JP2002056554A - Galvano micro mirror and optical disk device using it - Google Patents

Galvano micro mirror and optical disk device using it

Info

Publication number
JP2002056554A
JP2002056554A JP2000239847A JP2000239847A JP2002056554A JP 2002056554 A JP2002056554 A JP 2002056554A JP 2000239847 A JP2000239847 A JP 2000239847A JP 2000239847 A JP2000239847 A JP 2000239847A JP 2002056554 A JP2002056554 A JP 2002056554A
Authority
JP
Japan
Prior art keywords
mirror
electrode
galvano
substrate
optical disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000239847A
Other languages
Japanese (ja)
Other versions
JP4193340B2 (en
Inventor
Tomoshi Ueda
知史 上田
Ippei Sawaki
一平 佐脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000239847A priority Critical patent/JP4193340B2/en
Publication of JP2002056554A publication Critical patent/JP2002056554A/en
Application granted granted Critical
Publication of JP4193340B2 publication Critical patent/JP4193340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical disk device capable of seeking at high speed by using an electrostatically driven galvano micro mirror the mirror substrate of which is reduced in weight to decrease the moment of inertia with respect to the galvano micro mirror and the optical disk device using it. SOLUTION: In the galvano micro mirror provided with the mirror substrate 1 having a mirror forming part 5 in which a mirror surface 5a reflecting a light beam is formed, a shaft part 4a which supports the mirror forming part 5, and an electrode forming part 6 which forms an electrode for turning the mirror forming part 5 around the shaft part by electrostatic force, the thickness of the electrode forming part 6 is formed less than the thickness of the mirror forming part 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガルバノマイクロ
ミラーとこれを用いた光ディスク装置に係り、とくに静
電駆動方式のガルバノマイクロミラーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a galvano micromirror and an optical disk apparatus using the same, and more particularly to a galvano micromirror of an electrostatic drive system.

【0002】[0002]

【従来の技術】光ディスク装置、例えば光磁気ディスク
装置は、光ビームにより情報を記録再生するトラック位
置にシーク移動する光学ヘッドに、光ビームを光ディス
ク面に合焦する対物レンズと光ビームの反射(照射)位
置を制御するガルバノマイクロミラーとを搭載し、半導
体レーザ光源や光検出器などは光学ヘッドに搭載せずベ
ースなどに固定している。
2. Description of the Related Art In an optical disk device, for example, a magneto-optical disk device, an optical head which seeks to a track position where information is recorded and reproduced by a light beam is provided with an objective lens for focusing the light beam on the optical disk surface and reflection of the light beam. A galvano micromirror that controls the position of irradiation is mounted, and the semiconductor laser light source and photodetector are not mounted on the optical head but fixed to a base or the like.

【0003】例えば、図7の従来技術による光ディスク
装置の構成図に示すように、半導体レーザ111 や光検出
器112 などの固定光学系113 は、図示しないベースなど
に固定される。光ビームLは、同じく固定配置された反
射ミラー117 を介して光学ヘッド115 内に搭載された対
物レンズ116 に出射される。
For example, as shown in the configuration diagram of an optical disk device according to the prior art in FIG. 7, a fixed optical system 113 such as a semiconductor laser 111 and a photodetector 112 is fixed to a base (not shown). The light beam L is emitted to an objective lens 116 mounted in an optical head 115 via a reflection mirror 117 which is also fixedly arranged.

【0004】対物レンズ116 は、光ディスク110 上のト
ラックに光ビームLを合焦し、その反射光を再び逆の経
路で光検出器112 に導く。光学ヘッド115 は、図示しな
い駆動手段によってトラッキング方向Xおよびフォーカ
シング方向Yにそれぞれ駆動される。
[0004] The objective lens 116 focuses the light beam L on a track on the optical disk 110 and guides the reflected light to the photodetector 112 again in the reverse path. The optical head 115 is driven in a tracking direction X and a focusing direction Y by driving means (not shown).

【0005】レーザ光の対物レンズ116 への入射角度の
微小な変化は、ガルバノミラー114の揺動角度の制御に
よって補正される。この角度制御方式に静電駆動制御方
式がある。
[0005] A minute change in the incident angle of the laser light on the objective lens 116 is corrected by controlling the swing angle of the galvanomirror 114. There is an electrostatic drive control method as this angle control method.

【0006】例えば、特願平11−183253号公報
に開示されているガルバノマイクロミラーは、図8の分
解斜視図に示すように、電極基板20とミラー基板21
とを備え、ミラー基板21は枠状の基部22とミラー部
23とで構成され、基部22とミラー部23はミラー部
23を所定の角度範囲で捩れ可能に支持する一対のトー
ションバー部24で連結されている。
For example, a galvano micromirror disclosed in Japanese Patent Application No. 11-183253 has an electrode substrate 20 and a mirror substrate 21 as shown in an exploded perspective view of FIG.
The mirror substrate 21 includes a frame-shaped base portion 22 and a mirror portion 23. The base portion 22 and the mirror portion 23 are formed by a pair of torsion bar portions 24 that support the mirror portion 23 to be twisted within a predetermined angle range. Are linked.

【0007】ミラー部23の一方の主面(表面)には、
ミラー面25が形成されており、ミラー部23の他方の
裏面には、一対の電極26a,26bからなる第1電極
26が形成されている。ミラー基板21は、トーション
バー部24の軸芯を中心とする線対称に構成されてい
る。
On one main surface (front surface) of the mirror portion 23,
A mirror surface 25 is formed, and a first electrode 26 including a pair of electrodes 26a and 26b is formed on the other back surface of the mirror portion 23. The mirror substrate 21 is configured to be line-symmetric about the axis of the torsion bar portion 24.

【0008】電極基板20のミラー部23との対向面に
は、トーションバー部24の軸芯を中心とする線対称の
形状の貫通孔27と、一対の電極26a,26bに対向
して一対の電極28a,28bからなる第2電極28と
が形成されている。
On the surface of the electrode substrate 20 facing the mirror portion 23, a through-hole 27 having a line-symmetrical shape with respect to the axis of the torsion bar portion 24, and a pair of electrodes 26a and 26b opposed to each other. A second electrode 28 composed of electrodes 28a and 28b is formed.

【0009】第1電極26の電極26aと電極26bは
共通電位とし、第2電極28の電極28aと電極28b
とは、電気的に互いに絶縁され、制御装置に接続されて
いる。
The electrode 26a and the electrode 26b of the first electrode 26 have a common potential, and the electrode 28a and the electrode 28b of the second electrode 28
Are electrically insulated from each other and connected to the control device.

【0010】第1電極26の電位を例えば0Vとし、第
2電極28の電極28a,28bに正または負の電圧を
印加すると、電極間に静電引力が作用して、トーション
バー部24が捻じれ、ミラー部23が回動(揺動)す
る。
When the potential of the first electrode 26 is set to, for example, 0 V and a positive or negative voltage is applied to the electrodes 28a and 28b of the second electrode 28, an electrostatic attractive force acts between the electrodes, and the torsion bar portion 24 is twisted. Then, the mirror part 23 rotates (swings).

【0011】このときの揺動角度は印加電圧を変えるこ
とにより制御可能で、光ビームの反射方向を変えて光ビ
ームの照射位置を制御する。
The swing angle at this time can be controlled by changing the applied voltage, and the irradiation position of the light beam is controlled by changing the reflection direction of the light beam.

【0012】[0012]

【発明が解決しようとする課題】光ディスク装置に用い
るガルバノマイクロミラーは、光学的にはミラー面の平
面度が高いことと同時に、高速で光ディスク上の情報を
記録再生するトラック位置に光ビームを正確に照射でき
るように、ミラー面を高速に角度制御する必要がある。
The galvano micromirror used in the optical disk device has a high flatness on the mirror surface, and at the same time, precisely positions the light beam at the track position for recording and reproducing information on the optical disk at high speed. It is necessary to control the angle of the mirror surface at high speed so that the light can be radiated.

【0013】そのため、バルク基板を加工して厚さが数
100μmのガルバノマイクロミラーを製作すれば、ミ
ラー面の平面度は問題はないが、ミラー部の質量が大き
くなってミラー部の質量が大きくなるため、慣性モーメ
ントが大きくなって高速シークできなくなる。そのた
め、ミラー部の質量を軽減する必要がある。
Therefore, if a galvano micromirror having a thickness of several 100 μm is manufactured by processing a bulk substrate, there is no problem with the flatness of the mirror surface, but the mass of the mirror part increases and the mass of the mirror part increases. Therefore, the moment of inertia becomes large and high-speed seek cannot be performed. Therefore, it is necessary to reduce the mass of the mirror unit.

【0014】そのため、例えば特開平6−214181
号公報の「光スキャナ用ミラー」は、ミラーの軽量化と
高速応答性を改善することを開示している。開示された
光スキャナ用ミラーの駆動方式は静電駆動方式ではない
が、ミラーの光反射面とは反対側の裏面に複数の凹部を
形成することにより、ミラーの厚さを薄くすることなく
質量の軽量化を図っている。しかし、この凹部形成によ
る軽量化にもミラー面の平面度を高い精度に維持する関
係から限度がある。
For this reason, for example, Japanese Patent Application Laid-Open No. 6-214181.
Japanese Patent Application Laid-Open Publication No. H10-157, “mirror for optical scanner” discloses that the weight of the mirror is reduced and the high-speed response is improved. The disclosed driving method of the mirror for the optical scanner is not an electrostatic driving method, but by forming a plurality of recesses on the back surface opposite to the light reflecting surface of the mirror, the mass can be reduced without reducing the thickness of the mirror. The aim is to reduce the weight. However, there is a limit to the weight reduction due to the formation of the concave portion because the flatness of the mirror surface is maintained with high accuracy.

【0015】また一方では、光ディスクの記録密度を高
くするため、短波長、例えば400nmの青色光ビーム
を光源を用いた場合には、ミラー形成部の表面に薄くて
も反射率の高いアルミニウムや金のような金属膜を用い
てミラー面を形成しても、ミラー面を反射する際に位相
が回転し、誤った情報が記録再生されるという問題があ
る。
On the other hand, when a blue light beam having a short wavelength, for example, 400 nm is used as a light source in order to increase the recording density of the optical disk, aluminum or gold having a high reflectance even if thin on the surface of the mirror forming portion. Even if the mirror surface is formed using a metal film as described above, there is a problem that the phase is rotated when the mirror surface is reflected, and erroneous information is recorded and reproduced.

【0016】これを避けるため、ミラー形成部の表面
に、例えば、SiO2 とTa2 5 の誘電体層を積層し
てミラー面を形成する必要があるが、誘電体層の残留応
力等のためにミラー面が反ってしまう。この反りを相殺
するための誘電体層をミラー形成部の裏面にも積層する
と、前記特開平6−214181号公報に開示された複
数の凹部形成による軽量化ができないという問題が生じ
ている。
In order to avoid this, it is necessary to form a mirror surface by laminating a dielectric layer of, for example, SiO 2 and Ta 2 O 5 on the surface of the mirror forming portion. Therefore, the mirror surface warps. If a dielectric layer for canceling this warp is also laminated on the back surface of the mirror forming portion, there is a problem that the weight cannot be reduced by forming a plurality of concave portions disclosed in the above-mentioned JP-A-6-214181.

【0017】上記問題点に鑑み、本発明は静電駆動方式
のガルバノマイクロミラーのミラー基板の質量を軽量化
して慣性モーメントを小さくし、このガルバノマイクロ
ミラーを用いて高速シークが可能な光ディスク装置を提
供することを目的とする。
In view of the above problems, the present invention provides an optical disk apparatus capable of performing high-speed seek using the galvano micromirror by reducing the weight of the mirror substrate of the galvano micromirror of the electrostatic drive type to reduce the moment of inertia. The purpose is to provide.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1のガルバノマイクロミラーにおい
ては、光ビームを反射するミラー(ミラー面)が形成さ
れたミラー形成部と、該ミラー形成部を支持する軸部
と、前記ミラー形成部を前記軸部の回りに静電気力で回
動させるための電極が形成された電極形成部とを有する
ミラー基板を備え、前記ミラー形成部の厚さよりも前記
電極形成部の厚さを薄く形成して構成する。
According to a first aspect of the present invention, there is provided a galvano micromirror according to the present invention, comprising: a mirror forming portion having a mirror (mirror surface) for reflecting a light beam; A mirror substrate having a shaft portion supporting a mirror forming portion and an electrode forming portion formed with electrodes for rotating the mirror forming portion around the shaft portion by electrostatic force; The electrode forming portion is formed to be thinner than the thickness.

【0019】また、請求項2の光ディスク装置において
は、光ビームを光ディスク面に合焦する対物レンズと共
にシーク移動する光学ヘッド内の前記光ビームの光路
に、請求項1記載のガルバノマイクロミラーを組み込ん
で構成する。
According to a second aspect of the present invention, the galvano micromirror according to the first aspect is incorporated in an optical path of the light beam in an optical head which seeks along with an objective lens for focusing the light beam on the optical disk surface. It consists of.

【0020】このように構成することにより、ミラー形
成部に凹部などの加工を施さないため、ミラー形成部の
ミラー面(反射面)の平面度を損なうことなく、ミラー
形成部の質量を軽量化できる。
With this configuration, since the mirror forming portion is not processed such as a concave portion, the weight of the mirror forming portion can be reduced without impairing the flatness of the mirror surface (reflection surface) of the mirror forming portion. it can.

【0021】また、短波長光源に適用するため、ミラー
形成部の表裏面に誘電体層を積層する場合においてもミ
ラー面の平面度を高い精度に維持したまま、ミラー形成
部の質量を軽量化でき、この軽量化されたガルバノマイ
クロミラーを光学ヘッドに組み込むことにより、光ディ
スク装置の高速シークが可能となる。
Further, since the present invention is applied to a short wavelength light source, even when a dielectric layer is laminated on the front and back surfaces of the mirror forming portion, the weight of the mirror forming portion can be reduced while maintaining the flatness of the mirror surface with high accuracy. By incorporating the lightened galvanometer micromirror into the optical head, high-speed seek of the optical disk device becomes possible.

【0022】[0022]

【発明の実施の形態】以下、図面に示した各実施例に基
づいて本発明の要旨を詳細に説明する。片面に平面度の
高い高光反射率のミラー(ミラー面)があり、他方の面
または両面に静電駆動のための電極を形成したミラー部
の両端中央部を2本の軸部で支持した構造をもち、その
1次共振周波数がおよそ100Hz乃至数KHzで、ミ
ラー面を±0.1°程度の角度範囲で駆動制御する光デ
ィスク装置用のガルバノマイクロミラーの場合を例にと
って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The gist of the present invention will be described below in detail with reference to the embodiments shown in the drawings. A structure in which a mirror (mirror surface) having a high flatness and a high flatness is provided on one surface, and the center of both ends of a mirror portion having electrodes for electrostatic drive formed on the other surface or both surfaces is supported by two shaft portions. A description will be given of an example of a galvano micromirror for an optical disk device having a primary resonance frequency of about 100 Hz to several KHz and controlling the mirror surface in an angle range of about ± 0.1 °.

【0023】図1は本発明による第1実施例のガルバノ
マイクロミラーの側断面図、図2は図1の分解斜視図、
図3は図2の組立側面図、図4は、図1のミラー基板の
裏面形状を示す斜視図である。
FIG. 1 is a side sectional view of a galvano micromirror of a first embodiment according to the present invention, FIG. 2 is an exploded perspective view of FIG.
FIG. 3 is a side view of the assembly of FIG. 2, and FIG. 4 is a perspective view showing a back surface shape of the mirror substrate of FIG.

【0024】図1及び図2に示すように、ガルバノマイ
クロミラーは、ミラー基板1と、一対の電極基板2、即
ち第1電極基板2a、第2電極基板2bとからなり、図
2のようにミラー基板1の両面から第1電極基板2aと
第2電極基板2bで挟んで構成する。なお、図2の第2
電極基板2bは、合わせ面から見て図示してあり、円弧
矢印方向に反転して重ねられる。(ミラー基板1と第1
電極基板2aとは上側から見た斜視図であり、第2電極
基板2bは下側から見た斜視図である。)なお、図2中
の1a,2a−1,2b−1は、ミラー基板1,第1電
極基板2a,第2電極基板2bのそれぞれの外部接続用
電極パッドで、各電極パッドが表面に露出するように基
板サイズを段々に大きくし、外部の制御装置に接続する
ように配置してある。
As shown in FIGS. 1 and 2, the galvano micromirror comprises a mirror substrate 1 and a pair of electrode substrates 2, ie, a first electrode substrate 2a and a second electrode substrate 2b. The mirror substrate 1 is configured to be sandwiched between the first electrode substrate 2a and the second electrode substrate 2b from both sides. In addition, the second in FIG.
The electrode substrate 2b is shown as viewed from the mating surface, and is inverted and stacked in the direction of the arc arrow. (Mirror substrate 1 and first
The electrode substrate 2a is a perspective view seen from above, and the second electrode substrate 2b is a perspective view seen from below. In FIG. 2, reference numerals 1a, 2a-1, and 2b-1 denote external connection electrode pads of the mirror substrate 1, the first electrode substrate 2a, and the second electrode substrate 2b, respectively. The size of the substrate is gradually increased so as to be connected to an external control device.

【0025】ミラー基板1は、枠状の基部3とミラー部
4とで構成し、ミラー部4はミラー形成部5と電極形成
部6、即ち左側6a及び右側6bとで構成する。ミラー
形成部5と、電極形成部6a及び6bとは、それぞれの
厚さが異なり、その厚さの段差位置で区分される。ミラ
ー形成部5はミラー5a、即ちミラー面(反射面)を備
え、電極形成部6は後述する各電極を備える。
The mirror substrate 1 comprises a frame-shaped base 3 and a mirror section 4, and the mirror section 4 comprises a mirror forming section 5 and an electrode forming section 6, that is, a left side 6a and a right side 6b. The mirror forming portion 5 and the electrode forming portions 6a and 6b have different thicknesses, and are separated by step positions of the thicknesses. The mirror forming unit 5 includes a mirror 5a, that is, a mirror surface (reflection surface), and the electrode forming unit 6 includes electrodes described below.

【0026】基部3とミラー部4は、ミラー部4のミラ
ー面5aを±0.1°程度の角度範囲で捩れ可能に支持
する一対の軸部4a、即ちトーションバー部で一体連結
する。したがって、枠状の基部3とミラー部4との間は
2本のトーションバー部4aを除いて貫通溝4bで切開
された形状になっている。
The base portion 3 and the mirror portion 4 are integrally connected by a pair of shaft portions 4a which support the mirror surface 5a of the mirror portion 4 to be able to be twisted within an angle range of about ± 0.1 °, that is, a torsion bar portion. Therefore, the portion between the frame-shaped base 3 and the mirror portion 4 is cut by the through groove 4b except for the two torsion bar portions 4a.

【0027】ミラー部4は、ミラー形成部5の一方の主
面(表面)に高反射率のアルミニウムなどの金属膜を蒸
着したミラー面5aを備え、トーションバー部4aの軸
心を中心とする線対称の形状にして構成する。ミラー部
4の左右両側の電極形成部6は、裏面に一対の電極7
a,7bからなる第1電極7を備え、さらに表面に一対
の電極8a,8bからなる第2電極8を備える。
The mirror section 4 has a mirror surface 5a on which a metal film of high reflectivity such as aluminum is deposited on one main surface (front surface) of the mirror forming section 5, and is centered on the axis of the torsion bar section 4a. It is configured to have a line-symmetrical shape. The electrode forming portions 6 on both the left and right sides of the mirror portion 4 have a pair of electrodes 7 on the back surface.
a first electrode 7 composed of a pair of electrodes 8a and 8b on the surface.

【0028】ミラー基板1を両面から挟む第1電極基板
2a及び第2電極基板2bは、ミラー部4のミラー面5
aとのそれぞれの対向部分を貫通させて形成した、トー
ションバー部4aの軸心を中心とする線対称の形状の貫
通孔9,10を備える。第2電極基板2b側の貫通孔1
0は光ビームと反射光を通過させるためのもので、第1
電極基板2a側の貫通孔9は必ずしも必要としないが、
第1電極基板とミラー部の空間にある空気層によるミラ
ー部のダンピングの軽減とガルバノマイクロミラー全体
の軽量化には効果がある。
The first electrode substrate 2a and the second electrode substrate 2b sandwiching the mirror substrate 1 from both sides are connected to the mirror surface 5 of the mirror section 4.
a through-holes 9 and 10 formed through the respective opposing portions of the torsion bar 4a and having a line-symmetrical shape about the axis of the torsion bar portion 4a. Through hole 1 on second electrode substrate 2b side
0 is for passing the light beam and the reflected light, and the first
Although the through hole 9 on the electrode substrate 2a side is not always necessary,
This is effective in reducing the damping of the mirror unit by the air layer in the space between the first electrode substrate and the mirror unit and reducing the weight of the entire galvano micromirror.

【0029】ミラー基板1の下側に重ねた第1電極基板
2aは、一対の電極7a,7bに対向して一対の電極1
1a,11bからなる第3電極を備える。また、ミラー
基板1の上側に重ねた第2電極基板2bは、一対の電極
8a,8bに対向して一対の電極12a,12bからな
る第4電極を備える。
The first electrode substrate 2a overlaid on the lower side of the mirror substrate 1 is opposed to the pair of electrodes 7a and 7b.
A third electrode composed of 1a and 11b is provided. The second electrode substrate 2b overlaid on the mirror substrate 1 includes a fourth electrode composed of a pair of electrodes 12a and 12b opposed to the pair of electrodes 8a and 8b.

【0030】電極7aと電極8a、及び電極7bと電極
8bは、それぞれの電極領域に貫通形成した接続孔13
内に設けた導電体13a(導電性ペーストの充填または
パターン配線による)より電気的に接続し、配線パター
ン14及び端子パッド1a(図1、図2参照)を介して
共通電位とする。
The electrode 7a and the electrode 8a, and the electrode 7b and the electrode 8b are connected to connection holes 13 formed through the respective electrode regions.
Are electrically connected to each other through a conductor 13a (filled with conductive paste or pattern wiring) provided therein, and set to a common potential via the wiring pattern 14 and the terminal pad 1a (see FIGS. 1 and 2).

【0031】第3電極の電極11aと電極11b、及び
第4電極の電極12aと電極12bは電気的に絶縁す
る。第3電極の電極11aと電極11bは、配線パター
ン15により端子パッド2a−1(図2参照)を介して
図示しない制御装置に接続する。
The electrodes 11a and 11b of the third electrode and the electrodes 12a and 12b of the fourth electrode are electrically insulated. The electrode 11a and the electrode 11b of the third electrode are connected to a control device (not shown) via the terminal pad 2a-1 (see FIG. 2) by the wiring pattern 15.

【0032】第4電極の電極12aと電極12bは、外
部との電気的接続を可能にするため、接続孔16内に設
けた導電体16a(導電性ペーストの充填またはパター
ン配線による)より外面側に導出し、点線で示す配線パ
ターン17を介して端子パッド2b−1から図示しない
制御装置に接続する。
The electrode 12a and the electrode 12b of the fourth electrode are closer to the outer surface than the conductor 16a (by filling with conductive paste or pattern wiring) provided in the connection hole 16 so as to enable electrical connection with the outside. And connected to the control device (not shown) from the terminal pad 2b-1 via the wiring pattern 17 shown by the dotted line.

【0033】いま、ミラー面5aをトーションバー部4
aを軸心にして反時計方向に回動するには、電位が例え
ば0Vの電極7b,電極8aに対し、電極11b,電極
12aに正(または負)の角度制御電圧を印加し、また
ミラー面5aを時計方向に回動するには、電位が例えば
0Vの電極7a,電極8bに対し、電極11a,電極1
2bに正(または負)の角度制御電圧を交互に印加す
る。このように電圧を印加することにより、電極間に静
電引力が作用して、トーションバー部4aが捩じられて
ミラー部4を回動させることができる。
Now, the mirror surface 5a is connected to the torsion bar 4
To rotate counterclockwise around the axis a, a positive (or negative) angle control voltage is applied to the electrodes 11b and 12a with respect to the electrodes 7b and 8a having a potential of 0 V, for example. To rotate the surface 5a clockwise, the electrode 11a and the electrode 1 are moved with respect to the electrode 7a and the electrode 8b having a potential of 0 V, for example.
A positive (or negative) angle control voltage is alternately applied to 2b. By applying the voltage in this manner, an electrostatic attraction acts between the electrodes, and the torsion bar portion 4a is twisted and the mirror portion 4 can be rotated.

【0034】また、上記2種類の電圧を交互に印加する
ことによりミラー部4を揺動させることができる。この
ときの揺動角度制御は、反射光の検出出力に応じて印加
電圧を変化させて行い、光ビームの反射方向を変化させ
て光ビームの照射位置を制御することができる。
The mirror section 4 can be swung by alternately applying the two types of voltages. The swing angle control at this time is performed by changing the applied voltage according to the detection output of the reflected light, and the irradiation position of the light beam can be controlled by changing the reflection direction of the light beam.

【0035】この第1の実施例では、ミラー基板1は、
厚さ300μm、面積7mm×6.5mmで、(1,
0,0)面の異方性を有するシリコンウエハを使用し、
周知のホトリソグラフィ技術による異方性エッチングプ
ロセスを経て形成する。ミラー形成部5は、面積2mm
×3mm、厚さ300μmで、トーションバー部4aの
断面積は厚さ50μm×幅50μmでその長さは500
μmとする。
In the first embodiment, the mirror substrate 1
With a thickness of 300 μm and an area of 7 mm × 6.5 mm, (1,
Using a silicon wafer having anisotropy of (0,0) plane,
It is formed through an anisotropic etching process using a known photolithography technique. The mirror forming part 5 has an area of 2 mm
× 3 mm, thickness 300 μm, cross-sectional area of torsion bar 4 a is 50 μm in thickness × 50 μm in width and 500 μm in length
μm.

【0036】ミラー部4の左右両側の電極形成部6(片
側領域のサイズは1.5mm×4.0mm)の厚さを、
ミラー部4の厚さ300μmより200μmだけウエッ
トまたはドライエッチングにより除去して100μmと
薄くすることにより、薄くしないものに比べてミラー部
4の電極形成部6の質量を約60%程度に軽量化でき、
ガルバノマイクロミラーの加速度を高速化できる。
The thickness of the electrode forming portions 6 on both left and right sides of the mirror portion 4 (the size of one side region is 1.5 mm × 4.0 mm) is
By removing the thickness of the mirror section 4 by 200 μm from the 300 μm thickness by wet or dry etching to make it 100 μm thin, the mass of the electrode forming section 6 of the mirror section 4 can be reduced to about 60% as compared with a non-thin mirror. ,
The acceleration of the galvano micromirror can be increased.

【0037】なお、電極形成部6の厚さを100μmと
薄くしてもガルバノマイクロミラーに組み立てた後や揺
動時において、ミラー面5aに反りは発生せず、電極形
成部6に数100nm以下の反りや湾曲が生じても、光
ディスク装置用としてのガルバノマイクロミラーの動作
性能に影響することはない。
Even if the thickness of the electrode forming part 6 is reduced to 100 μm, no warpage occurs on the mirror surface 5a after assembling into a galvano-mirror or during swinging, and the electrode forming part 6 has a thickness of several hundred nm or less. Even if warping or bending occurs, it does not affect the operation performance of the galvano micromirror for the optical disk device.

【0038】つぎの図5は本発明による第2の実施例の
ミラー基板の側断面図である。ガルバノマイクロミラー
は、情報の高密度記録に有効な短波長、例えば400n
mの青色光ビームなどの光源に適用するため、ミラー形
成部5の表裏面にSiO2 とTa2 5 、またはSiO
2 とTiO2 などの誘電体層21a,21bを積層して
ミラー面を形成している。裏面に積層した誘電体層21
bは、ミラー面として積層した誘電体層21aの残留応
力を相殺するものである。ミラー基板1の他の構成要素
及びミラー基板1を挟む一対の電極基板2、即ち第1の
電極基板2aと第2の電極基板2bは第1の実施例と同
じで、それぞれの説明は省略する。
FIG. 5 is a side sectional view of a mirror substrate according to a second embodiment of the present invention. The galvano micromirror has a short wavelength effective for high-density recording of information, for example, 400 n.
m, a blue light beam such as a blue light beam, and SiO 2 and Ta 2 O 5 or SiO 2
The dielectric layer 21a, such as 2 and TiO 2, by laminating 21b to form a mirror surface. Dielectric layer 21 laminated on back surface
“b” cancels the residual stress of the dielectric layer 21a stacked as the mirror surface. The other components of the mirror substrate 1 and the pair of electrode substrates 2 sandwiching the mirror substrate 1, that is, the first electrode substrate 2a and the second electrode substrate 2b are the same as those in the first embodiment, and the description thereof is omitted. .

【0039】ミラー形成部5の表裏面に誘電体層21
a,21bを積層した場合も、電極形成部6の厚さを1
00μmと薄くすることにより、ミラー面の平面度を高
い精度に維持しながらミラー形成部の質量を第1の実施
例と同様に約60%程度に軽量化でき、ガルバノマイク
ロミラーの加速度を高速化できる。
The dielectric layer 21 is provided on the front and back surfaces of the mirror forming portion 5.
Also, when the electrodes 21a and 21b are stacked, the thickness of the electrode forming portion 6 is set to 1
By reducing the thickness to 00 μm, the mass of the mirror forming portion can be reduced to about 60% as in the first embodiment while maintaining the flatness of the mirror surface with high accuracy, and the acceleration of the galvano micromirror is increased. it can.

【0040】なお、ミラー基板と電極基板の貼合わせ作
業は、それぞれをチップ状に切断した後に行っても良い
し、ミラー基板及び電極基板のチップパターンを形成し
たシリコンウエハをウエハ状態のまま貼り付け、貼り付
け終了後にチップ状に切断しても良い。
The bonding operation of the mirror substrate and the electrode substrate may be performed after each of them is cut into chips, or a silicon wafer on which the chip patterns of the mirror substrate and the electrode substrate are formed may be bonded in a wafer state. Alternatively, it may be cut into chips after the attachment.

【0041】このように、ミラー形成部を軽量化して慣
性モーメントを小さくした構造のガルバノマイクロミラ
ーは、シーク時における高周波領域の高速応答性能に優
れ、図6の光ディスク装置の構成図(図7の従来の光デ
ィスク装置と同じ構成要素は同一符号が付してある)に
示すように、本発明によるガルバノマイクロミラー10
0を対物レンズ116と共に光学ヘッド115の光路に
組み込むことにより、光ディスク110の情報トラック
への高速シークが可能となる。とくに、短波長の青色光
ビームの光源などに適用して、情報の高密度記録化に貢
献できる。
As described above, the galvano micromirror having a structure in which the weight of the mirror forming portion is reduced to reduce the moment of inertia is excellent in high-speed response performance in a high-frequency region during a seek operation. As shown in the figure, the same components as those of the conventional optical disk device are denoted by the same reference numerals).
By incorporating 0 into the optical path of the optical head 115 together with the objective lens 116, high-speed seek to the information track of the optical disk 110 becomes possible. In particular, it can be applied to a light source of a blue light beam having a short wavelength to contribute to high-density recording of information.

【0042】なお、本発明の上記説明は、ミラー基板を
両側から第1電極基板と第2電極基板で挟む構成とした
が、片方の第1電極基板を重ねた構成であっても従来と
同じようにミラー面の揺動制御が静電駆動方式によって
可能である。
In the above description of the present invention, the mirror substrate is sandwiched between the first electrode substrate and the second electrode substrate from both sides. As described above, the swing control of the mirror surface can be performed by the electrostatic drive system.

【0043】また、上記説明はミラー部を回動(揺動)
支持するのは、そのものが捩じられるトーションバー部
としたが、軸受などで枢着されてそのものが捩じられな
い回転軸であってもよい。
In the above description, the mirror part is rotated (oscillated).
Although the torsion bar is supported by a torsion bar, it may be a rotating shaft that is pivotally connected by a bearing or the like and cannot be twisted.

【0044】また、上記説明はミラー形成部の両側に電
極を形成したが、ミラー部が回動(揺動)支持されてい
る限り、片側に電極を形成した場合にも適用できる。ま
た、電極形成部の厚さは、ミラー形成部との境界部は直
角の段差でなく曲面または傾斜面でなだらかにつながっ
ていてもよい。これらの変形構造は、上記2実施例と同
様の作用、効果を発揮するものである。
In the above description, electrodes are formed on both sides of the mirror forming portion. However, as long as the mirror portion is supported by rotation (oscillation), the present invention can be applied to a case where electrodes are formed on one side. Further, the thickness of the electrode forming portion may be such that the boundary with the mirror forming portion is smoothly connected by a curved surface or an inclined surface instead of a right-angled step. These deformed structures exhibit the same functions and effects as those of the above-described second embodiment.

【0045】[0045]

【発明の効果】以上、詳述したように本発明によれば、
従来と同様のミラー面の高い平面度を維持したまま、ミ
ラー形成部の軽量化が可能となってその慣性モーメント
を小さく軽減できるため、光ディスク装置用のガルバノ
マイクロミラーの加速度性能を向上できる。
As described in detail above, according to the present invention,
While maintaining the same high flatness of the mirror surface as in the prior art, the weight of the mirror forming portion can be reduced and the moment of inertia thereof can be reduced, so that the acceleration performance of the galvano micromirror for the optical disk device can be improved.

【0046】また、この慣性モーメントの小さいガルバ
ノマイクロミラーを光ディスク装置の光学ヘッドに組み
込むことにより、情報を記録再生するトラック位置への
高速シークが可能となり、短波長光ビームによる情報の
高密度記録化に貢献できるという産業上極めて有用な効
果を発揮する。
Also, by incorporating the galvano micromirror having a small moment of inertia into the optical head of the optical disk apparatus, high-speed seek to a track position for recording and reproducing information becomes possible, and high-density recording of information by a short wavelength light beam is achieved. It has an extremely useful effect in industry that can contribute to

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による第1実施例のガルバノマイクロ
ミラーの側断面図
FIG. 1 is a side sectional view of a galvano micromirror according to a first embodiment of the present invention.

【図2】 図1の分解斜視図FIG. 2 is an exploded perspective view of FIG. 1;

【図3】 図2の組立側面図FIG. 3 is an assembled side view of FIG. 2;

【図4】 図1のミラー基板の裏面形状を示す斜視図FIG. 4 is a perspective view showing a back surface shape of the mirror substrate of FIG. 1;

【図5】 本発明による第2の実施例のミラー基板の側
断面図
FIG. 5 is a side sectional view of a mirror substrate according to a second embodiment of the present invention;

【図6】 本発明によるガルバノマイクロミラーを用い
た光ディスク装置の構成図
FIG. 6 is a configuration diagram of an optical disk device using a galvano micromirror according to the present invention.

【図7】 従来技術による光ディスク装置の構成図FIG. 7 is a configuration diagram of an optical disk device according to a conventional technique.

【図8】 従来技術によるガルバノマイクロミラーの分
解斜視図
FIG. 8 is an exploded perspective view of a galvano micromirror according to the related art.

【符号の説明】[Explanation of symbols]

1:ミラー基板 2:一対の電極基板 2a:第1電極基板 2b:第2電極基板 3:基部 4:ミラー部 4a:軸部(トーションバー部) 4b:貫通溝 5:ミラー形成部 5a:ミラー(ミラー面) 6:電極形成部 7:第1電極 7a,7b:一対の電極 8:第2電極 8a,8b:一対の電極 9,10:貫通孔 11:第3電極 11a,11b:一対の電極 12:第4電極 12a,12b:一対の電極 21a,21b:誘電体層 100:ガルバノマイクロミラー 1: mirror substrate 2: pair of electrode substrates 2a: first electrode substrate 2b: second electrode substrate 3: base 4: mirror 4a: shaft (torsion bar) 4b: through groove 5: mirror forming 5a: mirror (Mirror surface) 6: electrode forming portion 7: first electrode 7a, 7b: pair of electrodes 8: second electrode 8a, 8b: pair of electrodes 9, 10: through hole 11: third electrode 11a, 11b: pair of electrodes Electrode 12: Fourth electrode 12a, 12b: A pair of electrodes 21a, 21b: Dielectric layer 100: Galvano micro mirror

フロントページの続き Fターム(参考) 2H041 AA12 AB14 AC06 AZ02 AZ08 2H045 AB16 AB73 DA32 5D118 AA01 AA13 DC07 EA00 5D119 AA01 AA08 CA05 JA52 Continued on the front page F term (reference) 2H041 AA12 AB14 AC06 AZ02 AZ08 2H045 AB16 AB73 DA32 5D118 AA01 AA13 DC07 EA00 5D119 AA01 AA08 CA05 JA52

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光ビームを反射するミラーが形成された
ミラー形成部と、該ミラー形成部を支持する軸部と、前
記ミラー形成部を前記軸部の回りに静電気力で回動させ
るための電極が形成された電極形成部とを有するミラー
基板を備え、 前記ミラー形成部の厚さよりも前記電極形成部の厚さが
薄く形成されていることを特徴とするガルバノマイクロ
ミラー。
A mirror forming portion having a mirror for reflecting the light beam; a shaft supporting the mirror forming portion; and a mirror for rotating the mirror forming portion around the shaft by electrostatic force. A galvano micromirror, comprising: a mirror substrate having an electrode forming portion on which an electrode is formed, wherein the thickness of the electrode forming portion is smaller than the thickness of the mirror forming portion.
【請求項2】 光ビームを光ディスク面に合焦する対物
レンズと共にシーク移動する光学ヘッド内の前記光ビー
ムの光路に、請求項1記載のガルバノマイクロミラーが
組み込まれてなることを特徴とする光ディスク装置。
2. The optical disk according to claim 1, wherein the galvano micromirror according to claim 1 is incorporated in an optical path of the light beam in an optical head that seeks together with an objective lens that focuses the light beam on the optical disk surface. apparatus.
JP2000239847A 2000-08-08 2000-08-08 Galvano micromirror and optical disk device using the same Expired - Fee Related JP4193340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000239847A JP4193340B2 (en) 2000-08-08 2000-08-08 Galvano micromirror and optical disk device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000239847A JP4193340B2 (en) 2000-08-08 2000-08-08 Galvano micromirror and optical disk device using the same

Publications (2)

Publication Number Publication Date
JP2002056554A true JP2002056554A (en) 2002-02-22
JP4193340B2 JP4193340B2 (en) 2008-12-10

Family

ID=18731321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000239847A Expired - Fee Related JP4193340B2 (en) 2000-08-08 2000-08-08 Galvano micromirror and optical disk device using the same

Country Status (1)

Country Link
JP (1) JP4193340B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1346947A3 (en) * 2002-03-19 2004-04-14 Japan Aviation Electronics Industry, Limited Electrostatically operated optical switching or attenuating devices
JP2006053421A (en) * 2004-08-13 2006-02-23 Olympus Corp Variable shape mirror, light ray shifting device using this mirror and projector apparatus using this device
JP2015064614A (en) * 2005-08-19 2015-04-09 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Mems device having support structure to reduce distortion due to stress to a minimum, and manufacturing method thereof
JP2015219516A (en) * 2014-05-21 2015-12-07 スタンレー電気株式会社 Optical deflector and method for manufacturing the same
CN106066536A (en) * 2016-06-28 2016-11-02 南京理工大学 A kind of micro mirror fine regulating device of photoelectricity piezoelectricity electrostatic drive

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1346947A3 (en) * 2002-03-19 2004-04-14 Japan Aviation Electronics Industry, Limited Electrostatically operated optical switching or attenuating devices
JP2006053421A (en) * 2004-08-13 2006-02-23 Olympus Corp Variable shape mirror, light ray shifting device using this mirror and projector apparatus using this device
JP2015064614A (en) * 2005-08-19 2015-04-09 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Mems device having support structure to reduce distortion due to stress to a minimum, and manufacturing method thereof
JP2015219516A (en) * 2014-05-21 2015-12-07 スタンレー電気株式会社 Optical deflector and method for manufacturing the same
CN106066536A (en) * 2016-06-28 2016-11-02 南京理工大学 A kind of micro mirror fine regulating device of photoelectricity piezoelectricity electrostatic drive

Also Published As

Publication number Publication date
JP4193340B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
US5233456A (en) Resonant mirror and method of manufacture
KR100277450B1 (en) Beam steering device and manufacturing method
JP3011144B2 (en) Optical scanner and its driving method
JP4492252B2 (en) Actuator
JP2002131685A (en) Actuator
JP4921366B2 (en) Micromechanical structure system and manufacturing method thereof
JP2010026147A (en) Movable structure and optical scanning mirror using the same
JP2004341364A (en) Oscillation mirror, method of manufacturing the same, optical scanning module, optical write device and image forming apparatus
JP4193340B2 (en) Galvano micromirror and optical disk device using the same
JP4507983B2 (en) Actuator
JP4036643B2 (en) Optical deflector and optical deflector array
JP3560709B2 (en) Galvano mirror and optical disk device using the same
JP2001117026A (en) Micro mirror device and optical disk device
JPH1062709A (en) Galvanometer mirror device and optical disk device using it
JP3361975B2 (en) Galvano mirror and optical disk device using the same
JP4581847B2 (en) Actuator
JPH04343318A (en) Torsional vibrator
JP2001033727A (en) Light deflector
JPH1114918A (en) Focus controller and optical disk device using the focus controller
EP0548831B1 (en) Resonant mirror and method of manufacture
JP4838445B2 (en) Galvano mirror
WO2022249822A1 (en) Light deflector
JP2007199213A (en) Actuator
KR100450790B1 (en) Micro mirror scanner and manufacturing method thereof
JP2007121464A (en) Tilt mirror element and method of driving the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070531

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees