JP2002060895A - Member for molten nonferrous metal - Google Patents

Member for molten nonferrous metal

Info

Publication number
JP2002060895A
JP2002060895A JP2000280961A JP2000280961A JP2002060895A JP 2002060895 A JP2002060895 A JP 2002060895A JP 2000280961 A JP2000280961 A JP 2000280961A JP 2000280961 A JP2000280961 A JP 2000280961A JP 2002060895 A JP2002060895 A JP 2002060895A
Authority
JP
Japan
Prior art keywords
coating layer
layer
molten
nitrogen
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000280961A
Other languages
Japanese (ja)
Inventor
Shigehiro Matsuno
茂弘 松野
Yoshihiro Sakata
嘉弘 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAKAMATSU SEISAKUSHO KK
Original Assignee
WAKAMATSU SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAKAMATSU SEISAKUSHO KK filed Critical WAKAMATSU SEISAKUSHO KK
Priority to JP2000280961A priority Critical patent/JP2002060895A/en
Publication of JP2002060895A publication Critical patent/JP2002060895A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a member for molten metal which is used for melting or casting equipment for manufacturing products of nonferrous metal, such as aluminum alloy, zinc alloy and magnesium alloy, and has excellent erosion resistance to these molten alloys and can be used safely. SOLUTION: The member for molten nonferrous metal can be manufactured by previously forming, by nitriding, a nitrogen-enriched layer in the surface layer part of a steel material having a chemical composition consisting of, by weight, 0.95-1.5% C, 0.1-0.4% Si, 0.2-0.5% Mn, 3.0-5.0% Cr, 4.5-9.5% Mo, 1.5-4.5% V 1.5-7.0% W and the balance Fe with inevitable impurity elements and then immersing the material in Cr-containing molten salt to convert the nitrogen-enriched layer into a layer containing Cr nitride or carbonitride and form a coating layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム合
金、亜鉛合金、マグネシュウム合金等の非鉄金属製品製
造用の溶解又は鋳造設備に用い、これらの合金溶湯に対
して耐溶損性に優れた部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member which is used for melting or casting equipment for manufacturing non-ferrous metal products such as aluminum alloys, zinc alloys, magnesium alloys and the like, and has excellent erosion resistance to molten alloys thereof.

【0002】[0002]

【従来の技術】非鉄金属の溶湯用部材には、ガス吹込み
管、ストーク、湯口ブッシュ、溶鍛スリーブ、ダイカス
トスリーブ、ダイカスト金型及びその入れ子、ピン等の
各種部材がある。これらの部材には、その用途に応じ
て、従来から鋳鉄材料、工具鋼材料等が無処理のまま、
若しくは窒化処理して、若しくは被覆層を形成して用い
られている。さらに近年は、一部の用途にサイアロンセ
ラミックの適用が拡がりつつある。
2. Description of the Related Art As a non-ferrous metal melt member, there are various members such as a gas injection pipe, a stalk, a sprue bush, a wrought sleeve, a die-cast sleeve, a die-casting mold and its insert, and a pin. For these members, depending on the application, cast iron materials, tool steel materials, etc.
Alternatively, they are used after nitriding or forming a coating layer. Furthermore, in recent years, the application of sialon ceramics to some applications has been expanding.

【0003】表面に被覆層を形成した本発明と同一用途
の溶湯用部材の例として、特開昭49−54229号公
報には、CrとAlを含む鉄系材料の表面に複合酸化物
被膜を形成した鋳造工具が開示されている。
[0003] As an example of a molten metal member having a coating layer formed on the surface and having the same application as the present invention, JP-A-49-54229 discloses a composite oxide film on the surface of an iron-based material containing Cr and Al. A formed casting tool is disclosed.

【0004】また、技術論文(表面技術,Vol.4
6,No.12,1995,p.1119〜1124)
には、各種鉄鋼材料の表層部を窒化処理した後、金属C
r粉末を含む溶融塩に浸漬することにより、Crの窒化
物或いは炭窒化物の被覆層を形成する技術が開示されて
いる。具体的には、炭素鋼(S45C)、合金工具鋼
(SKD61,SKD11)、高速度鋼(SKH5
1)、ステンレス鋼(0.65%C−13.5%Cr−
0.3%Mo)の表層部を窒化した後、窒化層をCrの
窒化物或いは炭窒化物(Cr−(C,N))を含む被覆
層に変化させることにより、耐摩耗性、耐焼付性、耐酸
化性の向上することが記載されている。そして、アルミ
ニユウムダイカスト入れ子やアルミニユウム高圧鋳造用
ピンやブッシュに用いて、型の耐久性を大きく向上する
ことができたとされている。
Further, a technical paper (Surface Technology, Vol. 4)
6, No. 12, 1995, p. 1119 to 1124)
After nitriding the surface layer of various steel materials,
A technique of forming a coating layer of a nitride or carbonitride of Cr by immersing in a molten salt containing r powder is disclosed. Specifically, carbon steel (S45C), alloy tool steel (SKD61, SKD11), high-speed steel (SKH5
1), stainless steel (0.65% C-13.5% Cr-
After nitriding the surface portion of 0.3% Mo), the nitride layer is changed to a nitride layer of Cr or a coating layer containing carbonitride (Cr- (C, N)) to thereby provide wear resistance and seizure resistance. And improvement of oxidation resistance. It is reported that the durability of the mold can be greatly improved by using the aluminum die-casting insert, the aluminum high-pressure casting pin and the bush.

【0005】[0005]

【発明が解決しようとする課題】従来の鋳鉄材料、工具
鋼材料等を無処理のまま非鉄金属溶湯用部材に用いる
と、非鉄金属溶湯と反応して、少しづつ侵食されて溶損
し、寸法精度が狂うばかりでなく、主成分であるFeが
溶湯中に溶け込み、鋳造製品の特性を劣化させる等の欠
点がある。また、被覆層を形成した場合も、非鉄金属溶
湯との反応は抑制されるものの、繰返し使用により被覆
層に微小亀裂が発生して、被覆層の微小部分が剥離し、
露出した下地材料部分が非鉄金属溶湯と反応して溶損す
る結果となる。さらに、サイアロンセラミックは、溶湯
と反応しないので溶湯用部材に適しており、用途によっ
ては十分満足した結果が得られている。しかし、本質的
にセラミック材質の域を越えず、金属材料よりも脆弱な
ため、破損しやすく、取扱が難しいという欠点がある。
When a conventional cast iron material, tool steel material, or the like is used in a non-ferrous metal melt member without any treatment, it reacts with the non-ferrous metal melt, gradually erodes and melts, and has dimensional accuracy. In addition to the inconvenience, there is a drawback in that Fe as the main component dissolves in the molten metal and deteriorates the properties of the cast product. In addition, even when the coating layer is formed, although the reaction with the non-ferrous metal melt is suppressed, a micro crack is generated in the coating layer by repeated use, and a minute portion of the coating layer is peeled off,
The exposed portion of the base material reacts with the molten non-ferrous metal, resulting in erosion. Furthermore, Sialon ceramics are not suitable for molten metal members because they do not react with the molten metal, and satisfactory results have been obtained depending on the application. However, there is a drawback that the material does not essentially exceed the range of the ceramic material and is more fragile than the metal material, so that it is easily broken and difficult to handle.

【0006】上記問題点を解決するため、前記特開昭4
9−54229号公報以外にも、鉄系材料の表面に被覆
層を形成した種々の耐熱、耐食、耐溶損部材が提供され
ている。また、前記技術論文においても、鉄鋼材料の表
面にCrの窒化物或いは炭窒化物(Cr−(C,N))
の被覆層を形成することにより、耐摩耗性、耐焼付性、
耐酸化性の向上することが明らかにされている。本発明
においても、同様に上記問題点を解決するため、鉄鋼材
料を母材として用い、耐用性がさらに向上し、安全に使
用できる非鉄金属溶湯用部材の提供を目的とする。
In order to solve the above problem, Japanese Patent Application Laid-Open No.
In addition to JP-A-9-54229, various heat-, corrosion-, and erosion-resistant members having a coating layer formed on the surface of an iron-based material have been provided. Also, in the above technical paper, the nitride or carbonitride (Cr- (C, N)) of Cr is formed on the surface of the steel material.
By forming a coating layer of abrasion resistance, seizure resistance,
It has been shown that oxidation resistance is improved. Also in the present invention, in order to solve the above-mentioned problems, an object of the present invention is to provide a member for a non-ferrous metal melt that can be used safely by using a steel material as a base material, further improving durability.

【0007】[0007]

【課題を解決するための手段】本発明は、図1の本発明
溶湯用部材表層部断面の拡大説明図のように、化学成分
が重量比でC 0.95〜1.5%、Si 0.1〜
0.4%、Mn 0.2〜0.5%、Cr 3.0〜
5.0%、Mo 4.5〜9.5%、V 1.5〜4.
5%、W 1.5〜7.0%、残部Fe及び不可避的不
純物元素を含む鉄鋼材料2の表層部に、あらかじめ窒化
処理により窒素富化層を形成した後、Crを含む溶融塩
に浸漬することにより、窒素富化層をCrの窒化物或い
は炭窒化物を含む層に変化させて被覆層1を形成してな
る非鉄金属溶湯用部材である。
According to the present invention, as shown in the enlarged explanatory view of the section of the surface layer portion of the molten metal member of the present invention shown in FIG. 1, the chemical components are C 0.95 to 1.5% by weight and Si 0 .1 to
0.4%, Mn 0.2-0.5%, Cr 3.0-
5.0%, Mo 4.5-9.5%, V 1.5-4.0.
After forming a nitrogen-enriched layer by nitriding in advance on the surface layer of the steel material 2 containing 5%, W 1.5 to 7.0%, balance Fe and inevitable impurity elements, immersion in a molten salt containing Cr This is a non-ferrous metal melt member in which the coating layer 1 is formed by changing the nitrogen-enriched layer to a layer containing Cr nitride or carbonitride.

【0008】本発明の研究過程において、被覆層の密着
性及び耐溶損性を確保するには、本発明が限定する化学
成分の鉄鋼材料母材の表層部を、あらかじめ窒化処理し
た後、さらにCrを含む溶融塩に浸漬して、Crの窒化
物或いは炭窒化物を含む被覆層にするのが有効であるこ
とが分かった。すなわち、この被覆層は耐摩耗性、耐焼
付性、耐酸化性に優れていることが前記技術論文に開示
されているが、さらに非鉄金属溶湯による溶損に対し
て、本発明が限定する化学成分の鉄鋼材料を母材とする
場合、特に優れていることが明らかになった。
In the course of the research of the present invention, in order to secure the adhesion and the erosion resistance of the coating layer, the surface layer portion of the steel material base material having the chemical components defined by the present invention is preliminarily nitrided, and then Cr It has been found that it is effective to immerse in a molten salt containing Cr to form a coating layer containing Cr nitride or carbonitride. That is, it is disclosed in the above-mentioned technical paper that this coating layer is excellent in wear resistance, seizure resistance, and oxidation resistance. It has been found that when the steel material as the base material is used as the base material, it is particularly excellent.

【0009】一般に、金属溶湯用部材が溶損するとき
は、溶湯への浸漬又は溶湯からの取出しのとき、被覆層
は急激な加熱又は冷却により生じる熱応力負荷を受け、
微細な亀裂や剥離が発生し、この亀裂部や剥離部に溶湯
が浸入して母材を侵食し始め、最終的に大きな溶損に至
ると考えられる。本発明の非鉄金属溶湯用部材は、形成
過程に由来して、被覆層が下地の鉄鋼材料母材と金属的
に結合しているので密着性が良い。さらに、鉄鋼材料母
材の化学成分を限定することにより、被覆層自体が緻密
強固になっている。これらにより、亀裂や剥離が発生し
難いものになっており、溶湯の侵入に基づく溶損が起こ
り難く、非鉄金属溶湯と接触しても安全に使用できる溶
湯用部材となる。
Generally, when the molten metal member is melted, the coating layer is subjected to a thermal stress load generated by rapid heating or cooling when immersed in or taken out of the molten metal.
It is considered that fine cracks and peeling occur, and the molten metal enters the cracks and peeling parts, starts to erode the base material, and eventually leads to large melting damage. The non-ferrous metal melt member of the present invention has good adhesion since the coating layer is metallically bonded to the underlying steel material base material due to the forming process. Furthermore, by limiting the chemical composition of the steel material base material, the coating layer itself is dense and strong. As a result, cracks and peeling are unlikely to occur, and melting damage due to invasion of the molten metal is unlikely to occur, so that the molten metal member can be used safely even when it comes into contact with the non-ferrous metal molten metal.

【0010】下地母材となる鉄鋼材料の表層部に、Cr
の窒化物或いは炭窒化物を含む被覆層を形成するには、
あらかじめ窒化処理により表層部に窒素富化層を形成し
ておく。その後、窒素富化層を有する母材をCrを含む
溶融塩に浸漬することにより、Crの窒化物或いは炭窒
化物を含む被覆層に変化させる。下地母材となる鉄鋼材
料には高速度鋼系の材質を用い、その化学成分限定理由
は次のとおりである。
[0010] The surface layer of a steel material as a base material is made of Cr.
To form a coating layer containing nitride or carbonitride of
A nitrogen-enriched layer is previously formed on the surface layer by nitriding. Thereafter, the base material having the nitrogen-enriched layer is immersed in a molten salt containing Cr to change into a coating layer containing a nitride or carbonitride of Cr. A high-speed steel-based material is used for the steel material used as the base material, and the reasons for limiting the chemical components are as follows.

【0011】Cは、鉄鋼材料母材の基地を強化するとと
もに、Cr、Mo、V、W等の合金元素と結合して高硬
度の各種炭化物を晶出又は析出させて、高温使用状態に
おいても強靱硬質の母材を維持するために必要である。
また、生成した炭化物は窒素とも結合して炭窒化物とな
り、表層部に必要な窒素の貯留源となる。さらに、本発
明の最大の特徴として、Cは緻密強靱な被覆層を形成す
るのに有効である。
C strengthens the matrix of the steel material base material and combines with alloying elements such as Cr, Mo, V, and W to crystallize or precipitate various carbides of high hardness, so that it can be used even at high temperatures. Necessary to maintain a tough and hard matrix.
Further, the generated carbides also combine with nitrogen to form carbonitrides, which serve as a nitrogen storage source necessary for the surface layer. Further, as the most important feature of the present invention, C is effective for forming a dense and tough covering layer.

【0012】これらにより、Cの含有量は重量比で0.
95〜1.5%とする。0.95%未満のときは、炭化
物が不足するとともに、母材が軟化する。さらに、被覆
層にミクロ的な空隙が発生して緻密でなくなるので、空
隙部に金属溶湯が侵入して被覆層が破壊され易くなり、
耐溶損性が低下する。1.5%を超えると、効果が飽和
するとともに、炭化物が過剰となり、母材の靱性が低下
するので、好ましくない。
Thus, the content of C is 0.1% by weight.
95% to 1.5%. When the content is less than 0.95%, carbide is insufficient and the base material is softened. Furthermore, since microscopic voids are generated in the coating layer and the coating layer is not dense, the molten metal invades the voids and the coating layer is easily broken,
The erosion resistance decreases. If the content exceeds 1.5%, the effect is saturated, and the amount of carbides becomes excessive, so that the toughness of the base material is lowered.

【0013】Si及びMnは、夫々脱酸効果がある。さ
らに、Mnは鉄鋼材料に含まれるSをMnSにして固定
する等の効果がある。これらにより、高速度鋼系材料に
通常含有させる重量比として、夫々Si 0.1〜0.
4%、Mn 0.2〜0.5%とする。
Si and Mn each have a deoxidizing effect. Further, Mn has an effect of fixing S contained in the steel material to MnS and fixing the same. As a result, the weight ratio of Si normally contained in the high-speed steel-based material is set to 0.1 to 0.1% Si, respectively.
4% and Mn 0.2 to 0.5%.

【0014】Crは、鉄鋼材料母材の基地を強化すると
ともに、Cと結合してCr炭化物を作り、耐摩耗性、耐
食性、耐熱性を向上させる。また、窒化処理により窒素
と結合しやすく、Crの窒化物或いは炭窒化物を含む被
覆層を形成するための窒素の貯留源となる。Crの含有
量は重量比で3.0〜5.0%が好ましい。3.0%未
満のときは基地の強化が十分でなく、5.0%を超える
と過多となって飽和するとともに、耐摩耗性が低下する
傾向にある。
[0014] Cr strengthens the matrix of the steel material base material and combines with C to form a Cr carbide, thereby improving wear resistance, corrosion resistance and heat resistance. In addition, it is easily combined with nitrogen by the nitriding treatment, and serves as a nitrogen storage source for forming a coating layer containing nitride or carbonitride of Cr. The content of Cr is preferably 3.0 to 5.0% by weight. If it is less than 3.0%, the reinforcement of the matrix is not sufficient, and if it exceeds 5.0%, it becomes excessive and saturated, and the abrasion resistance tends to decrease.

【0015】Moは、鉄鋼材料母材の基地を強化すると
ともに、CrやWと同様にCと結合して炭化物を作り、
耐摩耗性を向上させる。また、窒化処理により窒素と結
合しやすく、Crと同様に窒素の貯留源となる。さら
に、被覆層を微細緻密化して、前記した被覆層の亀裂や
剥離が発生し難く、鉄鋼材料母材の溶損を起こし難くす
る。Moの含有量は重量比で4.5〜9.5%とする。
4.5%未満のときは上記作用効果が得られず、9.5
%を超えるとその効果が飽和する。
Mo strengthens the matrix of the steel material base material and combines with C like Cr and W to form carbides.
Improves wear resistance. Further, it is easily bonded to nitrogen by the nitriding treatment, and becomes a storage source of nitrogen like Cr. Further, the coating layer is finely densified, so that the above-mentioned coating layer is hardly cracked or peeled, and the base material of the steel material is hardly melted. The content of Mo is 4.5 to 9.5% by weight.
When it is less than 4.5%, the above-mentioned effects cannot be obtained, and 9.5 is obtained.
%, The effect saturates.

【0016】Vは、C及びNと強く結合して、炭化物及
び窒化物を作る。これら化合物により、鉄鋼材料母材の
基地を強化するとともに、耐摩耗性を著しく向上させ
る。また、Cr、Moと同様に窒素の貯留源となる。さ
らに、被覆層を微細緻密化して、被覆層の亀裂や剥離が
発生し難く、鉄鋼材料母材の溶損を起こし難くする。V
の含有量は重量比で1.5〜4.5%とする。1.5%
末満のときは上記作用効果が得られず、4.5%を超え
るとその効果が飽和するとともに、母材の基地中に固溶
するC量を減少させて、母材を軟化させる。
V forms strong bonds with C and N to form carbides and nitrides. These compounds strengthen the matrix of the steel material base material and significantly improve the wear resistance. In addition, it becomes a storage source of nitrogen like Cr and Mo. Further, the coating layer is finely densified, so that cracking and peeling of the coating layer are less likely to occur, and that the base material of the steel material is hardly melted. V
Is 1.5 to 4.5% by weight. 1.5%
When the content is not enough, the above-mentioned effects cannot be obtained. When the content exceeds 4.5%, the effect is saturated, and the amount of C dissolved in the matrix of the base material is reduced to soften the base material.

【0017】Wは、Moと同様に、母材基地の強化、炭
化物を作り耐摩耗性を向上、窒素貯留源となる等の作用
効果がある。Wの含有量は重量比で1.5〜7.0%と
する。1.5%末満のときは十分な効果が得られず、
7.0%を超えるとその効果が飽和する。
W, like Mo, has the effect of strengthening the base material matrix, forming carbides, improving wear resistance, and serving as a nitrogen storage source. The W content is 1.5 to 7.0% by weight. When it is less than 1.5%, sufficient effect cannot be obtained,
If it exceeds 7.0%, the effect is saturated.

【0018】[0018]

【発明の実施の形態】上記本発明の鉄鋼材料の表層部
に、窒化処理により窒素富化層を形成するには、市販の
溶融塩浴法、例えば商品名タフトライト(販売元日本パ
ーカライジング(株))、一般的なガス窒化法等により
行なう。窒素富化層の深さは100〜200μmにする
のが好ましい。また、窒素富化層をCrを含む溶融塩に
浸漬して、Crの窒化物或いは炭窒化物を含む被覆層に
変化させるには、市販の溶融塩浴法、例えば商品名 D
CNプロセス(実施元 同和鉱業(株))により、金属
Cr粉末と低温溶融塩とからなる浴中に浸漬することに
より、鉄鋼材料の窒素富化層にCrを侵入拡散させて行
なう。得られる被覆層の厚みは、用途にもよるが、5〜
15μm程度とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to form a nitrogen-enriched layer on the surface layer of the steel material of the present invention by nitriding, a commercially available molten salt bath method, for example, a trade name Tuftlite (trade name: Nihon Parkerizing Co., Ltd.) )), By a general gas nitriding method or the like. The depth of the nitrogen-enriched layer is preferably set to 100 to 200 μm. Further, in order to immerse the nitrogen-enriched layer in a molten salt containing Cr and change it into a coating layer containing a nitride or carbonitride of Cr, a commercially available molten salt bath method, for example, a trade name D
By immersing in a bath composed of metallic Cr powder and a low-temperature molten salt by the CN process (executor: Dowa Mining Co., Ltd.), Cr is penetrated and diffused into the nitrogen-enriched layer of the steel material. The thickness of the obtained coating layer depends on the application, but is 5 to 5.
It is about 15 μm.

【0019】[0019]

【実施例】実施例1 表1の鉄鋼材料試験片について、アルミニウム合金溶湯
に対する耐溶損性を調べた。試験片は直径10mm、長
さ100mmの丸棒形状とした。被覆層の形成は、ガス
窒化法により窒素富化層の深さを概略150μmにした
後、前記のDCNプロセス(実施元 同和鉱業(株))
により、窒素富化層をCrの窒化物或いは炭窒化物を含
む被覆層に変化させた。各試験片の被覆層の厚みは7〜
10μmであった。
EXAMPLES Example 1 The test pieces of the steel materials shown in Table 1 were examined for the erosion resistance to the molten aluminum alloy. The test piece was a round bar having a diameter of 10 mm and a length of 100 mm. The formation of the coating layer is performed by setting the depth of the nitrogen-enriched layer to approximately 150 μm by a gas nitriding method, and then performing the DCN process (implemented by Dowa Mining Co., Ltd.)
As a result, the nitrogen-enriched layer was changed to a coating layer containing nitride or carbonitride of Cr. The thickness of the coating layer of each test piece is 7 to
It was 10 μm.

【0020】[0020]

【表1】 [Table 1]

【0021】被覆層を形成した実施例試験片No.1の
表層部断面のEPMAによる線分析結果を図2に示す。
被覆層の部分では、C、Cr、Nが鉄鋼材料母材の部分
より増加しており、Crの窒化物或いは炭窒化物を含む
被覆層が形成されていることが憶測される。他の元素F
e、Mo、V、Wは、母材から被覆層へ移行するにした
がって、漸次減少傾向になっている。表層部断面のSE
M像を観察した結果(図示せず)は、実施例No.1及
びNo.2の被覆層は緻密でミクロ的な空隙が殆ど認め
られないのに対し、比較例No.3及びNo.4の被覆
層には大きさ0.2〜0.8μm程度のミクロ的な空隙
が散在していた。
Example Test Piece No. No. FIG. 2 shows the result of line analysis of the cross section of the surface layer No. 1 by EPMA.
In the portion of the coating layer, C, Cr, and N are increased from the portion of the steel material base material, and it is speculated that a coating layer containing nitride or carbonitride of Cr is formed. Other elements F
e, Mo, V, and W have a gradually decreasing tendency as the base material shifts to the coating layer. SE of surface section
The result of observation of the M image (not shown) is shown in Example No. 1 and No. 1 The coating layer of Comparative Example No. 2 was dense and hardly had microscopic voids. 3 and No. 3 In the coating layer No. 4, microscopic voids having a size of about 0.2 to 0.8 μm were scattered.

【0022】表1に示す実施例及び比較例試験片の、そ
れぞれ被覆層を形成しない鉄鋼材料母材状態の場合と被
覆層を形成した場合について、図3の試験装置を用い、
アルミニウム合金溶湯に対する耐溶損性試験をした。各
試験片は、取付け例を示す1個の試験片3のように、先
端から50mmまでの部分をアルミニウム合金溶湯4へ
浸漬するようにして、円板形の試験片保持板5の周囲に
取り付けた。720℃に保持したアルミニウム合金(A
DC12)溶湯4に浸漬して、各試験片が溶損開始する
までの時間を調べた。溶損開始の定義は溶損により試験
片の直径が1mm以上減少した時点とした。各試験片を
浸漬して溶損開始するまでの時間を表1に併記して示
す。
The test apparatus of FIG. 3 was used for the test pieces of Examples and Comparative Examples shown in Table 1 in the case of a steel material base material without a coating layer and the case of forming a coating layer, respectively.
The erosion resistance test for the molten aluminum alloy was performed. Each test piece was attached to the periphery of a disk-shaped test piece holding plate 5 by immersing a portion up to 50 mm from the tip into an aluminum alloy melt 4 like one test piece 3 showing an example of attachment. Was. Aluminum alloy held at 720 ° C (A
DC12) The test piece was immersed in the molten metal 4 and the time required for each test piece to start melting was examined. The start of erosion was defined as the point at which the diameter of the test piece decreased by 1 mm or more due to erosion. Table 1 also shows the time from the immersion of each test piece to the start of erosion.

【0023】この結果から、実施例試験片は、被覆層を
形成しない母材状態の場合でも、比較例に比べて溶損が
起こり難い材質であるが、Crの窒化物或いは炭窒化物
を含む被覆層を形成することにより、アルミニウム合金
溶湯に対する耐溶損性が飛躍的に優れていることが明ら
かになった。
From these results, it can be seen that the test piece of the example is a material that is less likely to be damaged by erosion than the comparative example even in the base material state where no coating layer is formed, but contains Cr nitride or carbonitride. It became clear that the formation of the coating layer dramatically improved the erosion resistance to the molten aluminum alloy.

【0024】実施例2 表1の実施例No.2試験片と同材質の材料を母材にし
て、同じ被覆処理を行ない、アルミニウムダイカスト鋳
型の鋳ぬきピンを試作した。鋳ぬきピンの概略は図4の
形状をしており、取付け基部6の外径25mm、鋳ぬき
先端部7の外径15mm、長さa 260mmである。
内部は、冷媒を供給するため、中空(図示せず)になっ
ている。比較例は、従来から用いられている工具鋼であ
って、表1の実施例No.4試験片(SKD61)と同
じ材料を用い、表層部に窒化処理のみ施した材質であ
る。
Example 2 Example No. 1 in Table 1 Using the same material as the two test pieces as a base material, the same coating treatment was performed, and an aluminum die-casting mold casting pin was prototyped. The outline of the cast-in pin has the shape shown in FIG. 4, and is 25 mm in outer diameter of the mounting base 6, 15 mm in outer diameter of the cast-in tip 7, and 260 mm in length a.
The inside is hollow (not shown) for supplying a coolant. The comparative example is a tool steel which has been conventionally used. 4 The same material as the test piece (SKD61) was used, and only the nitriding treatment was applied to the surface layer.

【0025】試験使用の結果、本発明実施例の鋳ぬきピ
ンはダイカスト鋳造を25,000ショットしてみた
が、溶損による表面の微細な損傷等が全く認められず、
さらに継続使用が可能のようであった。これは、前記の
とおり、被覆層が緻密健全であることによると考えられ
る。一方、比較例の鋳ぬきピンは5,000ショットの
使用で、溶損による微細な損傷が表面に認められた。
As a result of test use, the cast-in pin of the present invention was subjected to 25,000 shots of die casting, but no fine damage to the surface due to erosion was observed.
It seemed that further use was possible. This is considered to be because the coating layer is dense and sound as described above. On the other hand, the cast-in pin of the comparative example used 5,000 shots, and fine damage due to erosion was observed on the surface.

【0026】以上の実施例はアルミニウム合金溶湯に対
する結果であるが、実施例に拘ることなく、亜鉛合金溶
湯、マグネシュウム合金溶湯、湯口ブッシュ、金型等の
非鉄金属溶湯関連の他の用途に対しても、同様に効果を
発揮すると考えられる。
Although the above embodiments are results for molten aluminum alloys, the invention is not limited to these embodiments and is applicable to other uses related to non-ferrous metal melts such as zinc alloy melts, magnesium alloy melts, sprue bushes, and molds. Is also expected to exhibit the same effect.

【発明の効果】本発明の非鉄金属溶湯用部材は、鉄鋼材
料母材のC及び合金元素含有量を限定することにより、
Crの窒化物或いは炭窒化物を含む被覆層にミクロ的な
空隙が殆どなく、緻密に形成されているので、非鉄金属
溶湯用部材に用いて健全であり、優れた耐溶損性を有し
ている。また、耐溶損性が良いので、母材成分の溶湯中
へ溶け込みがなく、非鉄金属鋳造製品の品質が向上す
る。これらにより、非鉄金属製品製造用の溶解又は鋳造
設備の保守作業能率の向上及び経費の節減、並びに非鉄
金属製品の品質向上に大きく寄与する。
The non-ferrous metal melt member of the present invention can be obtained by limiting the contents of C and alloying elements in a steel material base material.
Since the coating layer containing the nitride or carbonitride of Cr has almost no microscopic voids and is formed densely, it is sound for non-ferrous metal melt members and has excellent erosion resistance. I have. Further, since the erosion resistance is good, the base metal component does not melt into the molten metal, and the quality of the non-ferrous metal casting product is improved. These greatly contribute to improving the efficiency of maintenance work of the melting or casting equipment for manufacturing non-ferrous metal products, reducing costs, and improving the quality of non-ferrous metal products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明溶湯用部材の表層部断面の拡大説明図で
ある。
FIG. 1 is an enlarged explanatory view of a cross section of a surface portion of a member for molten metal of the present invention.

【図2】本発明実施例試験片No.1の表層部断面のE
PMAによる線分析結果を示す図である。
FIG. 2 shows a test piece of Example of the present invention. E of surface section of 1
It is a figure which shows the line analysis result by PMA.

【図3】本発明の試験に用いた溶損試験装置の略図であ
る。
FIG. 3 is a schematic view of a erosion test apparatus used for the test of the present invention.

【図4】本発明実施例部材の鋳ぬきピンの略図である。FIG. 4 is a schematic view of a cast-in pin of an embodiment member of the present invention.

【符号の説明】[Explanation of symbols]

1;被覆層 2;鉄鋼材料表層部
3;試験片 4;非鉄金属溶湯 5;試験片保持板
6;取付け基部 7;鋳ぬき先端部 矢印a;長さの範囲
1: coating layer 2: steel material surface layer
3: Test piece 4: Non-ferrous metal melt 5: Test piece holding plate
6; mounting base 7; cast-in tip arrow a; range of length

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 化学成分が重量比でC 0.95〜1.
5%、Si 0.1〜0.4%、Mn 0.2〜0.5
%、Cr 3.0〜5.0%、Mo 4.5〜9.5
%、V 1.5〜4.5%、W 1.5〜7.0%、残
部Fe及び不可避的不純物元素を含む鉄鋼材料の表層部
に、あらかじめ窒化処理により窒素富化層を形成した
後、Crを含む溶融塩に浸漬することにより、窒素富化
層をCrの窒化物或いは炭窒化物を含む層に変化させて
被覆層を形成してなることを特徴とする非鉄金属溶湯用
部材。
1. The method according to claim 1, wherein the chemical components are C 0.95-1.
5%, Si 0.1-0.4%, Mn 0.2-0.5
%, Cr 3.0 to 5.0%, Mo 4.5 to 9.5
%, V 1.5-4.5%, W 1.5-7.0%, after forming a nitrogen-enriched layer by nitriding in advance on the surface layer portion of a steel material containing Fe and unavoidable impurity elements. A member for molten non-ferrous metal characterized by forming a coating layer by immersing in a molten salt containing Cr to change the nitrogen-enriched layer to a layer containing Cr nitride or carbonitride.
JP2000280961A 2000-08-11 2000-08-11 Member for molten nonferrous metal Pending JP2002060895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000280961A JP2002060895A (en) 2000-08-11 2000-08-11 Member for molten nonferrous metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000280961A JP2002060895A (en) 2000-08-11 2000-08-11 Member for molten nonferrous metal

Publications (1)

Publication Number Publication Date
JP2002060895A true JP2002060895A (en) 2002-02-28

Family

ID=18765699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000280961A Pending JP2002060895A (en) 2000-08-11 2000-08-11 Member for molten nonferrous metal

Country Status (1)

Country Link
JP (1) JP2002060895A (en)

Similar Documents

Publication Publication Date Title
EP1626104B1 (en) Member with coating layers used for casting
US20090314448A1 (en) Method for production of metal material
JP2007197784A (en) Alloy steel
JP2002361394A (en) Mold for molding semisolidified iron-based alloy
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
JP2002194477A (en) Member for molten nonferrous metal
JP5090257B2 (en) Tool steel suitable for aluminum machining dies and aluminum machining dies
JP3390776B2 (en) Surface modification method for steel using aluminum diffusion dilution
JP2010005627A (en) Die for die casting, target material for film, and film formation method
JP3029642B2 (en) Casting molds or molten metal fittings with excellent erosion resistance to molten metal
JP2012250273A (en) Method for manufacturing aluminum die casting by cast iron die
JP2004019001A (en) Tool steel for hot-working superior in erosion resistance, and die member
JP2003154437A (en) Metallic mold for casting and its producing method
JP2002060895A (en) Member for molten nonferrous metal
JP4883400B2 (en) Casting parts
JP2005028398A (en) Material with erosion-resistance to aluminum and its producing method
JP4796994B2 (en) Method for producing molten aluminum erodible cast iron and molten aluminum erodible cast iron
JP2004283899A (en) Die-casting sleeve
JP3252969B2 (en) Hot tool steel
JP2004291079A (en) Erosion resistant member for non-ferrous molten metal
JPH08229657A (en) Member for casting and its production
JP3978116B2 (en) Die casting machine member and manufacturing method thereof
JP2002035917A (en) Mold for die-casting or injection molding and manufacturing method of the same
JP3245338B2 (en) Hot chamber die casting machine for low aluminum zinc base alloy
JP2010248571A (en) Method for manufacturing cast iron having erosion resistance to molten aluminum, and cast iron having erosion resistance to molten aluminum