has the M axis as a connection axis.
Is a pin receiving hole).

【0078】また、ハウジング1内のR円面上には、球
面Gをなす各回転ピストンハウジング1aの凹面内壁7
aに回転可能に摺接する外周面の球弧面13と、その球
弧面13の弓形輪郭平面をなす表裏の弓形面14,14
と、その表裏の弓形面14,14の弓形弦が挟持する弦
側面とから形成される弓形板の二つをK軸線を挟んで互
いの弦側面を対面させて対称配置し、且つその対面する
両弓形板の弦側面にK軸線を取付け軸線とする円柱状の
中間軸4を介在合体させて全体形状を略円形板に形成し
た回転ピストン3を配置する。
Further, the concave inner wall 7 of each rotating piston housing 1a forming a spherical surface G
and the arcuate surface 13 of the outer peripheral surface rotatably slidably in contact with a, and the front and back arcuate surfaces 14, 14 which form the arcuate contour plane of the arcuate surface 13.
And two of the bow-shaped plates formed by the bow-shaped chords of the front and back bow-shaped chords are symmetrically arranged with the respective chord sides facing each other with the K axis interposed therebetween, and face each other. A rotary piston 3 having a substantially circular plate is formed by interposing a columnar intermediate shaft 4 having a K-axis mounted on the chordal side surface of the two bow-shaped plates.

【0079】この回転ピストン3には、自らが内包する
R円面に沿ってX軸線上の両球弧面13,13から中間
軸4内中央に向かって貫き前記入力軸2を遊挿させるピ
ストン通軸孔15を開口させると共に、そのピストン通
軸孔15の中間軸4内中央部分にM軸線を連結軸線とし
て前記入力軸2の軸央枢17に対応するピン継手関節1
6のピストン枢18(図9,10ではピン柱である)を
設ける。そして、そのピストン枢18をX軸線上の入力
軸2に対して±θ角度範囲を回動可能に入力軸2の軸央
枢17に枢着させる。また、回転ピストン3の中間軸4
両端には、前記点Ka、点Kb側に交差割線Kを連結の
軸とする蝶番関節19の蝶番ピン20,20、又は蝶番
ピン受21,21の何れか(図9,10では蝶番ピン受
21,21である)を設ける。
The rotary piston 3 penetrates from the two arcuate surfaces 13, 13 on the X axis along the R-circle included in the rotary piston 3 toward the center of the intermediate shaft 4, and the input shaft 2 is loosely inserted. A pin joint joint 1 corresponding to the shaft center 17 of the input shaft 2 with the M axis as a connection axis at a central portion of the piston through hole 15 in the intermediate shaft 4.
Six piston pivots 18 (pin posts in FIGS. 9 and 10) are provided. Then, the piston pivot 18 is pivotally attached to the central axis 17 of the input shaft 2 so as to be rotatable within an angle range of ± θ with respect to the input shaft 2 on the X axis. Also, the intermediate shaft 4 of the rotating piston 3
At both ends, any one of the hinge pins 20 and 20 of the hinge joint 19 and the hinge pin receivers 21 and 21 (the hinge pin receivers in FIGS. 21 and 21).

【0080】尚、ピストン通軸孔15の長円形からなる
開口部は、短径が入力軸2の軸径より若干大きく、長径
は入力軸2と斜行板5との回転軸線X,Yの交差角度θ
の少なくとも2倍長を有し、その長径を振幅長として回
転ピストン3が回転に伴って入力軸2上を見掛け上は往
復揺動する。従って、回転ピストン3は入力軸2に対し
てピストン通軸孔15の長径方向にのみ揺動しながら入
力軸2と共に回転し、自らの1回転につきピストン通軸
孔15の長径方向を1往復する。
The opening formed by the elliptical shape of the piston passage hole 15 has a minor axis slightly larger than the axis diameter of the input shaft 2, and a major axis corresponding to the rotational axis X, Y of the input shaft 2 and the swash plate 5. Intersection angle θ
The rotating piston 3 apparently reciprocates on the input shaft 2 as the rotating piston 3 rotates with its major axis being the amplitude length. Therefore, the rotating piston 3 rotates together with the input shaft 2 while swinging only in the major axis direction of the piston through-hole 15 with respect to the input shaft 2, and makes one reciprocation in the major axis direction of the piston through-hole 15 per one rotation. .

【0081】一方、ハウジング1内のS円面上には、回
転ピストン3の中間軸4を挟む対向両側に各々が回転ピ
ストン3の前記弓形面14,14に対応する対称同形の
弓形面22,22の表裏と、その弓形面22,22の弦
側に中間軸4の軸柱面と幾何条件が摺接可能に契合する
弦側面23とを有して形成される弓形板の二つを、前記
軌道隙9に回転摺動可能に嵌合する環状の斜行板環24
の内側に結合させて1枚の円形状板に形成した斜行板5
が配置される。つまり、この斜行板5は、同一平面上に
半円より小さい弓形の劣弧とその劣弧の両端を差し渡す
弓形弦とから形成されて対称配置された両弓形板の弓形
輪郭面を外側向きにして互いの弦側面23,23を対面
させ、且つ双方の弓形輪郭面と契合する内周面に形成し
た斜行板環24を互いの弓形板の外側に配置してそれら
を結合させれば全体形状が円形状板に形成される。
On the other hand, on the S-circular surface in the housing 1, symmetrically identical arcuate surfaces 22, which respectively correspond to the arcuate surfaces 14, 14 of the rotary piston 3, are provided on opposite sides of the intermediate shaft 4 of the rotary piston 3. And two bow-shaped plates formed on the chord side of the arcuate surfaces 22 and 22 and chord side surfaces 23 of which the geometrical condition is slidably contacted with the axial column surface of the intermediate shaft 4. An annular swash plate ring 24 rotatably slidably fitted in the raceway 9
Skew plate 5 formed into one circular plate by being joined inside
Is arranged. In other words, the skew plate 5 is formed of an arc-shaped subarc that is smaller than a semicircle on the same plane and an arc-shaped chord that passes both ends of the subarc, and symmetrically arranges the arcuate contour surfaces of the two arcuate plates outward. Orientation so that the chordal sides 23 face each other, and a skew plate ring 24 formed on the inner peripheral surface which engages with both arcuate contour surfaces is arranged outside the respective arcuate plates to join them. For example, the whole shape is formed in a circular plate.

【0082】而も、この斜行板5には、K軸線を挟んで
対面する弦側面23,23と、そのK軸線上で対面する
斜行板環24の対向両面との対面する4辺によってK軸
線上を矩形に突き抜けた窓状の空隙部分が形成される
が、その空隙部分の点Ka,Kbに位置する斜行板環2
4の対向両側には回転ピストン3の中間軸4両端に取付
けられる前記蝶番関節19素子に対応する連結素子(図
9,10においては蝶番ピン20,20である)が設け
られる。そして、その斜行板5の窓状空隙に回転ピスト
ン3の中間軸4を軸柱に沿って嵌挿させれば、その窓枠
における斜行板環24の対向両側と中間軸4両端取付け
の蝶番ピンと蝶番ピン受20,21、20,21とが嵌
合し、且つ斜行板5の弦側面23,23と中間軸4の軸
柱面とが摺接関係に密封し、中間軸4の両底面と窓枠と
して残る斜行板環24の対向面も摺接関係に密閉し、回
転ピストン3と斜行板5との円形状板の2枚が中間軸4
上に交差割線Kを連結の軸として±θ角度範囲を擺動可
能に交差して組立てられる。
The skew plate 5 has four sides facing the chord sides 23, 23 facing each other with the K axis interposed therebetween and the opposing surfaces of the skew plate ring 24 facing the K axis. A window-shaped gap portion penetrating in a rectangular shape on the K axis is formed, and the skew plate ring 2 located at the points Ka and Kb of the gap portion is formed.
On opposite sides of the rotary piston 4, connecting elements (hinge pins 20, 20 in FIGS. 9 and 10) corresponding to the hinge joint 19 elements mounted on both ends of the intermediate shaft 4 of the rotary piston 3 are provided. Then, if the intermediate shaft 4 of the rotary piston 3 is fitted into the window-shaped gap of the swash plate 5 along the axial column, the opposite sides of the skew plate ring 24 in the window frame and both ends of the intermediate shaft 4 are attached. The hinge pins and the hinge pin receivers 20, 21, 20, 21 are fitted, and the chordal surfaces 23, 23 of the swash plate 5 and the shaft surface of the intermediate shaft 4 are sealed in sliding contact with each other. The opposite surfaces of the sloping plate ring 24 remaining as window frames are also hermetically sealed in sliding contact, and two circular plates of the rotating piston 3 and the swash plate 5 are used as the intermediate shaft 4.
The upper part is assembled so as to be able to slidably intersect in the ± θ angle range with the intersection line K as the axis of connection.

【0083】結局、そのように斜行板5に組付けられた
回転ピストン3の半円分ずつは、その半円分ずつの与す
る回転ピストンハウジング1a,1aの凹面内壁7a,
7aに互いの球弧面13,13が不即不離の状態を保持
して収容されると共に、斜行板5の斜行板環24が斜行
板ハウジング1bの軌道隙9に回転自由な嵌合状態に組
込まれ、入力軸2と回転ピストン3が回転ピストン3の
内部中央にピン継手関節16を組成して連結し、且つ回
転ピストン3と斜行板5が中間軸4の両端部において蝶
番関節19を組成して連結する。
As a result, each semicircle of the rotary piston 3 assembled to the swash plate 5 is provided with the concave inner wall 7a of the rotary piston housing 1a, 1a provided by the semicircle.
The arcuate surfaces 13, 13 of the swash plate 5 are accommodated in the skewed plate housing 24 while the swashed plate rings 24 are held in an immovable manner. The input shaft 2 and the rotary piston 3 are assembled and connected to a pin joint joint 16 at the center of the inside of the rotary piston 3, and the rotary piston 3 and the swash plate 5 are hinged at both ends of the intermediate shaft 4. The joint 19 is constructed and connected.

【0084】すると、S円面上の斜行板5が回転ピスト
ンハウジング1a,1aの凹面内壁7a,7aを閉鎖し
て自らの両側に半球状をなす定積空間の半月状作動室H
a,Haを形成し、且つその半月状作動室Ha,Haの
各々をR円面上の回転ピストン3が反比例に体積変化を
させる二つずつの櫛形状をなす作動室A,BとC,Dに
形成する。更に、その各々の半月状作動室Haに臨ませ
てハウジング1壁を貫通する動作流体の吸入孔Inと吐
出孔Outとを設ける。
Then, the oblique plate 5 on the S-circle surface closes the concave inner walls 7a, 7a of the rotary piston housings 1a, 1a, and the semi-lunar working chamber H of a constant volume space which forms a hemisphere on both sides thereof.
a, Ha, and each of the half-moon-shaped working chambers Ha, Ha has two comb-shaped working chambers A, B, and C in which the rotating piston 3 on the R-circle changes volume in inverse proportion. D. Further, a suction hole In and a discharge hole Out for a working fluid penetrating the wall of the housing 1 are provided facing the respective half-moon-shaped working chambers Ha.

【0085】そして、入力軸2に矢印方向の回転を与え
ると、その入力軸2の回転は前記ピン継手関節16に伝
達されて上記図25,26(a)〜(l)に示すように
対偶する回転ピストン3と斜行板5とを協働回転させ、
それに伴って回転ピストン3と斜行板5の板面間隙が変
化し、その板面間が形成する作動室A,B,C,Dの各
々も体積を増減させる。その作動室A,B,C,Dの体
積が増加する際に各々が与する吸入孔Inから動作流体
を吸い込ませ、減少する際に各々が与する吐出孔Outか
ら動作流体を吐き出させる。
When the rotation of the input shaft 2 is given in the direction of the arrow, the rotation of the input shaft 2 is transmitted to the pin joint joint 16 and the pair is connected as shown in FIGS. 25 and 26 (a) to (l). Cooperating rotation of the rotating piston 3 and the swash plate 5
Accordingly, the gap between the rotating piston 3 and the swash plate 5 changes, and the working chambers A, B, C, and D formed between the plate surfaces also increase or decrease in volume. When the volumes of the working chambers A, B, C, and D increase, the working fluid is sucked from the suction holes In provided by the respective working chambers, and when the volumes decrease, the working fluid is discharged from the discharge holes Out provided by the respective working chambers.

【0086】[0086]

【実施例2】図11、図12に示すこの実施例は、前記
実施の形態2、及び共通態様1の構成に基づき、上記実
施例1における構成と同様にハウジング1内に四つの櫛
形状作動室A,B,C,Dが形成されるが、斜行板5の
位相を拘束する為に、斜行板環24とその斜行板環24
が嵌合する周回溝の軌道隙9とを有して構成される上記
実施例1に対して、この実施例では斜行板5に斜行板環
24の取付けはなく、代わりに斜行板5の外周面を周回
する溝の軌道受25を有し、且つその軌道受25に嵌合
する輪体の軌道環10をS円面上のハウジング1内壁面
7に固着させており、ハウジング1内壁面7には上記実
施例1における軌道隙9の凹状溝に対して凸状の環取付
けである。
[Embodiment 2] This embodiment shown in FIGS. 11 and 12 is based on the configuration of the second embodiment and the common mode 1, and is similar to the configuration of the above-described first embodiment. The chambers A, B, C, and D are formed. In order to restrict the phase of the swash plate 5, the swash plate ring 24 and the swash plate ring 24
In this embodiment, the skew plate ring 24 is not attached to the skew plate 5 in contrast to the above-described first embodiment having the orbital gap 9 of the orbital groove in which the sloping plate fits. 5 has a track bearing 25 of a groove orbiting the outer peripheral surface of the housing 5, and a track ring 10 of a ring fitted to the track bearing 25 is fixed to the inner wall surface 7 of the housing 1 on the S-circle surface. The inner wall surface 7 is provided with a convex ring attachment to the concave groove of the raceway gap 9 in the first embodiment.

【0087】また、点P,P位置の前記主軸受8,8に
は、上記実施例1における構成と同様に球心Oの部分に
前記ピン継手関節16の軸央枢17を有する入力軸2を
嵌挿させて軸承支持させるが、その入力軸2が挿通して
枢支するR円面上の回転ピストン3は対称配置の弓形板
の二つに前記中間軸4を介在させた円形状板であり、前
記軌道環10上であるS円面上に置かれる斜行板5も対
称配置の弓形板の二つに中間軸4を介在させた円形状板
である。
The main bearings 8, 8 at the points P, P are provided with the input shaft 2 having the shaft center 17 of the pin joint 16 at the spherical center O in the same manner as in the first embodiment. The input shaft 2 is inserted and the input shaft 2 is inserted to support the rotating piston 3. The rotary piston 3 on the R-circular surface which is pivotally supported by the input shaft 2 is a circular plate having the intermediate shaft 4 interposed between two symmetrically arranged arcuate plates. The skew plate 5 placed on the S-circle surface on the raceway ring 10 is also a circular plate in which the intermediate shaft 4 is interposed between two symmetrically arranged bow plates.

【0088】尚、この実施例2における中間軸4柱は、
その軸円柱が両底の平行面で輪切りにされて複数個(図
11,12においては3分割)にされ、その中央部分を
ピストン中間軸4aとして回転ピストン3の両弓形弦側
に固着させ、両端部分を斜行板中間軸4b,4bとして
斜行板5の両弓形弦側に固着させると共に、その輪切り
接合部分のピストン中間軸4aと斜行板中間軸4b,4
bとの底面中央部に、K軸線を連結の基軸線として互い
に与する蝶番ピンと蝶番ピン受20,21、20,21
とが連結嵌合して前記蝶番関節19を組成する。また、
上述したように斜行板5には、斜行板中間軸4b,4b
の回転遠心側底面を含む外周面を周回する溝の前記軌道
受25が削設されていて前記軌道環10を回転可能に嵌
合させる。
The four columns of the intermediate shaft in the second embodiment are as follows.
The shaft cylinder is cut into a plurality of rings (three in FIGS. 11 and 12) by a parallel plane on both bottoms, and a central portion thereof is fixed to the both bowed chord sides of the rotary piston 3 as a piston intermediate shaft 4a. Both end portions are fixed to the both bowed chord sides of the swash plate 5 as skew plate intermediate shafts 4b, 4b, and the piston intermediate shaft 4a and the skew plate intermediate shafts 4b, 4 of the round section joint portion.
a hinge pin and hinge pin receivers 20, 21, 20, 21 for providing the K-axis line to each other as a connection base axis at the center of the bottom surface
Are connected and fitted to form the hinge joint 19. Also,
As described above, the swash plate 5 includes the swash plate intermediate shafts 4b, 4b.
The orbital bearing 25 of a groove orbiting the outer peripheral surface including the bottom surface of the rotary centrifugal side is cut so that the orbital ring 10 is rotatably fitted.

【0089】結局、この実施例においても、球面Gをな
すハウジング1内壁面7は内部突設の軌道環10を境界
として対面する凹面内壁7a,7aに形成され、その凹
面内壁7a,7aが斜行板5の組込みによって両半月状
作動室Ha,Haの定積空間に形成され、且つそれぞれ
の凹面内壁7a,7aに回転ピストン3の半円分ずつが
不即不離に収容されて半月状作動室Ha,Haの各々を
反比例に体積変化させる二つずつの密封された櫛形状作
動室A,B,C,Dに形成する。そして、入力軸2に矢
印方向の回転を与えると、上記実施例1の場合と同じく
入力軸2の回転が回転ピストン3と斜行板5を協働回転
させて各作動室A,B,C,Dの体積を変化させ、その
体積が増加する際にハウジング1壁の適位置に穿設され
た吸入孔Inから動作流体を吸い込ませ、体積が減少す
る際に同様に穿設された吐出孔Outから動作流体を吐き
出させる。
As a result, also in this embodiment, the inner wall surface 7 of the housing 1 forming the spherical surface G is formed on the concave inner walls 7a facing each other with the orbital ring 10 protruding inside as a boundary, and the concave inner walls 7a, 7a are inclined. The semi-circular working chambers Ha, Ha are formed in a constant volume space by the incorporation of the row plate 5, and the semicircular portions of the rotating piston 3 are accommodated in the respective concave inner walls 7a, 7a in a non-immediate manner. Each of the chambers Ha, Ha is formed into two sealed comb-shaped working chambers A, B, C, D each of which has a volume changed in inverse proportion. When the input shaft 2 is rotated in the direction of the arrow, the rotation of the input shaft 2 causes the rotary piston 3 and the swash plate 5 to rotate in cooperation with each other, as in the case of the first embodiment, and the respective working chambers A, B, C , D, the working fluid is sucked from a suction hole In formed at an appropriate position on the wall of the housing 1 when the volume increases, and a discharge hole formed similarly when the volume decreases. The working fluid is discharged from the Out.

【0090】[0090]

【実施例3】上記実施例2においてハウジング1内壁面
7に固着させて構成した軌道環10をハウジング1内の
可動部分として構成することが可能である。即ち、前記
実施の形態3と共通態様1の構成に基づく図13、図1
4に示すこの実施例は、上記実施例2における固定軌道
環10を可動軌道環6に置き換え、且つその軌道環6に
制御装置CAを新たに取付けたものであるが、その軌道
環6取付けの制御装置CAは、斜行板5の傾転角度を0
〜±θ角度に連続的に変化させることによって回転ピス
トン3のストロークを変え、吐出流量を可変にしたもの
である。
Embodiment 3 The orbital ring 10 fixed to the inner wall surface 7 of the housing 1 in the embodiment 2 can be constituted as a movable part in the housing 1. 13 and FIG. 1 based on the configuration of the common mode 1 with the third embodiment.
In this embodiment shown in FIG. 4, the fixed raceway ring 10 in the second embodiment is replaced with the movable raceway ring 6 and the control device CA is newly attached to the raceway ring 6. The controller CA sets the tilt angle of the swash plate 5 to 0.
The stroke of the rotary piston 3 is changed by continuously changing the angle to ± θ to vary the discharge flow rate.

【0091】つまり、この実施例ではハウジング1内壁
面7内で自らの環軸線方向に回動可能な外周面と、直径
中心線上の対向両外周面に固着させた丸柱からなる柄状
の軌道環軸11,11とを有してX,Y軸線の双方に唯
一直角方向にのみ可動な輪体に形成した軌道環6を設
け、且つ点e,e側にあたるZ軸線上のハウジング1の
対向壁にZ軸線を軸受軸線とする軌道環軸受12,12
を設ける。その上で、軌道環6を斜行板5周回溝の軌道
受25に回転可能に嵌合させて組付けると共に、前記軌
道環軸11,11を軌道環軸受12,12に回動自由に
嵌挿させて支持させ、図示はしないが更にその軌道環軸
11,11の軸頸に連結端子を取付け、且つその軸頸の
端子に斜行板5の傾転角度を自由に変化させる制御装置
CAの端末部を連結する。
That is, in this embodiment, a pattern-shaped orbital ring consisting of an outer peripheral surface rotatable in the direction of its own ring axis inside the inner wall surface 7 of the housing 1 and a round pillar fixed to both opposing outer peripheral surfaces on the diameter center line. A track ring 6 having a shaft 11 and a movable ring formed only in a direction perpendicular to both the X and Y axes is provided on both the X and Y axes, and the opposing wall of the housing 1 on the Z axis at the points e and e. Orbital ring bearings with the Z axis as the bearing axis
Is provided. Then, the track ring 6 is rotatably fitted to the track bearing 25 of the swash plate 5 orbiting groove and assembled, and the track ring shafts 11 are rotatably fitted to the track ring bearings 12. A control device CA (not shown) for attaching a connecting terminal to the shaft ring of the orbital ring shafts 11, 11 and freely changing the tilt angle of the swash plate 5 to the terminal of the shaft ring, though not shown. Are connected.

【0092】すると、制御装置CAが、ポンプ吐出圧力
に応じて軌道環軸11,11の固定止め位置を変位さ
せ、その固定位置の変位が軌道環6を経て斜行板5の傾
転角度(0〜±θ)を自動的に変化させるが、その斜行
板5の傾きの変化が回転ピストン3の擺動ストロークを
変化させ、その傾きが大きくなるとストロークが長くな
って小さくなるとストロークも短くなり、各々の櫛形状
作動室A,B,C,Dの軸1回転における押しのけ容積
である絶対体積量を変化させて吐出圧力に応じた必要な
吐出量を確保させる。
Then, the control device CA displaces the fixing stop position of the orbital ring shafts 11, 11 according to the pump discharge pressure, and the displacement of the fixing position changes via the orbital ring 6 to the tilt angle ( 0 ± θ) is automatically changed, but the change in the inclination of the swash plate 5 changes the sliding stroke of the rotary piston 3, and the stroke increases as the inclination increases and the stroke decreases as the inclination decreases. The necessary discharge amount corresponding to the discharge pressure is secured by changing the absolute volume amount, which is the displacement volume in one rotation of the shaft of each of the comb-shaped operation chambers A, B, C, and D.

【0093】[0093]

【実施例4】上記実施例1乃至3の構成において、ハウ
ジング1内の作動室を4作動室Fu,Fu,Fu,Fu
構成から2作動室Fu,Fu構成にして作動させること
が可能である。図15に示すこの実施例は、前記実施の
形態1、及び共通態様2に基づき、上記実施例1の構成
において4作動室A,B,C,Dを軸方向並びの2作動
室A,Dか、又は2作動室B,Cに換えて構成したもの
である。
Fourth Embodiment In the structure of the first to third embodiments, the working chamber in the housing 1 is replaced by four working chambers Fu, Fu, Fu, Fu.
It is possible to operate with two working chambers Fu, Fu based on the configuration. This embodiment shown in FIG. 15 is based on the first embodiment and the common mode 2, and has two working chambers A, D in which the four working chambers A, B, C, and D are arranged in the axial direction in the configuration of the first embodiment. Or two working chambers B and C are replaced.

【0094】尚、この実施例も上記実施例1と同様に、
前記解決手段において点、線、面の各関係を設定したハ
ウジング1を図15に示すa−a,b−bのS円面を跨
ぐ平行な二つの切り口平面によって3分割し、その中央
部分を斜行板ハウジング1bとして両側部分の各々を回
転ピストンハウジング1a,1aとし、それらを同一線
上に合体させると斜行板ハウジング1bの内側が前記斜
行板環24を回転可能に拘束する前記軌道隙9として溝
状の間隙に形成されると共に、X軸線上の回転ピストン
ハウジング1a,1aの対向壁には球心Oの位置に前記
ピン継手関節16素子の軸央枢17を有する入力軸2を
挿通させて軸承させる前記主軸受8,8が貫設される。
In this embodiment, as in the first embodiment,
In the above solution, the housing 1 in which the relations of points, lines and surfaces are set is divided into three by two parallel cut planes straddling the S-circle surfaces aa and bb shown in FIG. As the swash plate housing 1b, each of both sides is a rotary piston housing 1a, 1a, and when they are united on the same line, the inside of the swash plate housing 1b restrains the swash plate ring 24 in a rotatable manner. The input shaft 2 is formed in a groove-like gap 9 and has a shaft center 17 of the pin joint joint 16 element at the position of the spherical center O on the opposing walls of the rotary piston housings 1a, 1a on the X axis. The main bearings 8, 8 to be inserted and supported by the bearing are provided through.

【0095】一方、上記実施例1との相違において、円
形状回転ピストン3に対してこの実施例では、回転外周
面の球弧面13と、互いの弦側がK軸線を挟む同一平面
上の両弓形面14,14と、その両弓形面14,14間
に半埋込み状に合体させた円柱状の中間軸4とから全体
形状が半球状の略円形板回転ピストン3であるが、上記
実施例1における構成と同様に、回転ピストン3には前
記入力軸2を遊挿させるピストン通軸孔15と球心Oに
位置して前記ピン継手関節16のピストン枢18と中間
軸4両端に蝶番関節19の連結素子とを有する。
On the other hand, in the difference from the first embodiment, in this embodiment, the circular rotating piston 3 is different from the first embodiment in that the spherical arc surface 13 of the outer peripheral surface of rotation and the two chords on the same plane sandwiching the K-axis line are provided. The substantially circular plate rotating piston 3 having a hemispherical shape as a whole is composed of the arcuate surfaces 14, 14 and the columnar intermediate shaft 4 merged in a semi-embedded manner between the two arcuate surfaces 14, 14. 1, the rotary piston 3 has a piston through hole 15 for allowing the input shaft 2 to be loosely inserted therein, a piston pivot 18 of the pin joint 16 located at the spherical center O, and hinge joints at both ends of the intermediate shaft 4. 19 connecting elements.

【0096】また、上記実施例1との相違において、対
称配置した2枚の弓形板に斜行板環24を結合させて形
成される円形状斜行板5に対し、この実施例4における
斜行板5は、一つの弓形板を斜行板環24の内側に固定
させて弦側面23を辺とする半円より大きく突き抜けた
窓状空隙を有する円形状板であるが、この場合にも中間
軸4の両端に設けた前記蝶番関節19素子に対応する連
結素子が前記点Ka、点Kb側に位置する斜行板環24
の対向両側に設けられるから、その斜行板5の突き抜け
た窓に回転ピストン3の中間軸4柱を嵌め込むと共に互
いの両片を以て蝶番関節19を組成し、斜行板5と回転
ピストン3とを交差割線Kを連結の軸線として±θ角度
範囲を擺動可能に連結させる。
Further, in the difference from the first embodiment, the circular skew plate 5 formed by connecting the skew plate ring 24 to two symmetrically arranged bow plates is different from the skew plate of the fourth embodiment. The row plate 5 is a circular plate having a window-shaped gap in which one bow-shaped plate is fixed inside the swash plate ring 24 and penetrates more than a semicircle with the chord side surface 23 as a side. A connecting element corresponding to the hinge joint 19 element provided at each end of the intermediate shaft 4 is provided with a skew plate ring 24 located on the point Ka, point Kb side.
Are provided on the opposite sides of the skewed plate 5, the four columns of the intermediate shaft of the rotary piston 3 are fitted into the windows through which the swash plate 5 penetrates, and the hinge joint 19 is formed with both pieces. Are connected so that the ± θ angle range can be slidably set with the intersection line K as the connection axis.

【0097】結局、S円面上の斜行板5が回転ピストン
ハウジング1a,1aの両凹面内壁7a,7aを閉鎖し
て斜行板5の両側に半球状をなす定積空間の半月状作動
室Ha,Haを形成し、且つその半月状作動室Ha,H
aの各々をR円面上の回転ピストン3が同一平面上にお
いて反比例に体積変化をさせる櫛形状をなす一つずつの
作動室A,Dか、又はB,Cに形成すると共に、その各
々の半月状作動室Haを臨むハウジング1壁の適位置に
は動作流体の吸入孔Inと吐出孔Outとが設けられる
が、この実施例においても入力軸2に与えられた矢印方
向の回転は、前記ピン継手関節16に伝達されて対偶す
る回転ピストン3と斜行板5とを協働回転させ、その作
動において作動室A,Dか、又はB,Cの体積を増減さ
せるから、その体積が増加する際に吸入孔Inから動作
流体を吸い込ませ、減少する際には吐出孔Outから動作
流体を吐き出させる。
Eventually, the swash plate 5 on the S-circle surface closes the biconcave inner walls 7a, 7a of the rotating piston housings 1a, 1a, and the semi-lunar operation of the constant volume space having a hemispherical shape on both sides of the skew plate 5. Chambers Ha, Ha are formed and the half-moon-shaped working chambers Ha, H are formed.
a is formed in each of comb-shaped working chambers A and D or B and C in which the rotating piston 3 on the R-circle makes a volume change in inverse proportion on the same plane, and each of the working chambers A and D is formed. At an appropriate position on the wall of the housing 1 facing the half-moon-shaped working chamber Ha, a suction port In and a discharge port Out of a working fluid are provided. Since the rotating piston 3 and the skew plate 5 which are transmitted to the pin joint joint 16 and cooperate with each other to rotate cooperatively and increase or decrease the volume of the working chambers A and D or B and C in the operation thereof, the volume increases. In this case, the working fluid is sucked from the suction hole In, and when the working fluid is reduced, the working fluid is discharged from the discharge hole Out.

【0098】[0098]

【実施例5】図16に示すこの実施例は、上記実施例4
における構成と同様にハウジング1内に軸方向に並ぶ二
つの櫛形状作動室A,Dか、又はB,C構成の形態であ
り、前記実施の形態2、及び共通態様2の構成に基づく
ものである。尚、斜行板5の位相を拘束する為に上記実
施例4においてハウジング1内壁に設けられる周回溝の
軌道隙9に対して、上記実施例2における構成と同じく
斜行板5外周面に周設された溝の軌道受25に嵌合する
輪体の軌道環10をS円面上のハウジング1内壁面7に
凸設固着させるが、この実施例においても球心Oの部分
にピン継手関節16の軸央枢17を有する入力軸2が点
P,P位置の前記主軸受8,8に嵌挿して支持される。
[Embodiment 5] This embodiment shown in FIG.
In the same manner as in the configuration of the first embodiment, two comb-shaped working chambers A and D or B and C are arranged in the housing 1 in the axial direction, and are based on the configurations of the second embodiment and the common mode 2. is there. In order to restrain the phase of the swash plate 5, the orbital gap 9 of the circumferential groove provided on the inner wall of the housing 1 in the above-described fourth embodiment is disposed around the outer circumferential surface of the swash plate 5 in the same manner as in the configuration of the second embodiment. The orbital ring 10 of the ring fitted to the orbital bearing 25 provided in the groove is fixed to the inner wall surface 7 of the housing 1 on the S-shaped surface in a protruding manner. The input shaft 2 having sixteen shaft center points 17 is inserted into and supported by the main bearings 8, 8 at points P, P.

【0099】一方、回転ピストン3は、同一板面上の両
弓形面14,14と球面内壁7に対接する両球弧面1
3,13と、その両弓形面14,14間に前記中間軸4
の少なくとも中央部分を半埋込み状に介在させた円形状
板であるが、斜行板5は、一つの弓形板に中間軸4の少
なくとも両側部分を取付けた略半円板であるか、又は図
16に示すようにその中間軸4の両側部分を取付けた弓
形板にその弓形板の対向側もアーチ状に繋いで全体に円
形の回転外周面を持たせた円形状板であるから、中間軸
4柱は、上記実施例2,3と同様に3分割の中央部分が
ピストン中間軸4aとして回転ピストン3に固着し、両
側部分が斜行板中間軸4b,4bとして斜行板5に固着
し、その接合部分には蝶番ピンに嵌合する蝶番ピン受2
0,21、20,21の前記蝶番関節19を組成して連
結する。
On the other hand, the rotating piston 3 has two arcuate surfaces 1, 14 on the same plate surface and both spherical arc surfaces 1, which are in contact with the spherical inner wall 7.
3, 13 and the intermediate shaft 4 between the two arcuate surfaces 14, 14.
The oblique plate 5 is a substantially semi-circular plate in which at least both side portions of the intermediate shaft 4 are attached to one bow-shaped plate, As shown in FIG. 16, the intermediate shaft 4 is a circular plate having an arcuate plate on which both sides of the intermediate shaft 4 are attached, and the opposite side of the arcuate plate is also connected in an arch shape to have a circular outer peripheral surface as a whole. The four pillars are fixed to the rotary piston 3 at the central part of the three divisions as the piston intermediate shaft 4a, and the both sides are fixed to the swash plate 5 as the swash plate intermediate shafts 4b, 4b, as in the above-described Embodiments 2 and 3. A hinge pin receiver 2 fitted to the hinge pin
The hinge joints 19 of 0, 21, 20, 21 are formed and connected.

【0100】結局、球面Gをなすハウジング1内壁面7
内は、内部突設の軌道環10を境界として互いに対面す
る凹面内壁7a,7aと、S円面上の斜行板5とによっ
て定積空間の両半月状作動室Ha,Haに形成され、そ
の半月状作動室Ha,Haの各々をR円面上の回転ピス
トン3が同一平面上の両側において反比例に体積変化さ
せる櫛形状の作動室A,Dか、又はB,Cに形成する。
After all, the inner wall surface 7 of the housing 1 forming the spherical surface G
The inside is formed in the two half-moon working chambers Ha, Ha of the constant volume space by the concave inner walls 7a, 7a facing each other with the orbit ring 10 of the inner protruding as a boundary, and the oblique plate 5 on the S-circle surface, Each of the half-moon-shaped working chambers Ha, Ha is formed as a comb-shaped working chamber A, D or B, C in which the rotating piston 3 on the R-circular surface changes volume in inverse proportion on both sides on the same plane.

【0101】[0101]

【実施例6】この実施例は、上記実施例5においてハウ
ジング1内壁面7に固着させた軌道環10をハウジング
1内の可動部分として構成する。即ち、前記実施の形態
3、及び共通態様2の構成に基づく図17に示すこの実
施例は、上記実施例5における固定の軌道環10を可動
の軌道環6に置き換えて構成するもので、その可動の軌
道環6に制御装置CAを取付けて斜行板5の傾転角度
(0〜±θ)を自由に変えられるようにしたものであ
る。
Embodiment 6 In this embodiment, the orbital ring 10 fixed to the inner wall surface 7 of the housing 1 in Embodiment 5 is constituted as a movable part in the housing 1. That is, this embodiment based on the configuration of the third embodiment and the common mode 2 shown in FIG. 17 is configured by replacing the fixed race 10 with the movable race 6 in the fifth embodiment. The control device CA is attached to the movable track ring 6 so that the tilt angle (0 to ± θ) of the swash plate 5 can be freely changed.

【0102】つまり、上記実施例3における構成と同様
に、軌道環6の前記軌道環軸11,11を点e,e側の
ハウジング1壁に設けた軌道環軸受12,12に軸承さ
せ、且つその軌道環軸11,11に斜行板5の傾きを制
御する制御装置CAを取付けて連動させると、制御装置
CAがポンプの吐出圧力に応じて斜行板5の傾転角度
(0〜±θ)を自動的に変化させると共に回転ピストン
3のストロークを変化させ、各作動室A,Dか、又は
B,Cの軸1回転における押しのけ容積を変化させて吐
出圧力に応じた吐出量を確保する。
That is, similarly to the configuration of the third embodiment, the orbital ring shafts 11, 11 of the orbital ring 6 are supported by the orbital ring bearings 12, 12 provided on the wall of the housing 1 on the points e and e, and When a control device CA for controlling the inclination of the skewing plate 5 is attached to the orbital ring shafts 11 and 11 so that they are linked with each other, the control device CA causes the inclination angle (0 to ±±) of the skewing plate 5 according to the discharge pressure of the pump. θ) is automatically changed and the stroke of the rotary piston 3 is changed to change the displacement of each of the working chambers A, D or B, C in one rotation of the shaft to secure a discharge amount corresponding to the discharge pressure. I do.

【0103】[0103]

【実施例7】図18,19に示すこの実施例は、前記実
施の形態1、及び共通態様3の構成に基づいて軸に垂直
方向並びの2作動室A,Bか、又は2作動室C,Dに構
成して作動させるものである。即ち、この実施例は、前
記解決手段において点、線、面の各関係を設定したハウ
ジング1を図18に示すa−aのS円面に平行な一つの
切り口平面によって内部をS円面より大きい凹状空隙に
形成した斜行板ハウジング1bと、その斜行板ハウジン
グ1b凹状内壁に球面Gをなす凹面内壁7aを対面させ
た半球状の回転ピストンハウジング1aとの二つに区分
し、そのように構成したハウジング1内に回転ピストン
3を弓形板と中間軸4柱とを合体させた略半円板とし、
斜行板5も両板面の一方を作動室Fu,Fuの形成面と
し、その作動室Fu,Fu形成面を回転ピストン3の板
面に対面させて互いを連動可能に組込むものである。
[Embodiment 7] In this embodiment shown in FIGS. 18 and 19, two working chambers A and B or two working chambers C are arranged in the direction perpendicular to the axis based on the structure of the first embodiment and the common mode 3. , D. That is, in this embodiment, in the above-mentioned solving means, the interior of the housing 1 in which the relations of points, lines and surfaces are set is defined by one cut plane parallel to the S-circle aa shown in FIG. A skew plate housing 1b formed in a large concave space, and a hemispherical rotary piston housing 1a in which a concave inner wall 7a forming a spherical surface G faces a concave inner wall of the skew plate housing 1b. The rotary piston 3 is formed into a substantially semi-circular plate in which an arcuate plate and an intermediate shaft 4 are combined in a housing 1 configured as follows.
The swash plate 5 also has one of the two plate surfaces as a surface on which the working chambers Fu and Fu are formed, and the working chambers Fu and the surface on which the Fu is formed face the plate surface of the rotary piston 3 so as to be interlocked with each other.

【0104】従って、その斜行板ハウジング1bの凹状
空隙の部分が斜行板5を回転可能に拘束する前記軌道隙
9としてY軸線に同心円の内周面に形成されるが、この
実施例においてもX軸線上の対向する回転ピストンハウ
ジング1a壁と斜行板ハウジング1b側壁とに前記主軸
受8,8を貫設し、その主軸受8,8に球心O位置に前
記ピン継手関節16の軸央枢17を有する入力軸2を軸
承させる。一方、半円状板の回転ピストン3には、上記
何れの実施例における構成とも同様に中間軸4両端の前
記点Ka、点Kb側に前記蝶番関節19の連結素子が設
けられると共に、R円面に沿ってピストン通軸孔15が
開口し、且つそのピストン通軸孔15内の球心O位置に
ピン継手関節16素子のピストン枢18が設けられて入
力軸2の前記軸央枢17に枢着する。
Therefore, the concave space portion of the swash plate housing 1b is formed on the inner peripheral surface concentric with the Y axis as the raceway space 9 for rotatably restraining the swash plate 5 in this embodiment. Also, the main bearings 8 and 8 are provided through the wall of the rotating piston housing 1a and the side wall of the oblique plate housing 1b facing each other on the X axis, and the pin joint joint 16 is located at the spherical center O position in the main bearings 8 and 8. The input shaft 2 having the shaft center 17 is supported. On the other hand, the semicircular plate-shaped rotary piston 3 is provided with a connecting element of the hinge joint 19 on both sides of the intermediate shaft 4 at the points Ka and Kb, similarly to the configuration in any of the above-described embodiments. A piston through hole 15 is opened along the surface, and a piston pivot 18 of a pin joint joint 16 element is provided at a spherical center O position in the piston through hole 15 so as to be provided at the shaft center 17 of the input shaft 2. Pivot.

【0105】また、斜行板5は、同一板面に互いの弦を
対面させた二つの弓形面22,22と、その両弓形面2
2,22の弦側間を中間軸4柱に摺接可能に契合する溝
状の凹み部分に形成した半円柱形凹面の弦側面23と、
両弓形面22,22の裏面を同一の回転面に形成した外
郭摺接面27とを有する円形状板が、その円形状板径よ
り大きく前記軌道隙9に回転摺動可能に嵌合する環状の
斜行板環24と合体した円形板であり、入力軸2挿通の
為の斜行板通軸孔26を弦側面23の中央から外郭摺接
面27に開口させて前記ピストン通軸孔15の中間軸2
開口部に接合させると共に、前記点Ka、点Kb側の斜
行板環24の対向両側に中間軸4両端の前記蝶番関節1
9素子に対応する連結素子が設けられる。その上で、こ
の斜行板5の弦側面23に中間軸4柱を嵌め込み入れ、
斜行板5と回転ピストン3とを蝶番関節19によって±
θ角度範囲を擺動可能に連結させると、回転ピストン3
は回転ピストンハウジング1aの凹面内壁7aに球弧面
13が不即不離の状態を保持して収容され、斜行板5の
斜行板環24も斜行板ハウジング1bの軌道隙9に回転
自由な嵌合状態に収納される。
The skew plate 5 has two bow-shaped surfaces 22, 22 with the chords facing each other on the same plate surface, and the two bow-shaped surfaces 2, 22.
A chord side surface 23 of a semi-cylindrical concave surface formed in a groove-like concave portion which slidably contacts the intermediate shaft 4 pillars between the chord sides of 2, 2;
A circular plate having an outer sliding contact surface 27 in which the back surfaces of both arcuate surfaces 22 and 22 are formed on the same rotating surface is larger than the circular plate diameter, and is annularly fitted into the raceway gap 9 so as to be able to rotate and slide. The skewed plate ring 24 is formed with a circular plate. The skewed plate through-hole 26 for inserting the input shaft 2 is opened from the center of the chordal side surface 23 to the outer sliding contact surface 27, and the piston through-hole 15 is formed. Intermediate shaft 2
The hinge joints 1 at both ends of the intermediate shaft 4 are provided on both sides of the oblique plate ring 24 on the side of the points Ka and Kb while being joined to the opening.
Connection elements corresponding to the nine elements are provided. Then, four intermediate shafts are inserted into the chord side surfaces 23 of the swash plate 5,
The swash plate 5 and the rotating piston 3 are connected by a hinge joint 19 to ±
When the θ angle range is connected so as to be able to slide, the rotating piston 3
Is accommodated in the concave inner wall 7a of the rotary piston housing 1a while the arcuate surface 13 is kept in an immovable state, and the skew plate ring 24 of the skew plate 5 is also freely rotatable in the raceway 9 of the skew plate housing 1b. It is stored in a proper fitting state.

【0106】この実施例においては、S円面上の斜行板
5が回転ピストンハウジング1aの凹面内壁7aを閉鎖
して半球状をなす定積空間の半月状作動室Haを形成
し、且つその半月状作動室HaをR円面上の回転ピスト
ン3が反比例に体積変化をさせる櫛形状をなす二つの作
動室A,Bか、又はC,Dに形成する。尚、半月状作動
室Haを臨むハウジング1の適位置に動作流体の吸入孔
Inと吐出孔Outとを設ける。その上で入力軸2に与え
る矢印方向の回転は、前記ピン継手関節16を経て回転
ピストン3と斜行板5とを協働回転させ、それに伴って
作動室A,Bか、又はC,Dの体積を増減させ、その体
積が増加する際に吸入孔Inから動作流体を吸い込ま
せ、減少する際に吐出孔Outから動作流体を吐き出させ
る。
In this embodiment, the oblique plate 5 on the S-circle surface closes the concave inner wall 7a of the rotary piston housing 1a to form a semi-lunar working chamber Ha of a constant volume space having a hemispherical shape. The half-moon-shaped working chamber Ha is formed as two comb-shaped working chambers A and B or C and D in which the volume of the rotating piston 3 on the R circular surface changes in inverse proportion. In addition, a suction port In and a discharge port Out of the working fluid are provided at appropriate positions of the housing 1 facing the half-moon working chamber Ha. Then, the rotation in the direction of the arrow given to the input shaft 2 causes the rotary piston 3 and the swash plate 5 to cooperately rotate via the pin joint joint 16 and, accordingly, the working chambers A and B or C and D. The working fluid is sucked from the suction hole In when the volume increases, and the working fluid is discharged from the discharge hole Out when the volume increases.

【0107】[0107]

【実施例8】この実施例は、上記実施例7の構成におい
て斜行板5中心を貫く前記斜行板通軸孔26に換えて斜
行板5に固定軸を取付けて作動させるものである。即
ち、入力軸2が回転ピストンハウジング1a壁と斜行板
ハウジング1b壁とに設けた前記主軸受8,8に両側軸
頸を軸承される上記実施例7の構成に対し、図20に示
すように軸央枢17の一方側にのみ軸柱を持着させて回
転ピストンハウジング1a壁に設けた主軸受8に軸承さ
れるように入力軸2を構成し、斜行板5に斜行板通軸孔
26は形成せず、反対に外郭摺接面27の中心部に柄状
の丸棒を斜行板軸28として軸止め固着させ、且つその
斜行板軸28には斜行板ハウジング1b壁中央に斜行板
軸受29を設けて対応する。
Embodiment 8 In this embodiment, a fixed shaft is attached to the swash plate 5 in place of the swash plate through-hole 26 penetrating the center of the swash plate 5 in the structure of the above-described embodiment 7, and the operation is performed. . That is, as shown in FIG. 20, the input shaft 2 is configured as shown in FIG. The input shaft 2 is configured such that a shaft column is attached to only one side of the shaft center pivot 17 and is supported by a main bearing 8 provided on the wall of the rotating piston housing 1a. The shaft hole 26 is not formed. On the contrary, a handle-shaped round bar is fixedly fixed to the center of the outer sliding contact surface 27 as a skew plate shaft 28, and the skew plate housing 1b is formed on the skew plate shaft 28. A swash plate bearing 29 is provided at the center of the wall to cope with this.

【0108】この場合、入力軸2と斜行板軸28との互
いの延長軸直線をハウジング1凹面内壁7aの球心O上
で角度θを有して交差する前記X,Y軸線に一致させる
が、それには互いが反対向きになるX,Y軸線上のハウ
ジング1壁のそれぞれに軸受を貫設し、その一方がX軸
線上の回転ピストンハウジング1a壁を穿つ主軸受8と
して入力軸2の軸頸を軸承し、もう一方がY軸線上の斜
行板ハウジング1b壁を穿つ斜行板軸受29として前記
斜行板軸28を挿通させて軸承する。つまり、この実施
例においても入力軸2と斜行板5とが角度θを隔てた定
位な回転軸線上を回転するものであり、その回転に伴っ
て入力軸2と斜行板5とに2方向を拘束支持された回転
ピストン3(自転軸L)が前記円錐軌跡Uに沿って円錐
運動をする。
In this case, the mutually extending straight lines of the input shaft 2 and the swash plate shaft 28 are made to coincide with the X and Y axes intersecting at an angle θ on the spherical center O of the concave inner wall 7a of the housing 1. However, a bearing is provided in each of the walls of the housing 1 on the X and Y axes which are opposite to each other, and one of the walls of the input shaft 2 is formed as a main bearing 8 which penetrates the wall of the rotating piston housing 1a on the X axis. The skewed plate shaft 28 is inserted through the skewed plate shaft 28 as a skewed plate bearing 29 that bores the wall of the skewed plate housing 1b on the Y axis. In other words, also in this embodiment, the input shaft 2 and the swash plate 5 rotate on a stereoscopic rotation axis separated by an angle θ, and the input shaft 2 and the swash plate 5 The rotating piston 3 (the rotation axis L) whose direction is restrained and supported makes a conical movement along the conical locus U.

【0109】[0109]

【実施例9】図21に示すこの実施例は、上記実施例7
における構成と同様にハウジング1内に軸垂直方向の2
作動室A,Bか、又はC,Dを形成した実施の形態であ
り、前記実施の形態2、及び共通態様3の構成に基づ
く。尚、この実施例は上記実施例7との相違において、
斜行板5の位相を拘束するハウジング1凹状空隙の軌道
隙9に対し、上記実施例2,5において取付けた軌道環
10と同じ輪体をS円面上のハウジング1内壁面7に固
着させる。
[Embodiment 9] This embodiment shown in FIG.
In the housing 1 in the same manner as
This is an embodiment in which working chambers A and B or C and D are formed, and is based on the configurations of the second embodiment and the common mode 3. This embodiment is different from the seventh embodiment in that:
The same ring as the race ring 10 attached in the second and fifth embodiments is fixed to the inner wall surface 7 of the housing 1 on the S-circle with respect to the raceway 9 of the concave space of the housing 1 that restrains the phase of the swash plate 5. .

【0110】この場合の回転ピストン3は、弓形板が弓
形弦側に円柱状の前記中間軸4の少なくとも中央部分を
一体構造に固定させた半円状板であり、斜行板5は、同
一板面上の両弓形面22,22と回転外周面を含む両弓
形面22,22の裏面の外郭摺接面27とから形成され
る円形板が、その両弓形面22,22間に中間軸4の少
なくとも両側部分を固着させた円形状板であるから、先
の実施例2,5の場合と同様に中間軸4柱は少なくとも
3分割にされ、その中央部分がピストン中間軸4aとし
て回転ピストン3に固着し、両側部分が斜行板中間軸4
b,4bとして斜行板5に固着し、その接合部分には互
いに与して嵌合する蝶番ピンと蝶番ピン受20,21、
20,21の前記蝶番関節19を組成して連結し、且つ
両斜行板中間軸4b,4bの外接側底面を含む斜行板5
の外周面に周設された溝の前記軌道受25に前記軌道環
10が回転可能に嵌合する。
In this case, the rotary piston 3 is a semicircular plate in which at least a central portion of the intermediate shaft 4 whose column is arcuate and is cylindrical is fixed to an integral structure, and the inclined plate 5 is the same as the skew plate 5. A circular plate formed by the two arcuate surfaces 22, 22 on the plate surface and the outer sliding contact surface 27 on the back surface of the two arcuate surfaces 22, 22, including the rotation outer peripheral surface, forms an intermediate shaft between the two arcuate surfaces 22, 22. 4 is a circular plate to which at least both side parts are fixed, so that the four intermediate shafts are divided into at least three parts as in the case of the second and fifth embodiments, and the central part is a rotating piston as a piston intermediate shaft 4a. 3 and both sides are swash plate intermediate shafts 4
b, 4b, which are fixed to the swash plate 5 and the joint portions thereof are provided with hinge pins and hinge pin receivers 20, 21,
The swash plate 5 comprising the hinge joints 20 and 21 formed and connected, and including the circumscribed bottom surfaces of the two skew plate intermediate shafts 4b and 4b.
The orbital ring 10 is rotatably fitted to the orbital bearing 25 in a groove provided on the outer peripheral surface of the orbital.

【0111】結局、ハウジング1内には斜行板5の組込
みによって半月状作動室Haが形成され、その半月状作
動室Haを回転ピストン3が反比例に体積変化させる二
つの櫛形状作動室A,Bか、又はC,Dに形成し、その
上ハウジング1壁の適位置に吸入孔Inと吐出孔Outと
が穿設されるが、いま与える矢印方向の回転は回転ピス
トン3と斜行板5を協働回転させて作動室A,Bか、又
はC,Dの体積を増減させ、その体積が増加する際に吸
入孔Inから動作流体を吸い込ませ、体積が減少する際
に吐出孔Outから動作流体を吐き出させる。
As a result, a semi-lunar working chamber Ha is formed in the housing 1 by incorporating the skewing plate 5, and the two comb-shaped working chambers A, in which the rotating piston 3 changes the volume of the half-moon working chamber Ha in inverse proportion. B, or C and D, and a suction hole In and a discharge hole Out are formed at appropriate positions on the wall of the housing 1. Are rotated cooperatively to increase or decrease the volume of the working chambers A and B or C and D. When the volume increases, the working fluid is sucked from the suction hole In, and when the volume decreases, the working fluid flows from the discharge hole Out. The working fluid is discharged.

【0112】[0112]

【実施例10】上記実施例9においてハウジング1内壁
面7に固着させた軌道環10をハウジング1内の可動部
分として独立させるこの実施例は、前記実施の形態3、
及び共通態様3の構成に基づき、新たに制御装置CAを
設けて斜行板5の傾転角度(0〜±θ)を自由に変えら
れるようにしたものである。
Embodiment 10 In Embodiment 9, the orbital ring 10 fixed to the inner wall surface 7 of the housing 1 is made independent as a movable portion in the housing 1.
In addition, based on the configuration of the common mode 3, a control device CA is newly provided so that the tilt angle (0 to ± θ) of the swash plate 5 can be freely changed.

【0113】つまり、図22に示すこの実施例10は、
上記実施例3,6における構成と同様に斜行板5の軌道
受25に嵌合して斜行板5を支持するハウジング1内壁
面7内で可動な軌道環6を取付けるが、その軌道環6の
対向両側に持着させた軌道環軸11,11が点e,e側
のハウジング1壁に設けた軌道環軸受12,12を嵌挿
して軸承され、且つその軌道環軸11,11に斜行板5
の傾きを制御する制御装置CAを取付け連動させるもの
である。即ち、制御装置CAがポンプの吐出圧力に応じ
て斜行板5の傾転角度(0〜±θ)を自動的に変化さ
せ、各々の作動室A,Bか、又はC,Dの軸1回転にお
ける押しのけ容積を変化させて吐出圧力に応じた吐出量
を確保させる。
That is, the tenth embodiment shown in FIG.
In the same manner as in the configurations of the third and sixth embodiments, the movable race ring 6 is mounted within the inner wall surface 7 of the housing 1 which is fitted to the race bearing 25 of the swash plate 5 and supports the swash plate 5. The bearing ring shafts 11, 11 attached to both sides opposite to each other are fitted and fitted with bearing ring bearings 12, 12 provided on the wall of the housing 1 on the point e, e side, and are attached to the bearing ring shafts 11, 11. Swash plate 5
A control device CA for controlling the inclination of the camera is attached and linked. That is, the control device CA automatically changes the tilt angle (0 to ± θ) of the swash plate 5 in accordance with the discharge pressure of the pump, so that each of the working chambers A and B or the axis 1 of C and D By changing the displacement in rotation, a discharge amount corresponding to the discharge pressure is ensured.

【0114】[0114]

【実施例11】図23に示すこの実施例は、前記実施の
形態4、及び共通態様3の構成に基づき、上記実施例8
における構成と同じく軸に垂直方向に並ぶ作動室A,B
か、又はC,Dに配列させたものであるが、斜行板ハウ
ジング1bの内部をS円面径より大きい凹状空隙の軌道
隙9に形成した上記実施例8の構成に対し、斜行板ハウ
ジング1bに相当する分の周壁面も球面Gに形成し、そ
の周壁面内に斜行板5を収容可能に形成して組入れたも
のである。
Embodiment 11 This embodiment shown in FIG. 23 is based on the configuration of the fourth embodiment and the common mode 3, and is based on the configuration of the eighth embodiment.
Working chambers A and B arranged in the direction perpendicular to the axis as in the configuration of
Alternatively, the skewed plate housing 1b is formed in a raceway space 9 having a concave space larger than the diameter of the S-circle surface. The peripheral wall surface corresponding to the housing 1b is also formed into a spherical surface G, and the skew plate 5 is formed and incorporated in the peripheral wall surface.

【0115】即ちこの実施例では、全面が球面Gの内壁
面7を有するハウジング1壁に、X軸線上の主軸受8
と、その対向側に位置するY軸線上の斜行板軸受29と
が貫設され、入力軸2は上記実施例8における構成と同
様に軸央枢17に固着させた一方側のみの軸柱が主軸受
8に軸頸を嵌挿させて軸承され、また回転ピストン3は
上記実施例9,10における構成と同様に弓形板に少な
くとも3分割にした前記中間軸4の中央部分を固着させ
た半円状板である。
That is, in this embodiment, the main bearing 8 on the X-axis is attached to the housing 1
And a skew plate bearing 29 on the Y-axis located on the opposite side thereof penetrates, and the input shaft 2 is fixed to the shaft center pivot 17 in the same manner as in the above-described eighth embodiment, and only one side of the shaft column is fixed. Are fitted in the main bearing 8 with the shaft and neck inserted therein, and the rotary piston 3 is fixed to the arc-shaped plate at least in the middle of the intermediate shaft 4 divided into at least three parts in the same manner as in the above-described embodiments 9 and 10. It is a semicircular plate.

【0116】その点斜行板5は、同一板面に両弓形面2
2,22と、球面Gの内壁面7に摺接する両弓形面2
2,22の裏面を含む外周面の外郭摺接面27とを有し
て両弓形面22,22間に少なくとも3分割にした中間
軸4の両側部分を固定させ、且つ外郭摺接面27中心に
前記斜行板軸受29を嵌挿して斜行板5本体を定位軸回
転に拘束する柄状の斜行板軸28を突設させた円形状板
である。この実施例においても矢印方向の回転を与える
と、作動室A,Bか、又はC,Dの体積は増減し、その
体積が増加する際に吸入孔Inから動作流体を吸い込ま
せ、体積が減少する際に吐出孔Outから動作流体を吐き
出させる。
The skewed plate 5 has two arcuate surfaces 2 on the same plate surface.
2 and 22 and both arcuate surfaces 2 sliding on the inner wall surface 7 of the spherical surface G
The outer sliding contact surface 27 of the outer peripheral surface including the back surfaces of the intermediate shaft 4 is fixed between the two arcuate surfaces 22, 22 at least into three parts, and the center of the outer sliding contact surface 27. The skewed plate bearing 29 is inserted into the skewed plate bearing 29, and a pattern-shaped swashed plate shaft 28 for projecting the skewed plate 5 main body to the rotation of the stereotactic shaft is protruded. Also in this embodiment, when rotation in the direction of the arrow is given, the volume of the working chambers A, B or C, D increases or decreases, and when the volume increases, the working fluid is sucked from the suction hole In, and the volume decreases. In this case, the working fluid is discharged from the discharge hole Out.

【0117】[0117]

【実施例12】図24の実施例は、上記実施例11にお
いてハウジング1の固定位置に取付け形成した斜行板軸
受29の部分をX,Y軸線の双方を通る平面上方向にの
み可動にして前記斜行板軸28位相を変化させ、斜行板
5の傾転角度(0〜±θ)を任意に変えられるようにし
たものである。
Embodiment 12 In the embodiment shown in FIG. 24, the portion of the swash plate bearing 29 which is formed at the fixed position of the housing 1 in the above-mentioned Embodiment 11 is movable only on a plane passing through both the X and Y axes. The phase of the swash plate shaft 28 is changed so that the tilt angle (0 to ± θ) of the swash plate 5 can be arbitrarily changed.

【0118】即ち、X,Y軸線の双方を通る平面上で斜
行板軸28が突き抜けるハウジング1壁をX軸線に対し
て少なくとも±θ角度の範囲を開放し、その開放部分に
斜行板軸28を嵌挿させた斜行板軸受29を取付けると
共に、図示はしないがその斜行板軸受29をX軸線を基
準に±θ角度範囲の可動を制御する制御装置CAをZ軸
線上の点e,eを支点に取付けて連動させる。結局、そ
の制御装置CAがポンプ吐出圧力に応じて斜行板5の傾
転角度(0〜±θ)を自動的に変化させ、各作動室A,
Bか、又はC,Dの軸1回転における押しのけ容積を変
化させて吐出圧力に応じた吐出量を常に確保させる。
That is, the wall of the housing 1 through which the swash plate shaft 28 penetrates on a plane passing through both the X and Y axes is opened at least within a range of ± θ angle with respect to the X axis, and the skew plate shaft is provided at the open portion. At the same time, a swash plate bearing 29 into which the swash plate 28 is inserted is attached, and although not shown, the control device CA for controlling the movement of the skew plate bearing 29 in the ± θ angle range with respect to the X axis is set to a point e on the Z axis. , And e are attached to the fulcrum and linked. Eventually, the control device CA automatically changes the tilt angle (0 to ± θ) of the swash plate 5 according to the pump discharge pressure, and the operating chambers A,
By changing the displacement volume in one rotation of the shaft B or C and D, a discharge amount corresponding to the discharge pressure is always ensured.

【0119】[0119]

【実施例1乃至12共通の態様】上記実施例の何れにお
いても、図示はしないが特に圧縮機においては、その吐
出孔Out内に逆止弁等のバルブを装着するとよい。
Embodiments Common to Embodiments 1 to 12 Although not shown in any of the above embodiments, a valve such as a check valve is preferably installed in the discharge hole Out of the compressor, especially in the compressor.

【0120】[0120]

【発明の効果】従来の流体ポンプ、及び圧縮機におい
て、中でも高圧、高速回転で使用され、且つ最も汎用的
である往復ピストンポンプ、及び往復ピストン圧縮機
は、その基本構造に円筒シリンダーとピストンとの組合
わせを有し、その基本構造と作動には前記したように多
くの問題点が存在する。
The reciprocating piston pump and the reciprocating piston compressor, which are used at high pressure and high speed rotation among the conventional fluid pumps and compressors, and are most versatile, have a cylindrical cylinder and a piston as their basic structures. And the basic structure and operation have many problems as described above.

【0121】即ち、往復ピストンポンプ、圧縮機は、部
品点数が多く構造が複雑で特殊材料を必要とし、且つ精
密加工を要する。また、往復運動機構や、吸入・吐出弁
の摩擦摩耗や故障が多く、ポンプ全体の体積に対して行
程体積(押しのけ容積)が小さくポンプ本体の寸法が大
きい。更に、運転に際して騒音、振動があり、長時間の
使用や分解、組立てには細心の注意が必要である。
That is, the reciprocating piston pump and the compressor have a large number of parts, a complicated structure, require special materials, and require precision machining. In addition, the reciprocating mechanism and the suction / discharge valve are often subject to frictional wear and failure, and the stroke volume (displacement volume) is small with respect to the entire pump volume, and the size of the pump body is large. Furthermore, there are noises and vibrations during operation, and careful use is required for long-term use, disassembly, and assembly.

【0122】それに対して本発明の球形の回転ピストン
ポンプ、圧縮機は、従来の歯車、ベーン等を含むピスト
ンポンプ、圧縮機とは全く異なった形状を示すもので球
形、球体が基本構造である。この球形、球体構造は、基
本的に衝撃荷重や熱応力に強く堅牢であり、球体と球体
内に収容される円形二つのピストン(回転ピストン3と
斜行板5)との組合わせの構造は、圧力が高くなったと
きのポンプ内部の吐出側から低圧側の吸入側へ、又はハ
ウジング内への漏れが少なく、即ち容積効率が極めて良
く、密封性能の高い作動室Fu空間が形成されて維持さ
れる。
On the other hand, the spherical rotary piston pump and compressor of the present invention have a completely different shape from the conventional piston pump and compressor including gears, vanes, etc., and have a spherical or spherical basic structure. . This spherical and spherical structure is basically strong and robust against impact load and thermal stress, and the structure of a combination of a spherical body and two circular pistons (the rotating piston 3 and the oblique plate 5) housed in the spherical body is as follows. When the pressure becomes high, the leakage from the discharge side inside the pump to the suction side on the low pressure side or into the housing is small, that is, the working space Fu space with extremely high volumetric efficiency and high sealing performance is formed and maintained. Is done.

【0123】本発明の球形の回転ピストンポンプ、圧縮
機は、入力軸2に与えた回転がピン継手関節16を経て
回転ピストン3を回転させると共に、蝶番関節19によ
って斜行板5も回転連動する。すると、回転ピストン3
と斜行板5間が押し広げられてハウジング1内壁面7と
中間軸4柱面を含む回転ピストン3と斜行板5との両弓
形面14,22で閉じられた作動室Fu空間を拡張さ
せ、その拡張する作動室Fu空間が真空状態を形成して
動作流体を吸引する。そして、回転に伴ってその1回転
毎に回転ピストン3の弓形面14は斜行板5弓形面22
に対して1往復の擺動を行い、この擺動を繰り返して連
続的に作動室Fu空間に吸入と吐出とをさせる。
In the spherical rotary piston pump and compressor of the present invention, the rotation given to the input shaft 2 rotates the rotary piston 3 via the pin joint joint 16, and the skew plate 5 is also rotated by the hinge joint 19. . Then, the rotating piston 3
And the swash plate 5 are expanded to expand the working chamber Fu space closed by the two arcuate surfaces 14 and 22 of the rotating piston 3 including the inner wall surface 7 of the housing 1 and the intermediate shaft 4 and the skew plate 5. Then, the expanded working chamber Fu space forms a vacuum state and sucks the working fluid. With the rotation, the arcuate surface 14 of the rotary piston 3 is rotated by one rotation of the
Is performed, and the suction and discharge are continuously performed into the working chamber Fu space by repeating the slide.

【0124】このように本発明の球形の回転ピストンポ
ンプ、圧縮機は、入力軸2に与えた回転力が直接回転ピ
ストン3と斜行板5との板面間を押し広げてポンピング
作用をする構造上の特徴を有する。従って、従来の往復
ピストンポンプ、及び往復動圧縮機のようなピストンの
直線的往復動による慣性力を初めとする種々の不具合の
発生要素がない上に、余分な空間の形成もなく必要不可
欠のみの空間と単純パーツから構成されてスペースの無
駄と複雑さがなく、同一の押しのけ容積を持つ他のポン
プ、圧縮機に比べても極めて小形軽量である。その上、
往復ピストンポンプ、圧縮機のような摩擦摩耗、特に偏
摩耗成分の要素がなく、且つ吸入、吐出弁の取付けも必
ずしも必要としない。尚、油圧ポンプとしての吸入側に
圧油を供給すれば、そのまま油圧ポンプの逆の働きをす
るアクチュエータの油圧モーターとして使用可能であ
る。
As described above, in the spherical rotary piston pump and compressor according to the present invention, the rotational force applied to the input shaft 2 directly expands the space between the rotary piston 3 and the swash plate 5 to perform a pumping action. Has structural features. Therefore, there are no factors that cause various problems such as inertial force due to linear reciprocation of the piston such as conventional reciprocating piston pumps and reciprocating compressors. It is made up of the space and simple parts, so that there is no waste of space and complexity, and it is extremely small and lightweight compared to other pumps and compressors having the same displacement volume. Moreover,
There is no element of friction wear, particularly uneven wear components such as reciprocating piston pumps and compressors, and it is not always necessary to install suction and discharge valves. It should be noted that if pressure oil is supplied to the suction side as a hydraulic pump, it can be used as a hydraulic motor for an actuator that acts in the opposite direction of the hydraulic pump.

【0125】また、容積効率と機械効率の積で表わされ
る全効率(ポンプ効率)は、従来ポンプにおいては一般
にピストンポンプが最も値が高いが、それに対比しても
基本的に円の集合体である本発明の流体ポンプ、圧縮機
は、上記したように摺接面が円であるから密閉に極めて
有利で漏れが少なく、高圧になるほど低下する実吐き出
し量の割合が大きく高い容積効率を示し、且つギクシャ
クのない回転するピストンによって有効軸入力の割合を
示す機械効率にも優れて、高いポンプ効率を示すもので
ある。或は、直流電動機やエンジン(内燃機関)等によ
り速度を変化させる場合においても、低速、高速域での
自吸能力に優れて騒音、振動の発生も殆どなく、特に高
い圧力レベルで連続運転が可能であると共に、連続運転
が可能な回転数も高く定格圧力、定格回転数の水準が高
い。
[0125] The total efficiency (pump efficiency) represented by the product of the volumetric efficiency and the mechanical efficiency is generally the highest in a conventional pump in a piston pump, but is basically an aggregate of circles. Certain fluid pumps and compressors of the present invention have a large sliding efficiency, which is very advantageous for sealing because the sliding contact surface is circular as described above, and shows a high volumetric efficiency in which the ratio of the actual discharge amount that decreases as the pressure increases increases. In addition, the rotating piston without jerking has excellent mechanical efficiency indicating the ratio of the effective shaft input, and exhibits high pump efficiency. Alternatively, even when the speed is changed by a DC motor or an engine (internal combustion engine), the self-priming ability at low and high speed ranges is excellent, and almost no noise and vibration are generated. It is possible, and the rotation speed at which continuous operation is possible is high, and the rated pressure and the rated rotation speed are high.

【0126】以上のように本発明の球形の回転ピストン
ポンプ、及び圧縮機は、球体構造であるから剛性、耐久
性に富み、機構が簡単平明であり、小形軽量で安価であ
り、吐出圧力が変わっても吐出量に変化が少なく、且つ
作動室Fu数を増やすことによって吐出量の脈動も少な
く出来る等、高い機械効率と容積効率とを兼ね備えた高
圧・高速の使用に耐える高性能の流体ポンプ、圧縮機で
ある。
As described above, since the spherical rotary piston pump and compressor of the present invention have a spherical structure, they are rich in rigidity, durability, simple and straightforward mechanism, small and lightweight, inexpensive, and have a low discharge pressure. Even if it changes, there is little change in the discharge amount, and the pulsation of the discharge amount can be reduced by increasing the number of working chambers Fu. High-performance fluid pump that has high mechanical efficiency and volumetric efficiency and can withstand high pressure and high speed use , Compressor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を示す基本図形の一部縦断斜視
図。
FIG. 1 is a partially longitudinal perspective view of a basic graphic showing the principle of the present invention.

【図2】基本図形の角度変化を示す斜視図。FIG. 2 is a perspective view showing a change in angle of a basic graphic.

【図3】基本図形の角度変化を示す斜視図。FIG. 3 is a perspective view showing an angle change of a basic graphic.

【図4】基本図形の角度変化を示す斜視図。FIG. 4 is a perspective view showing an angle change of a basic graphic.

【図5】基本図形の角度変化を示す斜視図。FIG. 5 is a perspective view showing a change in the angle of a basic graphic.

【図6】基本図形の角度変化を示す斜視図。FIG. 6 is a perspective view showing a change in angle of a basic graphic.

【図7】基本図形の角度変化を示す斜視図。FIG. 7 is a perspective view showing a change in angle of a basic graphic.

【図8】基本図形の角度変化を示す斜視図。FIG. 8 is a perspective view showing a change in angle of a basic graphic.

【図9】本発明における実施例1を示す側面図。FIG. 9 is a side view showing the first embodiment of the present invention.

【図10】図9の一部断面分解斜視図。FIG. 10 is an exploded perspective view, partly in section, of FIG. 9;

【図11】本発明における実施例2を示す側面図。FIG. 11 is a side view showing a second embodiment of the present invention.

【図12】図11の一部断面分解斜視図。FIG. 12 is an exploded perspective view, partly in section, of FIG. 11;

【図13】本発明における実施例3を示す側面図。FIG. 13 is a side view showing a third embodiment of the present invention.

【図14】図13の一部断面分解斜視図。FIG. 14 is an exploded perspective view, partly in section, of FIG. 13;

【図15】本発明における実施例4を示す側面図。FIG. 15 is a side view showing a fourth embodiment of the present invention.

【図16】本発明における実施例5を示す側面図。FIG. 16 is a side view showing a fifth embodiment of the present invention.

【図17】本発明における実施例6を示す側面図。FIG. 17 is a side view showing a sixth embodiment of the present invention.

【図18】本発明における実施例7を示す側面図。FIG. 18 is a side view showing a seventh embodiment of the present invention.

【図19】図18の一部断面分解斜視図。FIG. 19 is an exploded perspective view of a part of FIG. 18;

【図20】本発明における実施例8を示す側面図。FIG. 20 is a side view showing an eighth embodiment of the present invention.

【図21】本発明における実施例9を示す側面図。FIG. 21 is a side view showing a ninth embodiment of the present invention.

【図22】本発明における実施例10を示す側面図。FIG. 22 is a side view showing a tenth embodiment of the present invention.

【図23】本発明における実施例11を示す側面図。FIG. 23 is a side view showing Embodiment 11 of the present invention.

【図24】本発明における実施例12を示す側面図。FIG. 24 is a side view showing a twelfth embodiment of the present invention.

【図25】本発明における作動と作動室空間の容積変化
を示す(a)(b)(c)(d)(e)(f)の各一部
縦断側面図。
FIGS. 25A, 25B, 25C, 25D, and 25F are partial longitudinal side views each showing (a), (b), (c), (d), (e), and (f) showing an operation and a change in volume of a working chamber space in the present invention.

【図26】図25の続き、本発明における作動と作動室
空間の容積変化を示す(g)(h)(i)(j)(k)
(l)の各一部縦断側面図。
26 (g), (h), (i), (j), (k) showing the operation in the present invention and the change in the volume of the working chamber space, following FIG.
FIG.

【図27】本発明における吸入と吐出行程の作動経過を
示す正面からの模式図。
FIG. 27 is a schematic front view showing the operation progress of the suction and discharge strokes according to the present invention.

【符号の説明】[Explanation of symbols]

G 球面 O 球面Gの球心 r 球面Gの半径 X X軸線(入力軸の取付け軸線) Y Y軸線(S円面の形成軸線、斜行板の回転軸線) θ θ角度(X軸線とY軸線との鋭角側の交差角度) P P点(X軸線が球面Gに交わる点) Q Q点(Y軸線が球面Gに交わる点) U 円錐軌跡U(点P,Qを直径底面、球心Oを頂点
とする円錐軌跡) M M軸線(X軸線の垂直軸線、ピン継手関節の連結
軸線) Z Z軸線(X,Y軸線の双方に直交する直線、軌道
環軸受形成軸線) e e点(Z軸線が球面Gに交わる点) R R円面(X軸線上の水平円面) S S円面(Y軸線上の垂直円面) L L軸線(R円面の自転軸線) K K軸線(R円面とS円面との交差割線) Ka K軸線両端の一方の端点 Kb K軸線両端のもう一方の端点 Ha 半月状の空間、半月状作動室 Fu 櫛形状の空間、櫛形状作動室 In 吸い込み孔、吸入孔 Out 吐き出し孔、吐出孔 CA 斜行板の傾きを変える制御装置 A 空間A、櫛形状作動室A B 空間B、櫛形状作動室B C 空間C、櫛形状作動室C D 空間D、櫛形状作動室D 1 ハウジング 1a 回転ピストンハウジング 1b 斜行板ハウジング 2 入力軸 3 回転ピストン 4 中間軸 4a ピストン中間軸 4b 斜行板中間軸 5 斜行板 6 軌道環 7 内壁面、球面内壁 7a 回転ピストンハウジングの凹面内壁 8 主軸受 9 ハウジングの軌道隙 10 ハウジングの軌道環 11 軌道環軸 12 軌道環軸受 13 回転ピストンの球弧面 14 回転ピストンの弓形面 15 ピストン通軸孔 16 ピン継手関節 17 軸央枢 18 ピストン枢 19 蝶番関節 20 蝶番ピン 21 蝶番ピン受 22 斜行板の弓形面 23 斜行板の弦側面 24 斜行板環 25 軌道受 26 斜行板通軸孔 27 斜行板の外郭摺接面 28 斜行板軸 29 斜行板軸受
G sphere O sphere center of sphere G r radius of sphere G X X-axis (axis of attachment of input shaft) Y Y-axis (axis of formation of S-circle, rotation axis of oblique plate) θ θ angle (X-axis and Y-axis P (Point where the X axis intersects the spherical surface G) Q Q Point (Point where the Y axis intersects the spherical surface G) U Conical locus U (Points P and Q are the diameter bottom surface, spherical center O M M axis (vertical axis of X axis, coupling axis of pin joint joint) Z Z axis (straight line orthogonal to both X and Y axes, raceway bearing forming axis) e e point (Z R R circular surface (horizontal circular surface on X-axis) S S circular surface (vertical circular surface on Y-axis) L L-axis (rotational axis of R-circle) K K-axis (R Ka One end point at both ends of the K axis Kb The other end point at both ends of the K axis Ha Ha Semilunar space, semilunar work Room Fu Comb-shaped space, comb-shaped working chamber In Suction hole, suction hole Out Outlet hole, discharge hole CA Control device for changing the inclination of the swash plate A space A, comb-shaped working room A B space B, comb-shaped working room BC space C, comb-shaped operating chamber CD space D, comb-shaped operating chamber D 1 housing 1a rotating piston housing 1b swash plate housing 2 input shaft 3 rotating piston 4 intermediate shaft 4a piston intermediate shaft 4b swash plate intermediate shaft 5 Swash plate 6 Orbital ring 7 Inner wall surface, spherical inner wall 7a Concave inner wall of rotary piston housing 8 Main bearing 9 Orbital gap of housing 10 Orbital ring of housing 11 Orbital ring shaft 12 Orbital ring bearing 13 Spherical arc surface of rotary piston 14 Rotary piston Arcuate surface 15 Piston through hole 16 Pin joint joint 17 Center pivot 18 Piston pivot 19 Hinge joint 20 Hinge pin 21 Hinge pin receiver 22 Bow surface of swash plate 23 Chordal side surface of swash plate 24 Skew plate ring 25 Track bearing 26 Skew plate shaft hole 27 Sliding plate outer sliding contact surface 28 Skew plate shaft 29 Skew plate bearing

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内壁面に球面を有するハウジング(1)
において、その球面内壁(7)の球心(O)を通る直線
上のハウジング(1)壁に主軸受(8)を貫設して直軸
状をなす入力軸(2)の軸頸を回転自由に嵌挿させ且つ
その入力軸(2)に角度(θ)を有して球心(O)で交
差する軸線の垂直平面上のハウジング(1)内壁面に周
回溝の軌道隙(9)を削設し、 またハウジング(1)内には前記入力軸(2)と球心
(O)で直交する直線を連結軸線として入力軸(2)上
を水平方向に少なくとも角度(θ×2)の範囲を揺動し
且つ外周面を前記球面内壁(7)と摺接する球弧面(1
3)に形成しその球弧面(13)を弓形の弧とする弦側
に円柱状の中間軸(4)を合体させて板面に弓形面(1
4)を持つ略板状の回転ピストン(3)を入力軸(2)
の球心(O)の部分に枢結し、 その上ハウジング(1)内には前記中間軸(4)上にお
いて前記回転ピストン(3)と蝶番状に交差し縁部外周
を環状に形成した斜行板環(24)が前記軌道隙(9)
に回転可能に嵌合して拘束されると共に中間軸(4)の
両底面とその両底面に対接する斜行板環(24)の対向
両側部との各々にピンとピン受孔の互いに与する連結素
子を有して互いが少なくとも角度(θ×2)範囲を擺動
可能に連結し且つ板面に弓形面(22)を持つ円形状板
の斜行板(5)を設け、 すると斜行板(5)がハウジング(1)の前記球面内壁
(7)を閉鎖して半球状空間の半月状作動室(Ha)を
形成し且つその半月状作動室(Ha)を回転ピストン
(3)が櫛形状空間の櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と吐出孔(Out)とを適宜設けたことを特徴とする
球形の回転ピストンポンプ、圧縮機。
1. A housing (1) having a spherical surface on an inner wall surface.
In the above, the main bearing (8) is pierced through the wall of the housing (1) on a straight line passing through the spherical center (O) of the spherical inner wall (7) to rotate the shaft and neck of the input shaft (2) having a straight axis. A raceway groove (9) on the inner wall surface of the housing (1) on the vertical plane of an axis which is freely inserted and whose axis (2) intersects with the input shaft (2) at an angle (θ) at an angle (θ). In the housing (1), at least an angle (θ × 2) in the horizontal direction on the input shaft (2) with a straight line orthogonal to the input shaft (2) at the spherical center (O) as a connection axis in the housing (1). The spherical arc surface (1) swinging in the range of
3), and a cylindrical intermediate shaft (4) is united with the chord side having a spherical arc surface (13) having an arcuate arc, and an arcuate surface (1) is formed on the plate surface.
4) A substantially plate-shaped rotating piston (3) having an input shaft (2)
Pivotally connected to the portion of the spherical center (O) of the above, and in the upper housing (1), hingedly intersect with the rotary piston (3) on the intermediate shaft (4), and the outer periphery of the edge is formed in a ring shape. The skew plate ring (24) is the raceway gap (9)
And a pin and a pin receiving hole are provided to each of both bottom surfaces of the intermediate shaft (4) and opposing opposite side portions of the oblique plate ring (24) in contact with the both bottom surfaces. A skew plate (5) of a circular plate having a connection element and being slidably connected to each other at least in an angle (θ × 2) range and having an arcuate surface (22) on a plate surface; (5) Closes the spherical inner wall (7) of the housing (1) to form a hemispherical working chamber (Ha) of a hemispherical space, and the rotating piston (3) combs the half-moon working chamber (Ha). It is formed in the comb-shaped working chamber (Fu) of the shape space, and is further exposed to the comb-shaped working chamber (Fu) so that the suction hole (I
and n) and a discharge hole (Out) as required.
【請求項2】 内壁面に球面を有するハウジング(1)
において、その球面内壁(7)の球心(O)を通る直線
上のハウジング(1)壁に主軸受(8)を貫設して直軸
状をなす入力軸(2)の軸頸を回転自由に嵌挿させ且つ
その入力軸(2)に角度(θ)を有して球心(O)で交
差する軸線の垂直平面上のハウジング(1)内壁面
(7)円周に輪体状の軌道環(10)を突設し、 またハウジング(1)内には前記入力軸(2)と球心
(O)で直交する直線を連結軸線として入力軸(2)上
を水平方向に少なくとも角度(θ×2)の範囲を揺動し
且つ外周面を前記球面内壁(7)と摺接する球弧面(1
3)に形成して板面に弓形面(14)を持つ略板状の回
転ピストン(3)を入力軸(2)の球心(O)の部分に
枢結し、 その上ハウジング(1)内には前記回転ピストン(3)
と蝶番状に交差して弓形面(22)の板面と外周面に周
回する溝の軌道受(25)とを有しその軌道受(25)
に前記軌道環(10)が回転可能に嵌合する円形状板の
斜行板(5)を設け、 その斜行板(5)と回転ピストン(3)の交差部分に円
柱状の中間軸(4)を両底面に平行な切り口面で分割す
ると共にその各々を斜行板(5)と回転ピストン(3)
の競合しない何れかに固着させ且つその分割接合面の各
々にピンとピン受孔の互いに与する連結素子を有して互
いが少なくとも角度(θ×2)範囲を擺動可能に連結
し、 すると斜行板(5)がハウジング(1)の前記球面内壁
(7)を閉鎖して半球状空間の半月状作動室(Ha)を
形成し且つその半月状作動室(Ha)を回転ピストン
(3)が櫛形状空間の櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と吐出孔(Out)とを適宜設けたことを特徴とする
球形の回転ピストンポンプ、圧縮機。
2. A housing (1) having a spherical surface on an inner wall surface.
In the above, the main bearing (8) is pierced through the wall of the housing (1) on a straight line passing through the spherical center (O) of the spherical inner wall (7) to rotate the shaft and neck of the input shaft (2) having a straight axis. The housing (1) has an inner wall surface (7) on a vertical plane of an axis intersecting at an angle (θ) with its input shaft (2) at a spherical center (O) with a free axis. And a ring (10) protruding from the input shaft (2) is provided in the housing (1) at least in a horizontal direction on the input shaft (2) with a straight line orthogonal to the input shaft (2) at the spherical center (O) as a connection axis. A spherical arc surface (1) swinging in a range of an angle (θ × 2) and slidingly contacting the outer peripheral surface with the spherical inner wall (7)
A substantially plate-shaped rotary piston (3) formed in 3) and having an arcuate surface (14) on the plate surface is pivotally connected to the portion of the spherical center (O) of the input shaft (2), and the housing (1) Inside the rotating piston (3)
And a track bearing (25) of a groove intersecting in a hinge shape and circling around an arcuate surface (22) and an outer peripheral surface thereof.
A swash plate (5) of a circular plate into which the race ring (10) is rotatably fitted is provided at a crossing portion of the swash plate (5) and the rotating piston (3). 4) is divided by cut surfaces parallel to both bottom surfaces, and each of them is divided into a swash plate (5) and a rotating piston (3).
And a connecting element for providing a pin and a pin receiving hole to each other at each of the divided joining surfaces thereof so as to be able to slide at least in an angle (θ × 2) range. A plate (5) closes the spherical inner wall (7) of the housing (1) to form a hemispherical working chamber (Ha) of a hemispherical space, and the rotating piston (3) divides the semi-lunar working chamber (Ha). It is formed in the comb-shaped working chamber (Fu) of the comb-shaped space, and is further exposed to the comb-shaped working chamber (Fu).
and n) and a discharge hole (Out) as required.
【請求項3】 内壁面に球面を有するハウジング(1)
において、その球面内壁(7)の球心(O)を通る直線
上のハウジング(1)壁に主軸受(8)を貫設して直軸
状をなす入力軸(2)の軸頸を回転自由に嵌挿させ且つ
その入力軸(2)に角度(θ)を有して球心(O)で交
差する軸線と入力軸(2)の軸線との双方に球心(O)
で直交する直線上のハウジング(1)対向両壁に軌道環
軸受(12)の円孔を設けその両軌道環軸受(12)に
はハウジング(1)の球面内壁(7)内で回動可能に設
けた輪体からなる軌道環(6)の対向外周面に固着する
柄状の軌道環軸(11)を回動自由に軸承させ、 またハウジング(1)内には前記入力軸(2)と球心
(O)で直交する直線を連結軸線として入力軸(2)上
を水平方向に少なくとも角度(θ×2)の範囲を揺動し
且つ外周面を前記球面内壁(7)と摺接する球弧面(1
3)に形成して板面に弓形面(14)を持つ略板状の回
転ピストン(3)を入力軸(2)の球心(O)の部分に
枢結し、 その上ハウジング(1)内には前記回転ピストン(3)
と蝶番状に交差して弓形面(22)の板面と外周面に周
回する溝の軌道受(25)とを有しその軌道受(25)
に前記軌道環(6)が回転可能に嵌合する円形状板の斜
行板(5)を設け、 その斜行板(5)と回転ピストン(3)の交差部分に円
柱状の中間軸(4)を両底面に平行な切り口面で分割す
ると共にその各々を斜行板(5)と回転ピストン(3)
の競合しない何れかに固着させ且つその分割接合面の各
々にピンとピン受孔の互いに与する連結素子を有して互
いが少なくとも角度(θ×2)範囲を擺動可能に連結
し、 そして前記軌道環(6)には前記入力軸(2)に対して
その軌道環(6)の傾転角度を角度0から角度±θ範囲
の何れかを選択する制御装置(CA)を前記軌道環軸
(11)に装着して連動させ、 すると斜行板(5)がハウジング(1)の前記球面内壁
(7)を閉鎖して半球状空間の半月状作動室(Ha)を
形成し且つその半月状作動室(Ha)を回転ピストン
(3)が櫛形状空間の櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と吐出孔(Out)とを適宜設けたことを特徴とする
球形の回転ピストンポンプ、圧縮機。
3. A housing (1) having a spherical surface on an inner wall surface.
In the above, the main bearing (8) is pierced through the wall of the housing (1) on a straight line passing through the spherical center (O) of the spherical inner wall (7) to rotate the shaft and neck of the input shaft (2) having a straight axis. The spherical center (O) is inserted into both the axis which is freely inserted and intersects with the input axis (2) at an angle (θ) at the spherical center (O) and the axis of the input axis (2).
The housing (1) has a circular hole in a raceway ring bearing (12) on both opposing walls, and the raceway ring bearing (12) is rotatable within the spherical inner wall (7) of the housing (1). A handle-shaped race ring shaft (11) fixed to the opposing outer peripheral surface of the race ring (6) composed of a ring body provided on the shaft is freely rotatably supported, and the input shaft (2) is provided in the housing (1). The input shaft (2) is swung horizontally on the input shaft (2) at least in the range of an angle (θ × 2) with a straight line orthogonal to the spherical center (O) as a connection axis, and the outer peripheral surface is in sliding contact with the spherical inner wall (7). Spherical surface (1
A substantially plate-shaped rotary piston (3) formed in 3) and having an arcuate surface (14) on the plate surface is pivotally connected to the portion of the spherical center (O) of the input shaft (2), and the housing (1) Inside the rotating piston (3)
And a track bearing (25) of a groove intersecting in a hinge shape and circling around an arcuate surface (22) and an outer peripheral surface thereof.
A skew plate (5) of a circular plate into which the race ring (6) is rotatably fitted, and a cylindrical intermediate shaft (5) is provided at the intersection of the skew plate (5) and the rotary piston (3). 4) is divided by cut surfaces parallel to both bottom surfaces, and each of them is divided into a swash plate (5) and a rotating piston (3).
A pin and a pin receiving hole are provided on each of the divided joint surfaces so that the pins and the pin receiving holes are provided to each other so as to be slidable at least in an angle (θ × 2) range; The ring (6) is provided with a control device (CA) for selecting a tilt angle of the orbital ring (6) from the angle 0 to an angle ± θ with respect to the input shaft (2). 11), the swash plate (5) closes the spherical inner wall (7) of the housing (1) to form a hemispherical working chamber (Ha) of a hemispherical space, and the half moon The working chamber (Ha) is formed in the comb-shaped working chamber (Fu) of the comb-shaped space by the rotary piston (3), and is further exposed to the comb-shaped working chamber (Fu).
and n) and a discharge hole (Out) as required.
【請求項4】 内壁面に球面を有するハウジング(1)
において、その球面内壁(7)の球心(O)を通る直線
上のハウジング(1)壁に主軸受(8)を貫設して直軸
状をなす入力軸(2)の軸頸を回転自由に嵌挿させ且つ
その入力軸(2)に角度(θ)を有して球心(O)で交
差する直線上のハウジング(1)壁にも斜行板軸受(2
9)の円孔を主軸受(8)の対向側に設け、 またハウジング(1)内には前記入力軸(2)と球心
(O)で直交する直線を連結軸線として入力軸(2)上
を水平方向に少なくとも角度(θ×2)の範囲を揺動し
且つ外周面を前記球面内壁(7)と摺接する球弧面(1
3)に形成して板面に弓形面(14)を持つ半円状板の
回転ピストン(3)を入力軸(2)の球心(O)の部分
に枢結し、 その上ハウジング(1)内には前記回転ピストン(3)
と蝶番状に交差してハウジング(1)内壁面(7)に摺
接する外周面と板面に弓形面(22)とを有し且つその
弓形面(22)の裏面側中心部に前記斜行板軸受(2
9)を回転自由に嵌挿する柄状の斜行板軸(28)を有
して円形状をなす斜行板(5)を設け、 その斜行板(5)と回転ピストン(3)の交差部分に円
柱状の中間軸(4)を両底面に平行な切り口面で分割す
ると共にその各々を斜行板(5)と回転ピストン(3)
の競合しない何れかに固着させ且つその分割接合面の各
々にピンとピン受孔の互いに与する連結素子を有して互
いが少なくとも角度(θ×2)範囲を擺動可能に連結
し、 すると斜行板(5)がハウジング(1)の前記球面内壁
(7)を閉鎖して半球状空間の半月状作動室(Ha)を
形成し且つその半月状作動室(Ha)を回転ピストン
(3)が櫛形状空間の櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と吐出孔(Out)とを適宜設けたことを特徴とする
球形の回転ピストンポンプ、圧縮機。
4. A housing (1) having a spherical surface on an inner wall surface.
In the above, the main bearing (8) is pierced through the wall of the housing (1) on a straight line passing through the spherical center (O) of the spherical inner wall (7) to rotate the shaft and neck of the input shaft (2) having a straight axis. The skew plate bearing (2) is also fitted on the wall of the housing (1) on a straight line which is freely inserted and intersects with the input shaft (2) at an angle (θ) at a spherical center (O).
The circular hole of 9) is provided on the opposite side of the main bearing (8), and a straight line orthogonal to the input shaft (2) at the spherical center (O) is connected to the input shaft (2) in the housing (1). A spherical arc surface (1) swinging upward at least in the range of an angle (θ × 2) and slidingly contacting the outer peripheral surface with the spherical inner wall (7).
A semicircular plate rotating piston (3) formed in 3) and having an arcuate surface (14) on the plate surface is pivotally connected to the portion of the spherical center (O) of the input shaft (2), and the housing (1) ) Contains the rotating piston (3)
And an outer peripheral surface which intersects with the inner wall surface (7) of the housing (1) so as to slidably contact the inner wall surface (7) and an arcuate surface (22) on the plate surface, and the oblique movement is provided at the center of the back surface side of the arcuate surface (22). Plate bearing (2
9) is provided a circular swash plate (5) having a handle-shaped swash plate shaft (28) into which the swash plate (5) and the rotating piston (3) are rotatably fitted. At the intersection, a cylindrical intermediate shaft (4) is divided by a cut surface parallel to both bottom surfaces, and each is divided into a swash plate (5) and a rotating piston (3).
And a connecting element for providing a pin and a pin receiving hole to each other at each of the divided joining surfaces thereof so as to be able to slide at least in an angle (θ × 2) range. A plate (5) closes the spherical inner wall (7) of the housing (1) to form a hemispherical working chamber (Ha) of a hemispherical space, and the rotating piston (3) divides the semi-lunar working chamber (Ha). It is formed in the comb-shaped working chamber (Fu) of the comb-shaped space, and is further exposed to the comb-shaped working chamber (Fu).
and n) and a discharge hole (Out) as required.
JP2000197673A 2000-06-09 2000-06-30 Spherical rotary piston pump, compressor Expired - Fee Related JP3484604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197673A JP3484604B2 (en) 2000-06-09 2000-06-30 Spherical rotary piston pump, compressor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-174280 2000-06-09
JP2000174280 2000-06-09
JP2000197673A JP3484604B2 (en) 2000-06-09 2000-06-30 Spherical rotary piston pump, compressor

Publications (2)

Publication Number Publication Date
JP2002061586A true JP2002061586A (en) 2002-02-28
JP3484604B2 JP3484604B2 (en) 2004-01-06

Family

ID=26593685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197673A Expired - Fee Related JP3484604B2 (en) 2000-06-09 2000-06-30 Spherical rotary piston pump, compressor

Country Status (1)

Country Link
JP (1) JP3484604B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107503A1 (en) * 2006-03-21 2007-09-27 SNC Promex AS Piston unit of rotary pump
US7457115B2 (en) * 2006-12-08 2008-11-25 Lenovo (Singapore) Pte. Ltd. Fluid impelling device and electronic apparatus
WO2011038617A1 (en) * 2009-09-30 2011-04-07 马丽莉 Spherical expansion compressor adapted to variable working conditions
CN106494190A (en) * 2016-12-21 2017-03-15 辛集市华仪汽车仪表有限公司 A kind of vehicle-mounted pendulum wind formula air conditioning window air port
EP2588717B1 (en) * 2010-07-01 2023-06-07 Be-Simplex B.V. Rotary machine for compression and decompression

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107503A1 (en) * 2006-03-21 2007-09-27 SNC Promex AS Piston unit of rotary pump
US7457115B2 (en) * 2006-12-08 2008-11-25 Lenovo (Singapore) Pte. Ltd. Fluid impelling device and electronic apparatus
WO2011038617A1 (en) * 2009-09-30 2011-04-07 马丽莉 Spherical expansion compressor adapted to variable working conditions
JP2013506083A (en) * 2009-09-30 2013-02-21 マー, リーリー Spherical expansion and compression machine for changing working conditions
US8956128B2 (en) 2009-09-30 2015-02-17 Xi'an Zhengan Environmental Technology Co., Ltd. Spherical expansion compressor adapted to variable working conditions
EP2588717B1 (en) * 2010-07-01 2023-06-07 Be-Simplex B.V. Rotary machine for compression and decompression
CN106494190A (en) * 2016-12-21 2017-03-15 辛集市华仪汽车仪表有限公司 A kind of vehicle-mounted pendulum wind formula air conditioning window air port

Also Published As

Publication number Publication date
JP3484604B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
US7670121B2 (en) Spherical fluid machines
JP6573605B2 (en) Spin pump with planetary rotation mechanism
JPH0458086A (en) Fluid compressor
KR970009955B1 (en) Twin roller pump
US6241493B1 (en) Spherical fluid machine with control mechanism
JP3484604B2 (en) Spherical rotary piston pump, compressor
CN101446287B (en) Oil pump for engine
WO2005119059A1 (en) Displacer machine, particularly a hydraulic motor or pump
JPH06272671A (en) Rotary piston machine
JP4609496B2 (en) Rotary fluid machine
EP1409845B1 (en) Spherical fluid machine with flow control mechanism
US20080075616A1 (en) Orbiting Valve For A Reciprocating Pump
JPH074487A (en) Crank driving mechanism
JPH0219684A (en) Fluid compressor
CN1233927C (en) Rotary piston type fluid element
RU2357097C2 (en) Rotor-piston pump-compressor
JPH03140659A (en) Rotational motion-reciprocative motion converter
JPH11230046A (en) Reciprocating pump
CN102812249A (en) Improved Fluid Compressor And/or Pump Arrangement
KR100577706B1 (en) Turbo capacity type pump
RU2010983C1 (en) Spheroidal machine
JPH11125191A (en) Closed compressor
RU2374457C2 (en) Volumetric nutation machine
JPH08121326A (en) Piston type aspiration pump
JP2006170175A (en) Rotary pump

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees