JP2002056036A - Buckling analysis method of structure - Google Patents

Buckling analysis method of structure

Info

Publication number
JP2002056036A
JP2002056036A JP2000240343A JP2000240343A JP2002056036A JP 2002056036 A JP2002056036 A JP 2002056036A JP 2000240343 A JP2000240343 A JP 2000240343A JP 2000240343 A JP2000240343 A JP 2000240343A JP 2002056036 A JP2002056036 A JP 2002056036A
Authority
JP
Japan
Prior art keywords
buckling
analysis
linear
order
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000240343A
Other languages
Japanese (ja)
Other versions
JP4578641B2 (en
Inventor
Kiyoshi Yamada
聖志 山田
Koji Ishii
宏治 石井
Atsuyuki Tada
敬幸 多田
Akiko Uchiumi
明子 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishii Iron Works Co Ltd
Original Assignee
Ishii Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishii Iron Works Co Ltd filed Critical Ishii Iron Works Co Ltd
Priority to JP2000240343A priority Critical patent/JP4578641B2/en
Publication of JP2002056036A publication Critical patent/JP2002056036A/en
Application granted granted Critical
Publication of JP4578641B2 publication Critical patent/JP4578641B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make the safety design and buckling analysis working for the buckling of a structure efficient by effectively utilizing an analysis method using a decrease stiffness method. SOLUTION: A linear buckling analysis is performed by a computer up to an order where the whole linear buckling load PL of the structure becomes 1.5 times as large as a primary PL at the largest, the lower limit PL* of the whole buckling load of the structure is next calculated with the decrease stiffness method by using the computer, all primary buckling modes are selected among all orders in which the calculation is performed, the existence/absence of an order buckling mode in which the PL* is smaller than the primary PL* is decided, when the smaller order buckling mode exists, adoption is selected, an order buckling mode that is subjected to shape similarity to deformation shape due to the whole linear stress analysis of the structure is also selected and set as initial imperfections corresponding only to the selected order buckling mode, and nonlinear buckling analysis is carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、連続体又は不連
続体よりなる球殻構造又は円筒殻構造などを有する構造
物の座屈解析法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a buckling analysis method for a structure having a spherical shell structure or a cylindrical shell structure made of a continuous body or a discontinuous body.

【0002】[0002]

【従来の技術】連続体又は不連続体よりなる球殻構造又
は円筒殻構造などを有する構造物は、形状初期不整や荷
重不整(以下、「初期不整」という)に起因する座屈前
非線形性の影響によって、面内剛性が小さくなることが
予想され、座屈荷重の低下に繋がる。従来、このような
構造物の初期不整による座屈荷重の低下の程度は、初期
不整を適切に設定し非線形の座屈解析を実施しなければ
予測できなかった。この初期不整の設定においては、不
整の分布形状や大きさは無数に想定され得るが、合理的
かつ妥当な該初期不整形状の評価の手法は確立されてい
なかった。
2. Description of the Related Art Structures having a spherical shell structure or a cylindrical shell structure made of a continuum or discontinuous body have a non-buckling non-linearity caused by an initial shape irregularity or a load irregularity (hereinafter referred to as "initial irregularity"). Is expected to reduce the in-plane rigidity due to the influence of, which leads to a reduction in buckling load. Conventionally, the degree of the reduction of the buckling load due to the initial imperfection of such a structure cannot be predicted unless the initial imperfection is appropriately set and a nonlinear buckling analysis is performed. In the setting of the initial irregularities, the distribution shape and the size of the irregularities can be assumed to be innumerable, but a reasonable and appropriate method for evaluating the initial irregular shapes has not been established.

【0003】従来の座屈解析法の手順を、図6に示して
説明する。構造物に係るデータは31のデータ入力手段
にて入力され、設計データ記憶手段32に記憶される。
記憶された該設計データに基づき構造設計計算手段34
によって基本構造が策定される。さらに該基本構造に基
づいて、構造物の解析モデル及び解析条件が解析モデル
作成手段33にて設定され、線形構造解析手段35にお
いて線形の静的変形形状及び線形座屈荷重と線形座屈モ
ードが計算され、解析結果記憶手段36に記憶される。
次いで、該解析結果から初期不整形状設定手段37で初
期不整形状を適切に設定して非線形構造解析手段38を
実施し、座屈評価手段39で座屈評価を行い、出力手段
40でその結果が出力される。そして、複数設定される
初期不整形状について、再び非線形構造解析手段38を
実施し、順次座屈評価手段39、出力手段40の手順を
繰り返す。また、座屈評価手段39において座屈が発生
すると判定された場合には、部材諸元、或いは材料諸元
などを変更して、再び上記データ入力手段31から一連
の手順を繰り返し解析作業が行われる。
The procedure of a conventional buckling analysis method will be described with reference to FIG. Data relating to the structure is input by 31 data input means and stored in the design data storage means 32.
Structural design calculating means 34 based on the stored design data
Defines the basic structure. Further, based on the basic structure, an analysis model and analysis conditions of the structure are set by the analysis model creation means 33, and the linear static deformation shape, the linear buckling load and the linear buckling mode are set in the linear structure analysis means 35. It is calculated and stored in the analysis result storage means 36.
Next, based on the analysis result, the initial irregular shape is appropriately set by the initial irregular shape setting means 37, the nonlinear structural analysis means 38 is executed, the buckling evaluation is performed by the buckling evaluation means 39, and the result is output by the output means 40. Is output. Then, the non-linear structural analysis means 38 is executed again for a plurality of initial irregular shapes, and the procedure of the buckling evaluation means 39 and the output means 40 is sequentially repeated. If it is determined that buckling occurs in the buckling evaluation means 39, the member data or material data is changed, and a series of procedures are repeated from the data input means 31 to perform an analysis operation again. Will be

【0004】[0004]

【発明が解決しようとする課題】この従来の座屈解析法
は、無数に想定され得る初期不整の中から初期不整形状
を適切に設定しなければならないが、座屈荷重の低下に
最も大きく寄与する初期不整形状の評価手法が確立され
ていないため、設計者の経験的な判断によるところが大
きく安全性の心配があった。また、安全性を必要以上に
配慮するあまり、想定される座屈モードの全てについて
非線形構造解析を実施することは、膨大な解析作業とな
り時間と手間を要することとなった。
In this conventional buckling analysis method, the initial irregular shape must be appropriately set from among a myriad of possible initial irregularities, but it most contributes to the reduction of the buckling load. Since an evaluation method of the initial irregular shape to be performed has not been established, the designer's empirical judgment largely depends on safety. In addition, since the safety was considered more than necessary, performing the non-linear structural analysis for all of the assumed buckling modes was an enormous amount of analysis work, and required time and effort.

【0005】ところで、初期不整の影響によって低下す
る座屈荷重の下限値を予測する手法、減少剛性法(Redu
ced Stiffness法、以下「RS法」といい、同手法によ
って得られた座屈荷重の下限値を「RS値」という)が
考案されているが、このRS法による解析法を、上記構
造物の座屈解析法に有効利用することは未だ充分ではな
かった。また、このRS法による解析には、プログラム
やRS法に関する専門知識を必要とし、一般の構造設計
者には取扱いが難しいものであった。
Meanwhile, a technique for predicting the lower limit of the buckling load that decreases due to the influence of the initial irregularity, a reduced stiffness method (Redu
ced Stiffness method, hereinafter referred to as “RS method”, and the lower limit of the buckling load obtained by the same method is referred to as “RS value”. Effective use for buckling analysis has not been sufficient. In addition, the analysis by the RS method requires specialized knowledge about a program and the RS method, and is difficult for a general structural designer to handle.

【0006】この発明は、上述の従来技術が有する課題
に鑑みてなされたもので、RS法を用いた解析法を有効
利用することによって、連続体又は不連続体よりなる球
殻構造又は円筒構造などを有する構造物における座屈モ
ードの次数を選定し、該選定した座屈モードについての
み対応する初期不整を設定し、非線形座屈解析を行うこ
とにより、座屈に対する安全設計と座屈解析作業の効率
化を図ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has a spherical shell structure or a cylindrical structure made of a continuous body or a discontinuous body by effectively utilizing an analysis method using the RS method. By selecting the order of the buckling mode in a structure having a buckling mode, setting an initial imperfection corresponding only to the selected buckling mode, and performing a non-linear buckling analysis, safety design against buckling and buckling analysis work The aim is to improve the efficiency of

【0007】[0007]

【課題を解決するための手段】この発明に係る構造物の
座屈解析法は、連続体又は不連続体よりなる球殻構造又
は円筒殻構造などの構造物を、減少剛性法を用いてコン
ピュータにて計算し座屈解析する解析法であって、構造
物全体の線形座屈荷重Pが、1次のPに対して最大
でも1.5倍となる次数まで線形座屈解析をコンピュー
タにて行い、次いで減少剛性法にて構造物全体の座屈荷
重の下限値P をコンピュータにて算出し、該計算を
行った全次数のうちから、1次の全体座屈モードの選定
と、上記P が1次のP よりも小さい次数の座屈
モードの有無判定を行い、該小さい次数の座屈モードが
ある場合は採用選定し、かつ構造物全体の線形応力解析
による変形形状に形状相似な次数の座屈モードを選定
し、該選定した次数の座屈モードについてのみ対応する
初期不整として設定し、非線形座屈解析を行うものであ
る。
A buckling analysis method for a structure according to the present invention is a method for analyzing a structure such as a spherical shell structure or a cylindrical shell structure made of a continuous body or a discontinuous body by using a reduced rigidity method. calculated an analysis method for buckling analyzed by linear buckling load P L of the entire structure is a computer linear buckling up to order to be 1.5 times at most to the primary of the P L Then, the lower limit value P L * of the buckling load of the entire structure is calculated by a computer using the reduced stiffness method, and the first-order overall buckling mode is selected from all the calculated orders. Then, the presence or absence of a buckling mode of an order in which P L * is smaller than the first-order P L * is determined, and if there is a buckling mode of a smaller order, the buckling mode is adopted and selected, and a linear stress analysis of the entire structure is performed. Buckling mode of similar order to the deformed shape due to Set as the corresponding initial imperfection only order buckling mode, and performs non-linear buckling analysis.

【0008】また、上記構造物の座屈解析法は、構造物
に係るデータを入力するデータ入力手段と、このデータ
を記憶し設計条件データベースを構築する設計条件デー
タ記憶手段と、このデータに基づいて基本構造設計を行
い基本構造条件データベースを構築し、構造設計計算結
果ファイルに収納する構造設計計算手段と、構造物の解
析条件を作成し解析条件データベースを構築する解析モ
デル作成手段とを設け、基本構造に適用可能な座屈に関
する実験・計測データベース及びRS座屈下限値データ
ベースを構築し、上記データベースを検索する検索手段
を設け、上記データに基づいて線形応力解析及び線形座
屈解析を行い線形構造解析結果ファイルに収納する線形
応力解析手段及び線形座屈解析手段と、減少剛性法によ
って座屈解析を行いRS解析結果ファイルに収納するR
S解析手段と、座屈荷重の下限値を判定するRS値判定
手段と、選定した座屈モードから初期不整を設定する初
期不整形状設定手段と、この設定した初期不整形状につ
いて非線形構造解析を実施し非線形構造解析ファイルに
収納する非線形構造解析手段と、この非線形構造解析結
果に基づいて座屈評価を行い上記データベース及びファ
イルに収納するRS座屈評価手段と、その結果を出力す
る出力手段とを備えたコンピュータ処理システムを形成
してなるものである。
Further, the above-mentioned buckling analysis method for a structure is based on data input means for inputting data on the structure, design condition data storage means for storing the data and constructing a design condition database, and based on the data. A basic structure design database for constructing a basic structural condition database and storing it in a structural design calculation result file; and an analytical model creating unit for creating an analysis condition for the structure and constructing an analytical condition database. A buckling experiment / measurement database and RS buckling lower limit database that can be applied to the basic structure are constructed, search means for searching the above database is provided, and linear stress analysis and linear buckling analysis are performed based on the above data. Perform buckling analysis using the linear stress analysis means and linear buckling analysis means stored in the structural analysis result file and the reduced stiffness method. R to be stored in RS analysis results file
S analysis means, RS value determination means for determining the lower limit of the buckling load, initial irregular shape setting means for setting the initial irregularity from the selected buckling mode, and non-linear structural analysis on the set initial irregular shape A non-linear structural analysis means stored in a non-linear structural analysis file, an RS buckling evaluation means for performing buckling evaluation based on the non-linear structural analysis result and storing the result in the database and the file, and an output means for outputting the result. And a computer processing system having the same.

【0009】[0009]

【発明の実施の形態】図1乃至図5、表1乃至表3に基
づき、この発明に係る構造物の座屈解析法の実施の形態
について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a buckling analysis method for a structure according to the present invention will be described with reference to FIGS. 1 to 5 and Tables 1 to 3. FIG.

【0010】図1は、減少剛性法(Reduced Stiffness
法「RS法」)を用いた解析法の手順を示す機能ブロッ
ク図であって、データ入力手段11、設計条件データ記
憶手段12、解析モデル作成手段13、構造設計計算手
段14、検索手段15、データベースD、ファイルF、
線形応力解析手段16、線形座屈解析手段17、RS解
析手段18、RS値判定手段19、初期不整形状設定手
段20、非線形構造解析手段21、RS座屈評価手段2
2、出力手段23などから構成されている。
FIG. 1 shows a reduced stiffness method.
FIG. 3 is a functional block diagram showing a procedure of an analysis method using the method “RS method”), which includes a data input unit 11, a design condition data storage unit 12, an analysis model creation unit 13, a structural design calculation unit 14, a search unit 15, Database D, File F,
Linear stress analysis means 16, linear buckling analysis means 17, RS analysis means 18, RS value determination means 19, initial irregular shape setting means 20, nonlinear structure analysis means 21, RS buckling evaluation means 2
2. It comprises output means 23 and the like.

【0011】図2はRS法の解析フローで、図1に示す
RS解析手段18の内容、計算式などを示すものであ
る。RS解析を行うためには、先ず、市販の有限要素法
(FEM)解析に基づく汎用構造解析コード(例えばC
OSMOS/M:商標)を利用し、上記線形座屈解析手
段17にてn次までの構造物全体の線形座屈荷重P
求めておく。そして、予め初期不整によって低下する面
内軸剛性をゼロとして求めた線形剛性マトリクス[K
]を用いたひずみエネルギーUと、通常の線形剛性
マトリクス[K]を用いたひずみエネルギーUとを計
算し、このエネルギー商から「RS値」、つまりRS解
析による構造物全体の座屈荷重の下限値P を算出す
る。
FIG. 2 is an analysis flow of the RS method, showing the contents of the RS analysis means 18 shown in FIG. In order to perform RS analysis, first, a general-purpose structural analysis code (for example, C
OSMOS / M: using trademark), previously obtained the entire structure of the linear buckling load P L of at the linear buckling analysis means 17 to the n-th order. Then, the linear stiffness matrix [K L obtained a plane axes rigidity reduced by pre imperfections as zero
*] And strain energy U * with, an energy U was calculated strain using conventional linear stiffness matrix [K L], "RS value 'from the energy quotient, i.e. the entire structure by RS Analysis buckling Calculate the lower limit value P L * of the load.

【0012】上記線形座屈荷重の計算を行う次数nは、
1次のP値に比較して、最大でも1.5倍のP値と
なる次数nまで行えば、通常、鋼材の材料強度安全率を
1.5倍としていること、また短期許容応力度が長期許
容応力度の1.5倍を取っていることなどから判断して
も、座屈強度を検討して構造物の安全設計を行う上で合
理的かつ最適な選定基準である。そして、上記算出した
が1次のP よりも小さい、例えば90%程度
以下の値となる次数、つまりRS値が極端に小さくなる
次数を判定する。次いで、上記計算した全次数の座屈モ
ードから、1次の全体座屈モードと、上記P が1次
のP よりも小さい次数の座屈モードと、かつ構造物
全体の線形応力解析による変形形状に形状相似な次数の
座屈モードとを選定する。上記選定する1次の座屈モー
ドは、線形座屈解析における座屈荷重が最小となるモー
ドで、構造物に荷重が載荷された時に最も発生しやすい
形状の1つで、構造物の静的な安定性評価において重要
なモードである。また、上記選定するP の低下が著
しい座屈モードは、面内ひずみエネルギー成分が大きい
モードであり、初期不整によって座屈荷重が大きく低下
する可能性がある。さらにまた、上記選定する構造物全
体の線形応力解析による変形形状に形状相似な次数の座
屈モードは、上記1次座屈モードと同様に、構造物に荷
重が載荷された時に最も発生しやすい形状の1つである
が、必ずしも1次座屈モードと形状相似になるものでは
ない。上記のように選定した次数の座屈モードについて
のみ、対応する初期不整として設定し、非線形座屈解析
を行うことによって、解析時間を削減し、構造物の座屈
評価を能率良く行うことが可能となる。なお、上記P
が1次のP に対して小さい次数の座屈モードがな
い場合は、選定する必要がない。
The order n for calculating the linear buckling load is:
Compared to the primary of the P L values, by performing up to order n which is 1.5 times the P L value at most, typically, be a material strength safety factor of the steel is 1.5 times, and short-term permissible stress Judging from the fact that the degree is 1.5 times the long-term allowable stress level, etc., this is a rational and optimal selection criterion for examining buckling strength and performing safety design of a structure. Then, an order in which the calculated P L * is smaller than the first-order P L * , for example, a value of about 90% or less, that is, an order in which the RS value becomes extremely small is determined. Then, the the calculated total order buckling mode, first-order and overall buckling mode, the P L * is primary P L * Small and order buckling mode than, and the structure of the entire linear stress A buckling mode of an order similar to the shape of the deformed shape by analysis is selected. The primary buckling mode selected above is a mode in which the buckling load in the linear buckling analysis is minimized, and is one of the shapes most likely to occur when a load is applied to the structure. This is an important mode for stable stability evaluation. The selected buckling mode in which P L * is significantly reduced is a mode in which the in-plane strain energy component is large, and the buckling load may be significantly reduced due to the initial irregularity. Furthermore, the buckling mode of the order similar to the deformed shape by the linear stress analysis of the entire selected structure is most likely to occur when a load is applied to the structure, similarly to the first buckling mode. Although it is one of the shapes, the shape is not necessarily similar to the first-order buckling mode. Only the buckling mode of the order selected as described above is set as the corresponding initial imperfection, and by performing nonlinear buckling analysis, analysis time can be reduced and buckling evaluation of structures can be performed efficiently. Becomes The above P L
If * does not have a buckling mode of a smaller order than the first order P L * , there is no need to select.

【0013】図3は、上記座屈解析法を実行するコンピ
ュータ処理システムのハードウエア構成の一例を示すも
ので、主制御部1、入出力制御部2、入力装置4、記憶
装置3、表示装置5、及び出力装置6などを備えてい
る。そして、記憶装置3には、設計条件データベースD
1、基本構造データベースD2、解析条件データベース
D3、実験・計測データベースD4、RS座屈下限値デ
ータベースD5などのデータベースD、及び構造設計計
算結果ファイルF1、線形構造解析結果ファイルF2、
非線形構造解析結果ファイルF3、RS解析結果ファイ
ルF4、RS座屈評価結果ファイルF5などのファイル
F、並びに構造設計プログラムP1、線形応力解析プロ
グラムP2、線形座屈解析プログラムP3、非線形構造
解析プログラムP4、RS解析プログラムP5などのプ
ログラムPを収納している。
FIG. 3 shows an example of a hardware configuration of a computer processing system for executing the buckling analysis method. The main control unit 1, the input / output control unit 2, the input device 4, the storage device 3, and the display device 5 and an output device 6. The storage device 3 stores the design condition database D
1. Basic structure database D2, analysis condition database D3, experiment / measurement database D4, database D such as RS buckling lower limit database D5, structural design calculation result file F1, linear structure analysis result file F2,
Files F such as a nonlinear structural analysis result file F3, an RS analysis result file F4, and an RS buckling evaluation result file F5, as well as a structural design program P1, a linear stress analysis program P2, a linear buckling analysis program P3, a nonlinear structural analysis program P4, A program P such as an RS analysis program P5 is stored.

【0014】この発明に係る構造物の座屈解析法を実行
するコンピュータ処理システムの手順を、図1の機能ブ
ロック図に基づいてさらに詳述する。座屈解析を行う構
造物の形状、寸法、構成部材及び設計荷重などの設計条
件データをデータ入力手段11にて入力し、これらのデ
ータが設計条件データ記憶手段12にて記憶され、設計
条件データベースD1に収納される。該記憶された設計
条件データに基づき、構造設計計算手段14(P1)に
て基本構造が策定され、基本構造データベースD2及び
構造設計計算結果ファイルF1にそれぞれ収納される。
The procedure of the computer processing system for executing the structure buckling analysis method according to the present invention will be described in further detail with reference to the functional block diagram of FIG. Design condition data such as the shape, dimensions, constituent members, and design loads of the structure for which buckling analysis is to be performed are input by the data input means 11, and these data are stored in the design condition data storage means 12, and the design condition database It is stored in D1. Based on the stored design condition data, the basic structure is determined by the structural design calculation means 14 (P1) and stored in the basic structure database D2 and the structural design calculation result file F1, respectively.

【0015】ここで、検索手段15によって、上記設計
条件データ及び基本構造データと同等乃至類似の設計条
件データ及び基本構造データが、それぞれ設計条件デー
タベースD1及び基本構造データベースD2にて検索さ
れ、該当するデータが存在する場合には、該基本構造に
適用可能な座屈に関する実験・計測データ及びRS座屈
下限値データが、それぞれ実験・計測データベースD4
及びRS座屈下限値データベースD5から抽出され、こ
の抽出されたデータに基づき直ちに座屈評価手段22に
移行して、該基本構造の設計条件に対する座屈評価が行
われる。そして、構造物全体の座屈が発生しないと判断
された場合には、座屈評価結果が出力手段23にて出力
され終了するので、座屈解析を実施することなく蓄積さ
れたデータから直ちに座屈評価が可能となる。但し、R
S座屈評価手段22にて座屈が発生すると判定された場
合には、最初に戻って設計条件データなどを変更し、再
びデータ入力手段11から一連の手順を繰り返す。
Here, the search means 15 searches the design condition data D1 and the basic structure database D2 for design condition data and basic structure data equivalent to or similar to the design condition data and the basic structure data, respectively. If the data exists, the experimental / measurement data and the RS buckling lower limit data on the buckling applicable to the basic structure are respectively stored in the experiment / measurement database D4.
And from the RS buckling lower limit value database D5, and immediately proceeds to the buckling evaluation means 22 based on the extracted data to perform buckling evaluation on the design conditions of the basic structure. When it is determined that buckling of the entire structure does not occur, the buckling evaluation result is output by the output unit 23 and the process is terminated. Therefore, buckling is immediately performed from the accumulated data without performing buckling analysis. Crouching evaluation becomes possible. Where R
When it is determined that buckling occurs in the S buckling evaluation means 22, the process returns to the beginning, changes the design condition data and the like, and repeats a series of procedures from the data input means 11.

【0016】また、上記検索手段15によって、該当す
る設計条件データ及び基本構造データが存在しない場合
には、設計条件データ及び基本構造データに基づいて構
造物の解析モデル及び解析条件を解析モデル作成手段1
3にて作成し、解析条件データベースD3に収納し、こ
の解析条件データに基づいて線形の静的変形形状及び線
形座屈荷重と線形座屈モードが、それぞれ線形応力解析
手段16(P2)及び線形座屈解析手段17(P3)に
て計算され、線形構造解析結果ファイルF2に収納され
る。次いで、ファイルF2に収納された線形座屈解析結
果を用いてRS解析手段18(P5)にてRS解析を行
い、RS解析結果ファイルF4に収納する。この際に、
RS解析を実行する対象次数の決定については、上記線
形座屈解析荷重が1次の線形座屈荷重の最大でも1.5
倍となる次数までとする。
If the search means 15 finds no corresponding design condition data and basic structure data, the analysis model and the analysis condition of the structure are analyzed based on the design condition data and the basic structure data. 1
3 and stored in the analysis condition database D3. Based on the analysis condition data, the linear static deformation shape, the linear buckling load, and the linear buckling mode are respectively determined by the linear stress analysis means 16 (P2) and the linear buckling mode. It is calculated by the buckling analysis means 17 (P3) and stored in the linear structure analysis result file F2. Next, RS analysis is performed by the RS analysis means 18 (P5) using the linear buckling analysis result stored in the file F2, and the result is stored in the RS analysis result file F4. At this time,
Regarding the determination of the target order for executing the RS analysis, the linear buckling analysis load is 1.5 times at most the primary linear buckling load.
Up to the order that is doubled.

【0017】次いで、このRS解析結果から、1次のR
S値を選定し、また線形応力解析手段16(P2)で
計算された静的変形形状と形状相似な座屈モードが存在
する場合にはその次数のRS値を選定し、さらにRS
値判定手段19(P5)にて、1次のRS値よりも小さ
いRS値が検出された場合にはこの次数のRS値を
選定してRS座屈下限値データベースD5に収納すると
ともに、この、及びの該RS値を与える次数の線
形座屈モードが初期不整形状として抽出される。
Next, from the RS analysis result, the first order R
If an S value is selected, and a buckling mode similar in shape to the static deformation shape calculated by the linear stress analysis means 16 (P2) exists, an RS value of that order is selected.
When the value judging means 19 (P5) detects an RS value smaller than the primary RS value, the RS value of this order is selected and stored in the RS buckling lower limit database D5. And the linear buckling mode of the order giving the RS value is extracted as an initial irregular shape.

【0018】上記抽出された初期不整形状は、初期不整
形状設定手段20にて、最大初期不整振幅値で正規化さ
れ、初期不整形状として設定される。ここで、例えば単
層ラチスシェル構造の場合には、最大初期不整振幅値
は、構成部材の断面2次半径の多くて3倍程度まで考慮
すれば足りる。該設定された初期不整形状各々につい
て、非線形構造解析手段21(P4)にて非線形構造解
析を実行し、非線形構造解析結果ファイルF3に収納す
る。
The extracted initial irregular shape is normalized by the maximum initial irregular amplitude value by the initial irregular shape setting means 20, and is set as the initial irregular shape. Here, for example, in the case of a single-layer lattice shell structure, it is sufficient to consider the maximum initial irregular amplitude value up to about three times the secondary radius of the cross section of the component. For each of the set initial irregular shapes, the nonlinear structure analysis is performed by the nonlinear structure analysis means 21 (P4), and stored in the nonlinear structure analysis result file F3.

【0019】この非線形構造解析結果から、RS座屈評
価手段22(P5)にて座屈評価が行われ、その結果が
RS座屈評価結果ファイルF5に収納される。このよう
に選定した極限られた次数の座屈モードについてのみ対
応する初期不整形状を設定すればよく、この設定した初
期不整形状は構造物全体の座屈荷重の低下に大きく寄与
するものと予測されるため、この初期不整形状に対して
非線形座屈解析を実施すれば合理的な座屈評価となる。
この座屈評価において、上記非線形構造解析による座屈
荷重がRS座屈下限値及び設計荷重を下回らないことが
確認された場合には、座屈は発生しないものと判定さ
れ、出力手段23にてこの座屈評価結果が出力される。
但し、上記非線形構造解析による座屈荷重が設計荷重を
下回った場合には、座屈が発生するものと判定され、最
初に戻って設計条件データを変更し、再びデータ入力手
段11から一連の手順を繰り返す。
The buckling evaluation is performed by the RS buckling evaluation means 22 (P5) from the result of the nonlinear structural analysis, and the result is stored in the RS buckling evaluation result file F5. It is only necessary to set an initial irregular shape corresponding to only the buckling mode of a very limited order selected in this way, and it is predicted that the set initial irregular shape will greatly contribute to a reduction in the buckling load of the entire structure. Therefore, if a non-linear buckling analysis is performed on this initial irregular shape, a reasonable buckling evaluation can be obtained.
In this buckling evaluation, if it is confirmed that the buckling load does not fall below the RS buckling lower limit value and the design load by the nonlinear structural analysis, it is determined that buckling does not occur. The buckling evaluation result is output.
However, if the buckling load obtained by the nonlinear structural analysis is lower than the design load, it is determined that buckling will occur, and the procedure returns to the beginning, changes the design condition data, and returns to the data input means 11 again. repeat.

【0020】表1及び図4に示す解析モデル(事例1)
について、上記座屈解析法を実施した結果を表2に示
す。この事例1の解析モデルは、連続体又は不連続体よ
りなる球殻構造のうち、シェルやシェル的な単層のラチ
ス構造「ラチスシェル構造」の場合における事例であっ
て、鋼管部材を三角形に剛接合したユニットを持つ球形
ドームである。 この事例1の場合、RS解析を行う次数nは、1次のP
に対して最大で1.5倍のPとなる次数まで、つま
り1次のP値3.097に対して1.5倍より大きい
値4.922となる次数、7次まで計算すればよい。
なお、この事例1では、参考までに10次まで計算して
表示した。
An analysis model shown in Table 1 and FIG. 4 (case 1)
Table 2 shows the results of the above buckling analysis performed on The analysis model of Case 1 is a case of a shell or a single-layer lattice structure “lattice shell structure” of a spherical shell structure composed of a continuous body or a discontinuous body. A spherical dome with joined units. In this case 1, the order n for performing the RS analysis is the first order P
Up to a maximum degree which is 1.5 times the P L with respect to L, i.e. primary P L value 3.097 1.5 times greater than 4.922 with respect to the order, by calculating up to seventh order I just need.
Note that, in this case 1, the values are calculated and displayed up to the 10th order for reference.

【0021】上記計算した全次数の座屈モードのうちか
ら選定する座屈モードは、1次の全体座屈モード、上記
RS法による解析値「RS値」P が1次のP
比較して小さい次数の座屈モード、及び構造物全体の線
形応力解析による変形形状に形状相似な次数の座屈モー
ドとする。上記事例1の場合には、表2に示すように、
は6次の1箇所で小さくなっているので選定し、
また2次の値も1次の値に近いので安全性を配慮して選
定し、1次と合せて合計で3個の次数を選択した。
The buckling mode selected from the calculated buckling modes of all orders is the first-order overall buckling mode, and the analysis value “RS value” P L * by the RS method is the first-order P L *. And a buckling mode of an order similar to the deformed shape obtained by linear stress analysis of the entire structure. In case 1 above, as shown in Table 2,
P L * is selected because it is smaller at one place of the sixth order.
Since the secondary value is close to the primary value, the secondary value is selected in consideration of safety, and a total of three orders are selected in combination with the primary value.

【0022】上記事例1の解析モデルについて座屈解析
を行い、1次〜10次の10個のうちから選定した線形
座屈モードを、図5に示す。図5に示すように、座屈荷
重の低下に大きく寄与する可能性のある初期不整の形状
は、比較的単純で大きな波長(凹凸の山と山、或いは谷
と谷の間隔)をもった線形座屈モード、つまり上記選定
した1次、2次及び6次の線形座屈モードに対応する形
状であると予測することができる。なお、この事例1の
解析モデルの場合には、構造物全体の線形応力解析によ
る変形形状に形状相似となる座屈モードは存在しなかっ
た。そして、上記選定した1次、2次及び6次の合計3
個、つまり3個と少ない個数の座屈モードに対しての
み、非線形座屈解析を行えばよい。
FIG. 5 shows a linear buckling mode selected from ten first-order to tenth-order buckling analysis of the analysis model of Case 1 described above. As shown in FIG. 5, the shape of the initial irregularities that can greatly contribute to the reduction of the buckling load is relatively linear and linear with a large wavelength (peaks and valleys or gaps between valleys and valleys). It can be predicted that the shape corresponds to the buckling mode, that is, the selected first-order, second-order, and sixth-order linear buckling modes. In the case of the analysis model of Case 1, there was no buckling mode having a shape similar to the deformed shape obtained by the linear stress analysis of the entire structure. Then, the total of the selected primary, secondary and sixth order is 3
Non-linear buckling analysis may be performed only for a small number of buckling modes, that is, three.

【0023】なお、図示は省略したが、例えば、鋼管部
材を二等辺三角形に剛接合した屋根型の単層円筒ラチス
シェルの解析モデルの場合には、2次の線形座屈モード
は線形静的変形と類似の形状となった。このように、構
造物全体の線形応力解析による変形形状に形状相似な次
数の座屈モードが生じる場合には、この次数の座屈モー
ドに対応する初期不整形状について非線形座屈解析を行
う。そして、この事例の解析モデルの場合には、1次と
2次の合計2個の座屈モードに対応する初期不整を設定
して非線形座屈解析を行い、合理的に座屈評価を実施す
ることができた。
Although not shown, for example, in the case of an analytical model of a roof-type single-layer cylindrical lattice shell in which steel pipe members are rigidly connected to an isosceles triangle, the second-order linear buckling mode is linear static deformation. It became the shape similar to. As described above, when a buckling mode of an order similar to the shape is generated in the deformed shape by the linear stress analysis of the entire structure, the nonlinear buckling analysis is performed on the initial irregular shape corresponding to the buckling mode of this order. In the case of the analysis model of this case, a nonlinear buckling analysis is performed by setting initial imperfections corresponding to a total of two buckling modes of the first order and the second order, and the buckling evaluation is rationally performed. I was able to.

【0024】次いで、比較のために、例えば計算された
全次数について非線形座屈解析を行った従来例の場合
と、RS法を用いたこの発明に係る座屈解析法によって
次数を選定して非線形座屈解析を行った場合の解析所要
時間の試算結果を、表3に示した。事例1は、上記表1
及び図4に示す解析モデルの場合について試算し、事例
2は、事例1と類似構造、つまり剛接合単層のラチスシ
ェル構造で大規模なドーム(スパン200m程度のドー
ム)の場合について試算したものである。
Next, for comparison, for example, a conventional example in which nonlinear buckling analysis is performed on all calculated orders, and a buckling analysis method according to the present invention using the RS method, the order is selected and the nonlinear buckling analysis is performed. Table 3 shows the results of a trial calculation of the required analysis time when buckling analysis was performed. Case 1 is shown in Table 1 above.
In addition, a trial calculation was made for the case of the analysis model shown in FIG. 4, and in case 2, a trial calculation was performed for a structure similar to that of case 1, that is, a large-scale dome (dome having a span of about 200 m) having a rigid-shell single-layer lattice shell structure. is there.

【0025】表3に示すように、RS法を用いたこの発
明に係る座屈解析法によると、事例1では10次のうち
3ケース、事例2では80次のうち5ケースについて、
非線形座屈解析を行えばよく、事例1では約70%、事
例2では約94%の解析所要時間の削減効果が得られ
た。
As shown in Table 3, according to the buckling analysis method according to the present invention using the RS method, in case 1, three cases out of ten orders, and in case two, five cases out of 80 orders,
A nonlinear buckling analysis may be performed, and the time required for analysis is reduced by about 70% in case 1 and about 94% in case 2.

【0026】[0026]

【発明の効果】叙述の説明で明らかなように、この発明
に係る座屈解析法は、構造物全体の線形座屈荷重P
が、1次のPに対して最大でも1.5倍となる次数
まで線形座屈解析をコンピュータにて行い、次いで減少
剛性法にて座屈荷重の下限値P をコンピュータにて
算出し、該計算を行った全次数のうちから、1次の全体
座屈モードの選定と、上記P が1次のP よりも
小さい次数の座屈モードの有無判定を行い、該小さい次
数の座屈モードがある場合は採用選定し、かつ構造物全
体の線形応力解析による変形形状に形状相似な次数の座
屈モードを選定するので、無数に想定され得る初期不整
形状に対して、構造物に荷重が載荷された時に最も発生
しやすい形状として合理的かつ容易に設定することがで
き、構造物の安全設計の観点からも適切な座屈モードを
選択することが可能となる。そして、該選定した少ない
個数の次数の座屈モードについてのみ対応する初期不整
として設定して非線形座屈解析を行えばよいので、座屈
解析作業時間を大幅に削減し、能率良く経済的に座屈解
析を行うことができる。
As is clear from the description, the present invention
The buckling analysis method according to
LIs the first PLOrder at most 1.5 times
Perform linear buckling analysis by computer until then, then reduce
Lower limit of buckling load P by rigidity methodL * On a computer
Calculated and, of all orders for which the calculation has been performed, the entire first order
Selection of buckling mode and PL *Is the primary PL *than
The presence or absence of a buckling mode of a small order is determined,
If there are a number of buckling modes, select and adopt
Locus of order similar to deformed shape by linear stress analysis of body
Selects the bending mode, which can lead to countless possible initial imperfections
Most likely to occur when a load is applied to the structure for the shape
It can be set reasonably and easily as an easy-to-use shape.
The appropriate buckling mode from the viewpoint of the safety design of the structure.
It becomes possible to select. And the selected less
Initial imperfections corresponding only to buckling modes of number order
Buckling analysis can be performed by setting
Analytical work time is greatly reduced, efficient and economical buckling solution
Analysis can be performed.

【0027】また、上記座屈解析法は、解析対象構造物
や過去の解析例などの設計条件データ、解析条件デー
タ、実験・計測データ、及びRS座屈下限値データをデ
ータベースとして構築し、これらのデータベースから解
析対象構造物に係るデータを検索し、また線形構造解析
及び線形座屈解析とRS解析法、及びその計算結果、解
析結果などのファイルをコンピュータ処理により連携さ
せ、基本設計から座屈評価までをシステム化すること
で、より合理的な構造設計を実現することができる。ま
た、一般の構造設計者でも簡単に減少剛性法による計算
ができ、短時間に能率良く構造解析を行うことが可能と
なる。
In the buckling analysis method, design condition data such as a structure to be analyzed and past analysis examples, analysis condition data, experiment / measurement data, and RS buckling lower limit data are constructed as a database. Search for data related to the structure to be analyzed from the database, and link the files such as linear structure analysis and linear buckling analysis with the RS analysis method and their calculation results and analysis results by computer processing. By systemizing the process up to evaluation, a more rational structural design can be realized. In addition, even a general structural designer can easily perform calculation by the reduced stiffness method, and can efficiently perform structural analysis in a short time.

【0028】[0028]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明に係る座屈解析法の手順を示す系統
図である。
FIG. 1 is a system diagram showing a procedure of a buckling analysis method according to the present invention.

【図2】 RS法の解析フローを示す説明図である。FIG. 2 is an explanatory diagram showing an analysis flow of the RS method.

【図3】 座屈解析法を実行するコンピュータ処理シス
テムのハードウエア構成の一例を示す説明図である。
FIG. 3 is an explanatory diagram illustrating an example of a hardware configuration of a computer processing system that executes a buckling analysis method.

【図4】 解析モデルの一例を示す平面説明図である。FIG. 4 is an explanatory plan view showing an example of an analysis model.

【図5】 図4の解析モデルの線形座屈モードを示す平
面説明図である。
FIG. 5 is an explanatory plan view showing a linear buckling mode of the analysis model of FIG. 4;

【図6】 従来の座屈解析法の手順を示す説明図であ
る。
FIG. 6 is an explanatory view showing a procedure of a conventional buckling analysis method.

【符号の説明】[Explanation of symbols]

1 主制御部 2 入出力制御
部 3 記憶装置 4 入力装置 5 表示装置 6 出力装置 11 データ入力手段 12 設計条件
データ記憶手段 13 解析モデル作成手段 14 構造設計
計算手段 15 検索手段 16 線形応力
解析手段 17 線形座屈解析手段 18 RS解析
手段 19 RS値判定手段 20 初期不整
形状設定手段 21 非線形構造解析手段 22 RS座屈
評価手段 23 出力手段 31 データ入力手段 32 設計条件
データ記憶手段 33 解析モデル作成手段 34 構造設計
計算手段 35 線形構造解析手段 36 解析結果
記憶手段 37 初期不整形状設定手段 38 非線形構
造解析手段 39 座屈評価手段 40 出力手段
DESCRIPTION OF SYMBOLS 1 Main control part 2 Input / output control part 3 Storage device 4 Input device 5 Display device 6 Output device 11 Data input means 12 Design condition data storage means 13 Analysis model creation means 14 Structural design calculation means 15 Search means 16 Linear stress analysis means 17 Linear buckling analysis means 18 RS analysis means 19 RS value determination means 20 Initial irregular shape setting means 21 Nonlinear structure analysis means 22 RS buckling evaluation means 23 Output means 31 Data input means 32 Design condition data storage means 33 Analysis model creation means 34 Structural design calculation means 35 Linear structure analysis means 36 Analysis result storage means 37 Initial irregular shape setting means 38 Nonlinear structure analysis means 39 Buckling evaluation means 40 Output means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内海 明子 東京都大田区東糀谷6丁目5番1号 株式 会社石井鐵工所内 Fターム(参考) 5B046 JA08 KA05  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Akiko Utsumi 6-5-1 Higashi-Kojiya, Ota-ku, Tokyo F-term in Ishii Iron Works Co., Ltd. 5B046 JA08 KA05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 連続体又は不連続体よりなる球殻構造又
は円筒殻構造などの構造物を、減少剛性法を用いてコン
ピュータにて計算し座屈解析する解析法であって、構造
物全体の線形座屈荷重Pが、1次のPに対して最大
でも1.5倍となる次数まで線形座屈解析をコンピュー
タにて行い、次いで減少剛性法にて構造物全体の座屈荷
重の下限値P をコンピュータにて算出し、該計算を
行った全次数のうちから、1次の全体座屈モードの選定
と、上記P が1次のP よりも小さい次数の座屈
モードの有無判定を行い、該小さい次数の座屈モードが
ある場合は採用選定し、かつ構造物全体の線形応力解析
による変形形状に形状相似な次数の座屈モードを選定
し、該選定した次数の座屈モードについてのみ対応する
初期不整として設定し、非線形座屈解析を行うことを特
徴とする構造物の座屈解析法。
1. A spherical shell structure comprising a continuous body or a discontinuous body.
Uses the reduced stiffness method to control structures such as cylindrical shells.
This is an analysis method for calculating and buckling analysis using a computer.
Linear buckling load P of the whole objectLIs the first PLUp to
But the linear buckling analysis is calculated up to the order of 1.5 times.
Buckling of the entire structure using the reduced stiffness method
Lower limit P of weightL *Is calculated by a computer, and the calculation is
Selection of the first-order overall buckling mode from all the orders performed
And the above PL *Is the primary PL * Buckling of orders less than
Mode is determined, and the buckling mode of the small order is
In some cases, adoption selection and linear stress analysis of the entire structure
Buckling mode of similar order to the deformed shape
And only for the buckling mode of the selected order
Specially, it is set as an initial imperfection and a nonlinear buckling analysis is performed.
A buckling analysis method for a structure.
【請求項2】 上記構造物の座屈解析法は、構造物に係
るデータを入力するデータ入力手段と、このデータを記
憶し設計条件データベースを構築する設計条件データ記
憶手段と、このデータに基づいて基本構造設計を行い、
基本構造条件データベースを構築し、構造設計計算結果
ファイルに収納する構造設計計算手段と、構造物の解析
条件を作成し解析条件データベースを構築する解析モデ
ル作成手段とを設け、基本構造に適用可能な座屈に関す
る実験・計測データベース及びRS座屈下限値データベ
ースを構築し、これらのデータベースを検索する検索手
段を設け、上記データに基づいて線形応力解析及び線形
座屈解析を行い線形構造解析結果ファイルに収納する線
形応力解析手段及び線形座屈解析手段と、減少剛性法に
よって座屈解析を行いRS解析結果ファイルに収納する
RS解析手段と、座屈荷重の下限値を判定するRS値判
定手段と、選定した座屈モードから初期不整を設定する
初期不整形状設定手段と、この設定した初期不整形状に
ついて非線形構造解析を実施し非線形構造解析ファイル
に収納する非線形構造解析手段と、この非線形構造解析
結果に基づいて座屈評価を行い上記データベース及びフ
ァイルに収納するRS座屈評価手段と、その結果を出力
する出力手段とを備えたコンピュータ処理システムを形
成してなる請求項1記載の構造物の座屈解析法。
2. The buckling analysis method for a structure includes data input means for inputting data relating to the structure, design condition data storage means for storing the data and constructing a design condition database, and based on the data. Design the basic structure
A structural design calculation means for building a basic structure condition database and storing it in a structural design calculation result file, and an analysis model creation means for creating an analysis condition of a structure and constructing an analysis condition database are provided, and are applicable to the basic structure. A buckling experiment / measurement database and RS buckling lower limit database are constructed, search means for searching these databases is provided, and linear stress analysis and linear buckling analysis are performed based on the above data, and a linear structure analysis result file is generated. Linear stress analysis means and linear buckling analysis means to be stored, RS analysis means to perform buckling analysis by the reduced stiffness method and to be stored in an RS analysis result file, and RS value determination means to determine the lower limit of the buckling load; Initial imperfect shape setting means for setting the initial imperfection from the selected buckling mode, and a nonlinear structure for the set initial imperfection shape Non-linear structure analysis means for performing analysis and storing the results in a nonlinear structure analysis file, RS buckling evaluation means for performing buckling evaluation based on the results of the non-linear structure analysis and storing the results in the database and file, and outputting the results 2. A buckling analysis method for a structure according to claim 1, wherein the computer processing system comprises means.
JP2000240343A 2000-08-08 2000-08-08 Buckling analysis method for structures Expired - Lifetime JP4578641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000240343A JP4578641B2 (en) 2000-08-08 2000-08-08 Buckling analysis method for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000240343A JP4578641B2 (en) 2000-08-08 2000-08-08 Buckling analysis method for structures

Publications (2)

Publication Number Publication Date
JP2002056036A true JP2002056036A (en) 2002-02-20
JP4578641B2 JP4578641B2 (en) 2010-11-10

Family

ID=18731715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000240343A Expired - Lifetime JP4578641B2 (en) 2000-08-08 2000-08-08 Buckling analysis method for structures

Country Status (1)

Country Link
JP (1) JP4578641B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103823948A (en) * 2014-03-14 2014-05-28 中国人民解放军空军工程大学 Design method for preventing buckling deformation of cement concrete pavement slabs of airport
CN103994869A (en) * 2014-05-21 2014-08-20 东北大学 Thin-wall cylinder shell structural piece experiment table and measuring method
CN105354391A (en) * 2015-12-01 2016-02-24 中南大学 Bridge-tunnel transition section continuously welded rail track stability analysis method under extreme temperature condition
CN108920797A (en) * 2018-06-22 2018-11-30 江苏科技大学 A kind of evaluation method of hemispherical pressure resistance end socket ultimate bearing capacity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193536A (en) * 1998-12-28 2000-07-14 Ishikawajima Harima Heavy Ind Co Ltd Method for evaluating strength after elastic bucking using linear finite element analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193536A (en) * 1998-12-28 2000-07-14 Ishikawajima Harima Heavy Ind Co Ltd Method for evaluating strength after elastic bucking using linear finite element analysis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103823948A (en) * 2014-03-14 2014-05-28 中国人民解放军空军工程大学 Design method for preventing buckling deformation of cement concrete pavement slabs of airport
CN103994869A (en) * 2014-05-21 2014-08-20 东北大学 Thin-wall cylinder shell structural piece experiment table and measuring method
CN105354391A (en) * 2015-12-01 2016-02-24 中南大学 Bridge-tunnel transition section continuously welded rail track stability analysis method under extreme temperature condition
CN105354391B (en) * 2015-12-01 2018-06-12 中南大学 Bridge tunnel changeover portion CWR Track Stability analysis method under extreme temperature conditions
CN108920797A (en) * 2018-06-22 2018-11-30 江苏科技大学 A kind of evaluation method of hemispherical pressure resistance end socket ultimate bearing capacity

Also Published As

Publication number Publication date
JP4578641B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
Kim et al. Effect of reinforcement on buckling and ultimate strength of perforated plates
Sosa et al. Computation of lower-bound elastic buckling loads using general-purpose finite element codes
Es-Haghi et al. Evaluation of a novel Asymmetric Genetic Algorithm to optimize the structural design of 3D regular and irregular steel frames
Sessa et al. Probabilistic assessment of axial force–biaxial bending capacity domains of reinforced concrete sections
Kharmanda et al. Optimum values of structural safety factors for a predefined reliability level with extension to multiple limit states
CN115270272A (en) HSC-HSSB structure multistage damage constitutive rapid analysis method and system
Key et al. A finite strip method for the elastic—plastic large dlisplacement analysis of thin-walled and cold-formed steel sections
Armentani et al. DBEM and FEM analysis on non-linear multiple crack propagation in an aeronautic doubler-skin assembly
US6205366B1 (en) Method of applying the radial return method to the anisotropic hardening rule of plasticity to sheet metal forming processes
JP2002056036A (en) Buckling analysis method of structure
Cianetti Development of a modal approach for the fatigue damage evaluation of mechanical components subjected to random loads
Gokyer et al. Topology optimization of cylindrical shells with cutouts for maximum buckling strength
Lu Optimum design of cold-formed steel purlins using genetic algorithms
Jármai et al. Optimum cost design of welded box beams with longitudinal stiffeners using advanced backtrack method
Sbaraglia et al. Robust and reliability-based design optimization of a composite floor beam
Yildirim et al. Development of bolted flange design tool based on finite element analysis and artificial neural network
Semenov Strength of Steel Shell Cylindrical Panels Reinforced with an‎ Orthogonal Grid of Stiffeners
Jaskot Steel cantilever beam optimization with ANSYS software
Semenov Dynamic Buckling of Stiffened Shell Structures with Transverse‎ Shears under Linearly Increasing Load
Wang Structural behavior and design of two custom aluminum extruded shapes in custom unitized curtain wall systems
Amde et al. A new hysteresis model for steel members
Mergos Optimum design of reinforced concrete frames according to EC8 and MC2010 with Genetic Algorithms
Ishikawa Iterative Optimal Plastic Design of Steel Frames
Shah et al. ANALYSIS AND OPTIMIZATION OF A PRODUCT CARRIER FOR WEIGHT REDUCTION
Elnady et al. Information systems application on reinforced concrete beams subjected to shear and torsion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4578641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term