JP3484604B2 - Spherical rotary piston pump, compressor - Google Patents

Spherical rotary piston pump, compressor

Info

Publication number
JP3484604B2
JP3484604B2 JP2000197673A JP2000197673A JP3484604B2 JP 3484604 B2 JP3484604 B2 JP 3484604B2 JP 2000197673 A JP2000197673 A JP 2000197673A JP 2000197673 A JP2000197673 A JP 2000197673A JP 3484604 B2 JP3484604 B2 JP 3484604B2
Authority
JP
Japan
Prior art keywords
plate
spherical
housing
rotary piston
input shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000197673A
Other languages
Japanese (ja)
Other versions
JP2002061586A (en
Inventor
富美夫 大倉
Original Assignee
富美夫 大倉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富美夫 大倉 filed Critical 富美夫 大倉
Priority to JP2000197673A priority Critical patent/JP3484604B2/en
Publication of JP2002061586A publication Critical patent/JP2002061586A/en
Application granted granted Critical
Publication of JP3484604B2 publication Critical patent/JP3484604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C9/00Oscillating-piston machines or engines
    • F01C9/005Oscillating-piston machines or engines the piston oscillating in the space, e.g. around a fixed point

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、外部から供給され
る動力によって密閉容器内を真空にして流体を吸い込
み、且つ圧力を加えて別の場所に移動させる装置とし
て、又は気体を圧縮する装置として、球形状のハウジン
グ1内に対遇して回転する回転ピストン3と斜行板5と
の回転板を組込み、その二つの回転板間を真空部分に形
成すると共に、その間隙容積を変化させて吸い込みと吐
き出しとをさせる新規な流体ポンプ、及び圧縮機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for making a vacuum in a closed container by a power supplied from the outside to suck a fluid and applying a pressure to move it to another place, or as a device for compressing a gas. By incorporating a rotary plate of a rotary piston 3 and a skew plate 5 which rotate in a spherical shape into a housing 1 in a spherical shape, a vacuum portion is formed between the two rotary plates, and the gap volume is changed. The present invention relates to a novel fluid pump and a compressor that perform suction and discharge.

【0002】[0002]

【従来の技術】従来技術における容積形ポンプには、外
接形や内接形の歯車ポンプ、平衡形や非平衡形のベーン
ポンプ、アキシャル形やラジアル形やレシプロ形に大別
されるピストンポンプ等がある。その中で油圧ポンプと
して、歯車ポンプでは殆どが外接形歯車ポンプが使われ
ており、ベーンポンプでは平衡形(定吐出量形)ポンプ
が一般に使用され、またピストンポンプではアキシャル
形ポンプの斜軸式(ベント・アクシス式)や斜板固定式
(スワッシュ・プレート式)が代表的である。
2. Description of the Related Art Displacement type pumps in the prior art include circumscribed and inscribed gear pumps, balanced and unbalanced vane pumps, piston pumps roughly classified into axial type, radial type and reciprocating type. is there. Among them, as a hydraulic pump, most of the gear pumps are circumscribing type gear pumps, vane pumps are generally balanced type (constant discharge type) pumps, and piston pumps are of the axial type of axial pumps ( Bent axis type) and swash plate fixed type (swash plate type) are typical.

【0003】外接形歯車ポンプは、噛み合う1対の外接
歯車がその外周と側面とを密接させたケーシングの中で
回転すると、歯車の噛み合いの離れ部に真空部分(空
間)が出来て吸い込み口から作動流体が吸い込まれると
共に、この作動流体は吸入口の歯溝に充満し、この歯溝
に溜まった作動流体が歯車の回転によってケーシングの
内周に沿って吐出口まで運ばれ、吐出口の歯車の噛み合
いによる容積の減少により押し出されるものである。こ
の歯車ポンプは、ピストンポンプやベーンポンプに比較
して構造が単純で部品点数も少なく製造コストも低い
が、他の2種類のポンプと異なり可変吐出量ポンプを作
ることが出来ない。
In the external gear pump, when a pair of external gears meshing with each other rotate in a casing in which the outer periphery and the side face are in close contact with each other, a vacuum portion (space) is formed at a portion where the gears mesh with each other, and a vacuum portion (space) is generated from the suction port. As the working fluid is sucked, this working fluid fills the tooth groove of the suction port, and the working fluid collected in this tooth groove is carried to the discharge port along the inner circumference of the casing by the rotation of the gear, and the gear of the discharge port It is extruded due to the decrease in volume due to the meshing of. This gear pump has a simpler structure, a smaller number of parts, and a lower manufacturing cost than piston pumps and vane pumps, but unlike the other two types of pumps, variable discharge pumps cannot be manufactured.

【0004】平衡形ベーンポンプは、定吐出量形ポンプ
であるが非平衡形の可変吐出量形ベーンポンプよりも高
い圧力で使用が可能である。この平衡形ベーンポンプ
は、ケーシングの中に固定されたカムリングと、そのカ
ムリングの側面に押し付け固定したブッシングと、その
カムリングとブッシングとに囲われた中に駆動軸(入力
軸)に固定したローター、及びベーンが組込まれて構成
される。ローターには半径方向に切り込んだ溝があって
この中でベーンが自由に滑動するが、それは軸とロータ
ーとカムリングとが同心であってカムリングの内側の曲
線がほぼ楕円形をしているために駆動される遠心力によ
ってベーンは常にカムリング内側に密着し、吸入・吐出
作用を行いながら回転するものである。尚、この平衡形
ベーンポンプは、二つずつの吸入・吐出ポートのそれぞ
れが対称な位置にある為、圧力分布が軸対称になって軸
に直角の荷重がかからない。
Although the balanced vane pump is a constant discharge type pump, it can be used at a higher pressure than the non-balanced variable discharge vane pump. This balanced vane pump includes a cam ring fixed in a casing, a bushing pressed and fixed to the side surface of the cam ring, a rotor fixed to a drive shaft (input shaft) surrounded by the cam ring and the bushing, and It is constructed by incorporating vanes. The rotor has a groove cut in the radial direction in which the vane slides freely, because the shaft, the rotor and the cam ring are concentric and the inside curve of the cam ring is almost oval. The vane is always brought into close contact with the inside of the cam ring by the centrifugal force to be driven, and rotates while performing suction and discharge actions. In this balanced vane pump, since the two intake and discharge ports are located symmetrically to each other, the pressure distribution is axisymmetric and the load perpendicular to the axis is not applied.

【0005】アキシャル形斜軸式ピストンポンプは、ポ
ンプハウジングの中に駆動軸と回転するシリンダーブロ
ックとが一定角度(20〜30度)を持って装着され、
そのシリンダーブロック内には軸平行にシリンダーが円
周上等間隔に形成され、その各々にピストンが挿入され
る。そのピストンの各々はピストンロッド、及びピスト
ンロッド端部のピストンロッドエンドベアリングを介し
て駆動軸の駆動軸フランジと連結すると共に、シリンダ
ーブロックの中で往復運動をして吸入・吐出作用を行う
が、傾転角度は固定されずに0〜±25度、又は30度
に連続的に変化させることによってピストンのストロー
クを変え、吐出流量を可変にするものである。
In the axial type oblique shaft type piston pump, the drive shaft and the rotating cylinder block are mounted in the pump housing at a constant angle (20 to 30 degrees).
In the cylinder block, cylinders are formed parallel to the axis at equal intervals on the circumference, and pistons are inserted into the cylinders. Each of the pistons is connected to the drive shaft flange of the drive shaft through the piston rod and the piston rod end bearing at the end of the piston rod, and reciprocates in the cylinder block to perform suction and discharge operations. The tilt angle is not fixed but is continuously changed from 0 to ± 25 degrees, or 30 degrees, thereby changing the stroke of the piston and making the discharge flow rate variable.

【0006】また、アキシャル形斜板式(スワッシュ・
プレート式)ピストンポンプは、上記斜軸式ピストンポ
ンプと同様にピストンがシリンダーブロック内を往復運
動をするが、斜軸式ピストンポンプと違うのはシャフト
が駆動されるとシリンダーブロックが回転し、且つ中に
配列されたピストンの各々がシューを介して傾転可能な
斜板上を摺動し、斜板の傾きに応じたストロークで往復
運動をして吸入・吐出のポンプ作用を行うものである。
この斜板式ピストンポンプは、斜軸式ピストンポンプに
比べて部品点数が少なく小形であり、機構も簡単で可変
吐出量形にするにも斜板の傾きを変えるだけで可能であ
る。
Axial swash plate type (swash,
In the plate type piston pump, the piston reciprocates in the cylinder block similarly to the above-mentioned oblique shaft type piston pump, but unlike the oblique shaft type piston pump, the cylinder block rotates when the shaft is driven, and Each of the pistons arranged inside slides on a tiltable swash plate through a shoe, and reciprocates with a stroke according to the tilt of the swash plate to perform pumping action of suction and discharge. .
This swash plate type piston pump has a smaller number of parts and is smaller than the swash plate type piston pump, and has a simple mechanism and can be made into a variable discharge type by simply changing the inclination of the swash plate.

【0007】これらのピストンポンプは、歯車ポンプや
ベーンポンプに比べてシリンダーとピストンとの摺動部
分が長いために作動流体の漏れが少く高い圧力で使用が
可能であると共に、軽量小形で高速回転が可能であるか
ら原動機や直流電動機に直結することが出来る。また、
ピストンポンプは、プランジャ形であるから理論的に9
0%以上の効率が得られると同時に、吐出流体の脈動が
殆どなく吐出量を無段階に調整することや吐出を逆にす
ることも出来る可変吐出量形のポンプであり、騒音が小
さく寿命が長いポンプである反面、以下のような欠点や
問題点を包含する。
Since these piston pumps have a longer sliding portion between the cylinder and the piston than gear pumps and vane pumps, they can be used at a high pressure with less leakage of working fluid, and are lightweight, compact and capable of high-speed rotation. Since it is possible, it can be directly connected to a prime mover or a DC motor. Also,
Since the piston pump is a plunger type, theoretically 9
It is a variable discharge type pump that can achieve an efficiency of 0% or more and at the same time has little pulsation of the discharge fluid and can adjust the discharge amount steplessly and reverse the discharge amount. Although it is a long pump, it includes the following drawbacks and problems.

【0008】[0008]

【従来技術の問題点】即ち、従来の流体ポンプ、取り分
け油圧ポンプにおけるピストンポンプは、歯車ポンプや
ベーンポンプよりも複雑な構造で部品点数も多く、特殊
材料を必要とする上、精密加工を要するのでコスト高で
ある。また、このピストンポンプは、ピストン、又はプ
ランジャの往復運動によって吸入・吐出のサイクルを繰
り返すものであるから、この運動機構、並びに吸入・吐
出弁の摩耗や故障が多く、機構上、或は脈動や吐出量の
変動を抑えるためにシリンダーブロック内に5〜9本の
ピストンが差し込まれるもので、ポンプ全体の容積に対
して行程体積の有効容量が小さくポンプ本体の寸法が大
きい。更に、このピストンポンプにおいては、長時間の
使用による油性の変質や、分解、組立て、運転に際して
は塵挨混入に細心の注意を要するものである。
[Problems of the prior art] That is, piston pumps in conventional fluid pumps, especially hydraulic pumps, have a more complicated structure than gear pumps and vane pumps, have many parts, require special materials, and require precision machining. The cost is high. Further, since this piston pump repeats the intake / discharge cycle by the reciprocating motion of the piston or the plunger, the motion mechanism and the intake / discharge valve are often worn or broken, and the mechanism or pulsation causes Five to nine pistons are inserted into the cylinder block in order to suppress the fluctuation of the discharge amount, and the effective volume of the stroke volume is small relative to the volume of the entire pump, and the size of the pump body is large. Further, in this piston pump, it is necessary to pay close attention to oil-induced deterioration due to long-term use and dust contamination during disassembly, assembly and operation.

【0009】因にベーンポンプにおいては、ベーン、及
びローターはカムリングとブッシングに挟まれて回転す
るのでその接触面積が大きく、各部の直角度、寸法等に
高い工作精度が要求される上に加工面の粗さが問題にな
ることが多く、ベーンは回転毎に繰り返し応力を受ける
ので破損する恐れがある。また、接触面積が大きいので
体積効率をよくするためには油の粘度を定めて隙間を小
さくさせる必要から作動油の粘度が制限されると共に、
使用油に塵挨が混入したり、油自身が劣化しているとそ
の機能を著しく阻害するから油の保守には注意が必要で
ある。即ち、前記歯車ポンプは一部を除いて大体が低圧
・低速回転の小馬力のところで使用され、アキシャル形
等のピストンポンプは高圧・高速回転のところで運転さ
れ、またベーンポンプはそれらの中間的性能である。
Incidentally, in the vane pump, the vane and the rotor are sandwiched between the cam ring and the bushing and rotate, so that the contact area is large, and high machining accuracy is required for the squareness and dimensions of each part, and the machined surface Roughness is often a problem and the vanes are subject to repeated stresses with each revolution and can be damaged. In addition, since the contact area is large, the viscosity of the hydraulic oil is limited because it is necessary to determine the viscosity of the oil and reduce the gap in order to improve the volumetric efficiency.
If dust is mixed in the used oil or if the oil itself deteriorates, its function will be significantly impaired, so care must be taken when maintaining the oil. That is, the above gear pumps are mostly used at low horsepower at low pressure and low speed rotation except for some parts, piston pumps such as axial type are operated at high pressure and high speed rotation, and vane pumps have intermediate performance between them. is there.

【0010】加えて、圧縮機において述べれば、容積圧
縮機としてベーン圧縮機、ルーツブロワー、ナッシュポ
ンプ、スクリュー圧縮機等の他に最も広く使用されてい
る往復動圧縮機がある。その往復動圧縮機の圧縮機本体
は、ピストンを駆動する往復動部分、シリンダー、シリ
ンダーヘッド等の容器部分、吸入弁・吐出弁、及びこれ
に接続する配管等の部分とに分かれるが、クランク軸の
回転はコネクティングロッド、ピストンロッドを経てピ
ストンに往復運動をさせ、そのピストンの往復動によっ
て吸入口から流入した空気(或はガス体)が圧縮される
と共に、吐出口から高圧・高温となって吐出されるもの
である。この往復動圧縮機は、他の圧縮機に比べて構造
が強固で故障も少ない上に取扱い保守管理も比較的楽で
効率もよいが、構造が複雑で部品数も多く大型になり、
製造コストも高く、而も振動が大きく、概して基礎、据
付けに大きな工事を要し、保守管理がよくないと過熱し
て爆発や火災を起こす危険もある。
In addition to the compressors, there are reciprocating compressors most widely used in addition to vane compressors, roots blowers, Nash pumps, screw compressors and the like as volume compressors. The compressor body of the reciprocating compressor is divided into a reciprocating part that drives a piston, a container part such as a cylinder and a cylinder head, a suction valve / discharge valve, and a part such as a pipe connected to the crankshaft. Rotation causes the piston to reciprocate through the connecting rod and piston rod, and the reciprocating motion of the piston compresses the air (or gas) that has flowed in from the suction port, and the high pressure and high temperature from the discharge port. It is what is ejected. This reciprocating compressor has a stronger structure and fewer failures than other compressors, and it is relatively easy to handle and maintain and is efficient, but it has a complicated structure and a large number of parts.
The manufacturing cost is high, the vibration is large, the large amount of work is required for the foundation and installation, and there is a risk of explosion and fire due to overheating if maintenance is poor.

【0011】[0011]

【発明が解決しようとする課題】上記の従来の流体ポン
プ、及び圧縮機が抱えている多くの問題点に鑑み、球状
のハウジングとその中で回転する1対の回転板とで構成
される本発明の流体ポンプは、吐出される作動流体(吐
出油)の脈動が少ない上に、吐出圧力が変わっても吐出
量に変化が少なく、また圧力が高くなったときのポンプ
内部の吐出側から低圧の吸入側、又はケース内への漏れ
も少なく、低速・高速域でも高い自吸性能と高い全効率
(ポンプ効率)を示すものである。また、圧縮機として
も、回転するピストンは高速・高圧運転を容易にして高
い圧縮効率と機械効率を示すもので多段の必要がなく、
軽量コンパクトであり運転経費が安い等、従来の歯車ポ
ンプ、ベーンポンプ、ピストンポンプ、及び往復動圧縮
機等の圧縮機よりも優れた各種性能を有する全く新規な
球形基本構造の流体ポンプ、及び圧縮機を提供するもの
である。
In view of the many problems that the above-described conventional fluid pump and compressor have, a book composed of a spherical housing and a pair of rotating plates that rotate therein. The fluid pump of the invention has less pulsation of the discharged working fluid (discharging oil), has little change in the discharge amount even if the discharge pressure changes, and has a low pressure from the discharge side inside the pump when the pressure becomes high. There is little leakage to the suction side or inside the case, and it shows high self-priming performance and high overall efficiency (pump efficiency) even in low and high speed regions. In addition, as a compressor, the rotating piston facilitates high-speed and high-pressure operation and exhibits high compression efficiency and mechanical efficiency, so there is no need for multiple stages.
A completely new spherical basic structure fluid pump and compressor that have various performances superior to conventional compressors such as gear pumps, vane pumps, piston pumps, and reciprocating compressors because they are lightweight and compact and have low operating costs. Is provided.

【0012】[0012]

【課題を解決するための手段】本発明は、上記課題を解
決する為に、球面の内壁面7を有する密閉したハウジン
グ1内に互いが蝶番状動作のみ可能に同軸的に連結して
交差する回転ピストン3と斜行板5との二つの回転板を
組込み、且つその回転ピストン3を入力軸2上に水平方
向にのみ揺動可能に取付けると共に、斜行板5を固定軸
線上で回転するように取付けると、その回転ピストン3
と斜行板5との板面が回転に伴って接近と離間とを繰り
返すから、互いの板面が離間して間隙を拡張増大させる
時に吸入行程をさせ、互いの板面が接近して間隙を縮小
減少させる時に吐出行程をさせるものであるが、本発明
においては概ね以下の4通りの解決手段を有する。
In order to solve the above-mentioned problems, the present invention intersects with each other in a hermetically sealed housing 1 having a spherical inner wall surface 7 so as to be coaxially connected so that only a hinge-like movement is possible. Two rotary plates, a rotary piston 3 and a skew plate 5, are incorporated, and the rotary piston 3 is mounted on the input shaft 2 so as to be swingable only in the horizontal direction, and the skew plate 5 is rotated on a fixed axis line. The rotary piston 3
Since the plate surfaces of the swash plate and the skew plate 5 repeatedly approach and separate with rotation, the suction stroke is performed when the plate surfaces are separated from each other to expand and increase the gap, and the plate surfaces approach each other and the gap is increased. Although the discharge process is performed when the amount is reduced and reduced, the present invention generally has the following four solutions.

【0013】[0013]

【解決手段1】解決手段の一つは、内壁面に球面を有す
るハウジング1において、その球面内壁7の球心Oを通
る直線上のハウジング1壁に主軸受8を貫設して直軸状
をなす入力軸2の軸頸を回転自由に嵌挿させ、且つその
入力軸2に角度θを有して球心Oで交差する軸線の垂直
平面上のハウジング1内壁面に周回溝の軌道隙9を削設
する。
One of the solving means is a housing 1 having an inner wall surface having a spherical surface, and a main bearing 8 is penetratingly provided on a wall of the housing 1 on a straight line passing through a spherical center O of the spherical inner wall 7 to form a straight shaft shape. Of the input shaft 2 is rotatably inserted, and the orbital gap of the circular groove is formed on the inner wall surface of the housing 1 on the vertical plane of the axis intersecting at the spherical center O with an angle θ on the input shaft 2. Cut 9

【0014】また、ハウジング1内には、前記入力軸2
と球心Oで直交する直線を連結軸線として入力軸2上を
水平方向に少なくとも角度(θ×2)の範囲を揺動し、
且つ外周面を前記球面内壁7と摺接する球弧面13に形
成すると共に、その球弧面13を弓形の弧とする弦側に
円柱状の中間軸4を合体させて板面に弓形面14を持つ
略板状の回転ピストン3を入力軸2の球心Oの部分に枢
結する。
The input shaft 2 is provided in the housing 1.
And a straight line orthogonal to the ball center O as a connecting axis, swings horizontally on the input shaft 2 within at least an angle (θ × 2),
In addition, the outer peripheral surface is formed as a spherical arc surface 13 that is in sliding contact with the spherical inner wall 7, and the cylindrical intermediate shaft 4 is united on the chord side of which the spherical arc surface 13 is an arc of an arc, and the arc surface 14 is formed on the plate surface. A substantially plate-shaped rotary piston 3 having a central axis O is pivotally connected to the spherical center O of the input shaft 2.

【0015】その上、ハウジング1内には、前記中間軸
4上において前記回転ピストン3と蝶番状に交差し、縁
部外周を環状に形成した斜行板環24が前記軌道隙9に
回転可能に嵌合して拘束されると共に、中間軸4の両底
面とその両底面に対接する斜行板環24の対向両側部と
の各々にピンとピン受孔の互いに与する連結素子を有し
て互いが少なくとも角度(θ×2)範囲を擺動可能に連
結し、且つ板面に弓形面22を持つ円形状板の斜行板5
を設ける。
Moreover, in the housing 1, a skewed plate ring 24, which intersects with the rotary piston 3 on the intermediate shaft 4 in a hinge shape and has an outer periphery of an annular shape, is rotatable in the raceway gap 9. And a connecting element for giving a pin and a pin receiving hole to each other on each of both bottom surfaces of the intermediate shaft 4 and both opposite sides of the slanting plate ring 24 facing the both bottom surfaces. A slanting plate 5 of a circular plate which is slidably connected to each other in at least an angle (θ × 2) range and has an arcuate surface 22 on the plate surface.
To provide.

【0016】すると、その斜行板5がハウジング1の前
記球面内壁7を閉鎖して半球状空間の半月状作動室Ha
を形成し、且つその半月状作動室Haを回転ピストン3
が櫛形状空間の櫛形状作動室Fuに形成する。更に、そ
の櫛形状作動室Fuに臨ませて吸入孔Inと吐出孔Out
とを適宜設けたことを特徴とする球形の回転ピストンポ
ンプ、圧縮機である。
Then, the slanting plate 5 closes the spherical inner wall 7 of the housing 1 to form a semi-lunar working chamber Ha in a hemispherical space.
And the half-moon shaped working chamber Ha of the rotary piston 3
Are formed in the comb-shaped working chamber Fu in the comb-shaped space. Further, the suction hole In and the discharge hole Out are made to face the comb-shaped working chamber Fu.
And a spherical rotary piston pump and a compressor, which are characterized in that and are appropriately provided.

【0017】[0017]

【解決手段2】解決手段のもう一つとして、内壁面に球
面を有するハウジング1において、その球面内壁7の球
心Oを通る直線上のハウジング1壁に主軸受8を貫設し
て直軸状をなす入力軸2の軸頸を回転自由に嵌挿させ、
且つその入力軸2に角度θを有して球心Oで交差する軸
線の垂直平面上のハウジング1内壁面7円周に輪体状の
軌道環10を突設する。
As another means for solving the problems, in a housing 1 having an inner wall surface having a spherical surface, a main bearing 8 is provided through a wall of the housing 1 on a straight line passing through a spherical center O of the spherical inner wall 7 to form a straight shaft. The shaft neck of the input shaft 2 in the shape of
Further, a ring-shaped race ring 10 is provided on the circumference of the inner wall surface 7 of the housing 1 on the vertical plane of the axis intersecting at the spherical center O with the input shaft 2 having an angle θ.

【0018】また、ハウジング1内には、前記入力軸2
と球心Oで直交する直線を連結軸線として入力軸2上を
水平方向に少なくとも角度(θ×2)の範囲を揺動し、
且つ外周面を前記球面内壁7と摺接する球弧面13に形
成して板面に弓形面14を持つ略板状の回転ピストン3
を入力軸2の球心Oの部分に枢結する。
The input shaft 2 is provided in the housing 1.
And a straight line orthogonal to the ball center O as a connecting axis, swings horizontally on the input shaft 2 within at least an angle (θ × 2),
Further, a substantially plate-shaped rotary piston 3 having an outer peripheral surface formed on a spherical arc surface 13 in sliding contact with the spherical inner wall 7 and having an arcuate surface 14 on the plate surface.
Is pivotally connected to the spherical center O of the input shaft 2.

【0019】その上、ハウジング1内には、前記回転ピ
ストン3と蝶番状に交差して弓形面22の板面と外周面
に周回する溝の軌道受25とを有し、その軌道受25に
前記軌道環10が回転摺動関係に嵌合する円形状板の斜
行板5を設ける。
Furthermore, in the housing 1, there are provided a raceway bearing 25 of a groove which intersects with the rotary piston 3 in a hinge shape and circulates on the plate surface of the arcuate surface 22 and the outer peripheral surface. A slanting plate 5 of a circular plate is provided on which the orbital ring 10 is fitted in a rotary sliding relationship.

【0020】その斜行板5と回転ピストン3の交差部分
には、円柱状の中間軸4を両底面に平行な切り口面で分
割すると共に、その各々を斜行板5と回転ピストン3の
競合しない何れかに固着させ、且つその分割接合面の各
々にピンとピン受孔の互いに与する連結素子を有して互
いが少なくとも角度(θ×2)範囲を擺動可能に連結す
る。
At the intersection of the skew plate 5 and the rotary piston 3, a cylindrical intermediate shaft 4 is divided by a cut surface parallel to both bottom surfaces, and each of them is competed by the skew plate 5 and the rotary piston 3. Each of the divided joint surfaces is provided with a connecting element for providing a pin and a pin receiving hole, and each of them is slidably connected at least within an angle (θ × 2) range.

【0021】すると、斜行板5がハウジング1の前記球
面内壁7を閉鎖して半球状空間の半月状作動室Haを形
成し、且つその半月状作動室Haを回転ピストン3が櫛
形状空間の櫛形状作動室Fuに形成する。更に、その櫛
形状作動室Fuに臨ませて吸入孔Inと吐出孔Outとを
適宜設けたことを特徴とする球形の回転ピストンポン
プ、圧縮機である。
Then, the slanting plate 5 closes the spherical inner wall 7 of the housing 1 to form a half-moon-shaped working chamber Ha in a hemispherical space, and the half-moon-shaped working chamber Ha is formed by the rotary piston 3 in a comb-shaped space. It is formed in the comb-shaped working chamber Fu. Furthermore, the spherical rotary piston pump and the compressor are characterized in that a suction hole In and a discharge hole Out are appropriately provided so as to face the comb-shaped working chamber Fu.

【0022】[0022]

【解決手段3】また別の解決手段は、内壁面に球面を有
するハウジング1において、その球面内壁7の球心Oを
通る直線上のハウジング1壁に主軸受8を貫設して直軸
状をなす入力軸2の軸頸を回転自由に嵌挿させ、且つそ
の入力軸2に角度θを有して球心Oで交差する軸線と入
力軸2の軸線との双方に球心Oで直交する直線上のハウ
ジング1対向両壁に軌道環軸受12の円孔を設け、その
両軌道環軸受12にはハウジング1の球面内壁7内で回
動可能に設けた輪体からなる軌道環6の直径上対向外周
面に固着する柄状の軌道環軸11を回動自由に軸承させ
る。
Another solution is to provide a housing 1 having an inner wall surface with a spherical surface, in which a main bearing 8 is provided on a wall of the housing 1 on a straight line passing through a spherical center O of the spherical inner wall 7 to form a straight shaft shape. The shaft neck of the input shaft 2 is rotatably inserted, and the input shaft 2 has an angle θ and is orthogonal to the axis intersecting the ball center O and the axis of the input shaft 2 at the ball center O. Circular holes of the raceway ring bearings 12 are provided on both walls facing the housing 1 on a straight line, and both raceway ring bearings 12 are provided with a raceway ring 6 composed of a ring body rotatably provided in the spherical inner wall 7 of the housing 1. A handle-shaped race ring shaft 11 fixed to the diametrically opposed outer peripheral surfaces is rotatably supported.

【0023】また、ハウジング1内には、前記入力軸2
と球心Oで直交する直線を連結軸線として入力軸2上を
水平方向に少なくとも角度(θ×2)の範囲を揺動し、
且つ外周面を前記球面内壁7と摺接する球弧面13に形
成して板面に弓形面14を持つ略板状の回転ピストン3
を入力軸2の球心Oの部分に枢結する。
In the housing 1, the input shaft 2 is provided.
And a straight line orthogonal to the ball center O as a connecting axis, swings horizontally on the input shaft 2 within at least an angle (θ × 2),
Further, a substantially plate-shaped rotary piston 3 having an outer peripheral surface formed on a spherical arc surface 13 in sliding contact with the spherical inner wall 7 and having an arcuate surface 14 on the plate surface.
Is pivotally connected to the spherical center O of the input shaft 2.

【0024】その上、ハウジング1内には、前記回転ピ
ストン3と蝶番状に交差して弓形面22の板面と外周面
に周回する溝の軌道受25とを有し、その軌道受25に
前記軌道環6が回転摺動関係に嵌合する円形状板の斜行
板5を設ける。
In addition, the housing 1 has a plate surface of the arcuate surface 22 which intersects with the rotary piston 3 in a hinge shape and a track receiver 25 of a groove which circulates on the outer peripheral surface. A slanting plate 5 of a circular plate is provided on which the orbital ring 6 is fitted in a rotary sliding relationship.

【0025】その斜行板5と回転ピストン3の交差部分
には、円柱状の中間軸4を両底面に平行な切り口面で分
割すると共に、その各々を斜行板5と回転ピストン3の
競合しない何れかに固着させ、且つその分割接合面の各
々にピンとピン受孔の互いに与する連結素子を有して互
いが少なくとも角度(θ×2)範囲を擺動可能に連結す
る。
At the intersection of the skew plate 5 and the rotary piston 3, a cylindrical intermediate shaft 4 is divided by a cut surface parallel to both bottom surfaces, and each of them is competed by the skew plate 5 and the rotary piston 3. Each of the divided joint surfaces is provided with a connecting element for providing a pin and a pin receiving hole, and each of them is slidably connected at least within an angle (θ × 2) range.

【0026】そして、前記軌道環6には、前記入力軸2
に対してその軌道環6の傾転角度を角度0から角度±θ
範囲の何れかを選択する制御装置CAを前記軌道環軸1
1に装着して連動させる。
The input shaft 2 is attached to the orbital ring 6.
The inclination angle of the orbital ring 6 from angle 0 to angle ± θ
The control device CA for selecting one of the ranges is set to the orbital ring axis 1
Attach to 1 and work together.

【0027】すると、斜行板5がハウジング1の前記球
面内壁7を閉鎖して半球状空間の半月状作動室Haを形
成し、且つその半月状作動室Haを回転ピストン3が櫛
形状空間の櫛形状作動室Fuに形成する。更に、その櫛
形状作動室Fuに臨ませて吸入孔Inと吐出孔Outとを
適宜設けたことを特徴とする球形の回転ピストンポン
プ、圧縮機である。
Then, the slanting plate 5 closes the spherical inner wall 7 of the housing 1 to form a half-moon-shaped working chamber Ha in a hemispherical space, and the half-moon-shaped working chamber Ha is formed by the rotary piston 3 in a comb-shaped space. It is formed in the comb-shaped working chamber Fu. Furthermore, the spherical rotary piston pump and the compressor are characterized in that a suction hole In and a discharge hole Out are appropriately provided so as to face the comb-shaped working chamber Fu.

【0028】[0028]

【解決手段4】更に別の解決手段は、内壁面に球面を有
するハウジング1において、その球面内壁7の球心Oを
通る直線上のハウジング1壁に主軸受8を貫設して直軸
状をなす入力軸2の軸頸を回転自由に嵌挿させ、且つそ
の入力軸2に角度θを有して球心Oで交差する直線上の
ハウジング1壁にも斜行板軸受29の円孔を主軸受8の
対向側に設ける。
As another solution, in a housing 1 having an inner wall surface having a spherical surface, a main bearing 8 is penetratingly provided in a wall of the housing 1 on a straight line passing through a spherical center O of the spherical inner wall 7 to form a straight shaft shape. Of the input shaft 2 is rotatably inserted, and the input shaft 2 has an angle .theta. Are provided on the opposite side of the main bearing 8.

【0029】また、ハウジング1内には、前記入力軸2
と球心Oで直交する直線を連結軸線として入力軸2上を
水平方向に少なくとも角度(θ×2)の範囲を揺動し、
且つ外周面を前記球面内壁7と摺接する球弧面13に形
成して板面に弓形面14を持つ半円状板の回転ピストン
3を入力軸2の球心Oの部分に枢結する。
In the housing 1, the input shaft 2 is provided.
And a straight line orthogonal to the ball center O as a connecting axis, swings horizontally on the input shaft 2 within at least an angle (θ × 2),
Further, the rotary piston 3 of a semi-circular plate having an outer peripheral surface formed on a spherical arc surface 13 that is in sliding contact with the spherical inner wall 7 and having an arcuate surface 14 on the plate surface is pivotally connected to the spherical center O of the input shaft 2.

【0030】その上、ハウジング1内には、前記回転ピ
ストン3と蝶番状に交差して球面のハウジング1内壁面
7に摺接する外周面と板面に弓形面22とを有し、且つ
その弓形面22の裏面側中心部に前記斜行板軸受29を
回転自由に嵌挿する柄状の斜行板軸28を有して円形板
状をなす斜行板5を設ける。
In addition, the housing 1 has an outer peripheral surface which is hinged to the rotary piston 3 and is in sliding contact with the inner wall surface 7 of the housing 1, and an arcuate surface 22 on the plate surface, and the arcuate shape of the arcuate surface 22. A skew plate 5 having a circular plate shape is provided at the center of the back surface side of the surface 22 having a handle-like skew plate shaft 28 into which the skew plate bearing 29 is rotatably inserted.

【0031】その斜行板5と回転ピストン3の交差部分
には、円柱状の中間軸4を両底面に平行な切り口面で分
割すると共に、その各々を斜行板5と回転ピストン3の
競合しない何れかに固着させ、且つその分割接合面の各
々にピンとピン受孔の互いに与する連結素子を有して互
いが少なくとも角度(θ×2)範囲を擺動可能に連結す
る。
At the intersection of the slanting plate 5 and the rotary piston 3, a cylindrical intermediate shaft 4 is divided by a cut surface parallel to both bottom surfaces, and each of them is competed by the slanting plate 5 and the rotary piston 3. Each of the divided joint surfaces is provided with a connecting element for providing a pin and a pin receiving hole, and each of them is slidably connected at least within an angle (θ × 2) range.

【0032】すると、斜行板5がハウジング1の前記球
面内壁7を閉鎖して半球状空間の半月状作動室Haを形
成し、且つその半月状作動室Haを回転ピストン3が櫛
形状空間の櫛形状作動室Fuに形成する。更に、その櫛
形状作動室Fuに臨ませて吸入孔Inと吐出孔Outとを
適宜設けたことを特徴とする球形の回転ピストンポン
プ、圧縮機である。
Then, the slanting plate 5 closes the spherical inner wall 7 of the housing 1 to form a half-moon-shaped working chamber Ha in a hemispherical space, and the half-moon shaped working chamber Ha is formed by the rotary piston 3 in a comb-shaped space. It is formed in the comb-shaped working chamber Fu. Furthermore, the spherical rotary piston pump and the compressor are characterized in that a suction hole In and a discharge hole Out are appropriately provided so as to face the comb-shaped working chamber Fu.

【0033】[0033]

【幾何学的構成】尚、本発明の回転ピストンポンプ、及
び圧縮機は、その原理において相互に関係する点、線、
面の幾何図形上に成り立つ基本的構造の特質がある。そ
の相互に関係する幾何図形における本発明の構造を以下
詳しく説明する。
[Geometrical Structure] The rotary piston pump and the compressor of the present invention have points, lines, and
There is a characteristic of basic structure that is established on the geometrical figure of the surface. The structure of the invention in its interrelated geometry will be described in detail below.

【0034】まず、本発明を規定する相互関係の図形を
図1に示すと、球心Oから半径rを有して球面Gをなす
内壁面に形成したハウジング1には、角度θをなし球心
Oにおいて交差する直線をX軸線、Y軸線とし、そのX
軸線が球面Gに交わる点をPとし、またY軸線が球面G
に交わる点をQとし、その点P、点Q間を底面の直径と
して球心Oを頂点とする円錐形の円錐母線が側面円周を
周回する円錐軌跡をUとし、そして球心OにおいてX軸
線に直交する軸直線をM軸線とし、X,Y軸線の双方に
球心O上で直角に交わる軸直線をZ軸線とし、そのZ軸
線が球面Gに交わる両点をe,eとし、X軸線に水平面
をなしてその直径線分の軸線Lを自転軸とする球面G内
の大円平面をR円面とし、且つY軸線を鉛直軸線として
球面G内に球心Oを通って形成される大円平面をS円面
とし、そのR円面とS円面とが球心Oにおいて交差する
交差割線を軸線Kとし、その交差割線Kの両端を点K
a、点Kbとし、そのように点、線、面の各関係を設定
する。
First, FIG. 1 shows a mutual relationship diagram defining the present invention. A housing 1 formed on an inner wall surface of a spherical surface G having a radius r from a spherical center O has an angle θ. A straight line intersecting at the center O is defined as an X axis line and a Y axis line, and the X
The point where the axis intersects the spherical surface G is P, and the Y axis is the spherical surface G.
Is Q, the point P and the point Q are the diameter of the bottom surface, and the conical generatrix of the conical cone having the apex at the center O of the sphere is U, and the center O is X at the center O. An axis line orthogonal to the axis line is an M axis line, an axis line that intersects both X and Y axis lines at a right angle on the spherical center O is a Z axis line, and both points where the Z axis line intersects a spherical surface G are e and e, and X It is formed by passing through a ball center O in the spherical surface G with the horizontal plane as the axis and the great circular plane in the spherical surface G with the axis L of the diameter segment as the rotation axis, and the Y axis as the vertical axis. The great circle plane is the S circle surface, and the intersection secant at which the R circle surface and the S circle surface intersect at the spherical center O is the axis K, and both ends of the intersection secant K are points K.
a and a point Kb, and the respective relationships of the point, the line, and the surface are set in this way.

【0035】そして、X軸線とY軸線を固定位置の定位
な軸線と見なして、そのX,Y軸線に同時に回転を与え
れば、Y軸線の垂直平面であるS円面は、その位相を保
持したまま転回し、軸線Lを自転軸とするR円面は、
X,Y軸線の点P,Q間を底面直径として球心Oを円錐
の頂点とする円錐形の円錐軌跡U上を図1から図2を経
て図3の順に自転しながら旋回する。すると、その自転
の90度分の転回において、R円面の自転軸LはX軸線
上にある図1から図3に半円分を公転してY軸線上に移
動する。更に90度分の自転において、そのY軸線上か
ら図4を経て残りの半円軌跡を描いて図5のX軸線上に
戻る。即ち、R円面の自転軸Lが円錐軌跡Uの円周分を
転回(公転)すれば、その公転に伴ってR円面は半回転
である180度分の自転をして表裏を変える。
When the X-axis and the Y-axis are regarded as fixed-position orientation axes and the X-axis and the Y-axis are rotated at the same time, the S circle surface, which is a vertical plane of the Y-axis, maintains its phase. The R circle surface that rotates as it is and whose axis is the axis of rotation is
It turns while rotating on a conical locus U in the shape of a cone whose base diameter is between the points P and Q of the X and Y axes and the spherical center O is the apex of the cone in the order of FIG. Then, in the rotation of 90 degrees of the rotation, the rotation axis L of the R circular surface revolves a semicircle on the X axis line from FIG. 1 to FIG. 3 and moves on the Y axis line. Further, in the rotation of 90 degrees, the remaining semicircular locus is drawn from the Y-axis through FIG. 4 and returns to the X-axis in FIG. That is, when the rotation axis L of the R circle rotates (revolves) about the circumference of the conical locus U, the R circle rotates about 180 degrees, which is a half rotation, to change the front and back sides.

【0036】その時、R円面の自転軸Lと交差割線Kと
は球心Oにおいて常に直交し、且つ交差するR円面とS
円面との円面間に形成される間隙は、R円面の自転軸L
がX軸線上にある時の鈍角側の対頂角が90+θ角度に
なって最大(図1の空間B,Dと図5の空間A,C)と
なり、同じく鋭角側の対頂角が90−θ角度になって最
小(図1の空間A,Cと図5の空間B,D)となる。つ
まり、R円面とS円面とが交差割線Kを蝶着の軸、支点
として互いの半回転で接近し、次の半回転で離間し、そ
の1回転毎において近付いたり離れたりを組とする離合
を繰り返す。
At that time, the rotation axis L of the R circle surface and the intersecting secant K are always orthogonal to each other at the spherical center O and intersect with the R circle surface and S.
The gap formed between the circle surface and the circle surface is the rotation axis L of the R circle surface.
Is on the X-axis, the vertical angle on the obtuse side becomes 90 + θ angle and becomes the maximum (spaces B and D in FIG. 1 and spaces A and C in FIG. 5), and the vertical angle on the acute angle side becomes 90-θ angle. The minimum (spaces A and C in FIG. 1 and spaces B and D in FIG. 5). That is, the R circle surface and the S circle surface approach each other with a half rotation of each other with the intersection secant K as the axis and the fulcrum of the hinge, and are separated with the next half rotation, and come and go with each rotation. Repeat the separation.

【0037】また、球面GとR円面とS円面とで囲われ
て密閉された空間A,B,C,Dをみると、図1におけ
る自転軸Lが図2,3,4を経て半回転をする図5にお
いて空間Aは拡張して空間Bは収縮し、空間Cは拡張し
て空間Dは収縮する。更に、図5から図6,7,8を経
て元の図1の半回転においては、空間Aは収縮して空間
Bは拡張し、空間Cは収縮して空間Dは拡張する。つま
り、空間Aが拡張すると空間Bは収縮して空間Cが拡張
すると空間Dは収縮し、また空間Aの拡張に対して空間
Dが収縮し、空間Bの収縮に対して空間Cが拡張する関
係にある。従って、空間AとBは互いの体積の増減を反
比例に変化させて対をなし、空間CとDも互いの体積の
増減を反比例に変化させて対偶し、空間AとC、空間B
とDは互いの体積変化を正比例させる順と逆の関係にあ
る。
Looking at the spaces A, B, C, and D enclosed by the spherical surface G, the R circular surface, and the S circular surface, the rotation axis L in FIG. In FIG. 5, which makes a half rotation, the space A expands and the space B contracts, and the space C expands and the space D contracts. Further, in the half rotation of the original FIG. 1 through FIGS. 5 to 6, 7 and 8, the space A contracts and the space B expands, the space C contracts and the space D expands. That is, when the space A expands, the space B contracts, and when the space C expands, the space D contracts. Further, the space D contracts as the space A expands, and the space C expands as the space B contracts. Have a relationship. Therefore, the spaces A and B are changed in inverse proportion to each other's volume to form a pair, and the spaces C and D are also changed in inverse proportion to each other's volume to be paired, and the spaces A, C, and B are combined.
And D have an inverse relationship to the order in which the mutual volume changes are directly proportional.

【0038】このように設定した点、線、面の各関係に
おいて、ハウジング1球面内壁7は上記図形による球面
Gを有し、その球面Gの球心Oを通るX軸線上の入力軸
2を点P位置の主軸受8に嵌挿させて軸受け支持させ
る。また、幾何図形におけるR円面上には、軸線Mを関
節の基軸線とするピン継手関節16を組成して入力軸2
に連結する回転ピストン3を配置し、且つY軸線を回転
軸線とするS円面上には斜行板5が置かれる。そのR円
面上の回転ピストン3とS円面上の斜行板5は、K軸線
上に中間軸4を形成して交差すると共に、互いがその中
間軸4に交差割線Kを関節の連結軸線とする蝶番関節1
9を組成して連結する。尚、幾何図形における空間A,
B,C,Dは、二つの半月状作動室Ha,Ha内に形成
される二つずつの櫛形状作動室Fu,Fu、Fu,Fu
である。
In each of the point, line, and surface relationships set in this way, the spherical inner wall 7 of the housing 1 has the spherical surface G formed by the above-mentioned figure, and the input shaft 2 on the X axis passing through the spherical center O of the spherical surface G is The bearing is supported by being fitted into the main bearing 8 at the point P. Further, on the R circle surface of the geometrical figure, the pin joint joint 16 having the axis M as the base axis of the joint is formed to form the input shaft 2
The skewed plate 5 is placed on the S-circle having the rotary piston 3 connected thereto and having the Y-axis as the axis of rotation. The rotary piston 3 on the R-circle and the oblique plate 5 on the S-circle intersect to form an intermediate shaft 4 on the K-axis, and mutually connect the intersecting secant K to the intermediate shaft 4 of the joint. Hinge joint 1 to be the axis
9 is composed and linked. In addition, the space A in the geometric figure,
B, C, D are two comb-shaped working chambers Fu, Fu, Fu, Fu, Fu formed in the two half-moon shaped working chambers Ha, Ha.
Is.

【0039】[0039]

【発明の実施の形態】本発明では、上記解決手段1乃至
4のそれぞれの構成に基づく実施の形態があり、その各
種実施の形態を上記幾何図形において設定した点、線、
面の各関係をもとに以下図によって説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, there are embodiments based on the respective configurations of the above solving means 1 to 4, and points, lines, and
The following description will be given based on each surface relationship.

【0040】[0040]

【実施の形態1】その形態の一つは、上記解決手段1の
構成である。即ち、この形態1は図9,10と図15と
図18,19と図20の各図に示すように球面Gの内壁
面を有するハウジング1において、その球面内壁7の球
心Oを通ってX軸線が貫通するハウジング1壁の点P位
置に軸受円孔の主軸受8を貫設し、その主軸受8にX軸
線を回転軸線とする直軸状をなす入力軸2の軸頸を回転
自由に嵌挿させて軸承させる。また、X軸線上の入力軸
2に角度θを有して球心Oで交差するY軸線の垂直平面
であるS円面延長上のハウジング1内壁を周回溝の軌道
隙9に削成する。
First Embodiment One of the forms is the configuration of the solving means 1. That is, in the first embodiment, as shown in FIGS. 9, 10, 15, 18, 19 and 20, the housing 1 having the inner wall surface of the spherical surface G passes through the spherical center O of the spherical inner wall 7. A main bearing 8 of a bearing circular hole is provided at a position P on the wall of the housing 1 through which the X axis passes, and the main bearing 8 rotates a shaft neck of a straight shaft-shaped input shaft 2 having the X axis as a rotation axis. Allow it to be freely inserted and supported. Further, the inner wall of the housing 1 on the extension of the S-circle which is the vertical plane of the Y-axis intersecting at the spherical center O with the angle θ with the input shaft 2 on the X-axis is cut into the orbital gap 9 of the circumferential groove.

【0041】そして、ハウジング1内のR円面上には、
半月状の弓形面14を板面に有して外周面を前記球面内
壁7に摺接契合する球弧面13に形成し、その球弧面1
3を弓形の弧とする弓形面14の弦側に軸線Kを取付け
軸線とした円柱状の中間軸4を合体させた略板状の回転
ピストン3を配置して前記入力軸2の球心O位置に枢結
させるが、この回転ピストン3と入力軸2は、X軸線と
球心Oで直交するM軸線を連結の中心軸線として回転ピ
ストン3が入力軸2上を水平方向に少なくとも角度(θ
×2)の範囲を揺動可能なピンとそのピン受からなるピ
ン継手関節16を組成して連結する。
Then, on the R circular surface in the housing 1,
The semicircular arcuate surface 14 is formed on the plate surface, and the outer peripheral surface is formed as the spherical arc surface 13 that is slidably engaged with the spherical inner wall 7.
A substantially plate-shaped rotary piston 3 in which a cylindrical intermediate shaft 4 with the axis K attached as an axis is united on the chord side of the arcuate surface 14 having an arc 3 as an arc is arranged and the spherical center O of the input shaft 2 is arranged. The rotary piston 3 and the input shaft 2 are pivotally connected to each other at a position. The rotary piston 3 and the input shaft 2 have a horizontal axis on the input shaft 2 at least at an angle (θ
A pin joint joint 16 composed of a swingable pin and its pin receiver is formed and connected in the range of (2).

【0042】また、ハウジング1内のS円面上には、板
面に回転ピストン3の弓形面14に対応する弓形面22
を有し、且つ縁部外周を環状に形成した斜行板環24が
前記軌道隙9に嵌合してY軸線を中心に回転可能に拘束
される円形状板の斜行板5を回転ピストン3に前記中間
軸4上で蝶番状に交差させて配置すると共に、中間軸4
の両底面とその両底面に対接する斜行板環24の対向両
側部との点Ka,Kb側に、ピンとピン受け孔からなる
互いの両片を以てK軸線を関節基軸線とする蝶番関節1
9を組成して斜行板5に回転ピストン3が少なくとも角
度(θ×2)範囲を擺動可能に連結する。
Further, on the S-circular surface in the housing 1, the arcuate surface 22 corresponding to the arcuate surface 14 of the rotary piston 3 is formed on the plate surface.
A slanting plate 5 having a circular plate and having an annular outer periphery is fitted into the orbital gap 9 and constrained to be rotatable about the Y axis. 3 are arranged so as to intersect with each other in a hinge shape on the intermediate shaft 4, and the intermediate shaft 4
The hinge joint 1 having the K axis as the joint base axis with the two pieces of the pin and the pin receiving hole on the Ka and Kb sides of both bottom surfaces of the slant plate ring 24 facing the both bottom surfaces and the opposing both sides of the slanting plate ring 24.
The rotary piston 3 is connected to the skew plate 5 so as to be slidable in at least an angle (θ × 2) range.

【0043】すると、S円面上の斜行板5がハウジング
1の前記球面Gをなす内壁面7を閉鎖して半球状の定積
空間からなる半月状作動室Haを形成し、且つその半月
状作動室HaをR円面上の回転ピストン3が容積変化を
する櫛形状空間の櫛形状作動室Fuに形成する。更に、
その半月状作動室Haの櫛形状作動室Fuに臨ませて吸
込み孔Inと吐出孔Outとを適宜設ける。
Then, the oblique plate 5 on the S-circle closes the inner wall surface 7 forming the spherical surface G of the housing 1 to form the half-moon-shaped working chamber Ha consisting of a hemispherical constant volume space, and the half moon thereof. The working chamber Ha is formed in the comb-shaped working chamber Fu in the comb-shaped space where the rotary piston 3 on the R circular surface changes in volume. Furthermore,
A suction hole In and a discharge hole Out are appropriately provided so as to face the comb-shaped working chamber Fu of the half-moon shaped working chamber Ha.

【0044】[0044]

【実施の形態2】形態のもう一つは、上記解決手段2の
構成である。即ち、この形態2は図11,12と図16
と図21の各図に示すように球面Gの内壁面を有するハ
ウジング1において、その球面内壁7の球心Oを通って
X軸線が貫通するハウジング1壁の点P位置に主軸受8
を貫設し、その主軸受8にX軸線を回転軸線とする直軸
状をなす入力軸2の軸頸を嵌挿させて軸承させる。ま
た、X軸線上の入力軸2に角度θを有して球心Oで交差
するY軸線の垂直平面であるS円面縁部円周上のハウジ
ング1内壁面円周に輪体の軌道環10を突設形成する。
Second Embodiment Another form is the configuration of the solving means 2. That is, this mode 2 is shown in FIGS.
In the housing 1 having the inner wall surface of the spherical surface G as shown in FIGS. 21 and 21, the main bearing 8 is located at a point P on the wall of the housing 1 through which the X axis passes through the spherical center O of the spherical inner wall 7.
The shaft neck of the input shaft 2 having a straight axis shape with the X axis as the rotation axis is fitted into the main bearing 8 and is supported. Further, the orbit ring of the ring body is formed on the inner wall surface circumference of the housing 1 on the S-circle edge circumference which is the vertical plane of the Y-axis line having the angle θ with the input shaft 2 on the X-axis and intersecting at the spherical center O. 10 is formed in a protruding manner.

【0045】そして、ハウジング1内のR円面上には、
外周面を前記球面内壁7に摺接契合する球弧面13に形
成すると共に、板面を半月状の弓形面14に形成した略
板状の回転ピストン3を配置して前記入力軸2の球心O
位置に枢結させる。この回転ピストン3と入力軸2は、
X軸線と球心Oで直交するM軸線を連結軸として回転ピ
ストン3が入力軸2上を水平方向に少なくとも角度(θ
×2)の範囲を揺動可能に互いの両片を以てピン継手関
節16を組成して連結する。
Then, on the R circular surface in the housing 1,
The outer peripheral surface is formed into a spherical arc surface 13 that is slidably engaged with the spherical inner wall 7, and a substantially plate-shaped rotary piston 3 whose plate surface is formed into a semi-moon shaped arcuate surface 14 is arranged to form a ball of the input shaft 2. Heart O
Pivot in position. The rotary piston 3 and the input shaft 2 are
The rotary piston 3 has a horizontal axis on the input shaft 2 at least at an angle (θ
The pin joint joint 16 is composed and connected to each other so as to be swingable in the range of (2).

【0046】また、ハウジング1内のS円面上には、板
面に前記回転ピストン3の弓形面14に対応する弓形面
22を有し、且つ外周面の同一円周上を周回溝に削成し
た軌道受25を有する円形状板の斜行板5を回転ピスト
ン3に蝶番状に交差させて配置し、尚この斜行板5は、
前記軌道環10に軌道受25の周回溝を摺接関係に嵌合
させてY軸線を中心に回転可能に拘束される。
Further, on the S-circular surface in the housing 1, there is an arcuate surface 22 corresponding to the arcuate surface 14 of the rotary piston 3 on the plate surface, and the outer circumferential surface is cut into a circular groove on the same circumference. A slanting plate 5 having a circular plate having an orbital support 25 is arranged so as to intersect with the rotary piston 3 in a hinge shape.
The orbital ring 25 is fitted with the orbital groove of the orbital bearing 25 in a sliding contact relationship and is rotatably restrained about the Y axis.

【0047】そのS円面上の斜行板5とR円面上の回転
ピストン3との交差部分は、その交差割線Kを取付け軸
線として介在させた円柱状の中間軸4を両底面に平行な
切り口面で複数個に分割すると共に、それを回転ピスト
ン3に固着させたピストン中間軸4aの部分と斜行板5
に固着させた斜行板中間軸4bの部分とに区分し、且つ
そのピストン中間軸4aと斜行板中間軸4bとの接合部
分に、ピンとピン受孔からなる互いの両片でK軸線を関
節基軸線とする蝶番関節19を組成して斜行板5に回転
ピストン3が少なくとも角度(θ×2)範囲を擺動可能
に連結する。
At the intersection of the skew plate 5 on the S circle surface and the rotary piston 3 on the R circle surface, a cylindrical intermediate shaft 4 with the intersection secant K as an attachment axis is parallel to both bottom surfaces. Of the piston intermediate shaft 4a, which is fixed to the rotary piston 3 while being divided into a plurality of cut surfaces, and the slant plate 5.
It is divided into a portion of the slant plate intermediate shaft 4b that is fixedly attached to the slant plate, and the K axis is formed at the joint portion between the piston intermediate shaft 4a and the slant plate intermediate shaft 4b by both pieces of the pin and the pin receiving hole. A hinged joint 19 serving as a joint base line is formed so that the rotary piston 3 is slidably connected to the oblique plate 5 in at least an angle (θ × 2) range.

【0048】すると、S円面上の斜行板5がハウジング
1の前記球面Gをなす内壁面7を閉鎖して半球状の定積
空間からなる半月状作動室Haを形成し、且つその半月
状作動室HaをR円面上の回転ピストン3が容積変化を
する櫛形状空間の櫛形状作動室Fuに形成する。更に、
その半月状作動室Haの櫛形状作動室Fuに臨ませて吸
込み孔Inと吐出孔Outとを適宜設ける。
Then, the oblique plate 5 on the S-circle closes the inner wall surface 7 forming the spherical surface G of the housing 1 to form a half-moon-shaped working chamber Ha consisting of a hemispherical constant volume space, and the half moon thereof. The working chamber Ha is formed in the comb-shaped working chamber Fu in the comb-shaped space where the rotary piston 3 on the R circular surface changes in volume. Furthermore,
A suction hole In and a discharge hole Out are appropriately provided so as to face the comb-shaped working chamber Fu of the half-moon shaped working chamber Ha.

【0049】[0049]

【実施の形態3】また別の実施の形態は、上記解決手段
3の構成である。即ち、この形態3は図13,14と図
17と図22の各図に示すように球面Gの内壁面を有す
るハウジング1において、その球面内壁7の球心Oを通
ってX軸線が貫通するハウジング1壁の点P位置に主軸
受8を貫設し、その主軸受8にX軸線を回転軸線とする
直軸状をなす入力軸2の軸頸を嵌挿させて軸承させる。
また、X軸線とY軸線との双方に球心Oで直交するZ軸
線上の点e,e側のハウジング1対向両壁にZ軸線を軸
受軸線とする軌道環軸受12を設ける。その上、対向外
周面の各々に柄状の軌道環軸11を固着させてハウジン
グ1内壁面7内で回動可能な輪体の軌道環6を設け、そ
の軌道環6の軌道環軸11を前記軌道環軸受12に嵌挿
させて回動自由に軸承させる。
[Third Embodiment] Yet another embodiment is a configuration of the solving means 3. That is, in the third embodiment, in the housing 1 having the inner wall surface of the spherical surface G as shown in FIGS. 13, 14 and 17 and 22, the X axis passes through the spherical center O of the spherical inner wall 7. A main bearing 8 is provided at a position P on the wall of the housing 1, and a shaft neck of a straight shaft-shaped input shaft 2 having an X axis as a rotation axis is fitted into the main bearing 8 to be supported.
In addition, a raceway ring bearing 12 having the Z axis as a bearing axis is provided on both walls facing the housing 1 on the points e and e on the Z axis orthogonal to the X axis and the Y axis at the spherical center O. In addition, a ring-shaped race ring shaft 11 having a handle is fixed to each of the opposed outer peripheral surfaces to provide a race ring ring 6 of a ring body rotatable in the inner wall surface 7 of the housing 1. It is fitted in the ring bearing 12 and is rotatably supported.

【0050】そして、ハウジング1内のR円面上には、
外周面を前記球面内壁7に摺接契合する球弧面13に形
成し、且つ板面を半月状の弓形面14に形成した略板状
の回転ピストン3を配置して前記入力軸2の球心O位置
に枢結させるが、この回転ピストン3と入力軸2は、X
軸線と球心Oで直交するM軸線を連結軸として回転ピス
トン3が入力軸2上を水平方向に少なくとも角度(θ×
2)の範囲を揺動可能に互いの両片を以てピン継手関節
16を組成して連結する。
Then, on the R circular surface in the housing 1,
A sphere of the input shaft 2 is provided by arranging a substantially plate-shaped rotary piston 3 whose outer peripheral surface is formed into a spherical arc surface 13 which is slidably engaged with the spherical inner wall 7 and whose plate surface is formed into a semi-moon shaped arcuate surface 14. The rotary piston 3 and the input shaft 2 are pivotally connected to the center O position.
The rotary piston 3 has a horizontal axis on the input shaft 2 at least at an angle (θ ×
The pin joint joint 16 is composed and connected with both pieces so as to be swingable in the range of 2).

【0051】また、ハウジング1内のS円面上には、板
面に前記回転ピストン3の弓形面14に対応する弓形面
22を有し、且つ外周面の同一円周上を周回溝に削成し
た軌道受25を有する円形状板の斜行板5が回転ピスト
ン3に蝶番状に交差して配置されるが、この斜行板5
は、前記軌道環6に軌道受25の周回溝を摺接関係に嵌
合させてY軸線を中心に回転可能に拘束される。
Further, on the S-circular surface in the housing 1, there is an arcuate surface 22 corresponding to the arcuate surface 14 of the rotary piston 3 on the plate surface, and the outer circumferential surface is cut into a circular groove on the same circumference. The slanting plate 5 having a circular plate having the formed orbit receiver 25 is arranged so as to intersect with the rotary piston 3 in a hinge shape.
Is fitted to the orbital ring 6 in a circular groove of the orbital bearing 25 in a sliding contact relationship and is rotatably restrained about the Y axis.

【0052】そのS円面上の斜行板5とR円面上の回転
ピストン3の交差部分は、その交差割線Kを取付け軸線
として介在させた円柱状の中間軸4を両底面に平行な切
り口面で複数個に分割すると共に、それを回転ピストン
3に固着させたピストン中間軸4aの部分と斜行板5に
固着させた斜行板中間軸4bの部分とに区分し、且つそ
のピストン中間軸4aと斜行板中間軸4bとの接合部分
に、ピンとピン受孔からなる互いの両片でK軸線を関節
基軸線とする蝶番関節19を組成して斜行板5に回転ピ
ストン3が少なくとも角度(θ×2)範囲を擺動可能に
連結する。
At the intersection of the skew plate 5 on the S-circle and the rotary piston 3 on the R-circle, a cylindrical intermediate shaft 4 with the intersection secant K as an attachment axis is parallel to both bottom surfaces. The cut face is divided into a plurality of parts, and is divided into a piston intermediate shaft 4a portion fixed to the rotary piston 3 and a slant plate intermediate shaft 4b portion fixed to the slant plate 5, and the piston At the joint portion between the intermediate shaft 4a and the skew plate intermediate shaft 4b, a hinge joint 19 having a K axis as a joint base axis is formed by both pieces of a pin and a pin receiving hole, and a rotary piston 3 is provided on the skew plate 5. Connects at least in the range of angle (θ × 2) so as to be slidable.

【0053】尚、前記軌道環6には、その軌道環6の傾
転角度を自由に変化させる軌道環6位相の制御装置CA
を前記軌道環軸11に装着して連動させ、その前記Z軸
線上の軌道環軸11を中心として軌道環6の傾転を前記
入力軸2のX軸線に対して角度0から角度±θの範囲の
何れかを自動的に制御装置CAに選択させる。
Incidentally, the orbital ring 6 has a phase control device CA for orbital 6 phase for freely changing the tilt angle of the orbital ring 6.
Is attached to the orbital ring shaft 11 and is interlocked, and the tilting of the orbital ring 6 about the orbital ring shaft 11 on the Z-axis is made from the angle 0 to the angle ± θ with respect to the X-axis line of the input shaft 2. Let the controller CA automatically select any of the ranges.

【0054】すると、S円面上の斜行板5がハウジング
1の前記球面Gをなす内壁面7を閉鎖して半球状の定積
空間からなる半月状作動室Haを形成し、且つその半月
状作動室HaをR円面上の回転ピストン3が容積変化を
する櫛形状空間の櫛形状作動室Fuに形成する。更に、
その半月状作動室Haの櫛形状作動室Fuに臨ませて吸
込み孔Inと吐出孔Outとを適宜設ける。
Then, the slanting plate 5 on the S-circle closes the inner wall surface 7 forming the spherical surface G of the housing 1 to form a half-moon-shaped working chamber Ha consisting of a hemispherical constant volume space, and the half moon thereof. The working chamber Ha is formed in the comb-shaped working chamber Fu in the comb-shaped space where the rotary piston 3 on the R circular surface changes in volume. Furthermore,
A suction hole In and a discharge hole Out are appropriately provided so as to face the comb-shaped working chamber Fu of the half-moon shaped working chamber Ha.

【0055】[0055]

【実施の形態4】更に別の実施の形態は、上記解決手段
4の構成である。即ち、この形態4は図23と図24に
示すように球面Gの内壁面を有するハウジング1におい
て、その球面内壁7の球心Oを通ってX軸線が貫通する
ハウジング1壁の点P側に主軸受8を貫設し、その主軸
受8にX軸線を回転軸線とする直軸状をなす入力軸2の
軸頸を嵌挿させて軸承させ、且つX軸線上の入力軸2に
角度θを有して球心Oで交差するY軸線上のハウジング
1壁にも斜行板軸受29の円孔を主軸受8の対向側に設
ける。
[Fourth Embodiment] Still another embodiment is a configuration of the solving means 4. That is, in this mode 4, in the housing 1 having the inner wall surface of the spherical surface G as shown in FIGS. 23 and 24, the X axis passes through the spherical center O of the inner spherical surface wall 7 of the housing 1 toward the point P side. The main bearing 8 is provided so that the shaft neck of a straight shaft-shaped input shaft 2 having the X axis as the axis of rotation is fitted into the main bearing 8 so as to be supported, and the angle of the input shaft 2 on the X axis is θ. A circular hole for the skewed plate bearing 29 is also provided on the opposite side of the main bearing 8 in the housing 1 wall on the Y-axis line that intersects at the spherical center O.

【0056】そして、ハウジング1内のR円面上には、
外周面を前記球面内壁7に摺接契合する球弧面13に形
成し、且つ板面を半月状の弓形面14に形成した半円状
板の回転ピストン3を配置して前記入力軸2の球心O位
置に枢結させる。この回転ピストン3と入力軸2は、X
軸線と球心Oで直交するM軸線を連結軸として回転ピス
トン3が入力軸2上を水平方向に少なくとも角度(θ×
2)の範囲を揺動可能に互いの両片を以てピン継手関節
16を組成して連結する。
Then, on the R circular surface in the housing 1,
A rotary piston 3 of a semicircular plate having an outer peripheral surface formed on a spherical arc surface 13 slidingly engaged with the spherical inner wall 7 and a plate surface formed on a semi-lunar arcuate surface 14 is arranged to dispose the rotary shaft 3 of the input shaft 2. Pivot at the ball center O position. The rotary piston 3 and the input shaft 2 have X
The rotary piston 3 has a horizontal axis on the input shaft 2 at least at an angle (θ ×
The pin joint joint 16 is composed and connected with both pieces so as to be swingable in the range of 2).

【0057】また、ハウジング1内のS円面上には、球
面Gをなすハウジング1内壁面7に回転摺接する外周面
と板面に前記回転ピストン3の弓形面14に対応する弓
形面22とを有し、且つその弓形面22の裏面側中心部
に柄状丸柱の斜行板軸28を固着させた円形状板の斜行
板5を回転ピストン3に蝶番状に交差させて配置すると
共に、この斜行板5は前記斜行板軸受29にY軸線を回
転軸線とする斜行板軸28を嵌挿させて回転自在に支持
される。
Further, on the S-circular surface in the housing 1, an outer peripheral surface which is in sliding contact with the inner wall surface 7 of the housing 1 forming a spherical surface G and an arcuate surface 22 corresponding to the arcuate surface 14 of the rotary piston 3 are provided on the plate surface. In addition, a skewed plate 5 of a circular plate having a circular rod-shaped skewed plate shaft 28 fixed to the central portion on the back surface side of the arcuate surface 22 is arranged so as to intersect the rotary piston 3 in a hinge shape. The skew plate 5 is rotatably supported by inserting the skew plate shaft 28 having the Y axis as a rotation axis into the skew plate bearing 29.

【0058】そのS円面上の斜行板5とR円面上の回転
ピストン3との交差部分は、その交差割線Kを取付け軸
線として介在させた円柱状の中間軸4を両底面に平行な
切り口面で複数個に分割すると共に、それを回転ピスト
ン3に固着させたピストン中間軸4aの部分と斜行板5
に固着させた斜行板中間軸4bの部分とに区分し、且つ
そのピストン中間軸4aと斜行板中間軸4bとの接合部
分に、ピンとピン受孔からなる互いの両片でK軸線を関
節基軸線とする蝶番関節19を組成して斜行板5に回転
ピストン3が少なくとも角度(θ×2)範囲を擺動可能
に連結する。
At the intersection of the skew plate 5 on the S-circle and the rotary piston 3 on the R-circle, a cylindrical intermediate shaft 4 having the intersection secant K as an attachment axis is parallel to both bottom surfaces. Of the piston intermediate shaft 4a, which is fixed to the rotary piston 3 while being divided into a plurality of cut surfaces, and the slant plate 5.
It is divided into a portion of the slant plate intermediate shaft 4b that is fixedly attached to the slant plate, and the K axis is formed at the joint portion between the piston intermediate shaft 4a and the slant plate intermediate shaft 4b by both pieces of the pin and the pin receiving hole. A hinged joint 19 serving as a joint base line is formed so that the rotary piston 3 is slidably connected to the oblique plate 5 in at least an angle (θ × 2) range.

【0059】すると、S円面上の斜行板5がハウジング
1の前記球面Gをなす内壁面7を閉鎖して半球状の定積
空間からなる半月状作動室Haを形成し、且つその半月
状作動室HaをR円面上の回転ピストン3が容積変化を
する櫛形状空間の櫛形状作動室Fuに形成する。更に、
その半月状作動室Haの櫛形状作動室Fuに臨ませて吸
込み孔Inと吐出孔Outとを適宜設ける。
Then, the oblique plate 5 on the S-circle closes the inner wall surface 7 forming the spherical surface G of the housing 1 to form the half-moon-shaped working chamber Ha consisting of a hemispherical constant volume space, and the half moon thereof. The working chamber Ha is formed in the comb-shaped working chamber Fu in the comb-shaped space where the rotary piston 3 on the R circular surface changes in volume. Furthermore,
A suction hole In and a discharge hole Out are appropriately provided so as to face the comb-shaped working chamber Fu of the half-moon shaped working chamber Ha.

【0060】[0060]

【各実施の形態の共通態様(作動室の形成とθ角度)】
本発明では、上記実施の形態1乃至3、及び実施の形態
1乃至4における共通の態様としてハウジング1内に形
成される作動室の数は以下の3通りがある。共通態様1
(4作動室).上記実施の形態1乃至3において、斜行
板5の両側に半月状作動室Ha,Haを形成し、その二
つの半月状作動室Ha,Haの各々を円形状板の回転ピ
ストン3が二つずつの櫛形状作動室Fu,Fu、Fu,
Fu(空間A,B,C,D)に形成する。共通態様2
(回転軸に対して水平方向に並ぶ2作動室).上記実施
の形態1乃至3において、斜行板5の両側に半月状作動
室Ha,Haを形成し、その二つの半月状作動室Ha,
Haの各々を半球状板の回転ピストン3が櫛形状作動室
Fu,Fu(空間A,Dか、又は空間B,C)に形成す
る。共通態様3(回転軸に対して垂直方向に並ぶ2作動
室).上記実施の形態1乃至4において、斜行板5両側
の何れか一方側にのみ半月状作動室Haを形成し、その
半月状作動室Haを半円状板の回転ピストン3が二つの
櫛形状作動室Fu,Fu(空間A,Bか、又は空間C,
D)に形成する。
[Common mode of each embodiment (formation of working chamber and θ angle)]
In the present invention, the number of working chambers formed in the housing 1 is the following three as a common aspect in the first to third embodiments and the first to fourth embodiments. Common mode 1
(4 working chambers). In the first to third embodiments described above, the half-moon shaped working chambers Ha and Ha are formed on both sides of the oblique plate 5, and each of the two half-moon shaped working chambers Ha and Ha is provided with two circular plate-shaped rotary pistons 3. Each comb-shaped working chamber Fu, Fu, Fu,
It is formed in Fu (spaces A, B, C, D). Common mode 2
(2 working chambers arranged horizontally to the axis of rotation). In the above-described first to third embodiments, the half-moon-shaped working chambers Ha, Ha are formed on both sides of the slanting plate 5, and the two half-moon-shaped working chambers Ha, Ha,
A rotating piston 3 having a hemispherical plate forms each of Ha in the comb-shaped working chambers Fu and Fu (spaces A and D or spaces B and C). Common mode 3 (two working chambers arranged in a direction perpendicular to the rotation axis). In the first to fourth embodiments described above, the half-moon-shaped working chamber Ha is formed only on one of the two sides of the oblique plate 5, and the half-moon-shaped working chamber Ha has a semi-circular plate-shaped rotary piston 3 in two comb shapes. Working chamber Fu, Fu (space A, B or space C,
D).

【0061】また、上記何れの実施の形態においても、
X軸線とY軸線とが球心Oにおいて交差して創出する傾
転角度θは10°<θ<60°が実用範囲であり、その
最適角度は25°〜35°である。
In any of the above embodiments,
The tilt angle θ created by the X axis line and the Y axis line intersecting at the spherical center O has a practical range of 10 ° <θ <60 °, and the optimum angle is 25 ° to 35 °.

【0062】[0062]

【作動原理】上記構成による本発明の球形の回転ピスト
ンポンプ、圧縮機の作動原理を、回転ピストン3と斜行
板5の回転連動と、それに伴って生じる各作動室Fuの
容積変化とにおいて図25,26に基づき上記実施の形
態1、及び上記共通態様1を例とし、且つ動作流体の出
入孔In,Outの取付けと吸入、吐出行程の全作動を図
27に基づいて以下説明する。
[Principle of Operation] The principle of operation of the spherical rotary piston pump and compressor of the present invention having the above-described structure is illustrated in the rotation interlocking of the rotary piston 3 and the skew plate 5 and the accompanying volume change of each working chamber Fu. 25 and 26, the first embodiment and the common mode 1 will be taken as an example, and the mounting of the working fluid inlet / outlet holes In and Out and the entire operation of the suction and discharge strokes will be described below with reference to FIG.

【0063】図25(a)における入力軸2と回転ピス
トン3と斜行板5の三者が前記ピン継手関節16と前記
蝶番関節19とを介在させて係合状態にある時、入力軸
2に電動機、又は内燃機関等の原動機によって回転を与
えれば、回転ピストン3は斜行板5の回転平面上を誘導
されて三者共通の中心であるハウジング1内壁面7の球
心Oを旋回の中心として円錐軌跡U上に沿って円錐運動
をする。即ち、図25,26(a)〜(l)は協働回転
をする回転ピストン3と斜行板5との半回転(180
度)分に相当する作動を示すものである。
When the input shaft 2, the rotary piston 3, and the skew plate 5 in FIG. 25 (a) are in the engaged state with the pin joint joint 16 and the hinge joint 19 interposed, the input shaft 2 When the motor is rotated by an electric motor or a prime mover such as an internal combustion engine, the rotary piston 3 is guided on the plane of rotation of the skew plate 5 to rotate the ball center O of the inner wall surface 7 of the housing 1 which is the common center of the three. A conical motion is performed along the conical locus U as the center. That is, FIGS. 25 and 26 (a) to (l) show a half rotation (180 degrees) between the rotary piston 3 and the skew plate 5 which rotate in cooperation.
Degree) minutes.

【0064】また、図示される櫛形状の作動室Fuは、
まずハウジング1の円球内が斜行板5によって凹面内壁
面7を閉鎖した二つの半月状の空間Ha,Haに形成さ
れ、更にそこに組込まれる回転ピストン3によってハウ
ジング1の内壁面7と斜行板5板面の弓形面22と中間
軸4柱面を含む回転ピストン3の弓形面14とに囲われ
た櫛形状の空間A,B,C,Dであるが、その同一半月
状作動室Ha内に形成される櫛形状作動室のAとB、又
はCとDは、互いが反比例に作動室体積を変化させて作
動する。
Further, the comb-shaped working chamber Fu shown in the drawing is
First, the inside of the sphere of the housing 1 is formed into two half-moon shaped spaces Ha, Ha in which the concave inner wall surface 7 is closed by the slanting plate 5, and further the rotary piston 3 incorporated therein forms an oblique relation with the inner wall surface 7 of the housing 1. Comb-shaped spaces A, B, C, and D surrounded by the arcuate surface 22 of the row plate 5 and the arcuate surface 14 of the rotary piston 3 including the intermediate shaft 4 pillar surface, but the same half-moon-shaped working chamber The comb-shaped working chambers A and B or C and D formed in Ha operate by changing the working chamber volume in inverse proportion to each other.

【0065】つまり、斜行板5によってダブルエンドに
形成された半月状作動室Ha,Haの各々にダブルエン
ドのピストンとして構成する回転ピストン3を組込んで
作動させれば、同一半月状作動室Ha内の二つの櫛形状
作動室AとB、又はCとDの何れか一方側の空間が拡張
して体積を増加させると反対側の空間は収縮して体積を
減少させ、また斜行板5の同一弓形面22を挟む二つの
作動室AとD、又はBとCの空間も互いが反比例に体積
を変化させて作動する。尚、斜行板5を斜めに挟んで対
向する二つの作動室AとC、BとDは、互いの体積が常
に正比例する増減関係を有して変化する。
That is, if the rotary piston 3 configured as a double end piston is incorporated into each of the half-moon shaped working chambers Ha, Ha formed at the double end by the slanting plate 5 and operated, the same half-moon shaped working chamber is formed. When the space on one of the two comb-shaped working chambers A and B or C and D in Ha expands to increase the volume, the space on the opposite side contracts to decrease the volume, and the slant plate The two working chambers A and D or the spaces B and C sandwiching the same arcuate surface 22 of 5 also operate by changing their volumes in inverse proportion to each other. The two working chambers A and C, and the two working chambers B and D, which are opposed to each other with the oblique plate 5 sandwiched therebetween, change in an increasing / decreasing relationship in which their volumes are always directly proportional.

【0066】結局、櫛形状空間の形成は相対する回転ピ
ストン3と斜行板5との板面の間隙であり、互いの板面
の離合によってその空間体積が増減する。従って、その
板面間隙を作動室Fu空間とすれば、互いに与する回転
ピストン3と斜行板5との互いの板面の接近は、その板
面間が形成する間隙の収縮であると共に作動室Fu空間
における体積の減少であって、往復ピストンポンプ、及
び往復動圧縮機におけるピストン、或はプランジャがシ
リンダー内を二つのデッドポイントの下死点から上死点
に向かう過程の作動に相当する。反対に互いに与する回
転ピストン3と斜行板5との板面の離間は、その空間体
積の増加であって往復ピストンポンプ、往復動圧縮機に
おけるピストン、或はプランジャが上死点から下死点に
移動する過程に相当し、互いの板面間に形成される間隙
の弛緩と収縮が各作動室Fuにおける体積の増加と減少
である。
After all, the formation of the comb-shaped space is a gap between the plate surfaces of the rotary piston 3 and the skewed plate 5 which face each other, and the space volume thereof increases or decreases depending on the mutual separation of the plate surfaces. Therefore, if the plate surface gap is defined as the working chamber Fu space, the mutual approach of the plate surfaces of the rotary piston 3 and the skewed plate 5, which are given to each other, is the contraction of the gap formed between the plate surfaces and the operation is performed. Volume reduction in the chamber Fu space, which corresponds to the operation of the reciprocating piston pump, the piston in the reciprocating compressor, or the plunger in the cylinder from the bottom dead center to the top dead center of two dead points. . On the contrary, the spacing between the plate surfaces of the rotary piston 3 and the oblique plate 5, which are given to each other, is an increase in the space volume, and the reciprocating piston pump, the piston in the reciprocating compressor, or the plunger is bottom dead from the top dead center. This corresponds to the process of moving to a point, and the relaxation and contraction of the gap formed between the plate surfaces are the increase and decrease of the volume in each working chamber Fu.

【0067】図25(a)において、作動室Aはその作
動室間隙を収縮させていて最小体積であり、その作動室
Aの対称位置にある作動室Cも同様に作動室間隙を収縮
させていて体積も最小であるが、作動室Aと共に同一の
半月状作動室Haを共有する作動室Bと、もう一方の半
月状作動室Haを作動室Cと共に共有する作動室Dは共
に作動室間隙を拡張させた上限の体積を持っている。こ
の図25(a)における回転ピストン3は入力軸2上に
左右対称な平衡に置かれて入力軸2に中間軸4が直交
し、且つ入力軸2の軸線とピストン通軸孔15の中心線
とが重なった状態にある。
In FIG. 25 (a), the working chamber A has its working chamber gap contracted to the minimum volume, and the working chamber C at the symmetrical position of the working chamber A also contracts the working chamber gap. The working chamber B shares the same half-moon shaped working chamber Ha with the working chamber A, and the working chamber D sharing the other half-moon shaped working chamber Ha with the working chamber C has a working chamber gap. Has an upper limit volume that is expanded. The rotary piston 3 in FIG. 25 (a) is placed on the input shaft 2 in symmetrical equilibrium, the intermediate shaft 4 is orthogonal to the input shaft 2, and the axis of the input shaft 2 and the center line of the piston through hole 15 are aligned. And are in a state of overlapping.

【0068】この場合、回転ピストン3は入力軸2を振
幅の基線として入力軸2上の平面方向に揺動するが、入
力軸2に矢印方向の回転を与えると、ピストン通軸孔1
5の中心を通る回転ピストン3の水平平衡線(軸線L)
が次第に入力軸2上から外れて偏り、図25(a)から
(b),(c),(d),(e)の順に作動室A,Cは
作動室空間が押し広げられて体積を増加させ、それとは
逆に作動室B,Dは回転ピストン3と斜行板5との板面
が近付いて互いの作動室空間を収縮させ、その体積を減
少させる。
In this case, the rotary piston 3 swings in the plane direction on the input shaft 2 with the input shaft 2 as the amplitude baseline, but when the input shaft 2 is rotated in the direction of the arrow, the piston through-hole 1
Horizontal balance line (axis L) of the rotating piston 3 passing through the center of 5
Is gradually deviated from the input shaft 2 and biased, and the working chambers A and C are expanded in volume in order of FIG. 25 (a) to (b), (c), (d), and (e) to expand the volume. On the contrary, in the working chambers B and D, the plate surfaces of the rotary piston 3 and the slanting plate 5 approach each other to shrink the working chamber space and reduce the volume thereof.

【0069】そして、図26(g)に至って回転ピスト
ン3は入力軸2と斜行板5との軸線間に創出される開角
度(傾転角度θ)分を移動するが、それは入力軸2の回
転角90度分に相当し、四つの作動室空間A,B,C,
Dの体積変化が中位になって各々の体積は等量になる
が、更に図26(h)乃至(k)の方向に順次作動が進
行すれば、作動室A,Cの各作動室間隙は更に広がって
体積を拡大させ、反対に作動室B,Dの体積を更に縮小
させる。つまり、図25(a)における回転ピストン3
が180度分である半回転をすると、図26(l)に示
すように回転ピストン3の表裏が入れ替わって、作動室
A,Cは共に作動室間隙を拡張させて体積が最大量にな
り、反対に作動室B,Dはその体積を上限値から下限値
へと共に収縮させる。
Then, as shown in FIG. 26 (g), the rotary piston 3 moves by an opening angle (tilt angle θ) created between the axes of the input shaft 2 and the skew plate 5, which is the input shaft 2. Corresponding to a rotation angle of 90 degrees, the four working chamber spaces A, B, C,
The volume change of D becomes medium and each volume becomes equal, but if the operation further proceeds in the direction of FIGS. 26 (h) to (k), the gap between the working chambers of the working chambers A and C is increased. Further expands and increases the volume, and conversely further decreases the volumes of the working chambers B and D. That is, the rotary piston 3 in FIG.
Is a half rotation of 180 degrees, the front and back of the rotary piston 3 are exchanged as shown in FIG. 26 (l), the working chambers A and C both expand the working chamber gap, and the volume becomes the maximum amount. On the contrary, the working chambers B and D shrink their volumes from the upper limit value to the lower limit value.

【0070】また、図25(a)から図26(l)まで
の各作動室A,B,C,Dの体積変化は180度の回転
分であるが、図26(l)における作動室A,Cの間隙
が共に下限になるまでと作動室B,Dの間隙が共に上限
になるまで更に180度分の回転を加えれば、図25
(a)からでは360度分である1回転を行ったことに
なり、作動室A,B,C,Dの各々が吸い込みと吐き出
しとの二つずつの行程を完了させる分の回転をしたこと
になる。従って、ハウジング1の適位置に吸入孔Inと
吐出孔Outとを穿設して動作流体を供給し、且つ上述の
如くの2行程サイクルを繰り返せば本発明の球形の回転
ピストンポンプ、圧縮機は流体ポンプ、及び圧縮機とし
て作動する。その時、特に圧縮機としては、吐出孔Out
側にチェックバルブ(逆止弁)等の弁を取付けるとよ
い。
The volume change of each working chamber A, B, C, D from FIG. 25 (a) to FIG. 26 (l) is the amount of rotation of 180 degrees, but the working chamber A in FIG. 25 and C until the gaps between them are both lower limits and the gaps between the working chambers B and D are both upper limits, as shown in FIG.
From (a), it means that one rotation, which is 360 degrees, is performed, and each of the working chambers A, B, C, and D has rotated enough to complete two strokes of suction and discharge. become. Therefore, if the suction hole In and the discharge hole Out are provided at appropriate positions in the housing 1 to supply the working fluid, and the two-stroke cycle as described above is repeated, the spherical rotary piston pump and the compressor of the present invention can be obtained. Operates as a fluid pump and compressor. At that time, especially as a compressor, the discharge hole Out
A valve such as a check valve (check valve) may be installed on the side.

【0071】[0071]

【行程】本発明の球形の回転ピストンポンプ、圧縮機で
は、最小から最大、最大から最小に交番する櫛形状作動
室Fuの体積変化が上述したように入力軸2回転角の1
80度毎に行われ、従来の往復ピストンポンプ、圧縮
機、或は定吐出容量のベーンポンプと同じように吸込み
行程と吐出し(圧縮)行程との2行程を有し、その2行
程の全作動が軸回転の360度、即ち入力軸2の1回転
の間に行われる。また、本発明の球形の回転ピストンポ
ンプ、圧縮機においては、液体、気体の何れの動作流体
に拘らず、その流体が流出入する流路孔は各半月状作動
室Haに吸入孔Inと吐出孔Outの少なくとも1穴ずつ
がハウジング1壁のほぼ対向位置に穿設されるが、その
場合の出入孔In,Out口は、幾何学的構成において示
したX,Z軸線の双方を通る平面上のハウジング1内壁
面7に開口する。
[Stroke] In the spherical rotary piston pump and compressor of the present invention, the volume change of the comb-shaped working chamber Fu alternating from the minimum to the maximum and from the maximum to the minimum is, as described above, one of the two rotation angles of the input shaft.
It is performed every 80 degrees and has two strokes of suction stroke and discharge (compression) stroke like the conventional reciprocating piston pump, compressor or vane pump of constant discharge capacity, and the full operation of the two strokes. Is performed during 360 degrees of shaft rotation, that is, during one rotation of the input shaft 2. Further, in the spherical rotary piston pump and compressor of the present invention, regardless of whether the working fluid is a liquid or a gas, the flow path hole through which the fluid flows in and out is the suction hole In and the discharge hole In to each crescent-shaped working chamber Ha. At least one hole Out is formed at a position substantially opposite to the wall of the housing 1, and the entrance and exit holes In and Out in that case are on a plane passing through both the X and Z axes shown in the geometrical configuration. It opens to the inner wall surface 7 of the housing 1.

【0072】図27は、本発明の球形の回転ピストンポ
ンプ、圧縮機の作動経過を示したものであるが、以下吸
入、吐出の各行程を説明する。 〔吸入行程(〜)〕図27(A)のの状態は、作
動室Fuの容積が最小であり、吸入側の上死点に相当し
て(B)〜(D)の〜と回転ピストン3の回転に伴
って作動室Fuは順次大きくなり、開口した吸入孔In
から動作流体が吸い込まれる。そして、(A)のの状
態になると、作動室Fu容積は最大となって吸入行程が
終了するが、尚この状態は吸入側の下死点位置に相当す
る。 〔吐出行程(〜)〕吸入行程の終りの(A)におけ
るの下死点付近で吐出孔Outが開口して吸入した流体
を圧縮し始めると同時に、流体が液体においては吐出さ
れ始め、気体では吐出孔Outに取付けた吐出弁や逆止弁
等によって吐出時期が調時され、(B)〜(D)の〜
を経て(A)の付近まで吐出が続けられる。
FIG. 27 shows the operating process of the spherical rotary piston pump and compressor of the present invention. The intake and discharge strokes will be described below. [Suction stroke (-)] In the state of Fig. 27 (A), the volume of the working chamber Fu is minimum, and corresponding to the top dead center of the suction side, (B)-(D) and the rotary piston 3 are shown. The working chamber Fu is gradually increased with the rotation of the
Working fluid is drawn from the. Then, in the state of (A), the volume of the working chamber Fu becomes maximum and the suction stroke ends, but this state corresponds to the bottom dead center position on the suction side. [Discharge Stroke (-)] At the end of the suction stroke (A), the discharge hole Out opens near the bottom dead center to start compressing the sucked fluid, and at the same time, the fluid begins to be discharged as a liquid and is not gas. The discharge timing is adjusted by a discharge valve, a check valve, etc. attached to the discharge hole Out, and (B) to (D)
After that, the discharge is continued up to the vicinity of (A).

【0073】以上のように、本発明の球形の回転ピスト
ンポンプ、圧縮機は、回転ピストン3が1回転する間に
各半月状作動室Ha内の二つの櫛形状作動室Fu,Fu
のそれぞれが吸入、吐出の各行程を完了するため、回転
ピストン3、及び入力軸2の1回転に1回の吐出行程を
有する特長がある。尚、本発明の球形の回転ピストンポ
ンプ、圧縮機における押しのけ容積は作動室Fu全体の
体積に比例する。
As described above, in the spherical rotary piston pump and compressor of the present invention, the two comb-shaped working chambers Fu and Fu in each half-moon shaped working chamber Ha are provided during one rotation of the rotary piston 3.
Since each of them completes the suction stroke and the discharge stroke, there is a feature that the rotary piston 3 and the input shaft 2 have one discharge stroke per one rotation. The displacement volume of the spherical rotary piston pump and compressor of the present invention is proportional to the volume of the entire working chamber Fu.

【0074】[0074]

【性能計算】また、本発明の球形の回転ピストンポン
プ、圧縮機の性能計算を流体ポンプにおいて述べれば、
従来のポンプと同じようにその性能は吐出量Q〔l/mi
n〕で表わされ、その吐出量Qは次式で表わされる。 Q=(ηυ・qp・N)/1000 ηυ ポンプの容積効率 qp ポンプの1回転当たりの押しのけ容積〔cm3/re
v〕 N 入力回転数〔r.p.m〕 この時、本発明の球形の回転ピストンポンプに仕事をさ
せるために必要な入力Ln〔kW〕も、従来ポンプと同
じく次式によって計算される。 Ln=(P・Q)/(60・η)P 吐出圧力〔MP
a〕(=100/9.8〔kgf/cm2〕) η 全効率(ポンプ効率) Q 吐出量〔l/min〕 尚、全効率ηは、容積効率ηυに機械効率ηmを乗じた
ものである。
[Performance Calculation] The performance calculation of the spherical rotary piston pump and compressor of the present invention will be described in terms of a fluid pump.
Its performance is similar to that of conventional pumps.
n], and the discharge amount Q is expressed by the following equation. Q = (ηυ · qp · N) / 1000 ηυ Volumetric efficiency of the pump qp Displacement volume per revolution of the pump [cm 3 / re
v] N input rotation speed [rpm] At this time, the input Ln [kW] necessary for causing the spherical rotary piston pump of the present invention to work is also calculated by the following equation, as in the conventional pump. Ln = (P ・ Q) / (60 ・ η) P Discharge pressure [MP
a] (= 100 / 9.8 [kgf / cm 2 ]) η Total efficiency (pump efficiency) Q Discharge rate [l / min] The total efficiency η is the volumetric efficiency ηυ multiplied by the mechanical efficiency ηm.

【0075】[0075]

【実施例】本発明の球形の回転ピストンポンプ、圧縮機
は、上述したように各種実施の形態(1〜4)における
共通の態様1乃至3の各々が上記作動原理に基づいて流
体ポンプ、及び圧縮機として作動するものである。即
ち、本発明においては、ハウジング1内に一つの櫛形状
作動室乃至四つの櫛形状作動室(Fuか、又はFu,F
uか、又はFu,Fu,Fuか、又はFu,Fu,F
u,Fu)を有する実施の形態があるが、取り分け上記
形態1乃至3において一つのハウジング1内に対向両側
の四つの櫛形状作動室Fu,Fu、Fu,Fu(空間
A,B,C,D)を形成するか、或は上記形態1乃至3
において一つのハウジング1内に回転軸に対して水平方
向に並ぶ二つの櫛形状作動室Fu,Fu(空間A,D
か、又は空間B,C)を形成するか、或は又、上記形態
1乃至4において一つのハウジング1内に回転軸に対し
て垂直並びの二つの櫛形状作動室Fu,Fu(空間A,
Bか、又は空間C,D)を形成する3種類の形態を、以
下の各実施例に基づき図面を参照して詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the spherical rotary piston pump and compressor according to the present invention are characterized in that each of the common modes 1 to 3 in the various embodiments (1 to 4) is based on the above operating principle, and It operates as a compressor. That is, in the present invention, one comb-shaped working chamber to four comb-shaped working chambers (Fu or Fu, F) are provided in the housing 1.
u or Fu, Fu, Fu or Fu, Fu, F
u, Fu), but particularly in the above-mentioned Embodiments 1 to 3, four comb-shaped working chambers Fu, Fu, Fu, Fu (spaces A, B, C, D), or the above-mentioned modes 1 to 3
In one housing 1, two comb-shaped working chambers Fu and Fu (spaces A and D) arranged in the horizontal direction with respect to the rotation axis are provided.
Or the spaces B, C) are formed, or, in the above-mentioned Embodiments 1 to 4, two comb-shaped working chambers Fu, Fu (spaces A,
Three types of forms forming B or spaces C and D) will be described in detail with reference to the drawings based on the following embodiments.

【0076】[0076]

【実施例1】まず、一つのハウジング1内に四つの櫛形
状作動室A,B,C,Dを形成した形態の実施例を説明
する。図9、及び図10に示すこの実施例は、前記実施
の形態1、及び共通態様1の構成に基づく実施例であ
る。例えば、前記解決手段において点、線、面の各関係
を設定したハウジング1を図9に示すa−a,b−bの
S円面を跨ぐ平行な二つの切り口平面によって分離した
とすると、ハウジング1は3分割されて筒状、又は環状
からなるS円面上の中央部分と各々が半球より小さい球
冠からなる両側部分とに区分されるが、その中央部分を
斜行板5を回転可能に拘束する斜行板ハウジング1bと
して球面Gより大きいS円面同心の内壁面に形成し、両
側の各々を円形状回転ピストン3の半円ずつを内包する
回転ピストンハウジング1a,1aとして球面Gからな
る対称形の凹面内壁7a,7aに形成する。
[First Embodiment] First, an embodiment in which four comb-shaped working chambers A, B, C and D are formed in one housing 1 will be described. This example shown in FIGS. 9 and 10 is an example based on the configurations of the first embodiment and the common mode 1. For example, assuming that the housing 1 in which the relations of points, lines, and planes are set in the above-mentioned solving means are separated by two parallel cut face planes that straddle the S circle surface of aa and bb shown in FIG. 1 is divided into 3 parts, and is divided into a central part on the S circle surface which is cylindrical or annular and both side parts each consisting of a spherical crown smaller than a hemisphere, and the oblique plate 5 can be rotated at the central part. Is formed on the inner wall surface of the S-circular surface concentric with the sloping plate housing 1b that is larger than the spherical surface G, and the both sides of each of the rotary piston housings 1a and 1a that enclose the semicircle of the circular rotary piston 3 are from the spherical surface G. Are formed on the inner walls 7a, 7a of the symmetrical concave surface.

【0077】その斜行板ハウジング1bと両側の回転ピ
ストンハウジング1a,1aとを合一させて球状の一体
構造に形成すると、斜行板ハウジング1bの内部面を溝
底とする両回転ピストンハウジング1a,1a凹面内壁
7a,7aの円周縁間が前記軌道隙9としてS円面の延
長平面に沿って周回する溝状間隙に形成される。その上
で、その軌道隙9中心線のY軸線に球心Oで角度θを有
して交差するX軸線上の回転ピストンハウジング1a,
1aの対向両壁に軸受孔の主軸受8,8を貫設すると共
に、その両主軸受8,8にはX軸線を回転軸線として直
軸状をなす入力軸2の両側軸頸を嵌挿させて回転自在に
軸承させる。この入力軸2には、球心Oに位置してM軸
線を連結の軸とする前記ピン継手関節16のピン柱、又
はピン受孔の何れかからなる連結素子(この図9,10
においてはピン受孔である)の軸央枢17を有する。
When the inclined plate housing 1b and the rotary piston housings 1a, 1a on both sides are united to form a spherical integral structure, both rotary piston housings 1a whose inner surface is the groove bottom are formed. , 1a are formed between the circumferential edges of the concave inner walls 7a, 7a as the orbital gaps 9 which are groove-shaped gaps which circulate along the extension plane of the S-circle. Then, the rotary piston housing 1a on the X axis which intersects the Y axis of the center line of the orbital space 9 at the spherical center O at an angle θ.
Main bearings 8 and 8 having bearing holes are formed through both opposite walls of 1a, and both side shaft necks of an input shaft 2 having a straight axis shape with the X axis as a rotation axis are inserted into both main bearings 8 and 8. And allow it to rotate freely. The input shaft 2 is provided with a connecting element formed of either a pin column of the pin joint joint 16 or a pin receiving hole located at the center O of the ball and having the M axis as a connecting shaft (see FIGS. 9 and 10).
Which is a pin receiving hole).

【0078】また、ハウジング1内のR円面上には、球
面Gをなす各回転ピストンハウジング1aの凹面内壁7
aに回転可能に摺接する外周面の球弧面13と、その球
弧面13の弓形輪郭平面をなす表裏の弓形面14,14
と、その表裏の弓形面14,14の弓形弦が挟持する弦
側面とから形成される弓形板の二つをK軸線を挟んで互
いの弦側面を対面させて対称配置し、且つその対面する
両弓形板の弦側面にK軸線を取付け軸線とする円柱状の
中間軸4を介在合体させて全体形状を略円形板に形成し
た回転ピストン3を配置する。
Further, on the R circular surface inside the housing 1, the concave inner wall 7 of each rotary piston housing 1a forming a spherical surface G is formed.
a spherical arc surface 13 on the outer peripheral surface rotatably slidingly contacting a, and front and back arcuate surfaces 14 and 14 forming an arcuate contour plane of the spherical arc surface 13.
And two of the bow-shaped plates formed by the bow-shaped surfaces 14 and 14 on the front and back sides and the chord side surfaces sandwiched by the bow-shaped chords are symmetrically arranged with their chord-side surfaces facing each other with the K axis interposed therebetween. A rotary piston 3 having a generally circular plate as a whole is arranged by interposing a cylindrical intermediate shaft 4 having the K axis as an attachment axis on the chord side surfaces of both arcuate plates.

【0079】この回転ピストン3には、自らが内包する
R円面に沿ってX軸線上の両球弧面13,13から中間
軸4内中央に向かって貫き前記入力軸2を遊挿させるピ
ストン通軸孔15を開口させると共に、そのピストン通
軸孔15の中間軸4内中央部分にM軸線を連結軸線とし
て前記入力軸2の軸央枢17に対応するピン継手関節1
6のピストン枢18(図9,10ではピン柱である)を
設ける。そして、そのピストン枢18をX軸線上の入力
軸2に対して±θ角度範囲を回動可能に入力軸2の軸央
枢17に枢着させる。また、回転ピストン3の中間軸4
両端には、前記点Ka、点Kb側に交差割線Kを連結の
軸とする蝶番関節19の蝶番ピン20,20、又は蝶番
ピン受21,21の何れか(図9,10では蝶番ピン受
21,21である)を設ける。
A piston which penetrates the rotary piston 3 from both spherical arc surfaces 13, 13 on the X-axis toward the center of the intermediate shaft 4 along the R-circle contained therein to allow the input shaft 2 to be loosely inserted. The pin joint joint 1 is formed so that the through hole 15 is opened and at the center of the piston through hole 15 inside the intermediate shaft 4 the M axis is used as the connecting axis and corresponds to the shaft center 17 of the input shaft 2.
A piston pivot 18 of 6 (which is a pin post in FIGS. 9 and 10) is provided. Then, the piston pivot 18 is pivotally attached to the axial center 17 of the input shaft 2 so as to be rotatable within an angle range of ± θ with respect to the input shaft 2 on the X axis. In addition, the intermediate shaft 4 of the rotary piston 3
At either end, either the hinge pin 20, 20 of the hinge joint 19 or the hinge pin receiver 21, 21 (the hinge pin receiver in FIGS. 9 and 10 is used on the side of the point Ka and the point Kb as the connecting axis). 21 and 21).

【0080】尚、ピストン通軸孔15の長円形からなる
開口部は、短径が入力軸2の軸径より若干大きく、長径
は入力軸2と斜行板5との回転軸線X,Yの交差角度θ
の少なくとも2倍長を有し、その長径を振幅長として回
転ピストン3が回転に伴って入力軸2上を見掛け上は往
復揺動する。従って、回転ピストン3は入力軸2に対し
てピストン通軸孔15の長径方向にのみ揺動しながら入
力軸2と共に回転し、自らの1回転につきピストン通軸
孔15の長径方向を1往復する。
The opening of the piston through-hole 15 having an elliptical shape has a minor axis slightly larger than the axial diameter of the input shaft 2, and a major axis of the rotational axes X and Y of the input shaft 2 and the skew plate 5. Crossing angle θ
The rotation piston 3 apparently reciprocally oscillates on the input shaft 2 as the rotation piston 3 rotates. Therefore, the rotary piston 3 rotates with the input shaft 2 while swinging only in the major axis direction of the piston through hole 15 with respect to the input shaft 2, and reciprocates once in the major axis direction of the piston through hole 15 per one rotation of itself. .

【0081】一方、ハウジング1内のS円面上には、回
転ピストン3の中間軸4を挟む対向両側に各々が回転ピ
ストン3の前記弓形面14,14に対応する対称同形の
弓形面22,22の表裏と、その弓形面22,22の弦
側に中間軸4の軸柱面と幾何条件が摺接可能に契合する
弦側面23とを有して形成される弓形板の二つを、前記
軌道隙9に回転摺動可能に嵌合する環状の斜行板環24
の内側に結合させて1枚の円形状板に形成した斜行板5
が配置される。つまり、この斜行板5は、同一平面上に
半円より小さい弓形の劣弧とその劣弧の両端を差し渡す
弓形弦とから形成されて対称配置された両弓形板の弓形
輪郭面を外側向きにして互いの弦側面23,23を対面
させ、且つ双方の弓形輪郭面と契合する内周面に形成し
た斜行板環24を互いの弓形板の外側に配置してそれら
を結合させれば全体形状が円形状板に形成される。
On the other hand, on the S-circular surface in the housing 1, symmetrically-shaped arcuate surfaces 22, which respectively correspond to the arcuate surfaces 14, 14 of the rotary piston 3, on opposite sides of the rotary piston 3 with the intermediate shaft 4 interposed therebetween. Two of the bow-shaped plates formed by having the front and back sides of 22 and the chord side surface of the intermediate shaft 4 on the chord side of the bow-shaped surfaces 22 and 22 and the chord side surface 23 on which the geometric condition is slidably contactable, An annular slant plate ring 24 fitted in the raceway gap 9 so as to be rotatable and slidable.
Slanting plate 5 formed into one circular plate by being connected to the inside of
Are placed. That is, the oblique plate 5 is formed by a bow-shaped inferior arc smaller than a semicircle and an arcuate chord that passes both ends of the inferior arc on the same plane, and the arcuate contour surfaces of the arcuate plates that are symmetrically arranged are located outside. Facing each other chord side surfaces 23, 23, and arranging a slanting plate ring 24 formed on the inner peripheral surface that engages with both arcuate contour surfaces on the outer side of each arcuate plate to connect them. For example, the whole shape is formed into a circular plate.

【0082】而も、この斜行板5には、K軸線を挟んで
対面する弦側面23,23と、そのK軸線上で対面する
斜行板環24の対向両面との対面する4辺によってK軸
線上を矩形に突き抜けた窓状の空隙部分が形成される
が、その空隙部分の点Ka,Kbに位置する斜行板環2
4の対向両側には回転ピストン3の中間軸4両端に取付
けられる前記蝶番関節19素子に対応する連結素子(図
9,10においては蝶番ピン20,20である)が設け
られる。そして、その斜行板5の窓状空隙に回転ピスト
ン3の中間軸4を軸柱に沿って嵌挿させれば、その窓枠
における斜行板環24の対向両側と中間軸4両端取付け
の蝶番ピンと蝶番ピン受20,21、20,21とが嵌
合し、且つ斜行板5の弦側面23,23と中間軸4の軸
柱面とが摺接関係に密封し、中間軸4の両底面と窓枠と
して残る斜行板環24の対向面も摺接関係に密閉し、回
転ピストン3と斜行板5との円形状板の2枚が中間軸4
上に交差割線Kを連結の軸として±θ角度範囲を擺動可
能に交差して組立てられる。
In addition, the oblique plate 5 has four sides facing the chord side surfaces 23, 23 facing each other across the K axis and the opposite surfaces of the oblique plate ring 24 facing on the K axis. A window-shaped void portion is formed which penetrates the K-axis in a rectangular shape, and the skewed plate ring 2 is located at points Ka and Kb of the void portion.
On both opposite sides of 4, a connecting element (indicated by hinge pins 20, 20 in FIGS. 9 and 10) corresponding to the hinge joint 19 element attached to both ends of the intermediate shaft 4 of the rotary piston 3 is provided. Then, if the intermediate shaft 4 of the rotary piston 3 is fitted into the window-like space of the skew plate 5 along the axial column, both opposite sides of the skew plate ring 24 in the window frame and both ends of the intermediate shaft 4 are attached. The hinge pins and the hinge pin receivers 20, 21, 20, 21 are fitted together, and the chord side surfaces 23, 23 of the slanting plate 5 and the shaft column surface of the intermediate shaft 4 are sealed in a sliding contact relationship, so that the intermediate shaft 4 Both bottom surfaces and the opposing surfaces of the skew plate ring 24 that remains as a window frame are also sealed in a sliding contact relationship, and two circular plates of the rotary piston 3 and the skew plate 5 are the intermediate shafts 4.
It is assembled so that it can be slidably crossed within the ± θ angle range with the intersection secant K as the axis of connection.

【0083】結局、そのように斜行板5に組付けられた
回転ピストン3の半円分ずつは、その半円分ずつの与す
る回転ピストンハウジング1a,1aの凹面内壁7a,
7aに互いの球弧面13,13が不即不離の状態を保持
して収容されると共に、斜行板5の斜行板環24が斜行
板ハウジング1bの軌道隙9に回転自由な嵌合状態に組
込まれ、入力軸2と回転ピストン3が回転ピストン3の
内部中央にピン継手関節16を組成して連結し、且つ回
転ピストン3と斜行板5が中間軸4の両端部において蝶
番関節19を組成して連結する。
In the end, the semicircles of the rotary pistons 3 thus assembled to the oblique plate 5 are provided by the semicircular circles, and the concave inner walls 7a of the rotary piston housings 1a, 1a are provided.
The spherical arcuate surfaces 13, 13 are accommodated in 7a while being held in a non-immediately separated state, and the oblique plate ring 24 of the oblique plate 5 is rotatably fitted in the raceway space 9 of the oblique plate housing 1b. The input shaft 2 and the rotary piston 3 form a pin joint joint 16 in the inner center of the rotary piston 3 and are connected to each other, and the rotary piston 3 and the skew plate 5 are hinged at both ends of the intermediate shaft 4. The joint 19 is composed and connected.

【0084】すると、S円面上の斜行板5が回転ピスト
ンハウジング1a,1aの凹面内壁7a,7aを閉鎖し
て自らの両側に半球状をなす定積空間の半月状作動室H
a,Haを形成し、且つその半月状作動室Ha,Haの
各々をR円面上の回転ピストン3が反比例に体積変化を
させる二つずつの櫛形状をなす作動室A,BとC,Dに
形成する。更に、その各々の半月状作動室Haに臨ませ
てハウジング1壁を貫通する動作流体の吸入孔Inと吐
出孔Outとを設ける。
Then, the oblique plate 5 on the S-circle closes the concave inner walls 7a, 7a of the rotary piston housings 1a, 1a to form a hemispherical half-moon shaped working chamber H in a constant volume space on both sides thereof.
a, Ha, and each of the half-moon shaped working chambers Ha, Ha has two comb-shaped working chambers A, B and C, in which the rotary piston 3 on the R-circle changes volume inversely proportionally. Form D. Further, there are provided a suction hole In and a discharge hole Out for the working fluid, which penetrate the wall of the housing 1 so as to face the respective half-moon shaped working chambers Ha.

【0085】そして、入力軸2に矢印方向の回転を与え
ると、その入力軸2の回転は前記ピン継手関節16に伝
達されて上記図25,26(a)〜(l)に示すように
対偶する回転ピストン3と斜行板5とを協働回転させ、
それに伴って回転ピストン3と斜行板5の板面間隙が変
化し、その板面間が形成する作動室A,B,C,Dの各
々も体積を増減させる。その作動室A,B,C,Dの体
積が増加する際に各々が与する吸入孔Inから動作流体
を吸い込ませ、減少する際に各々が与する吐出孔Outか
ら動作流体を吐き出させる。
Then, when the input shaft 2 is rotated in the direction of the arrow, the rotation of the input shaft 2 is transmitted to the pin joint joint 16 and, as shown in FIGS. Rotating the rotating piston 3 and the skew plate 5 in cooperation with each other,
Along with this, the plate surface gap between the rotary piston 3 and the oblique plate 5 changes, and the volume of each of the working chambers A, B, C, D formed between the plate surfaces also increases or decreases. When the volumes of the working chambers A, B, C, and D increase, the working fluid is sucked through the suction holes In provided by each of the working chambers, and when the volumes of the working chambers A, B, C, D decrease, the working fluid is discharged from the discharge holes Out provided by the respective working chambers.

【0086】[0086]

【実施例2】図11、図12に示すこの実施例は、前記
実施の形態2、及び共通態様1の構成に基づき、上記実
施例1における構成と同様にハウジング1内に四つの櫛
形状作動室A,B,C,Dが形成されるが、斜行板5の
位相を拘束する為に、斜行板環24とその斜行板環24
が嵌合する周回溝の軌道隙9とを有して構成される上記
実施例1に対して、この実施例では斜行板5に斜行板環
24の取付けはなく、代わりに斜行板5の外周面を周回
する溝の軌道受25を有し、且つその軌道受25に嵌合
する輪体の軌道環10をS円面上のハウジング1内壁面
7に固着させており、ハウジング1内壁面7には上記実
施例1における軌道隙9の凹状溝に対して凸状の環取付
けである。
[Embodiment 2] This embodiment shown in FIGS. 11 and 12 is based on the construction of the second embodiment and the common mode 1, and four comb-shaped actuations are provided in the housing 1 in the same manner as the construction of the first embodiment. The chambers A, B, C and D are formed, but in order to restrain the phase of the skew plate 5, the skew plate ring 24 and the skew plate ring 24 are formed.
In contrast to the first embodiment, which is configured with the orbital gap 9 of the orbital groove to which is fitted, in this embodiment, the oblique plate ring 24 is not attached to the oblique plate 5, and instead the oblique plate is attached. 5 has a raceway bearing 25 of a groove that circulates the outer peripheral surface of 5, and a raceway ring 10 of a ring body fitted to the raceway bearing 25 is fixed to the inner wall surface 7 of the housing 1 on the S circle surface. On the inner wall surface 7, a convex ring is attached to the concave groove of the raceway gap 9 in the first embodiment.

【0087】また、点P,P位置の前記主軸受8,8に
は、上記実施例1における構成と同様に球心Oの部分に
前記ピン継手関節16の軸央枢17を有する入力軸2を
嵌挿させて軸承支持させるが、その入力軸2が挿通して
枢支するR円面上の回転ピストン3は対称配置の弓形板
の二つに前記中間軸4を介在させた円形状板であり、前
記軌道環10上であるS円面上に置かれる斜行板5も対
称配置の弓形板の二つに中間軸4を介在させた円形状板
である。
Further, in the main bearings 8 and 8 at the points P and P, the input shaft 2 having the shaft center 17 of the pin joint joint 16 in the portion of the ball center O is the same as in the first embodiment. The rotary piston 3 on the R circular surface on which the input shaft 2 is inserted and pivotally supported is a circular plate in which the intermediate shaft 4 is interposed between two arcuate plates symmetrically arranged. Also, the skew plate 5 placed on the S circle surface on the orbit ring 10 is also a circular plate in which the intermediate shaft 4 is interposed between two symmetrically arranged arcuate plates.

【0088】尚、この実施例2における中間軸4柱は、
その軸円柱が両底の平行面で輪切りにされて複数個(図
11,12においては3分割)にされ、その中央部分を
ピストン中間軸4aとして回転ピストン3の両弓形弦側
に固着させ、両端部分を斜行板中間軸4b,4bとして
斜行板5の両弓形弦側に固着させると共に、その輪切り
接合部分のピストン中間軸4aと斜行板中間軸4b,4
bとの底面中央部に、K軸線を連結の基軸線として互い
に与する蝶番ピンと蝶番ピン受20,21、20,21
とが連結嵌合して前記蝶番関節19を組成する。また、
上述したように斜行板5には、斜行板中間軸4b,4b
の回転遠心側底面を含む外周面を周回する溝の前記軌道
受25が削設されていて前記軌道環10を回転可能に嵌
合させる。
Incidentally, the four pillars of the intermediate shaft in the second embodiment are
The shaft cylinder is cut into parallel pieces on both bottom parallel planes into a plurality of pieces (3 divisions in FIGS. 11 and 12), and the central portion thereof is fixed to the arcuate chord side of the rotary piston 3 as the piston intermediate shaft 4a. Both end portions are fixed to the arcuate chord side of the skew plate 5 as the skew plate intermediate shafts 4b, 4b, and the piston intermediate shaft 4a and the skew plate intermediate shafts 4b, 4 of the wheel-slicing joint portion are fixed.
A hinge pin and a hinge pin receiver 20, 21, 20, 21 which give each other a K axis as a base axis of the connection at the center of the bottom surface with b.
And are connected to each other to form the hinge joint 19. Also,
As described above, the skew plate 5 includes the skew plate intermediate shafts 4b, 4b.
The raceway receiver 25 of the groove that surrounds the outer peripheral surface including the bottom surface on the rotary centrifugal side is cut so that the raceway ring 10 is rotatably fitted.

【0089】結局、この実施例においても、球面Gをな
すハウジング1内壁面7は内部突設の軌道環10を境界
として対面する凹面内壁7a,7aに形成され、その凹
面内壁7a,7aが斜行板5の組込みによって両半月状
作動室Ha,Haの定積空間に形成され、且つそれぞれ
の凹面内壁7a,7aに回転ピストン3の半円分ずつが
不即不離に収容されて半月状作動室Ha,Haの各々を
反比例に体積変化させる二つずつの密封された櫛形状作
動室A,B,C,Dに形成する。そして、入力軸2に矢
印方向の回転を与えると、上記実施例1の場合と同じく
入力軸2の回転が回転ピストン3と斜行板5を協働回転
させて各作動室A,B,C,Dの体積を変化させ、その
体積が増加する際にハウジング1壁の適位置に穿設され
た吸入孔Inから動作流体を吸い込ませ、体積が減少す
る際に同様に穿設された吐出孔Outから動作流体を吐き
出させる。
After all, also in this embodiment, the inner wall surface 7 of the housing 1 forming the spherical surface G is formed on the concave inner walls 7a, 7a which face each other with the orbital ring 10 of the internal projection provided as a boundary, and the concave inner walls 7a, 7a are inclined. By incorporating the row plate 5, it is formed in the constant volume space of the two half-moon shaped operation chambers Ha, Ha, and the semicircular operation of the semicircular portions of the rotary pistons 3 are accommodated in the concave inner walls 7a, 7a in an improper manner. Each of the chambers Ha, Ha is formed into two sealed comb-shaped working chambers A, B, C, D that change volume inversely. Then, when the input shaft 2 is rotated in the direction of the arrow, the rotation of the input shaft 2 causes the rotary piston 3 and the skew plate 5 to rotate in cooperation with each other as in the case of the first embodiment, so that the respective working chambers A, B and C are rotated. , D, the volume is changed, and when the volume is increased, the working fluid is sucked from the suction hole In formed at an appropriate position on the wall of the housing 1, and the discharge hole is similarly formed when the volume is decreased. Exhaust working fluid from Out.

【0090】[0090]

【実施例3】上記実施例2においてハウジング1内壁面
7に固着させて構成した軌道環10をハウジング1内の
可動部分として構成することが可能である。即ち、前記
実施の形態3と共通態様1の構成に基づく図13、図1
4に示すこの実施例は、上記実施例2における固定軌道
環10を可動軌道環6に置き換え、且つその軌道環6に
制御装置CAを新たに取付けたものであるが、その軌道
環6取付けの制御装置CAは、斜行板5の傾転角度を0
〜±θ角度に連続的に変化させることによって回転ピス
トン3のストロークを変え、吐出流量を可変にしたもの
である。
[Third Embodiment] The orbital ring 10 fixedly attached to the inner wall surface 7 of the housing 1 in the second embodiment can be configured as a movable portion in the housing 1. That is, FIG. 13 and FIG. 1 based on the configuration of the third embodiment and the common mode 1
In this embodiment shown in FIG. 4, the fixed raceway ring 10 in the second embodiment is replaced with the movable raceway ring 6, and the control device CA is newly attached to the raceway ring 6, but The controller CA sets the tilt angle of the skew plate 5 to 0.
The discharge flow rate is made variable by changing the stroke of the rotary piston 3 by continuously changing the angle to ± θ.

【0091】つまり、この実施例ではハウジング1内壁
面7内で自らの環軸線方向に回動可能な外周面と、直径
中心線上の対向両外周面に固着させた丸柱からなる柄状
の軌道環軸11,11とを有してX,Y軸線の双方に唯
一直角方向にのみ可動な輪体に形成した軌道環6を設
け、且つ点e,e側にあたるZ軸線上のハウジング1の
対向壁にZ軸線を軸受軸線とする軌道環軸受12,12
を設ける。その上で、軌道環6を斜行板5周回溝の軌道
受25に回転可能に嵌合させて組付けると共に、前記軌
道環軸11,11を軌道環軸受12,12に回動自由に
嵌挿させて支持させ、図示はしないが更にその軌道環軸
11,11の軸頸に連結端子を取付け、且つその軸頸の
端子に斜行板5の傾転角度を自由に変化させる制御装置
CAの端末部を連結する。
In other words, in this embodiment, the handle ring ring is composed of the outer peripheral surface which can be rotated in the direction of the ring axis within the inner wall surface 7 of the housing 1 and the round columns which are fixed to both outer peripheral surfaces facing each other on the diameter center line. An orbital ring 6 formed of a ring body having axes 11 and 11 and movable only in the right and left directions on both X and Y axes is provided, and an opposing wall of the housing 1 on the Z axis corresponding to the points e and e. Orbit ring bearings 12, 12 with the Z axis as the bearing axis
To provide. Then, the orbital ring 6 is rotatably fitted to and mounted on the orbital bearing 25 of the orbiting groove of the oblique plate 5, and the orbital ring shafts 11 and 11 are rotatably fitted to the orbital ring bearings 12 and 12. Although not shown in the figure, a control device CA for inserting and supporting it, further attaching a connecting terminal to the shaft neck of the orbital ring shaft 11, 11 and freely changing the tilt angle of the skew plate 5 at the terminal of the shaft neck. Connect the terminals of.

【0092】すると、制御装置CAが、ポンプ吐出圧力
に応じて軌道環軸11,11の固定止め位置を変位さ
せ、その固定位置の変位が軌道環6を経て斜行板5の傾
転角度(0〜±θ)を自動的に変化させるが、その斜行
板5の傾きの変化が回転ピストン3の擺動ストロークを
変化させ、その傾きが大きくなるとストロークが長くな
って小さくなるとストロークも短くなり、各々の櫛形状
作動室A,B,C,Dの軸1回転における押しのけ容積
である絶対体積量を変化させて吐出圧力に応じた必要な
吐出量を確保させる。
Then, the controller CA displaces the fixing stop positions of the orbital ring shafts 11 and 11 according to the pump discharge pressure, and the displacement of the fixed position passes through the orbital ring 6 and the tilt angle of the skew plate 5 ( 0 to ± θ) is automatically changed, but the change in the inclination of the skew plate 5 changes the swing stroke of the rotary piston 3, and the stroke becomes longer when the inclination becomes large and becomes shorter when the inclination becomes smaller. The absolute volume amount, which is the displacement volume of each comb-shaped working chamber A, B, C, D in one rotation of the shaft, is changed to secure a necessary discharge amount according to the discharge pressure.

【0093】[0093]

【実施例4】上記実施例1乃至3の構成において、ハウ
ジング1内の作動室を4作動室Fu,Fu,Fu,Fu
構成から2作動室Fu,Fu構成にして作動させること
が可能である。図15に示すこの実施例は、前記実施の
形態1、及び共通態様2に基づき、上記実施例1の構成
において4作動室A,B,C,Dを軸方向並びの2作動
室A,Dか、又は2作動室B,Cに換えて構成したもの
である。
[Fourth Embodiment] In the constructions of the first to third embodiments, four working chambers Fu, Fu, Fu, Fu, Fu are provided in the housing 1.
From the configuration, it is possible to operate in a two working chamber Fu, Fu configuration. This embodiment shown in FIG. 15 is based on the first embodiment and the common mode 2, and in the configuration of the first embodiment, the four working chambers A, B, C and D are axially arranged into two working chambers A and D. Alternatively, the two working chambers B and C are used instead.

【0094】尚、この実施例も上記実施例1と同様に、
前記解決手段において点、線、面の各関係を設定したハ
ウジング1を図15に示すa−a,b−bのS円面を跨
ぐ平行な二つの切り口平面によって3分割し、その中央
部分を斜行板ハウジング1bとして両側部分の各々を回
転ピストンハウジング1a,1aとし、それらを同一線
上に合体させると斜行板ハウジング1bの内側が前記斜
行板環24を回転可能に拘束する前記軌道隙9として溝
状の間隙に形成されると共に、X軸線上の回転ピストン
ハウジング1a,1aの対向壁には球心Oの位置に前記
ピン継手関節16素子の軸央枢17を有する入力軸2を
挿通させて軸承させる前記主軸受8,8が貫設される。
Incidentally, this embodiment is similar to the above-mentioned embodiment 1,
The housing 1 in which the respective relationships of points, lines, and planes are set in the solution means is divided into three parts by two parallel planes of cuts a-a and a-b shown in FIG. As the slanting plate housing 1b, each of both side portions is the rotating piston housings 1a and 1a, and when they are combined on the same line, the inside of the slanting plate housing 1b rotatably restrains the slanting plate ring 24. The input shaft 2 is formed in a groove-shaped gap as 9 and has a shaft center 17 of the pin joint joint 16 element at the position of the ball center O on the opposing walls of the rotary piston housings 1a on the X axis. The main bearings 8, 8 which are inserted and supported are penetrated.

【0095】一方、上記実施例1との相違において、円
形状回転ピストン3に対してこの実施例では、回転外周
面の球弧面13と、互いの弦側がK軸線を挟む同一平面
上の両弓形面14,14と、その両弓形面14,14間
に半埋込み状に合体させた円柱状の中間軸4とから全体
形状が半球状の略円形板回転ピストン3であるが、上記
実施例1における構成と同様に、回転ピストン3には前
記入力軸2を遊挿させるピストン通軸孔15と球心Oに
位置して前記ピン継手関節16のピストン枢18と中間
軸4両端に蝶番関節19の連結素子とを有する。
On the other hand, in contrast to the first embodiment, in the present embodiment, the circular rotary piston 3 has a spherical arc surface 13 on the outer peripheral surface of rotation and both chord sides on the same plane sandwiching the K axis. The substantially circular plate rotary piston 3 having a hemispherical shape as a whole is composed of the arcuate surfaces 14 and 14 and the cylindrical intermediate shaft 4 that is semi-embedded between the arcuate surfaces 14 and 14, and the above-mentioned embodiment is used. 1, the rotary piston 3 has a piston shaft hole 15 into which the input shaft 2 is loosely inserted, and a piston pivot 18 of the pin joint joint 16 located at the ball center O and hinge joints at both ends of the intermediate shaft 4. And 19 connecting elements.

【0096】また、上記実施例1との相違において、対
称配置した2枚の弓形板に斜行板環24を結合させて形
成される円形状斜行板5に対し、この実施例4における
斜行板5は、一つの弓形板を斜行板環24の内側に固定
させて弦側面23を辺とする半円より大きく突き抜けた
窓状空隙を有する円形状板であるが、この場合にも中間
軸4の両端に設けた前記蝶番関節19素子に対応する連
結素子が前記点Ka、点Kb側に位置する斜行板環24
の対向両側に設けられるから、その斜行板5の突き抜け
た窓に回転ピストン3の中間軸4柱を嵌め込むと共に互
いの両片を以て蝶番関節19を組成し、斜行板5と回転
ピストン3とを交差割線Kを連結の軸線として±θ角度
範囲を擺動可能に連結させる。
Further, in contrast to the first embodiment, in contrast to the circular skew plate 5 formed by connecting the skew plate ring 24 to the two symmetrically arranged arcuate plates, the skew in the fourth embodiment is different. The row plate 5 is a circular plate having one window-shaped plate fixed to the inside of the oblique plate ring 24 and having a window-like void penetrating larger than a semicircle having the chord side surface 23 as a side. The slanting plate ring 24, in which connecting elements corresponding to the hinge joint 19 elements provided at both ends of the intermediate shaft 4 are located on the side of the points Ka and Kb, respectively.
The intermediate shaft 4 of the rotary piston 3 is fitted into the window of the oblique plate 5 and the hinge joints 19 are formed by the both pieces of the oblique plate 5, so that the oblique plate 5 and the rotary piston 3 are opposed to each other. And are intersected with the intersecting secant K as an axis of connection so as to be slidable in the ± θ angle range.

【0097】結局、S円面上の斜行板5が回転ピストン
ハウジング1a,1aの両凹面内壁7a,7aを閉鎖し
て斜行板5の両側に半球状をなす定積空間の半月状作動
室Ha,Haを形成し、且つその半月状作動室Ha,H
aの各々をR円面上の回転ピストン3が同一平面上にお
いて反比例に体積変化をさせる櫛形状をなす一つずつの
作動室A,Dか、又はB,Cに形成すると共に、その各
々の半月状作動室Haを臨むハウジング1壁の適位置に
は動作流体の吸入孔Inと吐出孔Outとが設けられる
が、この実施例においても入力軸2に与えられた矢印方
向の回転は、前記ピン継手関節16に伝達されて対偶す
る回転ピストン3と斜行板5とを協働回転させ、その作
動において作動室A,Dか、又はB,Cの体積を増減さ
せるから、その体積が増加する際に吸入孔Inから動作
流体を吸い込ませ、減少する際には吐出孔Outから動作
流体を吐き出させる。
After all, the slanting plate 5 on the S-circle closes the inner walls 7a, 7a of both concave surfaces of the rotary piston housings 1a, 1a, and the half-moon operation of the constant volume space forming a hemisphere on both sides of the slanting plate 5. The chambers Ha, Ha are formed and the half-moon shaped operating chambers Ha, H
Each of a is formed in one of the working chambers A and D or B and C that form a comb shape in which the rotary piston 3 on the R circular surface changes volume in inverse proportion on the same plane. A suction hole In and a discharge hole Out for the working fluid are provided at appropriate positions on the wall of the housing 1 facing the half-moon shaped working chamber Ha. In this embodiment as well, the rotation in the direction of the arrow given to the input shaft 2 is as described above. Since the rotary piston 3 and the skew plate 5 which are transmitted to the pin joint joint 16 and are paired with each other are cooperatively rotated, and the volume of the working chambers A and D or B and C is increased or decreased in the operation thereof, the volume is increased. When this is done, the working fluid is sucked in from the suction hole In, and when it is reduced, the working fluid is discharged from the discharge hole Out.

【0098】[0098]

【実施例5】図16に示すこの実施例は、上記実施例4
における構成と同様にハウジング1内に軸方向に並ぶ二
つの櫛形状作動室A,Dか、又はB,C構成の形態であ
り、前記実施の形態2、及び共通態様2の構成に基づく
ものである。尚、斜行板5の位相を拘束する為に上記実
施例4においてハウジング1内壁に設けられる周回溝の
軌道隙9に対して、上記実施例2における構成と同じく
斜行板5外周面に周設された溝の軌道受25に嵌合する
輪体の軌道環10をS円面上のハウジング1内壁面7に
凸設固着させるが、この実施例においても球心Oの部分
にピン継手関節16の軸央枢17を有する入力軸2が点
P,P位置の前記主軸受8,8に嵌挿して支持される。
[Embodiment 5] This embodiment shown in FIG.
2 is a configuration of two comb-shaped working chambers A and D or B and C that are arranged in the housing 1 in the axial direction similarly to the configuration of the above, and is based on the configurations of the second embodiment and the common aspect 2. is there. It should be noted that, in order to restrain the phase of the skew plate 5, the orbital gap 9 of the orbiting groove provided in the inner wall of the housing 1 in the above-mentioned fourth embodiment is surrounded by the outer peripheral surface of the skew plate 5 in the same manner as in the second embodiment. The orbital ring 10 of the ring body which fits the orbital bearing 25 of the groove provided is fixedly protruded and fixed to the inner wall surface 7 of the housing 1 on the S circle surface. In this embodiment as well, the pin joint joint is attached to the portion of the ball center O. The input shaft 2 having 16 shaft centers 17 is fitted and supported by the main bearings 8 at the points P and P.

【0099】一方、回転ピストン3は、同一板面上の両
弓形面14,14と球面内壁7に対接する両球弧面1
3,13と、その両弓形面14,14間に前記中間軸4
の少なくとも中央部分を半埋込み状に介在させた円形状
板であるが、斜行板5は、一つの弓形板に中間軸4の少
なくとも両側部分を取付けた略半円板であるか、又は図
16に示すようにその中間軸4の両側部分を取付けた弓
形板にその弓形板の対向側もアーチ状に繋いで全体に円
形の回転外周面を持たせた円形状板であるから、中間軸
4柱は、上記実施例2,3と同様に3分割の中央部分が
ピストン中間軸4aとして回転ピストン3に固着し、両
側部分が斜行板中間軸4b,4bとして斜行板5に固着
し、その接合部分には蝶番ピンに嵌合する蝶番ピン受2
0,21、20,21の前記蝶番関節19を組成して連
結する。
On the other hand, the rotary piston 3 has both arcuate surfaces 14, 14 on the same plate surface and both spherical arc surfaces 1 which are in contact with the spherical inner wall 7.
3, 13 and the arcuate surfaces 14, 14 between the intermediate shaft 4
Is a circular plate in which at least the central portion is interleaved in a semi-embedded manner, the skew plate 5 is a substantially semi-circular plate in which at least both sides of the intermediate shaft 4 are attached to one arcuate plate, or As shown in FIG. 16, the intermediate shaft 4 is a circular plate having both sides of the intermediate shaft 4 attached to the arcuate plate and the opposite sides of the arcuate plate are also connected in an arch shape so as to have a circular outer peripheral surface. Similar to the second and third embodiments, the four pillars are fixed to the rotary piston 3 at the central portion of the three divisions as the piston intermediate shaft 4a, and at both side portions to the oblique plate 5 as the oblique plate intermediate shafts 4b and 4b. , The hinge pin receiver 2 that fits the hinge pin at the joint part
The hinge joints 19 of 0, 21, 20, 21 are composed and connected.

【0100】結局、球面Gをなすハウジング1内壁面7
内は、内部突設の軌道環10を境界として互いに対面す
る凹面内壁7a,7aと、S円面上の斜行板5とによっ
て定積空間の両半月状作動室Ha,Haに形成され、そ
の半月状作動室Ha,Haの各々をR円面上の回転ピス
トン3が同一平面上の両側において反比例に体積変化さ
せる櫛形状の作動室A,Dか、又はB,Cに形成する。
After all, the inner wall surface 7 of the housing 1 forming the spherical surface G
The inside is formed in both half-moon-shaped working chambers Ha, Ha of the constant volume space by concave inner walls 7a, 7a facing each other with the orbital ring 10 of the inner projecting as a boundary, and the slanting plate 5 on the S circle surface, Each of the half-moon-shaped working chambers Ha, Ha is formed in a comb-shaped working chamber A, D, or B, C in which the rotary piston 3 on the R circular surface changes volume inversely proportionally on both sides on the same plane.

【0101】[0101]

【実施例6】この実施例は、上記実施例5においてハウ
ジング1内壁面7に固着させた軌道環10をハウジング
1内の可動部分として構成する。即ち、前記実施の形態
3、及び共通態様2の構成に基づく図17に示すこの実
施例は、上記実施例5における固定の軌道環10を可動
の軌道環6に置き換えて構成するもので、その可動の軌
道環6に制御装置CAを取付けて斜行板5の傾転角度
(0〜±θ)を自由に変えられるようにしたものであ
る。
Sixth Embodiment In this embodiment, the race ring 10 fixed to the inner wall surface 7 of the housing 1 in the fifth embodiment is constructed as a movable part in the housing 1. That is, this embodiment shown in FIG. 17 based on the configurations of the third embodiment and the common mode 2 is configured by replacing the fixed raceway ring 10 in the fifth embodiment with the movable raceway ring 6. A control device CA is attached to the movable orbital ring 6 so that the tilt angle (0 to ± θ) of the skew plate 5 can be freely changed.

【0102】つまり、上記実施例3における構成と同様
に、軌道環6の前記軌道環軸11,11を点e,e側の
ハウジング1壁に設けた軌道環軸受12,12に軸承さ
せ、且つその軌道環軸11,11に斜行板5の傾きを制
御する制御装置CAを取付けて連動させると、制御装置
CAがポンプの吐出圧力に応じて斜行板5の傾転角度
(0〜±θ)を自動的に変化させると共に回転ピストン
3のストロークを変化させ、各作動室A,Dか、又は
B,Cの軸1回転における押しのけ容積を変化させて吐
出圧力に応じた吐出量を確保する。
That is, similar to the construction of the third embodiment, the raceway ring shafts 11, 11 of the raceway ring 6 are supported by the raceway ring bearings 12, 12 provided on the wall of the housing 1 on the points e, e side, and When a control device CA that controls the inclination of the skew plate 5 is attached to the orbital ring shafts 11 and 11 and is interlocked, the control device CA causes the tilt angle (0 to ± 0) of the skew plate 5 according to the discharge pressure of the pump. θ) is automatically changed and the stroke of the rotary piston 3 is changed to change the displacement volume of each working chamber A, D or B, C in one rotation of the shaft to secure the discharge amount according to the discharge pressure. To do.

【0103】[0103]

【実施例7】図18,19に示すこの実施例は、前記実
施の形態1、及び共通態様3の構成に基づいて軸に垂直
方向並びの2作動室A,Bか、又は2作動室C,Dに構
成して作動させるものである。即ち、この実施例は、前
記解決手段において点、線、面の各関係を設定したハウ
ジング1を図18に示すa−aのS円面に平行な一つの
切り口平面によって内部をS円面より大きい凹状空隙に
形成した斜行板ハウジング1bと、その斜行板ハウジン
グ1b凹状内壁に球面Gをなす凹面内壁7aを対面させ
た半球状の回転ピストンハウジング1aとの二つに区分
し、そのように構成したハウジング1内に回転ピストン
3を弓形板と中間軸4柱とを合体させた略半円板とし、
斜行板5も両板面の一方を作動室Fu,Fuの形成面と
し、その作動室Fu,Fu形成面を回転ピストン3の板
面に対面させて互いを連動可能に組込むものである。
[Embodiment 7] This embodiment shown in FIGS. 18 and 19 has two working chambers A and B or two working chambers C which are vertically aligned with the shaft based on the construction of the first embodiment and the common mode 3. , D to operate. That is, in this embodiment, the inside of the housing 1 from the S-circle surface is defined by one cut plane parallel to the S-circle surface aa shown in FIG. The slanting plate housing 1b is formed into a large concave space, and the slanting plate housing 1b is divided into a hemispherical rotary piston housing 1a having a concave inner wall 7a facing the concave inner wall 7a. In the housing 1 configured as described above, the rotary piston 3 is a substantially semi-circular plate in which an arc-shaped plate and four intermediate shafts are combined,
The slanting plate 5 also has one of the two plate surfaces as a forming surface of the working chamber Fu, Fu, and the working chamber Fu, Fu forming surface faces the plate surface of the rotary piston 3 so that they can be interlocked with each other.

【0104】従って、その斜行板ハウジング1bの凹状
空隙の部分が斜行板5を回転可能に拘束する前記軌道隙
9としてY軸線に同心円の内周面に形成されるが、この
実施例においてもX軸線上の対向する回転ピストンハウ
ジング1a壁と斜行板ハウジング1b側壁とに前記主軸
受8,8を貫設し、その主軸受8,8に球心O位置に前
記ピン継手関節16の軸央枢17を有する入力軸2を軸
承させる。一方、半円状板の回転ピストン3には、上記
何れの実施例における構成とも同様に中間軸4両端の前
記点Ka、点Kb側に前記蝶番関節19の連結素子が設
けられると共に、R円面に沿ってピストン通軸孔15が
開口し、且つそのピストン通軸孔15内の球心O位置に
ピン継手関節16素子のピストン枢18が設けられて入
力軸2の前記軸央枢17に枢着する。
Therefore, the concave space portion of the oblique plate housing 1b is formed on the inner peripheral surface of the circle concentric with the Y axis as the orbital gap 9 for rotatably restraining the oblique plate 5. In this embodiment, Also, the main bearings 8 and 8 are provided through the rotary piston housing 1a wall and the skewed plate housing 1b side wall, which are opposed to each other on the X axis, and the main bearings 8 and 8 of the pin joint joint 16 are located at the ball center O position. The input shaft 2 having the shaft center 17 is supported. On the other hand, the rotary piston 3 of a semi-circular plate is provided with connecting elements of the hinge joint 19 on the points Ka and Kb at both ends of the intermediate shaft 4 as in the configuration of any of the above-mentioned embodiments, and the R-circle. A piston through hole 15 is opened along the surface, and a piston pivot 18 of a pin joint joint 16 element is provided at a ball center O position in the piston through bore 15 and is provided at the axial center 17 of the input shaft 2. Pivot.

【0105】また、斜行板5は、同一板面に互いの弦を
対面させた二つの弓形面22,22と、その両弓形面2
2,22の弦側間を中間軸4柱に摺接可能に契合する溝
状の凹み部分に形成した半円柱形凹面の弦側面23と、
両弓形面22,22の裏面を同一の回転面に形成した外
郭摺接面27とを有する円形状板が、その円形状板径よ
り大きく前記軌道隙9に回転摺動可能に嵌合する環状の
斜行板環24と合体した円形板であり、入力軸2挿通の
為の斜行板通軸孔26を弦側面23の中央から外郭摺接
面27に開口させて前記ピストン通軸孔15の中間軸2
開口部に接合させると共に、前記点Ka、点Kb側の斜
行板環24の対向両側に中間軸4両端の前記蝶番関節1
9素子に対応する連結素子が設けられる。その上で、こ
の斜行板5の弦側面23に中間軸4柱を嵌め込み入れ、
斜行板5と回転ピストン3とを蝶番関節19によって±
θ角度範囲を擺動可能に連結させると、回転ピストン3
は回転ピストンハウジング1aの凹面内壁7aに球弧面
13が不即不離の状態を保持して収容され、斜行板5の
斜行板環24も斜行板ハウジング1bの軌道隙9に回転
自由な嵌合状態に収納される。
The skew plate 5 has two arcuate surfaces 22 and 22 in which the strings are opposed to each other on the same plate surface, and both arcuate surfaces 2 thereof.
A semi-cylindrical concave chord side surface 23 formed in a groove-shaped concave portion that engages between the chord sides 2 and 22 so as to slidably contact the intermediate shaft 4 pillar;
A circular plate having an outer sliding contact surface 27 in which the back surfaces of both arcuate surfaces 22 and 22 are formed on the same rotation surface is larger than the circular plate diameter, and is annularly fitted to the raceway gap 9 so as to be rotatable and slidable. Is a circular plate united with the slanted plate ring 24 of FIG. 1, and the slanted plate through hole 26 for inserting the input shaft 2 is opened from the center of the chord side surface 23 to the outer sliding contact surface 27 to form the piston through hole 15 Intermediate shaft 2
The hinge joints 1 at both ends of the intermediate shaft 4 are joined to the openings, and on both opposite sides of the skew plate ring 24 at the points Ka and Kb.
A connecting element corresponding to 9 elements is provided. Then, insert the intermediate shaft 4 pillars into the chord side surface 23 of the skew plate 5,
The slant plate 5 and the rotary piston 3 are separated by a hinge joint 19 ±
When the θ angle range is slidably connected, the rotary piston 3
Is accommodated in the concave inner wall 7a of the rotary piston housing 1a with the spherical arc surface 13 being held in an improperly separated state, and the oblique plate ring 24 of the oblique plate 5 is also freely rotatable in the orbital space 9 of the oblique plate housing 1b. It is stored in a proper fitting state.

【0106】この実施例においては、S円面上の斜行板
5が回転ピストンハウジング1aの凹面内壁7aを閉鎖
して半球状をなす定積空間の半月状作動室Haを形成
し、且つその半月状作動室HaをR円面上の回転ピスト
ン3が反比例に体積変化をさせる櫛形状をなす二つの作
動室A,Bか、又はC,Dに形成する。尚、半月状作動
室Haを臨むハウジング1の適位置に動作流体の吸入孔
Inと吐出孔Outとを設ける。その上で入力軸2に与え
る矢印方向の回転は、前記ピン継手関節16を経て回転
ピストン3と斜行板5とを協働回転させ、それに伴って
作動室A,Bか、又はC,Dの体積を増減させ、その体
積が増加する際に吸入孔Inから動作流体を吸い込ま
せ、減少する際に吐出孔Outから動作流体を吐き出させ
る。
In this embodiment, the skew plate 5 on the S-circle closes the concave inner wall 7a of the rotary piston housing 1a to form a semi-spherical half-moon shaped working chamber Ha of a constant volume space. The half-moon-shaped working chamber Ha is formed into two working chambers A and B or C and D having a comb shape in which the rotary piston 3 on the R circular surface changes volume inversely. A suction hole In and a discharge hole Out for the working fluid are provided at appropriate positions of the housing 1 facing the half-moon shaped working chamber Ha. The rotation in the direction of the arrow given to the input shaft 2 causes the rotary piston 3 and the skew plate 5 to cooperatively rotate via the pin joint joint 16, and accordingly the working chambers A and B or C and D. Is increased or decreased, the working fluid is sucked from the suction hole In when the volume is increased, and the working fluid is discharged from the discharge hole Out when the volume is decreased.

【0107】[0107]

【実施例8】この実施例は、上記実施例7の構成におい
て斜行板5中心を貫く前記斜行板通軸孔26に換えて斜
行板5に固定軸を取付けて作動させるものである。即
ち、入力軸2が回転ピストンハウジング1a壁と斜行板
ハウジング1b壁とに設けた前記主軸受8,8に両側軸
頸を軸承される上記実施例7の構成に対し、図20に示
すように軸央枢17の一方側にのみ軸柱を持着させて回
転ピストンハウジング1a壁に設けた主軸受8に軸承さ
れるように入力軸2を構成し、斜行板5に斜行板通軸孔
26は形成せず、反対に外郭摺接面27の中心部に柄状
の丸棒を斜行板軸28として軸止め固着させ、且つその
斜行板軸28には斜行板ハウジング1b壁中央に斜行板
軸受29を設けて対応する。
[Embodiment 8] In this embodiment, a fixed shaft is attached to the slant plate 5 for operation in place of the slant plate through hole 26 penetrating the center of the slant plate 5 in the construction of the seventh embodiment. . That is, as shown in FIG. 20, in contrast to the configuration of the seventh embodiment, in which the input shaft 2 has both side shaft necks supported by the main bearings 8 provided on the rotary piston housing 1a wall and the slant plate housing 1b wall. The input shaft 2 is configured so that the shaft column is attached only to one side of the shaft center 17, and is supported by the main bearing 8 provided on the wall of the rotary piston housing 1a. On the contrary, the shaft hole 26 is not formed, and conversely, a handle-shaped round bar is fixed to the center of the outer sliding contact surface 27 as the skew plate shaft 28, and the skew plate housing 1b is attached to the skew plate shaft 28. A slanted plate bearing 29 is provided in the center of the wall to deal with this.

【0108】この場合、入力軸2と斜行板軸28との互
いの延長軸直線をハウジング1凹面内壁7aの球心O上
で角度θを有して交差する前記X,Y軸線に一致させる
が、それには互いが反対向きになるX,Y軸線上のハウ
ジング1壁のそれぞれに軸受を貫設し、その一方がX軸
線上の回転ピストンハウジング1a壁を穿つ主軸受8と
して入力軸2の軸頸を軸承し、もう一方がY軸線上の斜
行板ハウジング1b壁を穿つ斜行板軸受29として前記
斜行板軸28を挿通させて軸承する。つまり、この実施
例においても入力軸2と斜行板5とが角度θを隔てた定
位な回転軸線上を回転するものであり、その回転に伴っ
て入力軸2と斜行板5とに2方向を拘束支持された回転
ピストン3(自転軸L)が前記円錐軌跡Uに沿って円錐
運動をする。
In this case, the extension axis straight lines of the input shaft 2 and the skew plate shaft 28 are made to coincide with the X and Y axis lines intersecting at an angle θ on the spherical center O of the concave inner wall 7a of the housing 1. However, a bearing is pierced in each of the housing 1 walls on the X and Y axes that are opposite to each other, and one of them is a main bearing 8 that penetrates the rotary piston housing 1a wall on the X axis as the main bearing 8 of the input shaft 2. The shaft neck is supported, and the other is supported by inserting the skew plate shaft 28 as a skew plate bearing 29 that penetrates the wall of the skew plate housing 1b on the Y axis. In other words, also in this embodiment, the input shaft 2 and the skew plate 5 rotate on a rotational axis that is oriented at an angle θ, and the rotation of the input shaft 2 and the skew plate 5 increases with the rotation. The rotating piston 3 (rotating shaft L), which is supported in a restricted direction, makes a conical motion along the conical locus U.

【0109】[0109]

【実施例9】図21に示すこの実施例は、上記実施例7
における構成と同様にハウジング1内に軸垂直方向の2
作動室A,Bか、又はC,Dを形成した実施の形態であ
り、前記実施の形態2、及び共通態様3の構成に基づ
く。尚、この実施例は上記実施例7との相違において、
斜行板5の位相を拘束するハウジング1凹状空隙の軌道
隙9に対し、上記実施例2,5において取付けた軌道環
10と同じ輪体をS円面上のハウジング1内壁面7に固
着させる。
[Embodiment 9] This embodiment shown in FIG.
2 in the direction perpendicular to the axis in the housing 1 in the same manner as
This is an embodiment in which working chambers A and B or C and D are formed, and is based on the configurations of the second embodiment and the common aspect 3. In addition, this embodiment is different from the seventh embodiment in that
For the raceway 9 of the concave cavity of the housing 1 which restrains the phase of the skew plate 5, the same ring as the raceway ring 10 mounted in the above-mentioned Examples 2 and 5 is fixed to the inner wall surface 7 of the housing 1 on the S-circle. .

【0110】この場合の回転ピストン3は、弓形板が弓
形弦側に円柱状の前記中間軸4の少なくとも中央部分を
一体構造に固定させた半円状板であり、斜行板5は、同
一板面上の両弓形面22,22と回転外周面を含む両弓
形面22,22の裏面の外郭摺接面27とから形成され
る円形板が、その両弓形面22,22間に中間軸4の少
なくとも両側部分を固着させた円形状板であるから、先
の実施例2,5の場合と同様に中間軸4柱は少なくとも
3分割にされ、その中央部分がピストン中間軸4aとし
て回転ピストン3に固着し、両側部分が斜行板中間軸4
b,4bとして斜行板5に固着し、その接合部分には互
いに与して嵌合する蝶番ピンと蝶番ピン受20,21、
20,21の前記蝶番関節19を組成して連結し、且つ
両斜行板中間軸4b,4bの外接側底面を含む斜行板5
の外周面に周設された溝の前記軌道受25に前記軌道環
10が回転可能に嵌合する。
In this case, the rotary piston 3 is a semi-circular plate in which the arcuate plate is fixed to the arcuate chord side at least the central portion of the cylindrical intermediate shaft 4 in an integral structure, and the oblique plates 5 are the same. A circular plate formed by the two arcuate surfaces 22 and 22 on the plate surface and the outer sliding contact surface 27 on the back surface of the both arcuate surfaces 22 and 22 including the rotating outer peripheral surface has an intermediate shaft between the arcuate surfaces 22 and 22. Since it is a circular plate in which at least both side portions of 4 are fixed, the intermediate shaft 4 column is divided into at least 3 parts like the case of the above-mentioned Embodiments 2 and 5, and the central portion thereof serves as the piston intermediate shaft 4a. It is fixed to 3 and both sides are the intermediate shaft 4 of the skew plate.
hinge pins and hinge pin receivers 20 and 21, which are fixed to the slanting plate 5 as b and 4b, and are fitted and fitted to each other at their joints.
The slant plate 5 that connects and connects the hinge joints 19 of 20 and 21 and includes the bottom surfaces on the circumscribing sides of both the slant plate intermediate shafts 4b and 4b.
The orbital ring 10 is rotatably fitted in the orbital bearing 25 of the groove formed around the outer peripheral surface of the.

【0111】結局、ハウジング1内には斜行板5の組込
みによって半月状作動室Haが形成され、その半月状作
動室Haを回転ピストン3が反比例に体積変化させる二
つの櫛形状作動室A,Bか、又はC,Dに形成し、その
上ハウジング1壁の適位置に吸入孔Inと吐出孔Outと
が穿設されるが、いま与える矢印方向の回転は回転ピス
トン3と斜行板5を協働回転させて作動室A,Bか、又
はC,Dの体積を増減させ、その体積が増加する際に吸
入孔Inから動作流体を吸い込ませ、体積が減少する際
に吐出孔Outから動作流体を吐き出させる。
After all, the half-moon-shaped working chamber Ha is formed in the housing 1 by incorporating the oblique plate 5, and the half-moon-shaped working chamber Ha has two comb-shaped working chambers A whose volume is inversely proportionally changed by the rotary piston 3. B or C and D are formed, and the suction hole In and the discharge hole Out are formed at appropriate positions on the upper wall of the housing 1. The rotation in the direction of the arrow to be given is the rotation piston 3 and the skew plate 5. To increase or decrease the volume of the working chambers A and B or C and D, suck the working fluid from the suction hole In when the volume increases, and from the discharge hole Out when the volume decreases. Exhale working fluid.

【0112】[0112]

【実施例10】上記実施例9においてハウジング1内壁
面7に固着させた軌道環10をハウジング1内の可動部
分として独立させるこの実施例は、前記実施の形態3、
及び共通態様3の構成に基づき、新たに制御装置CAを
設けて斜行板5の傾転角度(0〜±θ)を自由に変えら
れるようにしたものである。
[Embodiment 10] In this Embodiment 9, the orbital ring 10 fixed to the inner wall surface 7 of the housing 1 is made independent as a movable part in the housing 1.
Further, based on the configuration of the common mode 3, a control device CA is newly provided so that the tilting angle (0 to ± θ) of the skew plate 5 can be freely changed.

【0113】つまり、図22に示すこの実施例10は、
上記実施例3,6における構成と同様に斜行板5の軌道
受25に嵌合して斜行板5を支持するハウジング1内壁
面7内で可動な軌道環6を取付けるが、その軌道環6の
対向両側に持着させた軌道環軸11,11が点e,e側
のハウジング1壁に設けた軌道環軸受12,12を嵌挿
して軸承され、且つその軌道環軸11,11に斜行板5
の傾きを制御する制御装置CAを取付け連動させるもの
である。即ち、制御装置CAがポンプの吐出圧力に応じ
て斜行板5の傾転角度(0〜±θ)を自動的に変化さ
せ、各々の作動室A,Bか、又はC,Dの軸1回転にお
ける押しのけ容積を変化させて吐出圧力に応じた吐出量
を確保させる。
That is, the tenth embodiment shown in FIG.
Similar to the configurations in the above-mentioned third and sixth embodiments, the orbit ring 6 which is movable in the inner wall surface 7 of the housing 1 which fits the orbit receiver 25 of the oblique plate 5 and supports the oblique plate 5 is mounted. The orbital ring shafts 11 and 11 attached to the opposite sides of 6 are rotatably supported by inserting the orbital ring bearings 12 and 12 provided on the wall of the housing 1 on the point e, e side, and to the orbital ring shafts 11 and 11. Skew board 5
The control device CA for controlling the inclination of is attached and interlocked. That is, the controller CA automatically changes the tilting angle (0 to ± θ) of the skew plate 5 according to the discharge pressure of the pump, and the shafts 1 of the respective working chambers A and B or the shafts 1 of C and D. The displacement volume during rotation is changed to secure a discharge amount according to the discharge pressure.

【0114】[0114]

【実施例11】図23に示すこの実施例は、前記実施の
形態4、及び共通態様3の構成に基づき、上記実施例8
における構成と同じく軸に垂直方向に並ぶ作動室A,B
か、又はC,Dに配列させたものであるが、斜行板ハウ
ジング1bの内部をS円面径より大きい凹状空隙の軌道
隙9に形成した上記実施例8の構成に対し、斜行板ハウ
ジング1bに相当する分の周壁面も球面Gに形成し、そ
の周壁面内に斜行板5を収容可能に形成して組入れたも
のである。
[Embodiment 11] The embodiment 8 shown in FIG.
Working chambers A and B arranged in the direction perpendicular to the axis, as in the configuration in FIG.
Alternatively, the oblique plates are arranged in C and D, but the oblique plate housing 1b is formed in the orbital space 9 of a concave void larger than the S-circle diameter in the structure of the eighth embodiment. The peripheral wall surface corresponding to the housing 1b is also formed into a spherical surface G, and the oblique plate 5 is formed in the peripheral wall surface so as to be accommodated therein.

【0115】即ちこの実施例では、全面が球面Gの内壁
面7を有するハウジング1壁に、X軸線上の主軸受8
と、その対向側に位置するY軸線上の斜行板軸受29と
が貫設され、入力軸2は上記実施例8における構成と同
様に軸央枢17に固着させた一方側のみの軸柱が主軸受
8に軸頸を嵌挿させて軸承され、また回転ピストン3は
上記実施例9,10における構成と同様に弓形板に少な
くとも3分割にした前記中間軸4の中央部分を固着させ
た半円状板である。
That is, in this embodiment, the main bearing 8 on the X axis is provided on the wall of the housing 1 having the inner wall surface 7 having the spherical surface G on the entire surface.
And a skewed plate bearing 29 on the Y-axis located on the opposite side thereof are provided so as to penetrate therethrough, and the input shaft 2 is fixed to the shaft center 17 in the same manner as in the configuration of the above-described eighth embodiment. Is supported by inserting a shaft neck into the main bearing 8, and the rotary piston 3 is fixed to the central portion of the intermediate shaft 4 which is divided into at least three parts on the arc-shaped plate in the same manner as in the embodiments 9 and 10 above. It is a semicircular plate.

【0116】その点斜行板5は、同一板面に両弓形面2
2,22と、球面Gの内壁面7に摺接する両弓形面2
2,22の裏面を含む外周面の外郭摺接面27とを有し
て両弓形面22,22間に少なくとも3分割にした中間
軸4の両側部分を固定させ、且つ外郭摺接面27中心に
前記斜行板軸受29を嵌挿して斜行板5本体を定位軸回
転に拘束する柄状の斜行板軸28を突設させた円形状板
である。この実施例においても矢印方向の回転を与える
と、作動室A,Bか、又はC,Dの体積は増減し、その
体積が増加する際に吸入孔Inから動作流体を吸い込ま
せ、体積が減少する際に吐出孔Outから動作流体を吐き
出させる。
The point skew plate 5 has two arcuate surfaces 2 on the same plate surface.
2, 22 and a double arcuate surface 2 that is in sliding contact with the inner wall surface 7 of the spherical surface G
2 and 22, the outer peripheral sliding contact surface 27 of the outer peripheral surface is included, and both sides of the intermediate shaft 4 divided into at least three parts are fixed between both arcuate surfaces 22 and 22, and the outer peripheral sliding contact surface 27 center Is a circular plate having a handle-shaped skewed plate shaft 28 protruding from the handle-shaped slanting plate bearing 28 for constraining the skewed plate 5 main body to the rotation of the stationary axis. Also in this embodiment, when the rotation in the direction of the arrow is given, the volume of the working chambers A and B or C and D increases or decreases, and when the volume increases, the working fluid is sucked from the suction hole In, and the volume decreases. In doing so, the working fluid is discharged from the discharge hole Out.

【0117】[0117]

【実施例12】図24の実施例は、上記実施例11にお
いてハウジング1の固定位置に取付け形成した斜行板軸
受29の部分をX,Y軸線の双方を通る平面上方向にの
み可動にして前記斜行板軸28位相を変化させ、斜行板
5の傾転角度(0〜±θ)を任意に変えられるようにし
たものである。
[Embodiment 12] In the embodiment of FIG. 24, the portion of the skewed plate bearing 29 mounted and formed at the fixed position of the housing 1 in Embodiment 11 is made movable only in the plane direction passing through both the X and Y axes. By changing the phase of the skew plate shaft 28, the tilting angle (0 to ± θ) of the skew plate 5 can be arbitrarily changed.

【0118】即ち、X,Y軸線の双方を通る平面上で斜
行板軸28が突き抜けるハウジング1壁をX軸線に対し
て少なくとも±θ角度の範囲を開放し、その開放部分に
斜行板軸28を嵌挿させた斜行板軸受29を取付けると
共に、図示はしないがその斜行板軸受29をX軸線を基
準に±θ角度範囲の可動を制御する制御装置CAをZ軸
線上の点e,eを支点に取付けて連動させる。結局、そ
の制御装置CAがポンプ吐出圧力に応じて斜行板5の傾
転角度(0〜±θ)を自動的に変化させ、各作動室A,
Bか、又はC,Dの軸1回転における押しのけ容積を変
化させて吐出圧力に応じた吐出量を常に確保させる。
That is, the housing 1 wall through which the skew plate shaft 28 penetrates on a plane passing through both the X and Y axis lines is opened at least within a range of ± θ angle with respect to the X axis line, and the skew plate axis is provided at the open portion. Although not shown, the skewed plate bearing 29 in which 28 is inserted is mounted, and the controller CA for controlling the movement of the skewed plate bearing 29 within the range of ± θ angle with respect to the X axis is set at a point e on the Z axis. , E are attached to the fulcrum to interlock. Eventually, the control device CA automatically changes the tilting angle (0 to ± θ) of the skew plate 5 according to the pump discharge pressure, so that each working chamber A,
The displacement volume in one rotation of the shaft B or C, D is changed to always secure the discharge amount according to the discharge pressure.

【0119】[0119]

【実施例1乃至12共通の態様】上記実施例の何れにお
いても、図示はしないが特に圧縮機においては、その吐
出孔Out内に逆止弁等のバルブを装着するとよい。
Embodiments Common to Embodiments 1 to 12 Although not shown in any of the above embodiments, particularly in a compressor, a valve such as a check valve may be installed in the discharge hole Out of the compressor.

【0120】[0120]

【発明の効果】従来の流体ポンプ、及び圧縮機におい
て、中でも高圧、高速回転で使用され、且つ最も汎用的
である往復ピストンポンプ、及び往復ピストン圧縮機
は、その基本構造に円筒シリンダーとピストンとの組合
わせを有し、その基本構造と作動には前記したように多
くの問題点が存在する。
Among the conventional fluid pumps and compressors, the reciprocating piston pump and the reciprocating piston compressor which are used at high pressure and high speed and are most versatile among them have a basic structure including a cylindrical cylinder and a piston. There are many problems in the basic structure and operation as described above.

【0121】即ち、往復ピストンポンプ、圧縮機は、部
品点数が多く構造が複雑で特殊材料を必要とし、且つ精
密加工を要する。また、往復運動機構や、吸入・吐出弁
の摩擦摩耗や故障が多く、ポンプ全体の体積に対して行
程体積(押しのけ容積)が小さくポンプ本体の寸法が大
きい。更に、運転に際して騒音、振動があり、長時間の
使用や分解、組立てには細心の注意が必要である。
That is, the reciprocating piston pump and the compressor have a large number of parts, have a complicated structure, require a special material, and require precision machining. In addition, the reciprocating mechanism and suction / discharge valves often suffer frictional wear and failures, and the stroke volume (displacement volume) is small relative to the volume of the entire pump, and the size of the pump body is large. Furthermore, there are noises and vibrations during operation, and careful attention is required for long-term use, disassembly, and assembly.

【0122】それに対して本発明の球形の回転ピストン
ポンプ、圧縮機は、従来の歯車、ベーン等を含むピスト
ンポンプ、圧縮機とは全く異なった形状を示すもので球
形、球体が基本構造である。この球形、球体構造は、基
本的に衝撃荷重や熱応力に強く堅牢であり、球体と球体
内に収容される円形二つのピストン(回転ピストン3と
斜行板5)との組合わせの構造は、圧力が高くなったと
きのポンプ内部の吐出側から低圧側の吸入側へ、又はハ
ウジング内への漏れが少なく、即ち容積効率が極めて良
く、密封性能の高い作動室Fu空間が形成されて維持さ
れる。
On the other hand, the spherical rotary piston pump and compressor of the present invention show a completely different shape from the conventional piston pump and compressor including gears, vanes, etc., and the basic structure is spherical or spherical. . This spherical and spherical structure is basically strong against impact load and thermal stress and is robust, and the structure of the combination of the spherical body and two circular pistons (rotating piston 3 and skew plate 5) housed in the spherical body is When the pressure becomes high, there is little leakage from the discharge side inside the pump to the suction side at the low pressure side, or inside the housing, that is, the volume efficiency is extremely good and the working chamber Fu space with high sealing performance is formed and maintained. To be done.

【0123】本発明の球形の回転ピストンポンプ、圧縮
機は、入力軸2に与えた回転がピン継手関節16を経て
回転ピストン3を回転させると共に、蝶番関節19によ
って斜行板5も回転連動する。すると、回転ピストン3
と斜行板5間が押し広げられてハウジング1内壁面7と
中間軸4柱面を含む回転ピストン3と斜行板5との両弓
形面14,22で閉じられた作動室Fu空間を拡張さ
せ、その拡張する作動室Fu空間が真空状態を形成して
動作流体を吸引する。そして、回転に伴ってその1回転
毎に回転ピストン3の弓形面14は斜行板5弓形面22
に対して1往復の擺動を行い、この擺動を繰り返して連
続的に作動室Fu空間に吸入と吐出とをさせる。
In the spherical rotary piston pump and compressor of the present invention, the rotation given to the input shaft 2 rotates the rotary piston 3 via the pin joint joint 16, and the hinge plate 19 also causes the skew plate 5 to rotate. . Then, the rotary piston 3
And the skew plate 5 are widened to expand the working chamber Fu space closed by the arcuate surfaces 14 and 22 of the rotary piston 3 including the inner wall surface 7 of the housing 1 and the intermediate shaft 4 and the skew plate 5. Then, the expanding working chamber Fu space forms a vacuum state to suck the working fluid. Then, with the rotation, the arcuate surface 14 of the rotary piston 3 changes with each rotation, and the oblique plate 5 arcuate surface 22
One reciprocating movement is performed with respect to each other, and the reciprocating movement is repeated to continuously suck and discharge the working chamber Fu space.

【0124】このように本発明の球形の回転ピストンポ
ンプ、圧縮機は、入力軸2に与えた回転力が直接回転ピ
ストン3と斜行板5との板面間を押し広げてポンピング
作用をする構造上の特徴を有する。従って、従来の往復
ピストンポンプ、及び往復動圧縮機のようなピストンの
直線的往復動による慣性力を初めとする種々の不具合の
発生要素がない上に、余分な空間の形成もなく必要不可
欠のみの空間と単純パーツから構成されてスペースの無
駄と複雑さがなく、同一の押しのけ容積を持つ他のポン
プ、圧縮機に比べても極めて小形軽量である。その上、
往復ピストンポンプ、圧縮機のような摩擦摩耗、特に偏
摩耗成分の要素がなく、且つ吸入、吐出弁の取付けも必
ずしも必要としない。尚、油圧ポンプとしての吸入側に
圧油を供給すれば、そのまま油圧ポンプの逆の働きをす
るアクチュエータの油圧モーターとして使用可能であ
る。
As described above, in the spherical rotary piston pump and compressor of the present invention, the rotational force applied to the input shaft 2 directly spreads the space between the rotary piston 3 and the skew plate 5 to perform a pumping action. It has structural features. Therefore, in addition to conventional reciprocating piston pumps and reciprocating compressors, there are no factors that cause various problems such as inertial force due to linear reciprocating motion of pistons, and there is no extra space, so it is essential. It is composed of space and simple parts, so there is no waste of space and complexity, and it is extremely small and lightweight compared to other pumps and compressors with the same displacement. Moreover,
There is no element of frictional wear such as reciprocating piston pump and compressor, especially uneven wear component, and it is not always necessary to install suction and discharge valves. If pressure oil is supplied to the suction side of the hydraulic pump, the hydraulic pump can be used as it is as a hydraulic motor of an actuator that operates in the opposite manner.

【0125】また、容積効率と機械効率の積で表わされ
る全効率(ポンプ効率)は、従来ポンプにおいては一般
にピストンポンプが最も値が高いが、それに対比しても
基本的に円の集合体である本発明の流体ポンプ、圧縮機
は、上記したように摺接面が円であるから密閉に極めて
有利で漏れが少なく、高圧になるほど低下する実吐き出
し量の割合が大きく高い容積効率を示し、且つギクシャ
クのない回転するピストンによって有効軸入力の割合を
示す機械効率にも優れて、高いポンプ効率を示すもので
ある。或は、直流電動機やエンジン(内燃機関)等によ
り速度を変化させる場合においても、低速、高速域での
自吸能力に優れて騒音、振動の発生も殆どなく、特に高
い圧力レベルで連続運転が可能であると共に、連続運転
が可能な回転数も高く定格圧力、定格回転数の水準が高
い。
Further, the total efficiency (pump efficiency) represented by the product of the volumetric efficiency and the mechanical efficiency is generally the highest in the conventional pumps, but in comparison with that, it is basically an aggregate of circles. A certain fluid pump of the present invention, the compressor, as described above, the sliding contact surface is a circle, which is extremely advantageous for sealing and has little leakage, and the proportion of the actual discharge amount that decreases as the pressure becomes high shows a large volume efficiency, In addition, the rotating piston with no jerky effect is excellent in mechanical efficiency indicating the ratio of effective shaft input, and shows high pump efficiency. Alternatively, even when the speed is changed by a DC motor or an engine (internal combustion engine), the self-priming ability is excellent in the low speed and high speed regions, and almost no noise or vibration is generated, and continuous operation is performed especially at a high pressure level. In addition to being possible, continuous operation is also possible at high rotational speeds and high rated pressure and rated rotational speed levels.

【0126】以上のように本発明の球形の回転ピストン
ポンプ、及び圧縮機は、球体構造であるから剛性、耐久
性に富み、機構が簡単平明であり、小形軽量で安価であ
り、吐出圧力が変わっても吐出量に変化が少なく、且つ
作動室Fu数を増やすことによって吐出量の脈動も少な
く出来る等、高い機械効率と容積効率とを兼ね備えた高
圧・高速の使用に耐える高性能の流体ポンプ、圧縮機で
ある。
As described above, since the spherical rotary piston pump and compressor of the present invention have a spherical structure, they are rich in rigidity and durability, have a simple and clear mechanism, are small and lightweight, are inexpensive, and have a discharge pressure. Even if it changes, the discharge amount does not change much, and the pulsation of the discharge amount can be reduced by increasing the number of working chambers Fu. It is a high-performance fluid pump that has high mechanical efficiency and volumetric efficiency and withstands high-pressure and high-speed use. , A compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を示す基本図形の一部縦断斜視
図。
FIG. 1 is a partial vertical perspective view of a basic figure showing the principle of the present invention.

【図2】基本図形の角度変化を示す斜視図。FIG. 2 is a perspective view showing an angle change of a basic figure.

【図3】基本図形の角度変化を示す斜視図。FIG. 3 is a perspective view showing an angle change of a basic figure.

【図4】基本図形の角度変化を示す斜視図。FIG. 4 is a perspective view showing an angle change of a basic figure.

【図5】基本図形の角度変化を示す斜視図。FIG. 5 is a perspective view showing an angle change of a basic figure.

【図6】基本図形の角度変化を示す斜視図。FIG. 6 is a perspective view showing an angle change of a basic figure.

【図7】基本図形の角度変化を示す斜視図。FIG. 7 is a perspective view showing a change in angle of a basic figure.

【図8】基本図形の角度変化を示す斜視図。FIG. 8 is a perspective view showing a change in angle of a basic figure.

【図9】本発明における実施例1を示す側面図。FIG. 9 is a side view showing the first embodiment of the present invention.

【図10】図9の一部断面分解斜視図。FIG. 10 is an exploded perspective view of a partial cross section of FIG.

【図11】本発明における実施例2を示す側面図。FIG. 11 is a side view showing a second embodiment of the present invention.

【図12】図11の一部断面分解斜視図。12 is an exploded perspective view of a partial cross section of FIG.

【図13】本発明における実施例3を示す側面図。FIG. 13 is a side view showing a third embodiment of the present invention.

【図14】図13の一部断面分解斜視図。14 is an exploded perspective view of a partial cross section of FIG.

【図15】本発明における実施例4を示す側面図。FIG. 15 is a side view showing a fourth embodiment of the present invention.

【図16】本発明における実施例5を示す側面図。FIG. 16 is a side view showing a fifth embodiment of the present invention.

【図17】本発明における実施例6を示す側面図。FIG. 17 is a side view showing a sixth embodiment of the present invention.

【図18】本発明における実施例7を示す側面図。FIG. 18 is a side view showing a seventh embodiment of the present invention.

【図19】図18の一部断面分解斜視図。19 is an exploded perspective view of a partial cross section of FIG.

【図20】本発明における実施例8を示す側面図。FIG. 20 is a side view showing an eighth embodiment of the present invention.

【図21】本発明における実施例9を示す側面図。FIG. 21 is a side view showing the ninth embodiment of the present invention.

【図22】本発明における実施例10を示す側面図。FIG. 22 is a side view showing Embodiment 10 of the present invention.

【図23】本発明における実施例11を示す側面図。FIG. 23 is a side view showing an eleventh embodiment of the present invention.

【図24】本発明における実施例12を示す側面図。FIG. 24 is a side view showing an twelfth embodiment of the present invention.

【図25】本発明における作動と作動室空間の容積変化
を示す(a)(b)(c)(d)(e)(f)の各一部
縦断側面図。
FIG. 25 is a partial vertical sectional side view of (a), (b), (c), (d), (e), and (f) showing the operation and the volume change of the working chamber space in the present invention.

【図26】図25の続き、本発明における作動と作動室
空間の容積変化を示す(g)(h)(i)(j)(k)
(l)の各一部縦断側面図。
FIG. 26 is a continuation of FIG. 25, showing the operation and the volume change of the operation chamber space in the present invention (g) (h) (i) (j) (k).
(L) Each partial longitudinal side view.

【図27】本発明における吸入と吐出行程の作動経過を
示す正面からの模式図。
FIG. 27 is a schematic front view showing the operation progress of the intake and discharge strokes in the present invention.

【符号の説明】[Explanation of symbols]

G 球面 O 球面Gの球心 r 球面Gの半径 X X軸線(入力軸の取付け軸線) Y Y軸線(S円面の形成軸線、斜行板の回転軸線) θ θ角度(X軸線とY軸線との鋭角側の交差角度) P P点(X軸線が球面Gに交わる点) Q Q点(Y軸線が球面Gに交わる点) U 円錐軌跡U(点P,Qを直径底面、球心Oを頂点
とする円錐軌跡) M M軸線(X軸線の垂直軸線、ピン継手関節の連結
軸線) Z Z軸線(X,Y軸線の双方に直交する直線、軌道
環軸受形成軸線) e e点(Z軸線が球面Gに交わる点) R R円面(X軸線上の水平円面) S S円面(Y軸線上の垂直円面) L L軸線(R円面の自転軸線) K K軸線(R円面とS円面との交差割線) Ka K軸線両端の一方の端点 Kb K軸線両端のもう一方の端点 Ha 半月状の空間、半月状作動室 Fu 櫛形状の空間、櫛形状作動室 In 吸い込み孔、吸入孔 Out 吐き出し孔、吐出孔 CA 斜行板の傾きを変える制御装置 A 空間A、櫛形状作動室A B 空間B、櫛形状作動室B C 空間C、櫛形状作動室C D 空間D、櫛形状作動室D 1 ハウジング 1a 回転ピストンハウジング 1b 斜行板ハウジング 2 入力軸 3 回転ピストン 4 中間軸 4a ピストン中間軸 4b 斜行板中間軸 5 斜行板 6 軌道環 7 内壁面、球面内壁 7a 回転ピストンハウジングの凹面内壁 8 主軸受 9 ハウジングの軌道隙 10 ハウジングの軌道環 11 軌道環軸 12 軌道環軸受 13 回転ピストンの球弧面 14 回転ピストンの弓形面 15 ピストン通軸孔 16 ピン継手関節 17 軸央枢 18 ピストン枢 19 蝶番関節 20 蝶番ピン 21 蝶番ピン受 22 斜行板の弓形面 23 斜行板の弦側面 24 斜行板環 25 軌道受 26 斜行板通軸孔 27 斜行板の外郭摺接面 28 斜行板軸 29 斜行板軸受
G spherical surface O spherical center of spherical surface r radius of spherical surface G X X-axis (mounting axis of input shaft) Y Y-axis (formation axis of S-circle, rotation axis of skew plate) θ θ angle (X-axis and Y-axis Intersection angle on the acute angle side with) P P point (point where X axis intersects spherical surface G) Q Q point (point where Y axis intersects spherical surface G) U Conical locus U (bottoms of points P and Q, spherical center O Conical locus with vertices) M M axis (vertical axis of X axis, connecting axis of pin joint joint) Z Z axis (straight line orthogonal to both X and Y axes, orbit ring forming axis) ee point (Z The point where the axis intersects the spherical surface G) R R circle surface (horizontal circle surface on X axis line) S S circle surface (vertical circle surface on Y axis line) L L axis line (rotation axis line of R circle surface) K K axis line (R Intersecting secant between circle surface and S circle surface) Ka One end point of both ends of K axis Kb The other end point of both ends of K axis Ha Half-moon shaped space, half-moon shaped working chamber u Comb-shaped space, comb-shaped working chamber In suction hole, suction hole Out discharge hole, discharge hole CA Control device A for changing the inclination of the skew plate A space A, comb-shaped working chamber A B space B, comb-shaped working chamber B C space C, comb-shaped working chamber C D space D, comb-shaped working chamber D 1 housing 1a rotary piston housing 1b skew plate housing 2 input shaft 3 rotary piston 4 intermediate shaft 4a piston intermediate shaft 4b skew plate intermediate shaft 5 diagonal Row plate 6 Orbital ring 7 Inner wall surface, spherical inner wall 7a Rotating piston housing concave inner wall 8 Main bearing 9 Housing orbital gap 10 Housing orbital ring 11 Orbital ring shaft 12 Orbital ring bearing 13 Rotating piston spherical arc surface 14 Rotating piston Bow-shaped surface 15 Piston through hole 16 Pin joint joint 17 Shaft center 18 Piston center 19 Hinge joint 20 Hinge pin 21 Hinge pin receiver 22 Bow-shaped surface 23 of skew plate Chord side 24 oblique plate ring 25 orbits receiving 26 outer sliding surface 28 oblique plate axis 29 oblique plate bearing the skew plate through shaft holes 27 oblique plate

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F04C 2/00 F04C 18/00 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) F04C 2/00 F04C 18/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内壁面に球面を有するハウジング(1)
において、その球面内壁(7)の球心(O)を通る直線
上のハウジング(1)壁に主軸受(8)を貫設して直軸
状をなす入力軸(2)の軸頸を回転自由に嵌挿させ且つ
その入力軸(2)に角度(θ)を有して球心(O)で交
差する軸線の垂直平面上のハウジング(1)内壁面に周
回溝の軌道隙(9)を削設し、 またハウジング(1)内には前記入力軸(2)と球心
(O)で直交する直線を連結軸線として入力軸(2)上
を水平方向に少なくとも角度(θ×2)の範囲を揺動し
且つ外周面を前記球面内壁(7)と摺接する球弧面(1
3)に形成しその球弧面(13)を弓形の弧とする弦側
に円柱状の中間軸(4)を合体させて板面に弓形面(1
4)を持つ略板状の回転ピストン(3)を入力軸(2)
の球心(O)の部分に枢結し、 その上ハウジング(1)内には前記中間軸(4)上にお
いて前記回転ピストン(3)と蝶番状に交差し縁部外周
を環状に形成した斜行板環(24)が前記軌道隙(9)
に回転可能に嵌合して拘束されると共に中間軸(4)の
両底面とその両底面に対接する斜行板環(24)の対向
両側部との各々にピンとピン受孔の互いに与する連結素
子を有して互いが少なくとも角度(θ×2)範囲を擺動
可能に連結し且つ板面に弓形面(22)を持つ円形状板
の斜行板(5)を設け、 すると斜行板(5)がハウジング(1)の前記球面内壁
(7)を閉鎖して半球状空間の半月状作動室(Ha)を
形成し且つその半月状作動室(Ha)を回転ピストン
(3)が櫛形状空間の櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と吐出孔(Out)とを適宜設けたことを特徴とする
球形の回転ピストンポンプ、圧縮機。
1. A housing (1) having a spherical surface on its inner wall surface.
In, the main bearing (8) is pierced through the wall of the housing (1) on a straight line passing through the spherical center (O) of the spherical inner wall (7), and the shaft neck of the input shaft (2) having a straight axis shape is rotated. The orbital gap (9) of the orbiting groove on the inner wall surface of the housing (1) on the vertical plane of the axis which is freely inserted and has an angle (θ) on the input shaft (2) and intersects at the spherical center (O). In the housing (1), a straight line that is orthogonal to the input shaft (2) and the spherical center (O) is used as a connecting axis in the housing (1) at least an angle (θ × 2) in the horizontal direction on the input shaft (2). Of the spherical arc surface (1
3) and the spherical arc surface (13) is an arc of an arc, and a cylindrical intermediate shaft (4) is united on the chord side to form an arc surface (1
4) A substantially plate-shaped rotary piston (3) having an input shaft (2)
Is pivotally connected to a portion of the ball center (O) of the same, and in the housing (1) of the intermediate shaft (4), the rotary piston (3) intersects with the hinge in a hinge shape, and the outer periphery of the edge portion is formed into a ring shape. The slanted plate ring (24) is the orbital space (9).
The pin and the pin receiving hole are provided to the bottom surface of the intermediate shaft (4) and the opposite side portions of the slanting plate ring (24) facing the bottom surface of the intermediate shaft (4). A slanting plate (5) of a circular plate having a connecting element, which is slidably connected to each other in at least an angle (θ × 2) range and has an arcuate surface (22) on the plate surface, is provided. (5) closes the spherical inner wall (7) of the housing (1) to form a half-moon shaped working chamber (Ha) in a hemispherical space, and the rotary piston (3) combs the half-moon shaped working chamber (Ha). The suction hole (I) is formed in the comb-shaped working chamber (Fu) in the shape space, and is exposed to the comb-shaped working chamber (Fu).
n) and a discharge hole (Out) are appropriately provided, a spherical rotary piston pump and a compressor.
【請求項2】 内壁面に球面を有するハウジング(1)
において、その球面内壁(7)の球心(O)を通る直線
上のハウジング(1)壁に主軸受(8)を貫設して直軸
状をなす入力軸(2)の軸頸を回転自由に嵌挿させ且つ
その入力軸(2)に角度(θ)を有して球心(O)で交
差する軸線の垂直平面上のハウジング(1)内壁面
(7)円周に輪体状の軌道環(10)を突設し、 またハウジング(1)内には前記入力軸(2)と球心
(O)で直交する直線を連結軸線として入力軸(2)上
を水平方向に少なくとも角度(θ×2)の範囲を揺動し
且つ外周面を前記球面内壁(7)と摺接する球弧面(1
3)に形成して板面に弓形面(14)を持つ略板状の回
転ピストン(3)を入力軸(2)の球心(O)の部分に
枢結し、 その上ハウジング(1)内には前記回転ピストン(3)
と蝶番状に交差して弓形面(22)の板面と外周面に周
回する溝の軌道受(25)とを有しその軌道受(25)
に前記軌道環(10)が回転可能に嵌合する円形状板の
斜行板(5)を設け、 その斜行板(5)と回転ピストン(3)の交差部分に円
柱状の中間軸(4)を両底面に平行な切り口面で分割す
ると共にその各々を斜行板(5)と回転ピストン(3)
の競合しない何れかに固着させ且つその分割接合面の各
々にピンとピン受孔の互いに与する連結素子を有して互
いが少なくとも角度(θ×2)範囲を擺動可能に連結
し、 すると斜行板(5)がハウジング(1)の前記球面内壁
(7)を閉鎖して半球状空間の半月状作動室(Ha)を
形成し且つその半月状作動室(Ha)を回転ピストン
(3)が櫛形状空間の櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と吐出孔(Out)とを適宜設けたことを特徴とする
球形の回転ピストンポンプ、圧縮機。
2. A housing (1) having a spherical surface on its inner wall surface.
In, the main bearing (8) is pierced through the wall of the housing (1) on a straight line passing through the spherical center (O) of the spherical inner wall (7), and the shaft neck of the input shaft (2) having a straight axis shape is rotated. A ring shape around the circumference of the housing (1) inner wall surface (7) on the vertical plane of the axis that is freely inserted and has an angle (θ) on the input shaft (2) and intersects at the spherical center (O) Of the orbital ring (10) is projected, and a straight line that intersects the input shaft (2) and the spherical center (O) at right angles is used as a connecting axis in the housing (1) at least horizontally on the input shaft (2). A spherical arc surface (1) which oscillates within a range of an angle (θ × 2) and whose outer peripheral surface is in sliding contact with the spherical inner wall (7).
3), a substantially plate-shaped rotary piston (3) having an arcuate surface (14) on the plate surface is pivotally connected to the spherical center (O) of the input shaft (2), and the housing (1) Inside the rotary piston (3)
Has a plate surface of an arcuate surface (22) intersecting with a hinge and a track bearing (25) of a groove that circulates on the outer peripheral surface thereof.
Is provided with a slanting plate (5) of a circular plate on which the orbital ring (10) is rotatably fitted, and a cylindrical intermediate shaft (at the intersection of the slanting plate (5) and the rotary piston (3) ( 4) is divided into cut surfaces parallel to both bottom surfaces, and each of them is divided into a slant plate (5) and a rotary piston (3).
, Which are fixed to each other so that they do not conflict with each other, and each of which has a connecting element for providing a pin and a pin receiving hole on each of the divided joint surfaces, is connected so as to be slidable at least within an angle (θ × 2) range, and then, the skewing is performed. The plate (5) closes the spherical inner wall (7) of the housing (1) to form a semi-lunar working chamber (Ha) of a hemispherical space, and the semi-lunar working chamber (Ha) is formed by the rotary piston (3). It is formed in the comb-shaped working chamber (Fu) in the comb-shaped space, and is further exposed to the comb-shaped working chamber (Fu).
n) and a discharge hole (Out) are appropriately provided, a spherical rotary piston pump and a compressor.
【請求項3】 内壁面に球面を有するハウジング(1)
において、その球面内壁(7)の球心(O)を通る直線
上のハウジング(1)壁に主軸受(8)を貫設して直軸
状をなす入力軸(2)の軸頸を回転自由に嵌挿させ且つ
その入力軸(2)に角度(θ)を有して球心(O)で交
差する軸線と入力軸(2)の軸線との双方に球心(O)
で直交する直線上のハウジング(1)対向両壁に軌道環
軸受(12)の円孔を設けその両軌道環軸受(12)に
はハウジング(1)の球面内壁(7)内で回動可能に設
けた輪体からなる軌道環(6)の対向外周面に固着する
柄状の軌道環軸(11)を回動自由に軸承させ、 またハウジング(1)内には前記入力軸(2)と球心
(O)で直交する直線を連結軸線として入力軸(2)上
を水平方向に少なくとも角度(θ×2)の範囲を揺動し
且つ外周面を前記球面内壁(7)と摺接する球弧面(1
3)に形成して板面に弓形面(14)を持つ略板状の回
転ピストン(3)を入力軸(2)の球心(O)の部分に
枢結し、 その上ハウジング(1)内には前記回転ピストン(3)
と蝶番状に交差して弓形面(22)の板面と外周面に周
回する溝の軌道受(25)とを有しその軌道受(25)
に前記軌道環(6)が回転可能に嵌合する円形状板の斜
行板(5)を設け、 その斜行板(5)と回転ピストン(3)の交差部分に円
柱状の中間軸(4)を両底面に平行な切り口面で分割す
ると共にその各々を斜行板(5)と回転ピストン(3)
の競合しない何れかに固着させ且つその分割接合面の各
々にピンとピン受孔の互いに与する連結素子を有して互
いが少なくとも角度(θ×2)範囲を擺動可能に連結
し、 そして前記軌道環(6)には前記入力軸(2)に対して
その軌道環(6)の傾転角度を角度0から角度±θ範囲
の何れかを選択する制御装置(CA)を前記軌道環軸
(11)に装着して連動させ、 すると斜行板(5)がハウジング(1)の前記球面内壁
(7)を閉鎖して半球状空間の半月状作動室(Ha)を
形成し且つその半月状作動室(Ha)を回転ピストン
(3)が櫛形状空間の櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と吐出孔(Out)とを適宜設けたことを特徴とする
球形の回転ピストンポンプ、圧縮機。
3. A housing (1) having a spherical surface on its inner wall surface.
In, the main bearing (8) is pierced through the wall of the housing (1) on a straight line passing through the spherical center (O) of the spherical inner wall (7), and the shaft neck of the input shaft (2) having a straight axis shape is rotated. A ball center (O) is freely inserted and has an angle (θ) with its input shaft (2) and intersects with the axis of the ball (O) and the axis of the input shaft (2).
A circular hole of a race ring bearing (12) is provided on both opposite walls of the housing (1) on a straight line orthogonal to each other, and both race ring bearings (12) can be rotated within the spherical inner wall (7) of the housing (1). A handle-shaped race ring shaft (11) fixed to the opposing outer peripheral surface of a race ring (6) made of a circular body is rotatably supported, and the input shaft (2) is provided in the housing (1). And a spherical center (O) are used as a connecting axis to swing horizontally on the input shaft (2) at least within an angle (θ × 2) and the outer peripheral surface is brought into sliding contact with the spherical inner wall (7). Arc surface (1
3), a substantially plate-shaped rotary piston (3) having an arcuate surface (14) on the plate surface is pivotally connected to the spherical center (O) of the input shaft (2), and the housing (1) Inside the rotary piston (3)
Has a plate surface of an arcuate surface (22) intersecting with a hinge and a track receiver (25) of a groove that circulates on the outer peripheral surface thereof.
Is provided with a slanting plate (5) of a circular plate on which the orbital ring (6) is rotatably fitted, and a cylindrical intermediate shaft (at the intersection of the slanting plate (5) and the rotary piston (3) ( 4) is divided into cut surfaces parallel to both bottom surfaces, and each of them is divided into a slant plate (5) and a rotary piston (3).
Of each of the divided joint surfaces, each of which has a connecting element of a pin and a pin receiving hole, is slidably connected to each other in at least an angle (θ × 2) range, and the orbit For the ring (6), a control device (CA) for selecting the tilt angle of the orbital ring (6) with respect to the input shaft (2) from the angle 0 to an angle ± θ range is used. 11) mounted and interlocked, and then the slanting plate (5) closes the spherical inner wall (7) of the housing (1) to form a hemispherical working chamber (Ha) and its half-moon shape. The working chamber (Ha) is formed in the comb-shaped working chamber (Fu) of the comb-shaped space by the rotary piston (3), and is made to face the comb-shaped working chamber (Fu), and the suction hole (I) is formed.
n) and a discharge hole (Out) are appropriately provided, a spherical rotary piston pump and a compressor.
【請求項4】 内壁面に球面を有するハウジング(1)
において、その球面内壁(7)の球心(O)を通る直線
上のハウジング(1)壁に主軸受(8)を貫設して直軸
状をなす入力軸(2)の軸頸を回転自由に嵌挿させ且つ
その入力軸(2)に角度(θ)を有して球心(O)で交
差する直線上のハウジング(1)壁にも斜行板軸受(2
9)の円孔を主軸受(8)の対向側に設け、 またハウジング(1)内には前記入力軸(2)と球心
(O)で直交する直線を連結軸線として入力軸(2)上
を水平方向に少なくとも角度(θ×2)の範囲を揺動し
且つ外周面を前記球面内壁(7)と摺接する球弧面(1
3)に形成して板面に弓形面(14)を持つ半円状板の
回転ピストン(3)を入力軸(2)の球心(O)の部分
に枢結し、 その上ハウジング(1)内には前記回転ピストン(3)
と蝶番状に交差してハウジング(1)内壁面(7)に摺
接する外周面と板面に弓形面(22)とを有し且つその
弓形面(22)の裏面側中心部に前記斜行板軸受(2
9)を回転自由に嵌挿する柄状の斜行板軸(28)を有
して円形状をなす斜行板(5)を設け、 その斜行板(5)と回転ピストン(3)の交差部分に円
柱状の中間軸(4)を両底面に平行な切り口面で分割す
ると共にその各々を斜行板(5)と回転ピストン(3)
の競合しない何れかに固着させ且つその分割接合面の各
々にピンとピン受孔の互いに与する連結素子を有して互
いが少なくとも角度(θ×2)範囲を擺動可能に連結
し、 すると斜行板(5)がハウジング(1)の前記球面内壁
(7)を閉鎖して半球状空間の半月状作動室(Ha)を
形成し且つその半月状作動室(Ha)を回転ピストン
(3)が櫛形状空間の櫛形状作動室(Fu)に形成し、 更にその櫛形状作動室(Fu)に臨ませて吸入孔(I
n)と吐出孔(Out)とを適宜設けたことを特徴とする
球形の回転ピストンポンプ、圧縮機。
4. A housing (1) having a spherical surface on its inner wall surface.
In, the main bearing (8) is pierced through the wall of the housing (1) on a straight line passing through the spherical center (O) of the spherical inner wall (7), and the shaft neck of the input shaft (2) having a straight axis shape is rotated. The slanted plate bearing (2) is also fitted to the wall of the housing (1) on which the input shaft (2) is freely inserted and has an angle (θ) and intersects at the spherical center (O).
A circular hole 9) is provided on the opposite side of the main bearing (8), and a straight line orthogonal to the input shaft (2) at the spherical center (O) is connected to the input shaft (2) in the housing (1). A spherical arc surface (1) which oscillates in the horizontal direction at least within a range of an angle (θ × 2) and whose outer peripheral surface is in sliding contact with the spherical inner wall (7).
3) and a rotary piston (3) of a semi-circular plate formed on the plate surface and having an arcuate surface (14) is pivotally connected to the spherical center (O) of the input shaft (2), and the housing (1) ) Inside the rotary piston (3)
Has an outer peripheral surface that slidably contacts with the inner wall surface (7) of the housing (1) and an arcuate surface (22) on the plate surface, and the skew is provided in the center of the back surface side of the arcuate surface (22). Plate bearing (2
9) is provided with a diagonal skew plate (5) having a handle-shaped skew plate shaft (28) into which the skew plate (5) and the rotary piston (3) are inserted. At the intersection, a cylindrical intermediate shaft (4) is divided by a cut surface parallel to both bottom surfaces, and each of them is divided into a slant plate (5) and a rotary piston (3).
, Which are fixed to each other so that they do not conflict with each other, and each of which has a connecting element for providing a pin and a pin receiving hole on each of the divided joint surfaces, is connected so as to be slidable at least within an angle (θ × 2) range, and then, the skewing is performed. The plate (5) closes the spherical inner wall (7) of the housing (1) to form a semi-lunar working chamber (Ha) of a hemispherical space, and the semi-lunar working chamber (Ha) is formed by the rotary piston (3). It is formed in the comb-shaped working chamber (Fu) in the comb-shaped space, and is further exposed to the comb-shaped working chamber (Fu).
n) and a discharge hole (Out) are appropriately provided, a spherical rotary piston pump and a compressor.
JP2000197673A 2000-06-09 2000-06-30 Spherical rotary piston pump, compressor Expired - Fee Related JP3484604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197673A JP3484604B2 (en) 2000-06-09 2000-06-30 Spherical rotary piston pump, compressor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000174280 2000-06-09
JP2000-174280 2000-06-09
JP2000197673A JP3484604B2 (en) 2000-06-09 2000-06-30 Spherical rotary piston pump, compressor

Publications (2)

Publication Number Publication Date
JP2002061586A JP2002061586A (en) 2002-02-28
JP3484604B2 true JP3484604B2 (en) 2004-01-06

Family

ID=26593685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197673A Expired - Fee Related JP3484604B2 (en) 2000-06-09 2000-06-30 Spherical rotary piston pump, compressor

Country Status (1)

Country Link
JP (1) JP3484604B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EE00618U1 (en) * 2006-03-21 2006-07-17 SNC Promex AS Rotor pump piston assembly
US7457115B2 (en) * 2006-12-08 2008-11-25 Lenovo (Singapore) Pte. Ltd. Fluid impelling device and electronic apparatus
CN101691864B (en) * 2009-09-30 2011-08-24 马丽莉 Spherical expansion compressor capable of adapting to variable working conditions
NL2005011C2 (en) * 2010-07-01 2012-01-03 Be-Kking Man B V ROTATING MACHINE FOR COMPRESSION AND DECOMPRESSION.
CN106494190A (en) * 2016-12-21 2017-03-15 辛集市华仪汽车仪表有限公司 A kind of vehicle-mounted pendulum wind formula air conditioning window air port
WO2024158282A1 (en) * 2023-01-26 2024-08-02 Be-Simplex B.V. Rotary machine

Also Published As

Publication number Publication date
JP2002061586A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
KR101213995B1 (en) Scroll machine having counterweights with changeable cavity
US20090022613A1 (en) Asynchronous non-constant-pitch spiral scroll-type fluid displacement machine
US9771931B2 (en) Spin pump with spun-epicyclic geometry
JP5130372B2 (en) Rotating device
JP3136820B2 (en) Scroll type fluid machine
JPH0458086A (en) Fluid compressor
US6607371B1 (en) Pneudraulic rotary pump and motor
JP3484604B2 (en) Spherical rotary piston pump, compressor
JPH09504590A (en) Pump with twin cylindrical impeller
CN101446287B (en) Oil pump for engine
JPH06272671A (en) Rotary piston machine
CN107208635A (en) Scroll fluid machine
US20080075616A1 (en) Orbiting Valve For A Reciprocating Pump
JP2713655B2 (en) Anti-rotation mechanism
JP4618645B2 (en) Scroll compressor
KR0127833B1 (en) Rotating-gylinder compressor
JPH074487A (en) Crank driving mechanism
KR20090118014A (en) Donut vane rotary compressor
JPH0219684A (en) Fluid compressor
JPH11230046A (en) Reciprocating pump
JPH03140659A (en) Rotational motion-reciprocative motion converter
KR100577706B1 (en) Turbo capacity type pump
RU2382204C2 (en) Positive displacement rotor machine with bispherical chamber (versions)
RU2357097C2 (en) Rotor-piston pump-compressor
JPH0518376A (en) Rotary compressor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees