JP2002061157A - Supervising method and apparatus for sluice gate - Google Patents

Supervising method and apparatus for sluice gate

Info

Publication number
JP2002061157A
JP2002061157A JP2000245071A JP2000245071A JP2002061157A JP 2002061157 A JP2002061157 A JP 2002061157A JP 2000245071 A JP2000245071 A JP 2000245071A JP 2000245071 A JP2000245071 A JP 2000245071A JP 2002061157 A JP2002061157 A JP 2002061157A
Authority
JP
Japan
Prior art keywords
optical fiber
light
closing
opening
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000245071A
Other languages
Japanese (ja)
Other versions
JP4395604B2 (en
Inventor
Yoshiki Tanaka
祥貴 田中
Kenji Yano
健二 矢野
Takeshi Ishimaru
剛 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Densetsu Consultants Kk
KANTO REGIONAL DEV BUREAU MINI
Ministry of Land Infrastructure Transport and Tourism Kanto Regional Development Bureau
Original Assignee
Densetsu Consultants Kk
KANTO REGIONAL DEV BUREAU MINI
Ministry of Land Infrastructure Transport and Tourism Kanto Regional Development Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Densetsu Consultants Kk, KANTO REGIONAL DEV BUREAU MINI, Ministry of Land Infrastructure Transport and Tourism Kanto Regional Development Bureau filed Critical Densetsu Consultants Kk
Priority to JP2000245071A priority Critical patent/JP4395604B2/en
Publication of JP2002061157A publication Critical patent/JP2002061157A/en
Application granted granted Critical
Publication of JP4395604B2 publication Critical patent/JP4395604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Barrages (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for centralized-supervising the open and close state of sluice gates studded in a wide area accurately and economically in the case of no power supply equipment and information transmitting equipment. SOLUTION: Among three kinds of sensor functions of an optical fiber, a Rayleight scattering is used to transmit an optical pulse to the optical fiber, and according to the open and close state of the water gate, bending is applied directly or indirectly to the optical fiber to generate a loss. As a result, Rayleigh scattered light is decreased to measure the change of light intensity. Pulse light is let enter from the tip parts of the plural optical fibers 16, the distance to the change point of quantity of light of scattered light due to bending of the optical fibers 16 interlocking with the opening and closing of the plural studded water gates is operated and detected according to the measurement of time from the incident end of the pulse light, thereby centralized-supervising the opening and closing of the plural water gates 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、河川管理、特に、
湖沼等の周囲の河川に設けられた多数の水門の開閉状態
を集中監視するための水門の監視方法及び装置に関する
ものである。
TECHNICAL FIELD The present invention relates to river management,
The present invention relates to a floodgate monitoring method and apparatus for centrally monitoring the open / close state of a large number of floodgates provided in a river such as a lake.

【0002】[0002]

【従来の技術】河川管理設備である大型の水門のゲート
設備は、遠方からのゲート開閉作業が略自動化されてい
る。ところが、湖、沼、貯水池、河川等の湖沼に設けら
れ、水が流入し又は流出するために多数存在する小型の
樋門・樋管の水門、例えば、図5に示すような湖沼15
が霞ヶ浦であるような場合、この湖沼15の周囲の河川
には、約500の樋門・樋管が点在しており、大多数の
樋門・樋管の水門12、13は、人手によって開閉の監
視が行われていた。
2. Description of the Related Art In large-scale sluice gate facilities, which are river management facilities, gate opening and closing work from a distance is substantially automated. However, there are a large number of small gutters and gutters provided in lakes and marshes such as lakes, swamps, reservoirs, and rivers to allow water to flow in or out, such as lakes 15 shown in FIG.
In the case of Lake Kasumigaura, about 500 sluices and sluices are scattered in the river around the lake 15 and the sluices 12 and 13 of the majority of sluices and sluices are manually operated. Monitoring of opening and closing was being performed.

【0003】また、田畑の潅漑用水のための水利権、上
流域や下流域での洪水や水枯れに対する対処、汚水の流
入や流出の監視等、樋門・樋管の水門12、13の集中
管理は極めて重要である。
Concentration of sluices 12 and 13 for gutters and pipes, such as water rights for irrigation water in fields and fields, countermeasures against floods and withering in upstream and downstream areas, monitoring of inflow and outflow of sewage, etc. Management is extremely important.

【0004】[0004]

【発明が解決しようとする課題】従来のように水門の開
閉の監視を人手による目視で行っていたのでは、水門の
ゲート板が完全に閉じたかどうかの判断は、ゲート板が
水中に隠れてしまうので困難であるばかりか、操作委託
人にとって、悪天候、夜間、24時間拘束等の危険な作
業が負担となり、湖沼の周囲の広い地域に点在するすべ
ての水門の開閉状態を集中管理することは極めて困難で
あった。
If the monitoring of the opening and closing of the sluice has been performed by hand, as in the prior art, it is difficult to determine whether or not the gate plate of the sluice is completely closed by hiding the gate plate underwater. Not only is it difficult to do so, but it is also burdensome for the operation contractor, such as bad weather, nighttime, 24-hour detention, etc., and centrally managing the opening and closing of all sluice gates scattered over a wide area around the lake Was extremely difficult.

【0005】また、湖沼の周囲の広い地域に点在する樋
門・樋管においては、電源設備、情報伝送設備等が整備
されていない個所が大多数であり、集中監視や集中管理
をより困難なものとしていた。
[0005] Further, most of the gutters and gutters scattered in a wide area around lakes and marshes are not provided with power supply facilities, information transmission facilities, etc., so that centralized monitoring and centralized management are more difficult. I was doing it.

【0006】本発明は、電源設備、情報伝送設備等が整
備されていなくても、広い地域に点在する水門の開閉状
態を正確に、しかも、経済的に集中監視するための方法
と装置を提供することを目的とするものである。
The present invention provides a method and apparatus for accurately and economically centrally monitoring the open / closed state of floodgates scattered in a wide area even if power supply equipment, information transmission equipment, and the like are not provided. It is intended to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、湖沼の周囲の
水門の点在する場所に、光ファイバを張り巡らし、この
光ファイバのセンサ機能により水門の開閉状態をより確
実に、かつ、経済的に検出しようとするものである。光
ファイバは、本来、情報伝送路として広域化対策、高速
化対策、マルチメディア対応、リアルタイム対応などの
機能を有しており、また、各種物理量を直接計測できる
センサとしての機能も有している。特に、広大な河川管
理においては、光ファイバの持っている利点である、連
続して活用可能であること、材質が安定していること、
正確な位置確定が即座にできること等の利点を活用する
ことにより、より高度な河川管理が可能である。
SUMMARY OF THE INVENTION According to the present invention, an optical fiber is laid around a sluice around a lake, and the open / closed state of the sluice is more reliably and economically achieved by the sensor function of the optical fiber. It is intended to detect it. Optical fiber originally has functions such as wide area measures, high speed measures, multimedia support, and real-time support as an information transmission path, and also has a function as a sensor that can directly measure various physical quantities. . In particular, in the management of vast rivers, the advantages of optical fiber are that it can be used continuously, that the material is stable,
By taking advantage of the fact that accurate position determination can be performed immediately, more advanced river management is possible.

【0008】光ファイバのセンサ機能には、光ファイバ
の散乱現象の3種類(レーリー散乱、ラマン散乱、ブリ
ルアン散乱)があり、特に、本発明では、レーリー散乱
を利用している。このレーリー散乱のセンサ原理は、光
ファイバに光パルスを伝送し、光ファイバの長手方向の
損失、反射量、断線位置を計測するものである。具体的
監視方法は、水門の開閉状態に伴い、光ファイバに直接
的又は間接的に曲げを与えることにより、損失を発生さ
せ、結果的にレーリー散乱光も減少させて光強度の変化
を計測するものである。
The sensor function of the optical fiber includes three types of scattering phenomena of the optical fiber (Rayleigh scattering, Raman scattering, and Brillouin scattering). In particular, the present invention utilizes Rayleigh scattering. The sensor principle of this Rayleigh scattering is to transmit a light pulse to an optical fiber and measure the loss, the amount of reflection, and the position of the disconnection in the longitudinal direction of the optical fiber. The specific monitoring method is to measure the change in light intensity by giving a loss to the optical fiber by directly or indirectly bending the optical fiber in accordance with the open / closed state of the floodgate, and consequently reducing the Rayleigh scattered light. Things.

【0009】[0009]

【発明の実施の形態】以下、具体的実施例を図面に基づ
き説明する。先ず、図2によりレーリー散乱光による光
ファイバのセンサ原理を説明する。図2において、40
は、例えば、パルス幅1000nsのパルス光を出力す
るパルス光発生器、41は、光ファイバ16(又は光フ
ァイバ17、以下同じ)からの反射光を屈折するハーフ
ミラー、42は、戻ってきた入射光と同じ波長の光を受
光して、光の量と時間とを計測して特定の水門12の開
閉を検知する受光部である。なお、パルス光のパルス幅
は、距離によって分解能を上げるために、目的に応じて
20ns〜5000ns程度の範囲内で調整できるよう
になっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments will be described with reference to the drawings. First, the principle of the optical fiber sensor using Rayleigh scattered light will be described with reference to FIG. In FIG. 2, 40
Is, for example, a pulse light generator that outputs a pulse light having a pulse width of 1000 ns, 41 is a half mirror that refracts light reflected from the optical fiber 16 (or the optical fiber 17, the same applies hereinafter), and 42 is incident light that has returned. This is a light receiving unit that receives light having the same wavelength as the light, measures the amount and time of the light, and detects whether the specific floodgate 12 is open or closed. The pulse width of the pulsed light can be adjusted within a range of about 20 ns to 5000 ns depending on the purpose in order to increase the resolution depending on the distance.

【0010】・レーリー散乱現象 光ファイバ16は、石英ガラスを溶融し、これを冷却す
る工程で製造されるが、冷却時にガラスの分子は、任意
の位置に凍結されるので、光ファイバ16の内部に密度
(屈折率)の変化した構造部分が生じる。このような構
造部分を光が通過する場合、他の部分との屈折率の違い
により光は屈折され、その一部の入射光と同じ波長の光
が入射端に戻って行く。これがレーリー散乱現象であ
る。 ・損失分布測定 光ファイバ16の光入射端から、このレーリー散乱によ
り再度入射端に戻ってくる光の量と時間を計測すること
によって、光ファイバ16自身の長さ方向の減衰特性や
光ファイバ16の構造の異常(曲がり)、光ファイバ1
6の接続点の接続損失の測定等を行う。
Rayleigh scattering phenomenon The optical fiber 16 is manufactured in a process of melting quartz glass and cooling the same. However, during cooling, the molecules of the glass are frozen at an arbitrary position. Then, a structural portion having a changed density (refractive index) occurs. When light passes through such a structural part, the light is refracted due to a difference in refractive index from other parts, and light having the same wavelength as a part of the incident light returns to the incident end. This is the Rayleigh scattering phenomenon. Loss distribution measurement By measuring the amount and time of light returning from the light incident end of the optical fiber 16 to the incident end due to Rayleigh scattering, the attenuation characteristics in the longitudinal direction of the optical fiber 16 itself and the optical fiber 16 Abnormal (bending) of the structure of the optical fiber 1
The connection loss at the connection point 6 is measured.

【0011】・ひずみ変位測定 光ファイバ16に曲げ(図2の屈曲部43)を与えるこ
とで、光ファイバ16から透過する光が生じ、結果的に
レーリー散乱光も減少することから、光量の変化により
ひずみ・変位を検出する。 ・断線位置の計測 光ファイバ16の断線位置で全反射する光が光入射端ま
でに戻る時間を計測し、断線位置の測定を行う。
[0011] Strain displacement measurement When the optical fiber 16 is bent (bent portion 43 in FIG. 2), light transmitted from the optical fiber 16 is generated, and as a result, Rayleigh scattered light is also reduced. To detect strain and displacement. Measurement of disconnection position The time required for the light totally reflected at the disconnection position of the optical fiber 16 to return to the light incident end is measured, and the disconnection position is measured.

【0012】以上のような光ファイバ16のレーリー散
乱光によるセンサ機能を樋門・樋管の水門12(又は水
門13、以下同じ)に利用した具体的構成例を図3及び
図4により説明する。図3において、河川20の両側の
水路壁21に、それぞれ支柱22が垂直に建てられ、こ
の支柱22の上部の桁23からは、2本の垂直な昇降軸
24が上下自在に設けられている。この昇降軸24は、
手動又は電動の駆動部25により上下して、下端のゲー
ト板19がガイドレール26に沿って上下してゲート板
19を上下し、水門20を開閉する。前記ゲート板19
には、一体に上下する連動部27が設けられ、また、支
柱22の下部であって、連動部27に臨ませた位置に開
閉検知部28が取り付けられ、支柱22の上部に検知信
号発生部29が設けられて、光ファイバーの曲げ手段が
構成される。
A specific configuration example in which the sensor function of the optical fiber 16 by the Rayleigh scattered light as described above is used for the sluice gate 12 (or sluice gate 13, hereinafter the same) of a gutter or a gutter pipe will be described with reference to FIGS. . In FIG. 3, columns 22 are vertically built on water channel walls 21 on both sides of a river 20, and two vertical lifting shafts 24 are provided vertically from a girder 23 above the columns 22. . This elevating shaft 24 is
The gate plate 19 at the lower end is moved up and down by a manual or electric drive unit 25 to move up and down along the guide rail 26 to open and close the floodgate 20. The gate plate 19
An opening / closing detection unit 28 is attached to the lower part of the column 22 and facing the interlocking unit 27, and a detection signal generation unit is provided above the column 22. 29 is provided to constitute an optical fiber bending means.

【0013】前記光ファイバーの曲げ手段である開閉検
知部28と検知信号発生部29の詳細を図4により説明
すると、検知信号発生部29の内部では、光ファイバ1
6の一端が固定部材37にて固定され、引っ張りばね3
8で引っ張られているので、通常は直線状態にあり、ま
た、大径屈曲ガイド板33は、光ファイバ16に曲げに
よる損失が生じないように大きな直径で屈曲するための
ものである。従って、光損失は発生していない。
The details of the open / close detection unit 28 and the detection signal generation unit 29 which are the bending means of the optical fiber will be described with reference to FIG.
6 is fixed at one end by a fixing member 37 and the tension spring 3
Since the optical fiber 16 is pulled at 8, it is normally in a straight line, and the large-diameter bent guide plate 33 is bent at a large diameter so that the optical fiber 16 does not suffer loss due to bending. Therefore, no optical loss has occurred.

【0014】開閉検知部28には、接触子30が内部の
コイルばねなどにより常時外方へ突出している。ゲート
板19が手動又は電動の駆動部25により操作されて完
全に閉じたときに連動部27の突起が接触子30の位置
まで移動してきて接触子30を押し込む。
In the open / close detecting section 28, a contact 30 always projects outward due to an internal coil spring or the like. When the gate plate 19 is operated by the manual or electric drive unit 25 and is completely closed, the projection of the interlocking unit 27 moves to the position of the contact 30 and pushes the contact 30.

【0015】接触子30が押し込まれると、接触子30
に連動する線材31が案内管32にガイドされて、線材
31の先端部が検知信号発生部29の内部から突出し、
屈曲発生部36の押圧突起板34を上方へ押し出す。す
ると、固定的な凹溝板35との間で光ファイバ16を挾
み付け、光ファイバ16を山形状に折り曲げる。この曲
げが図2の屈曲部43に相当するから、この光量の変化
と計測時間からどこの水門12が閉じているか(図2で
は、X番目の水門)が検出できる。2個所以上に曲げが
生じたときには、同様の変化がそれぞれの曲げ位置に相
当して発生するので、さらに水門12が閉じているかど
うか(図2では、Y番目の水門)が検出できる。
When the contact 30 is pushed in, the contact 30
Is guided by the guide tube 32, and the distal end of the wire 31 protrudes from the inside of the detection signal generating unit 29,
The pressing projection plate 34 of the bending portion 36 is pushed upward. Then, the optical fiber 16 is sandwiched between the fixed concave groove plate 35 and the optical fiber 16 is bent into a mountain shape. Since this bending corresponds to the bent portion 43 in FIG. 2, it is possible to detect which floodgate 12 is closed (the Xth floodgate in FIG. 2) from the change in the amount of light and the measurement time. When bending occurs at two or more locations, similar changes occur at the respective bending positions, so that it is possible to further detect whether the floodgate 12 is closed (Y-th floodgate in FIG. 2).

【0016】なお、ゲート板19が閉じている状態で開
閉検知部28をオンにしてゲート板19の開閉状態を検
知するこことしたが、これは、樋門・樋管のゲート板1
9は、通常開いた状態となっており、出水による本川か
ら支川への流水を防止するため、水門12の閉じている
状態を正確に把握する必要があるからである。
The opening / closing detection unit 28 is turned on while the gate plate 19 is closed to detect the open / closed state of the gate plate 19.
9 is normally open, because it is necessary to accurately grasp the closed state of the sluice gate 12 in order to prevent the water from flowing from the main river to the tributary.

【0017】つぎに湖沼15の周囲における複数の水門
12の集中管理のための具体的な設置について説明する
と、図5において、10は、中央管理事務所であり、こ
の中央管理事務所10は、湖沼15の周囲に設けられた
5個所のA、B、C、D、E出張所11を管理するもの
とする。このうちA出張所11は、B側との管理境界線
14までの水門12に光ファイバ16を張り巡らし、6
1個所の水門12を監視し、また、C側との管理境界線
14までの水門12に光ファイバ17を張り巡らし、6
0個所の水門13を監視し、合計で121個所の水門1
2を監視する。同様に、B出張所11は、79個所、C
出張所11は、52個所、D出張所11は、121個
所、E出張所11は、85個所を監視するものとする。
Next, a specific installation for centralized management of a plurality of sluice gates 12 around the lake 15 will be described. In FIG. 5, reference numeral 10 denotes a central management office. It is assumed that five A, B, C, D, and E branch offices 11 provided around the lake 15 are managed. Of these, the A branch office 11 stretches the optical fiber 16 around the floodgate 12 up to the management boundary line 14 with the B side, and
One sluice gate 12 is monitored, and an optical fiber 17 is stretched around the sluice gate 12 up to the management boundary line 14 with the C side.
Monitor 0 sluices 13 and 121 sluices 1 in total
Monitor 2 Similarly, B branch office 11 has 79 locations, C
The branch office 11 monitors 52 places, the D branch office 121 monitors 121 places, and the E branch office 11 monitors 85 places.

【0018】図1は、A出張所11における光ファイバ
16、17の具体的設置例を示している。この図1にお
いて、A出張所11からB出張所11に向かって順次水
門12(12a1、12a2、12a3、…)が点在
し、かつ、光ファイバ16(16a1、16a2、16
a3、…)が張り巡らせられ、同様に、A出張所11か
らC出張所11に向かって順次水門13(13a1、1
3a2、13a3、…)が点在し、かつ、光ファイバ1
7(17a1、17a2、17a3、…)が張り巡らせ
られているものとする。
FIG. 1 shows a specific example of installation of the optical fibers 16 and 17 in the A branch office 11. In FIG. 1, floodgates 12 (12a1, 12a2, 12a3,...) Are sequentially scattered from an A branch office 11 to a B branch office 11, and optical fibers 16 (16a1, 16a2, 16) are provided.
a3,...), and similarly, the floodgates 13 (13a1, 1a1) are sequentially moved from the A branch office 11 to the C branch office 11.
3a2, 13a3,...) And the optical fiber 1
7 (17a1, 17a2, 17a3,...) Are stretched.

【0019】監視距離レンジ、即ち光ファイバ16、1
7の長さを50kmとした場合、光ファイバ16、17
の距離分解能は、約10mであるが、水門12が閉じた
ときの伝送損失が生じた場合、隣合う水門12の距離が
短すぎると、その閉じた水門12の先の水門12が計測
できなくなるデッドゾーンが生じる。しかし、隣合った
水門12が十分に距離を有する場合には、正常に計測す
ることが可能である。
The monitoring distance range, ie, the optical fibers 16, 1
When the length of 7 is 50 km, the optical fibers 16, 17
Is about 10 m, but if a transmission loss occurs when the lock 12 is closed, if the distance between the adjacent locks 12 is too short, the lock 12 above the closed lock 12 cannot be measured. Dead zones occur. However, when the adjacent floodgates 12 have a sufficient distance, normal measurement can be performed.

【0020】そこで、隣合った水門12間の距離が十分
でない場合(例えば、数10m〜数100m間隔以下)
には、デッドゾーンの問題を回避し、精度よく計測する
ため、図1に示すように、千鳥足配線方式で光ファイバ
16、17を組むことが必要である。図1では、光ファ
イバ16a1に、水門12a1、12a4、12a7、
…を直列に連結し、光ファイバ16a2に、水門12a
2、12a5、12a8、…を直列に連結し、光ファイ
バ16a3に、水門12a3、12a6、12a9、…
を直列に連結している。光ファイバ17と水門13にお
いても同様である。図1では、規則的に順序よく振り分
けているが、隣合う水門12の間隔や水門12の数によ
って不規則的に配線するようにしてもよい。
Therefore, when the distance between the adjacent floodgates 12 is not sufficient (for example, at intervals of several tens of meters to several hundred meters).
In order to avoid the dead zone problem and perform accurate measurement, it is necessary to assemble the optical fibers 16 and 17 in a staggered wiring system as shown in FIG. In FIG. 1, sluice gates 12a1, 12a4, 12a7,
Are connected in series, and the sluice gate 12a is connected to the optical fiber 16a2.
, 12a5, 12a8,... Are connected in series, and sluice gates 12a3, 12a6, 12a9,.
Are connected in series. The same applies to the optical fiber 17 and the floodgate 13. In FIG. 1, the distribution is regularly performed in an order, but the wiring may be irregularly arranged according to the interval between the adjacent floodgates 12 and the number of the floodgates 12.

【0021】以上のような構成において、図1における
水門12a1、12a2、12a3、…及び水門13a
1、13a2、13a3、…のうち、斜線の入った丸で
示したものが閉じており、白丸で示したものが開いてい
るものとすると、光ファイバ16a1では、水門12a
1、12a4、12a7、…の対応する時間軸の位置で
受光レベルの損失が現われ、水門12a1、12a4、
12a7、…が閉じていることを表し、同様に、光ファ
イバ16a2では、水門12a5、12a8、…の対応
する時間軸の位置で受光レベルの損失が現われ、水門1
2a5、12a8、…が閉じていることを表し、光ファ
イバ16a3では、対応する時間軸の位置での受光レベ
ルの損失が現われず、いずれも開いていることを表して
いる。光ファイバ17と水門13においても同様であ
る。このようにして、A出張所11では、121個所の
水門12、13の開閉の監視をすることができる。
In the above configuration, the gates 12a1, 12a2, 12a3,... And the gate 13a in FIG.
Of the 1, 13a2, 13a3,..., The hatched circles are closed and the open circles are open.
, 12a4, 12a7,..., The light receiving level loss appears at the corresponding time axis positions, and the floodgates 12a1, 12a4,
.. Indicate a closed state, and similarly, in the optical fiber 16a2, a loss of the light reception level appears at the position on the time axis corresponding to the sluices 12a5, 12a8,.
, 2a5, 12a8,... Indicate that the optical fiber 16a3 is open, with no loss of the received light level at the corresponding position on the time axis. The same applies to the optical fiber 17 and the floodgate 13. In this way, the A branch 11 can monitor the opening and closing of the 121 floodgates 12 and 13.

【0022】同様にして、B出張所11は、79個所、
C出張所11は、52個所、D出張所11は、121個
所、E出張所11は、85個所を監視し、そのデータ
は、中央管理事務所10へ送られて、すべての水門12
の開閉の監視が行われる。
Similarly, the B branch office 11 has 79 locations,
The C branch office 11 monitors 52 places, the D branch office 121 monitors 121 places, and the E branch office 11 monitors 85 places. The data is sent to the central management office 10 and all the floodgates 12 are monitored.
Is monitored for opening and closing.

【0023】[0023]

【発明の効果】請求項1記載の発明によれば、1又は複
数本の光ファイバ16の先端部からパルス光を入射し、
点在する複数の水門12の開閉に連動する光ファイバ1
6の曲げによるレーリー散乱光の光量の変化点までの距
離を、パルス光の入射端からの時間の測定により演算検
出して複数の水門12の開閉を集中監視するようにした
ので、水門のゲート板が完全に閉じたかどうかの判断が
確実で、天候、時間等に左右されずに常時監視できる。
また、光ファイバを使用したので、電源設備、情報伝送
設備等が整備されていない個所であっても、集中監視や
集中管理を容易に行うことができる。特に、広大な河川
管理においては、光ファイバの持っている利点である、
連続して活用可能であること、材質が安定しているこ
と、正確な位置確定が即座にできること等の利点を活用
することにより、より高度な河川管理が可能である。
According to the first aspect of the present invention, pulse light is incident from one or a plurality of optical fibers 16 at the tip end thereof.
Optical fiber 1 linked to opening and closing of multiple floodgates 12
The distance to the point where the amount of Rayleigh scattered light changes due to the bending of 6 is calculated and detected by measuring the time from the incident end of the pulsed light, and the opening and closing of the plurality of floodgates 12 is monitored in a centralized manner. It is reliable to determine whether the board is completely closed, and it can be monitored constantly regardless of the weather, time, etc.
Further, since an optical fiber is used, centralized monitoring and centralized management can be easily performed even in a place where power supply equipment, information transmission equipment, and the like are not provided. Especially in the management of vast rivers, the advantages of optical fiber are:
More advanced river management is possible by utilizing the advantages such as continuous use, stable material, and quick and accurate position determination.

【0024】請求項2記載の発明によれば、1本の光フ
ァイバ16によって複数個の水門12の開閉を集中監視
することができる。
According to the second aspect of the present invention, the opening and closing of a plurality of floodgates 12 can be centrally monitored by one optical fiber 16.

【0025】請求項3記載の発明によれば、複数本の光
ファイバ16の先端部からそれぞれパルス光を入射し、
複数本の光ファイバ16毎に千鳥足配線によりグループ
分けした複数の水門12の開閉に連動する光ファイバ1
6の曲げによるレーリー散乱光の光量の変化点までの距
離を、複数本の光ファイバ16毎のパルス光の入射端か
らの時間の測定により演算検出して複数の水門12の開
閉を集中監視するようにしたので、多数個の水門12が
点在していても確実に監視できる。
According to the third aspect of the present invention, the pulse light is incident from the tip portions of the plurality of optical fibers 16 respectively.
Optical fiber 1 linked to opening and closing of a plurality of floodgates 12 grouped by staggered wiring for each of a plurality of optical fibers 16
The distance to the point where the amount of Rayleigh scattered light changes due to the bending of 6 is calculated and detected by measuring the time from the incident end of the pulse light for each of the plurality of optical fibers 16 to centrally monitor the opening and closing of the plurality of floodgates 12. As a result, even if a large number of floodgates 12 are scattered, the monitoring can be performed reliably.

【0026】請求項4記載の発明によれば、千鳥足配線
によるグループ分けは、隣合う水門12の距離を、伝送
損失による検出不可能距離より大きくなるようにしたの
で、隣合った複数の水門12の距離間隔が短い場合でも
デッドゾーンなく確実に監視できる。
According to the fourth aspect of the present invention, the grouping based on the staggered wiring is such that the distance between the adjacent floodgates 12 is greater than the undetectable distance due to the transmission loss. Can be reliably monitored without dead zones even when the distance between the objects is short.

【0027】請求項5記載の発明によれば、点在する水
門12にそれぞれ設けられ、水門12の開閉に連動して
光ファイバ16に曲げを付与する曲げ手段と、前記光フ
ァイバ16の先端部からパルス光を入射するパルス光発
生器40と、光ファイバ16のパルス光入射端に戻って
きた光の量と時間とを計測して特定の水門12の開閉を
検知する受光部42とからなるので、装置自体の構成が
簡単で安価に提供でき、しかも、長期間の使用に耐える
ものである。
According to the fifth aspect of the present invention, a bending means is provided at each of the sluice gates 12 scattered, and applies bending to the optical fiber 16 in conjunction with opening and closing of the sluice gate 12; And a light receiving unit 42 that measures the amount and time of light returning to the pulse light incidence end of the optical fiber 16 and detects the opening and closing of a specific floodgate 12. Therefore, the configuration of the device itself can be provided simply and inexpensively, and the device can be used for a long time.

【0028】請求項6記載の発明によれば、曲げ手段
は、水門12の閉鎖時にオンするように構成したので、
通常開いた状態となっている水門12の閉じている状態
を正確に把握して、出水による本川から支川への流水を
防止することができる。
According to the sixth aspect of the present invention, the bending means is configured to be turned on when the water gate 12 is closed.
By accurately grasping the closed state of the floodgate 12, which is normally open, it is possible to prevent water from flowing from the main river to the tributary river due to flooding.

【0029】請求項7記載の発明によれば、曲げ手段
は、水門12のゲート板19に連動する連動部27によ
りゲート板19の閉鎖時に作動する開閉検知部28と、
この開閉検知部28により通常は直線的な光ファイバ1
6を屈曲する屈曲発生部36を有する検知信号発生部2
9とからなるので、とかく雨風に晒されるような位置に
取り付けられるにも拘らず、故障になりにくく長期間確
実に動作することができる。
According to the seventh aspect of the present invention, the bending means includes an opening / closing detecting section which operates when the gate plate 19 is closed by the interlocking section 27 which interlocks with the gate plate 19 of the floodgate 12, and
The opening / closing detecting section 28 normally controls the linear optical fiber 1.
Detection signal generator 2 having a bending generator 36 that bends the sensor 6
Therefore, despite being mounted at a position where it is exposed to rain and wind, it is possible to operate reliably and for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による水門の監視方法及び装置を千鳥足
配線した実施例を示す説明図である。
FIG. 1 is an explanatory view showing an embodiment in which a monitoring method and a device of a floodgate according to the present invention are wired in a staggered manner.

【図2】本発明による水門の監視方法及び装置に用いた
レーリー散乱の原理の説明と回路のブロック図である。
FIG. 2 is a block diagram of a circuit and a description of the principle of Rayleigh scattering used in the method and apparatus for monitoring a floodgate according to the present invention.

【図3】本発明による水門の監視方法及び装置を水門に
設置した状態を示す説明図である。
FIG. 3 is an explanatory diagram showing a state in which a method and an apparatus for monitoring a sluice according to the present invention are installed in the sluice.

【図4】本発明による水門の監視方法及び装置に用いら
れる曲げ手段の具体的構成の説明図である。
FIG. 4 is an explanatory diagram of a specific configuration of a bending means used in the method and the apparatus for monitoring a floodgate according to the present invention.

【図5】本発明による水門の監視方法及び装置を湖沼に
実際に配置した状態の説明図である。
FIG. 5 is an explanatory view showing a state in which a method and an apparatus for monitoring a floodgate according to the present invention are actually arranged in a lake or marsh.

【符号の説明】[Explanation of symbols]

10…中央管理事務所、11…出張所、12…水門、1
3…水門、14…管理境界線、15…湖沼、16、17
…光ファイバ、19…ゲート板、20…河川、21…水
路壁、22…支柱、23…桁、24…昇降軸、25…駆
動部、26…ガイドレール、27…連動部、28…開閉
検知部、29…検知信号発生部、30…接触子、31…
線材、32…案内管、33…大径屈曲ガイド板、34…
押圧突起板、35…凹溝板、36…屈曲発生部、37…
固定部材、38…引っ張りばね、40…パルス光発生
器、41…ハーフミラー、42…受光部、43…屈曲
部。
10 central administration office, 11 branch office, 12 sluice gate, 1
3 ... Sluice gate, 14 ... Management boundary line, 15 ... Lake, Marsh, 16, 17
... Optical fiber, 19 ... Gate board, 20 ... River, 21 ... Water channel wall, 22 ... Post, 23 ... Girder, 24 ... Elevating shaft, 25 ... Driver, 26 ... Guide rail, 27 ... Interlocking part, 28 ... Open / close detection Section, 29: detection signal generating section, 30: contact, 31 ...
Wire rod, 32: guide tube, 33: large-diameter bent guide plate, 34:
Pressing protruding plate, 35 ... groove plate, 36 ... bending occurrence part, 37 ...
Fixing member, 38: tension spring, 40: pulse light generator, 41: half mirror, 42: light receiving section, 43: bending section.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢野 健二 東京都千代田区神田錦町3丁目6番地 電 設コンサルタンツ株式会社内 (72)発明者 石丸 剛 東京都千代田区神田錦町3丁目6番地 電 設コンサルタンツ株式会社内 Fターム(参考) 2D019 AA43 2F065 AA06 CC00 FF31 FF41 LL02 NN08 2F073 AA01 AB01 AB06 BB06 BC04 CC02 CD12 DD02 GG01 GG04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenji Yano 3-6-6 Kandanishikicho, Chiyoda-ku, Tokyo Dentsu Consultants Inc. (72) Inventor Tsuyoshi Ishimaru 3-6-6 Kandanishikicho, Chiyoda-ku, Tokyo Dentsu Consultants F term (for reference) 2D019 AA43 2F065 AA06 CC00 FF31 FF41 LL02 NN08 2F073 AA01 AB01 AB06 BB06 BC04 CC02 CD12 DD02 GG01 GG04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 1又は複数本の光ファイバの先端部から
パルス光を入射し、点在する複数の水門の開閉に連動す
る光ファイバの曲げによるレーリー散乱光の光量の変化
点までの距離を、パルス光の入射端からの時間の測定に
より演算検出して複数の水門の開閉を集中監視するよう
にしたことを特徴とする水門の監視方法。
1. A pulse light is incident from one or a plurality of optical fiber tips, and a distance to a change point of the amount of Rayleigh scattered light due to bending of an optical fiber interlocking with the opening and closing of a plurality of sluice gates is determined. A method of monitoring the opening and closing of a plurality of floodgates by centrally monitoring the opening and closing of a plurality of floodgates by calculating and detecting by measuring the time from the incident end of the pulsed light.
【請求項2】 1本の光ファイバの先端部からパルス光
を入射し、1本の光ファイバに連結された点在する複数
の水門の開閉に連動する光ファイバの曲げによるレーリ
ー散乱光の光量の変化点までの距離を、パルス光の入射
端からの時間の測定により演算検出して複数の水門の開
閉を集中監視するようにしたことを特徴とする水門の監
視方法。
2. A light amount of Rayleigh scattered light due to bending of an optical fiber that is interlocked with opening and closing of a plurality of scattered water gates connected to one optical fiber by injecting pulse light from the tip of one optical fiber. A method of monitoring the opening and closing of a plurality of floodgates in a centralized manner by calculating the distance to the change point of the above by measuring the time from the incident end of the pulsed light.
【請求項3】 複数本の光ファイバの先端部からそれぞ
れパルス光を入射し、複数本の光ファイバ毎に千鳥足配
線によりグループ分けした複数の水門の開閉に連動する
光ファイバの曲げによるレーリー散乱光の光量の変化点
までの距離を、複数本の光ファイバ毎のパルス光の入射
端からの時間の測定により演算検出して複数の水門の開
閉を集中監視するようにしたことを特徴とする水門の監
視方法。
3. Rayleigh scattered light caused by bending of an optical fiber linked to opening and closing of a plurality of water gates, each of which receives pulsed light from the tip end of the plurality of optical fibers and is divided into groups by staggered wiring for each of the plurality of optical fibers. Wherein the distance to the change point of the light amount is calculated and detected by measuring the time from the incident end of the pulse light for each of the plurality of optical fibers, and the opening and closing of the plurality of floodgates is monitored intensively. Monitoring method.
【請求項4】 千鳥足配線によるグループ分けは、隣合
う水門の距離を、伝送損失による検出不可能距離より大
きくなるようにしたことを特徴とする請求項3記載の水
門の監視方法。
4. The method according to claim 3, wherein the grouping based on the staggered foot wiring is such that the distance between adjacent water gates is greater than an undetectable distance due to transmission loss.
【請求項5】 点在する水門にそれぞれ設けられ、水門
の開閉に連動して光ファイバに曲げを付与する曲げ手段
と、前記光ファイバの先端部からパルス光を入射するパ
ルス光発生器と、光ファイバのパルス光入射端に戻って
きた光の量と時間とを計測して特定の水門の開閉を検知
する受光部とからなることを特徴とする水門の監視装
置。
5. A bending means which is provided at each of dotted water gates and applies bending to an optical fiber in response to opening and closing of the water gate, a pulse light generator which inputs pulse light from the tip of the optical fiber, A water gate monitoring device, comprising: a light receiving unit that detects the opening and closing of a specific water gate by measuring the amount and time of light returning to a pulse light incident end of an optical fiber.
【請求項6】 曲げ手段は、水門の閉鎖時にオンするよ
うに構成したことを特徴とする請求項5記載の水門の監
視装置。
6. The floodgate monitoring device according to claim 5, wherein the bending means is turned on when the floodgate is closed.
【請求項7】 点在する水門にそれぞれ設けられ、水門
の開閉に連動して光ファイバに曲げを付与する曲げ手段
と、前記光ファイバの先端部からパルス光を入射するパ
ルス光発生器と、光ファイバのパルス光入射端に戻って
きた光の量と時間とを計測して特定の水門の開閉を検知
する受光部とを具備し、前記曲げ手段は、水門のゲート
板に連動する連動部によりゲート板の閉鎖時に作動する
開閉検知部と、この開閉検知部により通常は直線的な光
ファイバを屈曲する屈曲発生部を有する検知信号発生部
とからなることを特徴とする水門の監視装置。
7. A bending means which is provided at each of the sluice gates which are scattered, and which applies a bend to the optical fiber in conjunction with opening and closing of the sluice; a pulse light generator which inputs pulse light from the tip of the optical fiber; A light receiving unit that detects the opening and closing of a specific floodgate by measuring the amount and time of light returning to the pulsed light incident end of the optical fiber, wherein the bending unit is an interlocking unit that interlocks with the gate plate of the floodgate And a detection signal generator having a bend generator which bends a normally linear optical fiber by the open / close detector.
JP2000245071A 2000-08-11 2000-08-11 Sluice monitoring method and device Expired - Lifetime JP4395604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000245071A JP4395604B2 (en) 2000-08-11 2000-08-11 Sluice monitoring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000245071A JP4395604B2 (en) 2000-08-11 2000-08-11 Sluice monitoring method and device

Publications (2)

Publication Number Publication Date
JP2002061157A true JP2002061157A (en) 2002-02-28
JP4395604B2 JP4395604B2 (en) 2010-01-13

Family

ID=18735658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000245071A Expired - Lifetime JP4395604B2 (en) 2000-08-11 2000-08-11 Sluice monitoring method and device

Country Status (1)

Country Link
JP (1) JP4395604B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032126A (en) * 2015-08-06 2017-02-09 ホーチキ株式会社 Disaster prevention facility of hydrogen station
WO2021049035A1 (en) * 2019-09-13 2021-03-18 日本電気株式会社 Optical fiber sensing system, optical fiber sensing apparatus, and reservoir monitoring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032126A (en) * 2015-08-06 2017-02-09 ホーチキ株式会社 Disaster prevention facility of hydrogen station
WO2021049035A1 (en) * 2019-09-13 2021-03-18 日本電気株式会社 Optical fiber sensing system, optical fiber sensing apparatus, and reservoir monitoring method
JPWO2021049035A1 (en) * 2019-09-13 2021-03-18
JP7173364B2 (en) 2019-09-13 2022-11-16 日本電気株式会社 Optical fiber sensing system, optical fiber sensing device, and reservoir monitoring method

Also Published As

Publication number Publication date
JP4395604B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
US6854327B2 (en) Apparatus and method for monitoring compaction
CA1183016A (en) Microbending of optical fibers for remote force measurement
US4477725A (en) Microbending of optical fibers for remote force measurement
CN100494918C (en) Monitoring method of reservoir level
Culshaw et al. Smart structures and applications in civil engineering
US8335406B2 (en) Temperature sensor using an optical fiber
US20090072981A1 (en) Fire detection
JP2018524579A (en) Integrated system and method for detecting osmotic flow morphology of hydraulic structures with distributed optical fiber
CN204514549U (en) A kind of oil leak detection system measured based on optical fiber backscattering
JPH0921661A (en) Apparatus for monitoring underground state of anchor construction part
KR101446022B1 (en) A Fiber optic bolt loosening monitoring system and method
CN112728424A (en) Pipeline leakage monitoring system and monitoring method based on spiral wound optical fiber
CN105738652A (en) Water engineering seepage flow velocity distributed optical fiber instant tracking system and method
JP4395604B2 (en) Sluice monitoring method and device
CN202350870U (en) Water inlet automatic detecting device of outdoor machine cabinet
CN104482876A (en) Chirp fiber grating-based concrete abrasion and cavitation erosion depth real-time monitoring system
Inaudi et al. Distributed fiber-optic sensing for long-range monitoring of pipelines
JP2001099686A (en) Optical monitoring apparatus and optical fiber sensor
JPH076883B2 (en) Subsidence control method for buried piping
Dornstädter et al. Retrofit of fibre optics for permanent monitoring of leakage and detection of internal erosion
CN207231407U (en) Deeply mixing cement-soil pile measuring system
Borda et al. External Pipeline Leak Detection Based on Fiber Optic Sensing for the Kinosis 12 ″–16 ″and 16 ″–20 ″Pipe-in-Pipe System
CN204422161U (en) A kind of bending-type fibre-optical sensing device responsive to oil
TWI810777B (en) Stratum deformation monitoring device, system and method
Dornstädter et al. Online alarming for internal erosion

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20001016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20001016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090827

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090901

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4395604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term