JP2002054401A - End wall structure between turbine blades - Google Patents

End wall structure between turbine blades

Info

Publication number
JP2002054401A
JP2002054401A JP2000242373A JP2000242373A JP2002054401A JP 2002054401 A JP2002054401 A JP 2002054401A JP 2000242373 A JP2000242373 A JP 2000242373A JP 2000242373 A JP2000242373 A JP 2000242373A JP 2002054401 A JP2002054401 A JP 2002054401A
Authority
JP
Japan
Prior art keywords
end wall
blade
height
flow
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000242373A
Other languages
Japanese (ja)
Other versions
JP3626899B2 (en
Inventor
Kazuyuki Matsumoto
和幸 松本
Sumio Uchida
澄生 内田
Shingo Matsumoto
慎吾 松本
Keizo Tanaka
慶三 田中
Yoshinori Tanaka
良典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000242373A priority Critical patent/JP3626899B2/en
Publication of JP2002054401A publication Critical patent/JP2002054401A/en
Application granted granted Critical
Publication of JP3626899B2 publication Critical patent/JP3626899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve efficiency by restricting secondary flow on a blade end wall surface to equalize flow distribution in an end wall structure between turbine blades. SOLUTION: A protruded wall 13 protruded in a flow direction G is formed on a surface of a hub side end wall 11 of the stationary blade 10. A height H of the protruded wall 13 is set as 2.6% or less of a height S of the blade 10, a position of an apex 14 is determined to make its locus straight line in the perpendicular direction to the axial direction, and in addition, X1 and X2 are determined to set a position of the apex 14 as the position of a throat part formed between the stationary blades 10 adjacent to each other. A boundary layer of fluid developed on the blade end wall surface is thus locally accelerated, thereby generation of secondary flow is restricted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はタービン翼間の端壁
構造に関し、翼端壁の境界層流の流体の流れを加速し流
れを一様化するような形状として効率を向上させる構造
としたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an end wall structure between turbine blades, and more particularly, to a structure for accelerating the flow of fluid in a boundary layer flow of a blade end wall to make the flow uniform, thereby improving efficiency. Things.

【0002】[0002]

【従来の技術】図5は従来の蒸気タービンやガスタービ
ン、等の翼形状で、静翼を示し、(a)は翼の断面形
状、(b)は(a)におけるA−A断面図である。両図
において、50はタービン静翼であり、51は隣接する
翼間のスロート、52は翼の端壁、53は翼の負圧面、
54は翼の圧力面を、それぞれ示している。タービン翼
50の翼間内で流体は翼の形状に沿って流れる角度を変
えながらスロート51まで加速される。この時、翼間に
は主流の流線60の曲率に応じて生ずる遠心力に釣り合
うような圧力勾配が発生する。しかしながら端壁52上
に発達する境界層内部の速度の遅い流体は、圧力面54
から負圧面53へ向かう圧力勾配にバランスするだけの
遠心力がないため主流60よりも流れの転向が大きくな
り、いわゆる2次流れ61が発生する。この2次流れ6
1のため、翼列出口での翼高さ方向流れ角分布や軸流速
度分布が非一様となり、静翼だけでなく下流の動翼の効
率も低下する原因となっていた。
2. Description of the Related Art FIGS. 5A and 5B show blades of a conventional steam turbine, gas turbine, or the like and show stationary blades. FIG. 5A is a sectional view of the blade, and FIG. is there. In both figures, 50 is a turbine stationary blade, 51 is a throat between adjacent blades, 52 is an end wall of the blade, 53 is a suction surface of the blade,
Numeral 54 indicates a pressure surface of the blade. The fluid is accelerated to the throat 51 while changing the angle of the fluid flowing between the blades 50 along the shape of the blade. At this time, a pressure gradient is generated between the blades so as to balance the centrifugal force generated according to the curvature of the mainstream streamline 60. However, the slow velocity fluid inside the boundary layer developing on the end wall 52 is
Since there is no centrifugal force sufficient to balance the pressure gradient from the pressure to the negative pressure surface 53, the direction of the flow is larger than that of the main flow 60, and a so-called secondary flow 61 is generated. This secondary flow 6
As a result, the flow angle distribution and the axial flow velocity distribution in the blade height direction at the cascade outlet become non-uniform, which causes the efficiency of not only the stationary blades but also the downstream blades to decrease.

【0003】[0003]

【発明が解決しようとする課題】前述のように、従来の
タービン翼においては、翼間の端壁52には主流60と
流れの転向が異なる2次流れ61が発生し、これが翼列
出口での翼高さ方向の流れ角分布を乱し、速度分布を非
一様にして効率を低下させてしまい、又、静翼出口での
流れの乱れは、下流動翼の性能にも影響を与えており、
流体のタービン翼間での流れの改善による効率の向上策
が強く望まれていた。
As described above, in the conventional turbine blade, a secondary flow 61 having a different flow direction from the main flow 60 is generated at the end wall 52 between the blades, and this is generated at the blade row outlet. Disturbing the flow angle distribution in the height direction of the blade, making the velocity distribution non-uniform and lowering the efficiency, and the turbulence of the flow at the exit of the stationary blade also affects the performance of the lower flow blade. And
There has been a strong demand for measures to improve efficiency by improving the flow of fluid between turbine blades.

【0004】そこで本発明では、タービン翼端壁の形状
に工夫を行い、2次流れの発生を抑えて流れの効率を向
上させるような翼端壁面の形状を採用したタービン翼間
の端壁構造を提供することを課題としてなされたもので
ある。
Therefore, in the present invention, the shape of the turbine blade end wall is devised, and the end wall structure between turbine blades adopting a blade end wall shape that suppresses the generation of secondary flow and improves the flow efficiency. The task was to provide

【0005】[0005]

【課題を解決するための手段】本発明は前述の課題を解
決するために、次の(1)〜(4)の手段を提供する。
The present invention provides the following means (1) to (4) in order to solve the above-mentioned problems.

【0006】(1)タービン静翼の翼間ハブ側端壁面は
前縁、後縁両翼端間に頂部を有する突起形状を備え、同
突起形状の頂部は曲面形状であり、かつ、その曲面の頂
点の軌跡はタービン軸と直交する方向に直線を形成し、
更に同直線の位置は隣接する静翼間で形成されるスロー
トの位置に設定されていることを特徴とするタービン翼
間の端壁構造。
(1) The hub-side end wall surface between the blades of the turbine stationary blade has a projection having a top portion between the leading edge and the trailing edge, and the top of the projection shape is a curved surface. The trajectory of the vertex forms a straight line in the direction orthogonal to the turbine axis,
The end wall structure between turbine blades, wherein the position of the straight line is set at a position of a throat formed between adjacent stator blades.

【0007】(2)先端にシュラウドを有し基部がハブ
側のプラットフォームに固定されている動翼の翼間シュ
ラウド内側端壁面は前縁、後縁両翼端間に頂部を有する
突起形状を備え、同突起形状の頂部は曲面形状であり、
かつその曲面の頂点の軌跡はタービン軸と直交する方向
に直線を形成し、更に同直線の位置は隣接する動翼間で
形成されるスロートの位置に設定されていることを特徴
とするタービン翼間の端壁構造。
(2) The inner wall surface of the inner blade between the blades of the blade, which has a shroud at the tip and whose base is fixed to the platform on the hub side, has a protruding shape having a top portion between the leading edge and the trailing edge. The top of the projection is a curved surface,
The trajectory of the apex of the curved surface forms a straight line in a direction orthogonal to the turbine axis, and the position of the straight line is set at the position of a throat formed between adjacent moving blades. End wall structure between.

【0008】(3)前記シュラウドの突起形状に加え
て、更に、前記プラットフォーム外側端壁面にも前記突
起形状が形成されていることを特徴とする(2)記載の
タービン翼間の端壁構造。
(3) The end wall structure between turbine blades according to (2), wherein the protruding shape is further formed on the outer end wall surface of the platform in addition to the protruding shape of the shroud.

【0009】(4)前記突起形状の高さは翼高さの2.
6%以下とすることを特徴とする(1)から(3)のい
ずれかに記載のタービン翼間の端壁構造。
(4) The height of the projection is equal to the height of the blade.
The end wall structure between turbine blades according to any one of (1) to (3), wherein the end wall structure is set to 6% or less.

【0010】本発明の(1)においては、静翼翼間のハ
ブ側端面の突起形状により流体の流れはこの突起形状に
沿って速度を加速して流れ、これによりハブ側端壁境界
層流体の速度も大きくなり、2次流れを抑制することが
できる。又、本発明の(4)のように、突起形状の高さ
を翼の高さの2.6%以下とし、更に流れ方向の突起形
状の頂点の位置をスロートに一致させて最適化を計って
いる。これにより静翼翼間のハブ側端壁面での2次流れ
の発生が抑えられ、静翼出口で、流れが一様化すること
により効率が向上するものである。
In (1) of the present invention, the flow of the fluid flows at an accelerated speed along the shape of the protrusion on the hub-side end face between the stationary blades, whereby the fluid of the hub-side end wall boundary layer fluid flows. The speed is also increased, and the secondary flow can be suppressed. Further, as in (4) of the present invention, the height of the projection is set to 2.6% or less of the height of the blade, and the position of the apex of the projection in the flow direction is matched with the throat for optimization. ing. This suppresses the generation of the secondary flow on the hub-side end wall surface between the stationary blades, and improves the efficiency by making the flow uniform at the stationary blade outlet.

【0011】本発明の(2)では、突起形状を動翼先端
のシュラウド内側壁面に設けたので、この突起形状によ
り動翼シュラウド壁面の流れが加速され、シュラウド側
端壁境界層流体の速度が大きくなり、シュラウド側壁面
近傍に発生する2次流れを抑制することができる。又、
本発明の(4)のように突起形状の高さを翼の高さの
2.6%以下とし、更に流れ方向の突起形状の頂点の位
置をスロートに一致させ、最適化を計っている。これに
より動翼先端シュラウドの端壁面には2次流れが抑制さ
れ、動翼出口での流れが一様化することにより効率が向
上するものである。
In (2) of the present invention, since the protrusion is provided on the shroud inner wall surface at the tip of the blade, the flow of the blade shroud wall surface is accelerated by the protrusion, and the velocity of the boundary layer fluid at the shroud-side end wall is increased. As a result, the secondary flow generated near the shroud side wall surface can be suppressed. or,
As in (4) of the present invention, the height of the protruding shape is set to 2.6% or less of the height of the blade, and the position of the apex of the protruding shape in the flow direction is matched with the throat to optimize. As a result, the secondary flow is suppressed on the end wall surface of the blade tip shroud, and the flow at the blade outlet is made uniform, thereby improving the efficiency.

【0012】本発明の(3)では、動翼先端のシュラウ
ド内側端壁面に加えて、動翼のプラットフォーム内側端
壁面にも突起形状が形成されており、シュラウド及びプ
ラットフォーム両端壁面の流れは、この突起形状で加速
され、シュラウド及びプラットフォーム両端壁面近傍に
発生する2次流れを抑制することができる。又、本発明
の(4)のように突起形状の高さを翼の高さの2.6%
以下とし、更に流れ方向の突起形状の頂点の位置をスロ
ートに一致させ、最適化を計っている。これにより動翼
先端のシュラウド及びプラットフォームの両端壁面には
2次流れが抑制され、動翼出口での流れが一様化するこ
とにより効率が向上するものである。
In (3) of the present invention, in addition to the shroud inner end wall surface at the tip of the rotor blade, a protruding shape is also formed on the platform inner end wall surface of the rotor blade. The secondary flow that is accelerated by the projection shape and occurs near the shroud and the both end wall surfaces of the platform can be suppressed. Also, as in (4) of the present invention, the height of the projection is set to 2.6% of the height of the wing.
In the following, the position of the apex of the protruding shape in the flow direction is matched with the throat for optimization. As a result, the secondary flow is suppressed on the shroud at the tip of the moving blade and on both end wall surfaces of the platform, and the flow at the outlet of the moving blade is made uniform, thereby improving the efficiency.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施の第1形態に係るタービン翼間端壁構造を示し、
(a)は全体の側面図、(b)は翼端壁の斜視図であ
り、図1ではタービンの静翼を示し、蒸気タービン、ガ
スタービン、圧縮機、等の回転体を有するタービンに適
用される。両図において、10は静翼であり、静翼10
はハブ側端壁11とケーシング12との間に固定されて
いる。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 shows an end wall structure between turbine blades according to a first embodiment of the present invention,
(A) is a side view of the whole, (b) is a perspective view of a blade tip wall, FIG. 1 shows a stationary blade of the turbine, and is applied to a turbine having a rotating body such as a steam turbine, a gas turbine, a compressor, and the like. Is done. In both figures, reference numeral 10 denotes a stationary blade,
Is fixed between the hub side end wall 11 and the casing 12.

【0014】本実施の第1形態の静翼は、翼高さがS、
翼の軸方向コード長がCであり、ハブ側端壁11のガス
流れ方向Gには、後述するように両端からX1 ,X 2
寸法となる位置に頂部14を有すると頂部の高さがHの
突起壁13が形成されている。頂部14は翼端からそれ
ぞれX1 ,X 2の位置で、図1(b)にも示すように軸
と直交方向に頂点の軌跡が直線状に形成され、ハブの底
面から高さHを保って形成されている。
The vane of the first embodiment has a blade height S,
When the axial cord length of the blade is C and the top 14 is located at a position of X 1 and X 2 from both ends in the gas flow direction G of the hub side end wall 11 as described later, the height of the top is Is formed on the projection wall 13. The top 14 is located at X 1 and X 2 from the wing tip, respectively, and the trajectory of the apex is formed linearly in the direction orthogonal to the axis as shown in FIG. 1B, and the height H is maintained from the bottom of the hub. It is formed.

【0015】図2は上記に説明した突起壁の形状を示す
図で、(a)はハブ側端壁の平面図、(b)はその断面
図である。(a)に示すように頂部14はタービンの軸
方向Rと直交する方向Pに形成され、翼の両端からそれ
ぞれX1 ,X 2の位置に形成され、その頂部14はなめ
らかな曲面に形成されている。又、X1 ,X 2の位置は
頂点14の軌跡がスロート51の位置と一致する直線と
なるように決定し、高さHは翼高さSの約2.6%以下
としている。
FIGS. 2A and 2B are views showing the shape of the above-described projection wall. FIG. 2A is a plan view of the hub-side end wall, and FIG. 2B is a cross-sectional view thereof. As shown in (a), the top portion 14 is formed in a direction P orthogonal to the axial direction R of the turbine, formed at positions X 1 and X 2 from both ends of the blade, and the top portion 14 is formed into a smooth curved surface. ing. The positions of X 1 and X 2 are determined so that the locus of the vertex 14 is a straight line that coincides with the position of the throat 51, and the height H is set to about 2.6% or less of the blade height S.

【0016】上記構成の実施の第1形態のタービン翼間
の端壁構造においては、高さHの突起壁13を翼間のハ
ブ側端壁11表面に設け、壁面に沿う流体を局所的に突
起壁13のなめらかな面に沿わせることにより加速さ
せ、ハブ側端壁11の境界層流体Vの速度が大きくな
り、従来の2次流れを抑制することができる。
In the end wall structure between the turbine blades according to the first embodiment of the present invention, a projecting wall 13 having a height H is provided on the surface of the hub-side end wall 11 between the blades, and fluid along the wall surface is locally distributed. Acceleration is achieved by following the smooth surface of the projection wall 13, the velocity of the boundary layer fluid V on the hub side end wall 11 increases, and the conventional secondary flow can be suppressed.

【0017】突起壁13の高さHについては、流れが剥
離しない程度の高さとし、突起の流れ方向位置について
もスロート位置との兼ね合いを考慮して、スロート51
の位置に頂部14がくるようにX1 ,X 2を決定し、最
適化を計っている。本実施の第1形態では、突起壁13
の高さHは、前述のように翼高さの約2.6%を限度と
して設定している。
The height H of the projection wall 13 is set to such a level that the flow does not separate, and the position of the projection in the flow direction is also considered in consideration of the throat position.
X 1 and X 2 are determined so that the top 14 comes to the position of, and optimization is performed. In the first embodiment, the projection wall 13
The height H is set to about 2.6% of the blade height as a limit as described above.

【0018】図3は本発明の実施の第2形態に係るター
ビン翼間の端壁構造の側面図であり、動翼に適用した例
である。図において20は動翼であり、先端にはチップ
シュラウド22が取付けられ基部はハブ側のプラットフ
ォーム21へ固定されている。このシュラウド型動翼2
0は翼高さがS、翼の軸方向コード長がCであり、チッ
プシュラウド22のガス流れ方向Gに寸法Y1 ,Y2
なる位置に高さHの頂部24を有する突起壁23が形成
されている。この突起壁23の寸法Y1 ,Y2、頂部2
3の位置は図2で説明した位置関係と同じであり、その
頂部24はなめらかな曲面で形成された頂部であり、軸
方向と直交する直線上に形成され、その位置はスロート
51の位置に一致させている。又、高さHは翼高さSの
2.6%を上限として設定している。
FIG. 3 is a side view of an end wall structure between turbine blades according to a second embodiment of the present invention, which is an example applied to a moving blade. In the drawing, reference numeral 20 denotes a moving blade, a tip shroud 22 is attached to a tip, and a base is fixed to a platform 21 on the hub side. This shroud-type bucket 2
0 is a blade wall 23 having a top 24 having a height H at a position where the blade height is S, the blade axial code length is C, and the dimensions are Y 1 and Y 2 in the gas flow direction G of the tip shroud 22. Is formed. The dimensions Y 1 and Y 2 of the projection wall 23 and the top 2
The position of 3 is the same as the positional relationship described with reference to FIG. 2, and the top 24 is a top formed by a smooth curved surface and is formed on a straight line perpendicular to the axial direction. Are matched. The height H is set at 2.6% of the blade height S as an upper limit.

【0019】上記の実施の第2形態においては、動翼2
0において、高さHの突起壁23をチップシュラウド2
2に形成し、壁面に沿う流体を局所的に突起壁23のな
めらかな面に沿わせることにより加速させ、チップシュ
ラウド22側の端壁境界層流体の速度が大きくなり、チ
ップシュラウド22側端壁近傍に発生する2次流れを抑
制することができる。
In the second embodiment, the moving blade 2
0, the projection wall 23 having the height H is attached to the tip shroud 2.
2, the fluid along the wall surface is locally accelerated by following the smooth surface of the protruding wall 23, and the velocity of the boundary layer fluid on the tip shroud 22 side is increased, whereby the tip shroud 22 side end wall is increased. The secondary flow generated in the vicinity can be suppressed.

【0020】高さHについては、流れが剥離しない程度
の高さとし、突起の流れ方向位置についても、スロート
位置との兼ね合いを考慮して両者を最適化する必要があ
る。そこで、本実施の第2形態では、突起の高さを前述
のように翼高さSの2.6%を限度として、またその流
れ方向の位置については、前述のように突起壁23の頂
部24の軌跡がスロート部へ一致する直線形状に設定し
ている。
The height H must be such that the flow does not separate, and the position of the projection in the flow direction must be optimized in consideration of the balance with the throat position. Therefore, in the second embodiment, the height of the protrusion is limited to 2.6% of the blade height S as described above, and the position in the flow direction is set at the top of the protrusion wall 23 as described above. 24 trajectories are set in a straight line shape that matches the throat portion.

【0021】図4は本発明の実施の第3形態に係るター
ビン翼間の端壁構造の側面図であり、チップシュラウド
を有する動翼のシュラウドとプラットフォームの両方に
適用した例である。図において、30は動翼であり、先
端にはチップシュラウド32が取付けられ基部はハブ側
のプラットフォーム31へ固定されている。このシュラ
ウド型動翼30は翼高さがS、翼の軸方向コード長がC
であり、チップシュラウド32の端壁面のガス流れ方向
Gに図3の例と同じく寸法Y1 ,Y 2 となる位置に、
更にプラットフォーム31側の端壁面の流れ方向に
1 ,Z 2となる位置に、それぞれ高さHの突起壁3
3,35を設けたものである。
FIG. 4 is a side view of an end wall structure between turbine blades according to a third embodiment of the present invention, which is an example applied to both a shroud and a platform of a moving blade having a tip shroud. In the drawing, reference numeral 30 denotes a moving blade, a tip shroud 32 is attached to a tip, and a base is fixed to a platform 31 on the hub side. This shroud-type blade 30 has a blade height S and a blade axial code length C.
In the gas flow direction G on the end wall surface of the tip shroud 32, at the position where the dimensions Y 1 and Y 2 are the same as in the example of FIG.
Further, the projection wall 3 having a height H is located at a position Z 1 and Z 2 in the flow direction on the end wall surface on the platform 31 side.
3, 35 are provided.

【0022】上記の突起壁33,35の寸法Y1 ,Y 2
及びZ1 ,Z 2、頂部34,36の位置は図2で説明し
た位置関係と同じであり、その頂部36,34はなめら
かな曲面で形成された頂部であり、その軌跡は軸方向に
直交する直線上に形成され、その位置はスロート51の
位置に一致させている。
The dimensions Y 1 and Y 2 of the projection walls 33 and 35 are described.
The positions of Z 1 , Z 2 , and the tops 34, 36 are the same as the positional relationship described with reference to FIG. 2, and the tops 36, 34 are tops formed by a smooth curved surface, and the trajectory thereof is orthogonal to the axial direction. The throat 51 is formed on a straight line.

【0023】上記構成の実施の第3形態においては、高
さHの突起壁をチップシュラウド32及びプラットフォ
ーム31側の端壁に設け、壁面に沿う流体を局所的に突
起壁のなめらかな面に沿わせることにより加速させ、両
端壁境界層流体の速度が大きくなり、シュラウド32及
びプラットフォーム31側端壁付近に発生する2次流れ
を抑制することができる。
In the third embodiment of the above construction, a projection wall having a height H is provided on the end wall on the side of the chip shroud 32 and the platform 31, and the fluid along the wall surface is locally distributed along the smooth surface of the projection wall. As a result, the velocity of the boundary layer fluid at both end walls is increased, and the secondary flow generated near the shroud 32 and the end wall on the platform 31 side can be suppressed.

【0024】突起の高さHについては、流れが剥離しな
い程度の高さとし、突起の流れ方向位置についても、ス
ロート位置との兼ね合いを考慮して両者を最適化する必
要がある。本実施の第3形態では、突起の高さHを翼高
さSの約2.6%を限度として突出させ、またその流れ
方向位置については、前述のように突起の頂部34,3
6がスロート部に一致する形状としている。
The height H of the projections must be such that the flow does not separate, and the position in the flow direction of the projections must be optimized in consideration of the balance with the throat position. In the third embodiment, the height H of the protrusion is projected up to about 2.6% of the blade height S, and the position of the protrusion in the flow direction is determined as described above.
6 has a shape corresponding to the throat portion.

【0025】[0025]

【発明の効果】本発明のタービン翼間の端壁構造は、
(1)タービン静翼の翼間ハブ側端壁面は前縁、後縁両
翼端間に頂部を有する突起形状を備え、同突起形状の頂
部は曲面形状であり、かつ、その曲面の頂点の軌跡はタ
ービン軸と直交する方向に直線を形成し、更に同直線の
位置は隣接する静翼間で形成されるスロートの位置に設
定されていることを特徴としている。
According to the present invention, the end wall structure between turbine blades is as follows.
(1) The inter-blade hub-side end wall surface of the turbine vane has a projection having a top between the leading edge and the trailing edge of the blade, and the top of the projection has a curved surface and the locus of the top of the curved surface. Is characterized in that a straight line is formed in a direction orthogonal to the turbine axis, and the position of the straight line is set to the position of a throat formed between adjacent stator vanes.

【0026】上記の構成により、静翼翼間のハブ側端面
の突起形状により流体の流れはこの突起形状に沿って速
度を加速して流れ、これによりハブ側端壁境界層流体の
速度も大きくなり、2次流れを抑制することができる。
又、本発明の(4)では、突起形状の高さを翼の高さの
2.6%以下とし、更に流れ方向の突起形状の頂点の位
置をスロートに一致させて最適化を計っている。これに
より静翼翼間のハブ側端壁面には2次流れが発生するこ
とが抑えられ、静翼出口での流れが一様化することによ
り効率が向上するものである。
With the above configuration, the flow of the fluid is accelerated along the shape of the protrusion on the hub-side end face between the stationary blades, and the flow of the fluid is accelerated along the shape of the protrusion, thereby increasing the velocity of the fluid on the hub-side end wall boundary layer. The secondary flow can be suppressed.
In (4) of the present invention, the height of the protrusion is set to 2.6% or less of the height of the blade, and the position of the apex of the protrusion in the flow direction is matched with the throat for optimization. . As a result, generation of secondary flow on the hub-side end wall surface between the stator blades is suppressed, and the flow at the outlet of the stator blades is made uniform, thereby improving efficiency.

【0027】本発明の(2)では、(1)の発明と同じ
構成の突起形状を動翼先端のシュラウド内側壁面に設け
たので、この突起形状により動翼シュラウド壁面の流れ
は流れを加速され、シュラウド側端壁境界層流体の速度
が大きくなり、シュラウド側壁面近傍に発生する2次流
れを抑制することができる。又、本発明の(4)のよう
に、突起形状の高さを翼の高さの2.6%以下とし、更
に流れ方向の突起形状の頂点の位置をスロートに一致さ
せ、最適化を計っている。これにより動翼先端シュラウ
ドの端壁面での2次流れが抑制され、動翼出口での流れ
が一様化することにより効率が向上するものである。
In (2) of the present invention, since the protrusion having the same configuration as that of the invention of (1) is provided on the inner wall surface of the shroud at the tip of the blade, the flow on the wall of the blade shroud is accelerated by the protrusion shape. Therefore, the velocity of the shroud-side end wall boundary layer fluid increases, and the secondary flow generated near the shroud side wall surface can be suppressed. Further, as in (4) of the present invention, the height of the projection is set to 2.6% or less of the height of the blade, and the position of the apex of the projection in the flow direction is made to coincide with the throat to optimize. ing. As a result, the secondary flow on the end wall surface of the bucket tip shroud is suppressed, and the flow at the bucket outlet is made uniform to improve the efficiency.

【0028】本発明の(3)では、動翼先端のシュラウ
ド内側端壁面に加えて、動翼のプラットフォーム内側端
壁面にも突起形状が形成されており、シュラウド及びプ
ラットフォーム両端壁面の流れは、この突起形状で加速
され、シュラウド及びプラットフォーム両端壁面近傍に
発生する2次流れを抑制することができる。又、本発明
の(4)のように突起形状の高さを翼の高さの2.6%
以下とし、更に流れ方向の突起形状の頂点の位置をスロ
ートに一致させ、最適化を計っている。これにより動翼
先端のシュラウド及びプラットフォームの両端壁面では
2次流れが抑制され、動翼出口での流れが一様化するこ
とにより効率が向上するものである。
In (3) of the present invention, in addition to the shroud inner end wall surface at the tip of the rotor blade, a protruding shape is also formed on the platform inner end wall surface of the rotor blade. The secondary flow that is accelerated by the projection shape and occurs near the shroud and the both end wall surfaces of the platform can be suppressed. Also, as in (4) of the present invention, the height of the projection is set to 2.6% of the height of the wing.
In the following, the position of the apex of the protruding shape in the flow direction is matched with the throat for optimization. As a result, the secondary flow is suppressed at the shroud at the tip of the moving blade and at both end wall surfaces of the platform, and the flow at the outlet of the moving blade is made uniform, thereby improving the efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態に係るタービン翼間の
端壁構造を示し、(a)は側面図、(b)は端壁部の斜
視図である。
FIG. 1 shows an end wall structure between turbine blades according to a first embodiment of the present invention, wherein (a) is a side view and (b) is a perspective view of an end wall portion.

【図2】本発明の実施の第1〜第3形態に係るタービン
翼間の端壁構造の位置関係を示し、(a)は平面図、
(b)は端壁の断面図である。
FIG. 2 shows a positional relationship of an end wall structure between turbine blades according to the first to third embodiments of the present invention, wherein (a) is a plan view,
(B) is sectional drawing of an end wall.

【図3】本発明の実施の第2形態に係るタービン翼間の
端壁構造の側面図である。
FIG. 3 is a side view of an end wall structure between turbine blades according to a second embodiment of the present invention.

【図4】本発明の実施の第3形態に係るタービン翼間の
端壁構造の側面図である。
FIG. 4 is a side view of an end wall structure between turbine blades according to a third embodiment of the present invention.

【図5】従来のタービン翼間の端壁構造を示し、(a)
は翼の断面図、(b)は(a)におけるA−A断面図で
ある。
5A and 5B show a conventional end wall structure between turbine blades, and FIG.
Is a sectional view of the wing, and (b) is an AA sectional view in (a).

【符号の説明】[Explanation of symbols]

10 静翼 11 ハブ側端壁 12 ケーシング 13,23,33,35 突起壁 14,24,34,36 頂部 20,30 動翼 21,31 プラットフォーム 22,32 チップシュラウド 51 スロート DESCRIPTION OF SYMBOLS 10 Stator blade 11 Hub side end wall 12 Casing 13,23,33,35 Projection wall 14,24,34,36 Top 20,30 Moving blade 21,31 Platform 22,32 Chip shroud 51 Throat

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 慎吾 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 田中 慶三 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 田中 良典 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 Fターム(参考) 3G002 BA04 BB01 GA07 GA17 GB05 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shingo Matsumoto 2-1-1 Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. No. 1 Inside Takasago Works, Mitsubishi Heavy Industries, Ltd. (72) Inventor Yoshinori Tanaka 2-5-1 Marunouchi, Chiyoda-ku, Tokyo F-term in Mitsubishi Heavy Industries, Ltd. 3G002 BA04 BB01 GA07 GA17 GB05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 タービン静翼の翼間ハブ側端壁面は前
縁、後縁両翼端間に頂部を有する突起形状を備え、同突
起形状の頂部は曲面形状であり、かつ、その曲面の頂点
の軌跡はタービン軸と直交する方向に直線を形成し、更
に同直線の位置は隣接する静翼間で形成されるスロート
の位置に設定されていることを特徴とするタービン翼間
の端壁構造。
1. An inter-blade hub-side end wall surface of a turbine stationary blade has a projection having a top portion between a leading edge and a trailing edge, and the top of the projection shape has a curved surface shape, and a vertex of the curved surface. Wherein the trajectory forms a straight line in a direction orthogonal to the turbine axis, and the position of the straight line is set at the position of a throat formed between adjacent stator vanes. .
【請求項2】 先端にシュラウドを有し基部がハブ側の
プラットフォームに固定されている動翼の翼間シュラウ
ド内側端壁面は前縁、後縁両翼端間に頂部を有する突起
形状を備え、同突起形状の頂部は曲面形状であり、かつ
その曲面の頂点の軌跡はタービン軸と直交する方向に直
線を形成し、更に同直線の位置は隣接する動翼間で形成
されるスロートの位置に設定されていることを特徴とす
るタービン翼間の端壁構造。
2. A blade having a shroud at a tip and a base fixed to a platform on a hub side, an inner wall surface between inner blades of a blade is provided with a protruding shape having a top portion between both leading and trailing edges. The top of the protruding shape is a curved surface, and the locus of the apex of the curved surface forms a straight line in a direction orthogonal to the turbine axis, and the position of the straight line is set to the position of the throat formed between adjacent rotor blades An end wall structure between turbine blades.
【請求項3】 前記シュラウドの突起形状に加えて、更
に、前記プラットフォーム外側端壁面にも前記突起形状
が形成されていることを特徴とする請求項2記載のター
ビン翼間の端壁構造。
3. The end wall structure between turbine blades according to claim 2, wherein the protruding shape is further formed on the outer end wall surface of the platform in addition to the protruding shape of the shroud.
【請求項4】 前記突起形状の高さは翼高さの2.6%
以下とすることを特徴とする請求項1から3のいずれか
に記載のタービン翼間の端壁構造。
4. The height of the projection is 2.6% of the blade height.
The end wall structure between turbine blades according to any one of claims 1 to 3, wherein:
JP2000242373A 2000-08-10 2000-08-10 End wall structure between turbine blades Expired - Lifetime JP3626899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000242373A JP3626899B2 (en) 2000-08-10 2000-08-10 End wall structure between turbine blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000242373A JP3626899B2 (en) 2000-08-10 2000-08-10 End wall structure between turbine blades

Publications (2)

Publication Number Publication Date
JP2002054401A true JP2002054401A (en) 2002-02-20
JP3626899B2 JP3626899B2 (en) 2005-03-09

Family

ID=18733404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000242373A Expired - Lifetime JP3626899B2 (en) 2000-08-10 2000-08-10 End wall structure between turbine blades

Country Status (1)

Country Link
JP (1) JP3626899B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113685A1 (en) * 2003-06-21 2004-12-29 Alstom Technology Ltd Lateral wall embodiment for a diverting flow channel
JP2006291949A (en) * 2005-04-14 2006-10-26 General Electric Co <Ge> Crescentic ramp turbine stage
JP2009531593A (en) * 2006-03-31 2009-09-03 アルストム テクノロジー リミテッド Guide blades for fluid machinery, especially steam turbines
JP2012092825A (en) * 2010-09-28 2012-05-17 Hitachi Ltd Steam turbine stator vane, and steam turbine using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352180B2 (en) 2013-10-23 2019-07-16 General Electric Company Gas turbine nozzle trailing edge fillet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113685A1 (en) * 2003-06-21 2004-12-29 Alstom Technology Ltd Lateral wall embodiment for a diverting flow channel
JP2006291949A (en) * 2005-04-14 2006-10-26 General Electric Co <Ge> Crescentic ramp turbine stage
JP2009531593A (en) * 2006-03-31 2009-09-03 アルストム テクノロジー リミテッド Guide blades for fluid machinery, especially steam turbines
JP2012092825A (en) * 2010-09-28 2012-05-17 Hitachi Ltd Steam turbine stator vane, and steam turbine using the same
US9011084B2 (en) 2010-09-28 2015-04-21 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine stator vane and steam turbine using the same

Also Published As

Publication number Publication date
JP3626899B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
JP4640339B2 (en) Wall shape of axial flow machine and gas turbine engine
JP3621216B2 (en) Turbine nozzle
JP5433793B2 (en) Transonic wing
KR101790421B1 (en) Structures and methods for forcing coupling of flow fields of adjacent bladed elements of turbomachines, and turbomachines incorporating the same
AU2005265916B2 (en) Blower
JP5449087B2 (en) Wing
CN109790853B (en) Centrifugal compressor and turbocharger
JP5502695B2 (en) Axial flow compressor
JP3790101B2 (en) Mixed flow pump
JP5562566B2 (en) Wing body for fluid machinery
WO2008075467A1 (en) Cascade of axial compressor
JP3677214B2 (en) Axial fan
JPS6133968B2 (en)
CN110939603A (en) Blade and axial flow impeller using same
JP2002054401A (en) End wall structure between turbine blades
US11572890B2 (en) Blade and axial flow impeller using same
WO2018116394A1 (en) Turbocharger, turbocharger nozzle vane, and turbine
JP2019127865A (en) Centrifugal fan
JP2003180051A (en) Moving blade of totally-enclosed fan-cooled rotating electric machine
JP2002021785A (en) Centrifugal compressor
JP6605147B2 (en) Turbocharger and turbocharger nozzle vanes and turbines
JP3927887B2 (en) Stator blade of axial compressor
JPH11200802A (en) Moving blade for turbomachinery
JP2000018004A (en) Radial turbine with nozzle
JPH10141284A (en) Impeller of blower

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041206

R151 Written notification of patent or utility model registration

Ref document number: 3626899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

EXPY Cancellation because of completion of term