JP2002053910A - Refining agent for molten iron using burnt ash of dust and refining method - Google Patents

Refining agent for molten iron using burnt ash of dust and refining method

Info

Publication number
JP2002053910A
JP2002053910A JP2000236093A JP2000236093A JP2002053910A JP 2002053910 A JP2002053910 A JP 2002053910A JP 2000236093 A JP2000236093 A JP 2000236093A JP 2000236093 A JP2000236093 A JP 2000236093A JP 2002053910 A JP2002053910 A JP 2002053910A
Authority
JP
Japan
Prior art keywords
combustion ash
dust
hot metal
refining
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000236093A
Other languages
Japanese (ja)
Inventor
Akifumi Seze
昌文 瀬々
Ryoichi Sakomura
良一 迫村
Kazuo Wakabayashi
一男 若林
Mitsuru Ueda
満 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAYAMA SEKKAI KOGYO KK
Nippon Steel Corp
Original Assignee
NAKAYAMA SEKKAI KOGYO KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAYAMA SEKKAI KOGYO KK, Nippon Steel Corp filed Critical NAKAYAMA SEKKAI KOGYO KK
Priority to JP2000236093A priority Critical patent/JP2002053910A/en
Publication of JP2002053910A publication Critical patent/JP2002053910A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refining agent for molten iron and a refining method using burnt ash of dust with which an expensive flux, such as lime and lime stone, is saved and the problem on the environment of the burnt ash can be solved at the same time by using a burnt ash generated in the case of burning a dust worked into RDF(refuse derived fuel) in an incinerator, for dephosphorization and desulfurization of the molten iron. SOLUTION: The burnt ash generated in the case of burning the dust in the incinerator, is used for refining for removing impurity in the molten iron 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一般に発生する燃
焼性の塵を焼却炉で燃焼させた際に生成する燃焼灰を用
いた溶銑の精錬剤及びその溶銑の精錬方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refining agent for molten iron using combustion ash generated when combustible dust generally generated is burned in an incinerator and a method for refining the molten iron.

【0002】[0002]

【従来の技術】従来、一般に発生する燃焼性の塵を固形
燃料、即ちRDF(Refuse Derived F
uel)に加工して、燃料として用いる塵の有効活用が
推進されている。このRDFを焼却炉で燃焼した際に燃
焼灰が生成する。この燃焼灰は、その殆どが凝集剤等を
添加して粒状に加工したり、セメント等を混合して塊に
加工してから廃棄物として処理されている。一方、製鉄
業では、高炉や溶解炉等で溶製された溶銑に含まれる燐
(P)や硫黄(S)等の不純物を除去するため、溶銑予
備処理が行われている。この溶銑予備処理は、生石灰
(CaO)や石灰石(CaCO3 )等の主原料に、Pや
Sの除去効果を高めるため、蛍石(CaF2 )や塩化カ
ルシウム(CaCl 2 )、酸化鉄等の副原料を配合(以
下主原料及び副原料を含めフラックスという)して、溶
銑中に吹き込み(インジェクション)を行ったり、ある
いは溶銑の上に添加して攪拌を行っている。しかし、こ
の処理は必ずしも反応効率が高いとは言い難く、処理後
の溶銑中のPやS濃度が高くなったり、フラックスであ
るCaOやCaCO3 等の使用量が増加し、処理コスト
が上昇する。しかも、溶銑予備処理の際に発生するスラ
グ量も増加し、スラグ処理費用、スラグの廃棄場所の確
保等にも問題が生じる。この対策として、溶銑予備処理
における反応効率を高め、スラグ量を抑制する試みとし
ては、特開昭57−140808号公報に記載されてい
るように、処理に用いるCaO、CaF2 、酸化鉄等の
フラックスを溶融してから冷却、破砕したいわゆるプリ
メルトフラックスを用い、脱P(脱燐)、脱S(脱硫)
の効率を高め、フラックスの使用量の節減を図ることが
行われている。また、特開平2−250913号公報に
記載されているように、脱P処理の際に、塩基度(Ca
O/SiO2 )を2.5以下に調整した脱Pフラックス
に酸化マンガンを5〜20重量%配合して、低融点の化
合物を形成し、脱P剤である生石灰と溶銑中のPの反応
を阻害するダイカルシウムシリケイト(2CaO・Si
2 )皮膜の生成を抑制して、脱P効率を高める方法が
ある。
2. Description of the Related Art Conventionally, combustible dust generally generated is solidified.
Fuel, RDF (Refuse Derived F)
uel) and effectively use the dust used as fuel
Being promoted. When this RDF is burned in an incinerator,
Burnt ash forms. Most of this combustion ash contains coagulants, etc.
Add and process into granules, or mix cement etc. to form a lump
After being processed, it is disposed of as waste. Meanwhile, steelmaking
In the industry, phosphorus contained in hot metal smelted in blast furnaces, melting furnaces, etc.
To remove impurities such as (P) and sulfur (S)
Preparatory processing is being performed. This hot metal pretreatment is
(CaO) and limestone (CaCOThree ), Etc.
To increase the effect of removing S, fluorite (CaFTwo ) Or chloride
Lucium (CaCl Two ), And auxiliary materials such as iron oxide
The lower main raw material and auxiliary raw material are called flux)
Injecting or injecting pig iron
Or it is added to the hot metal and stirred. But this
Treatment is not necessarily high in reaction efficiency.
P or S concentration in the hot metal of
CaO and CaCOThree Etc., the use amount increases, and the processing cost
Rises. In addition, the sludge generated during hot metal pretreatment is
The amount of slag has also increased, and slag disposal costs and
There is also a problem with security. As a countermeasure, hot metal pretreatment
Attempts to increase the reaction efficiency and control the amount of slag
Are described in JP-A-57-140808.
As described above, CaO, CaFTwo , Iron oxide, etc.
The so-called pre-cooled, crushed flux after melting the flux
De-P (dephosphorization), De-S (desulfurization) using melt flux
Efficiency and reduce flux usage
Is being done. Also, Japanese Patent Application Laid-Open No. 2-250913 discloses
As described, during the de-P treatment, the basicity (Ca
O / SiOTwo ) Adjusted to 2.5 or less
Mixing 5-20% by weight of manganese oxide to lower the melting point
Reaction between P and lime in hot metal which forms compound and removes P
Calcium silicate (2CaO.Si) that inhibits
O Two ) A method to suppress the formation of the film and increase the de-P efficiency
is there.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開昭
57−140808号公報に記載された方法では、Ca
O、CaF2 、酸化鉄等のフラックスを溶融してから、
冷却、破砕したプリメルトフラックスを用いるため、溶
融処理の設備が必要になり、冷却、破砕に多大の費用を
要する。しかも、脱P、脱Sの処理時間の短縮やフラッ
クスの使用量節減をある程度は期待できるが、脱P、脱
Sの反応効率を高めるのに化学平衡的な限界があり、か
かる費用に見合う以上の効果を期待することが難しい。
更に、特開平2−250913号公報に記載された方法
では、脱P反応を所望のレベルに向上することが困難で
あり、CaOや酸化マンガン等の高価なフラックスの使
用量が増し、処理コストの上昇やスラグの発生量増加等
の問題がある。一方、前述したRDFを焼却炉で燃焼し
た際に生成する燃焼灰は、廃棄物として埋め立てる場所
や投棄する場所が極めて少なく、近い将来大きな問題と
なることが予想されており、資源としての有効活用のた
めの研究が行われている。
However, according to the method described in Japanese Patent Application Laid-Open No. 57-140808,
After melting fluxes such as O, CaF 2 and iron oxide,
Since the cooled and crushed pre-melt flux is used, equipment for melting treatment is required, and a great deal of cost is required for cooling and crushing. In addition, it is expected that the processing time for de-P and de-S will be shortened and the amount of flux used can be reduced to some extent. However, there is a chemical equilibrium limit to increase the reaction efficiency of de-P and de-S, and the cost is higher. It is difficult to expect the effect.
Furthermore, in the method described in JP-A-2-250913, it is difficult to improve the P removal reaction to a desired level, the amount of expensive fluxes such as CaO and manganese oxide is increased, and the processing cost is reduced. There are problems such as rising and the amount of slag generated. On the other hand, the combustion ash generated when the above-mentioned RDF is burned in an incinerator has very few places to be landfilled or dumped, and is expected to become a major problem in the near future. Research for is being done.

【0004】本発明はかかる事情に鑑みてなされたもの
で、RDFを焼却炉で燃焼させた際に生成する燃焼灰を
溶銑の脱P、脱S処理に用い、生石灰や石灰石等の高価
なフラックスを節減し、燃焼灰の環境上の問題を同時に
解決することができる塵の燃焼灰を用いた溶銑の精錬剤
及び精錬方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and uses combustion ash generated when RDF is burned in an incinerator for de-P and S treatment of hot metal, and uses an expensive flux such as quicklime or limestone. It is an object of the present invention to provide a refining agent and a refining method for hot metal using dust combustion ash that can simultaneously solve the environmental problem of combustion ash.

【0005】[0005]

【課題を解決するための手段】前記目的に沿う本発明の
塵の燃焼灰を用いた溶銑の精錬剤は、塵を焼却炉で燃焼
させた際に生成する燃焼灰を溶銑の不純物除去精錬に用
いる。溶銑の不純物を除去する精錬剤として、RDFに
加工された塵を焼却炉で燃焼してプリメルト(予め溶
解)して生成した燃焼灰(RDF灰)を用いるので、溶
銑と接触して迅速に溶解して溶銑の脱P、脱S反応を促
進することができ、しかも、燃焼灰の有効活用ができ、
環境上の問題を解消できる。
According to the present invention, there is provided a refining agent for hot metal using dust combustion ash according to the present invention, which burns ash generated when dust is burned in an incinerator to remove impurities from the hot metal for refining. Used. As a refining agent for removing impurities from hot metal, combustion ash (RDF ash) generated by burning pre-melt (pre-melted) by burning dust processed into RDF in an incinerator is used. To promote the de-P and S-reactions of the hot metal, and also to make effective use of the combustion ash,
Eliminate environmental problems.

【0006】ここで、前記燃焼灰の主成分として、Ca
Oを25〜77重量%、SiO2 を12〜31重量%、
Al23 を9〜27重量%を含有することが好まし
い。これにより、所定濃度のSiO2 、Al23 を含
んでいるので、溶銑に接触した際に速やかに溶解し、し
かも、低融点のスラグを形成することができ、脱P、脱
S反応をより促進することができる。燃焼灰に含まれる
CaOが25重量%より少ないと、脱P反応に必要なC
aOが不足し、脱Pが悪くなる。一方、CaOが77重
量%を超えると、燃焼灰の融点が高くなり、溶銑と接触
した際の反応性が低下する。燃焼灰に含まれるSiO2
が12重量%より少ないと、プリメルトされた燃焼灰の
融点が高くなり、反応性が悪くなる。SiO2 が31重
量%を超えると、燃焼灰の融点は低くなるが、有効なC
aOが不足して脱P効率が低下する。燃焼灰に含まれる
Al23 が9重量%より少ないと、燃焼灰の融点が高
くなり、溶銑と接触した際の反応性が低下し、逆に、A
23 が27重量%を超えると、燃焼灰の融点を低く
できるが、有効なCaOが不足して脱P効率が低下す
る。
Here, the main component of the combustion ash is Ca
O and 25-77 wt%, a SiO 2 12 to 31 wt%,
It is preferred that the al 2 O 3 containing 9 to 27 wt%. As a result, since it contains SiO 2 and Al 2 O 3 at a predetermined concentration, it can be quickly dissolved when it comes into contact with hot metal, and can form a slag having a low melting point. More can be promoted. If the amount of CaO contained in the combustion ash is less than 25% by weight, the C
Insufficient aO results in poor P removal. On the other hand, if the content of CaO exceeds 77% by weight, the melting point of the combustion ash becomes high, and the reactivity at the time of contact with hot metal decreases. SiO 2 contained in combustion ash
If less than 12% by weight, the melting point of the pre-melted combustion ash becomes high, and the reactivity becomes poor. If the SiO 2 content exceeds 31% by weight, the melting point of the combustion ash decreases, but the effective C
aO is insufficient, and the P removal efficiency is reduced. If the amount of Al 2 O 3 contained in the combustion ash is less than 9% by weight, the melting point of the combustion ash increases, and the reactivity when contacting with hot metal decreases.
If l 2 O 3 exceeds 27% by weight, the melting point of the combustion ash can be lowered, but the effective CaO is insufficient and the P removal efficiency is reduced.

【0007】更に、前記燃焼灰に内分で、5〜50重量
%の生石灰を混合することが好ましい。燃焼灰に生石灰
を更に混合して溶銑に吹き込むことにより、有効なCa
Oを適正量に確保できるため、脱P、脱S効率の向上と
総合的なフラックスの節減を図ることができる。燃焼灰
に配合する生石灰(CaO)が5重量%より少ないと、
脱Pに作用する生石灰が少な過ぎて、添加した割に脱P
反応が向上しない。一方、生石灰(CaO)が50重量
%を超えると、脱P効率が飽和し、生石灰の原単位が増
加し、処理コストが上昇する。
Further, it is preferable that 5 to 50% by weight of quicklime is mixed with the combustion ash. Combustion ash is further mixed with quick lime and blown into the hot metal to provide effective Ca.
Since an appropriate amount of O can be ensured, it is possible to improve the removal efficiency of P and S and to reduce the total flux. If less than 5% by weight of quick lime (CaO) is added to the combustion ash,
The amount of quicklime that acts on de-P is too small.
The reaction does not improve. On the other hand, if the amount of quicklime (CaO) exceeds 50% by weight, the de-P efficiency is saturated, the unit consumption of quicklime increases, and the processing cost increases.

【0008】また、前記目的に沿う本発明の塵の燃焼灰
を用いた溶銑の精錬方法は、塵を焼却炉で燃焼した際に
生成され、主成分としてCaOを25〜77重量%、S
iO2を12〜31重量%、Al23 を9〜27重量
%含有した燃焼灰を溶銑に添加して、該溶銑の脱燐、又
は脱硫を行う。この方法により、溶銑に接触した際に速
やかに溶解して低融点のスラグを形成し、脱P、脱S反
応を促進し、廃棄物である燃焼灰を有効活用して従来の
脱P、脱S用フラックスを用いた場合と変わらない効果
を得ることができ、燃焼灰の埋め立て等の環境上の問題
を解決することができる。
Further, the method for refining hot metal using dust combustion ash according to the present invention according to the present invention, which is produced when dust is burned in an incinerator, contains 25 to 77% by weight of CaO as a main component,
iO 2 and 12 to 31 wt%, was added to the combustion ash of the Al 2 O 3 containing 9 to 27 wt% in the hot metal is carried out dephosphorization of the solution pig iron, or a desulfurization. By this method, when contacted with hot metal, it is quickly melted to form a slag having a low melting point, promotes the removal of P and S, and effectively removes the combustion ash, which is waste, to remove conventional slag. The same effect as when the S flux is used can be obtained, and environmental problems such as the reclamation of combustion ash can be solved.

【0009】[0009]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。本発明は、一般に発生する塵を加工
したRDFを燃料として利用した後に生成した燃焼灰
(RDF灰)の多くが廃棄されており、埋め立て場所の
制約等が問題であることを考慮し、有効活用について検
討を行った。そして、燃焼灰には、鉄鋼精錬に有効なC
aOやAl23 、微量のNa2 O等が含まれており、
しかも、プリメルトされていることに着目し、安価な精
錬剤の開発だけでなく、社会環境の保護に寄与すること
を念頭に鋭意研究を行った結果、溶銑予備処理用のフラ
ックスとして有効であることが判り、本発明に至ったも
のである。図1は本発明の一実施の形態に係る塵の燃焼
灰を用いた溶銑の精錬方法に適用される溶銑予備処理装
置の全体図、図2はフラックス添加後の時間と脱P率と
の関係を表すグラフ、図3はフラックス添加後の時間と
脱S率との関係を表すグラフである。図1に示すよう
に、本発明の一実施の形態に係る燃焼灰を用いた精錬方
法に用いられる溶銑予備処理装置10は、上部中央部に
出銑口13を有したトピードカー12と、出銑口13の
上方に配置され、トピードカー12内の溶銑11に脱P
用のフラックス14を投入し、更に酸素を吹き込むラン
ス15を備えている。なお、符号16はフラックス14
が溶解して溶銑11の表面を覆ったスラグである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. The present invention considers that most of the combustion ash (RDF ash) generated after using RDF obtained by processing dust generally generated as a fuel is discarded, and that there is a problem with restrictions on landfill sites and the like, so that it can be effectively used. Was examined. The combustion ash contains C, which is effective for steel refining.
aO, Al 2 O 3 , trace amounts of Na 2 O, etc.
Furthermore, focusing on the fact that it is pre-melted, as a result of intensive research not only to develop inexpensive refining agents but also to contribute to the protection of the social environment, it is effective as a flux for hot metal pretreatment. Thus, the present invention has been achieved. FIG. 1 is an overall view of a hot metal pretreatment apparatus applied to a hot metal refining method using dust combustion ash according to one embodiment of the present invention, and FIG. 2 is a relationship between a time after flux addition and a P removal rate. FIG. 3 is a graph showing the relationship between the time after the addition of the flux and the de-S ratio. As shown in FIG. 1, a hot metal pretreatment device 10 used in a refining method using combustion ash according to one embodiment of the present invention includes a topped car 12 having a tap hole 13 in an upper central portion, and a tapping car 12. The hot metal 11 in the topped car 12 is disposed above the
A lance 15 into which a flux 14 is injected and oxygen is further blown is provided. Reference numeral 16 denotes the flux 14
Is slag that has melted and covered the surface of the hot metal 11.

【0010】次に、本発明の一実施の形態に係る塵の燃
焼灰を用いた溶銑の精錬剤について説明する。本実施の
形態の溶銑の精錬剤に用いる燃焼灰(RDF灰)は、残
飯、オカラ、魚屑、等の生塵、紙類、木屑、廃プラスチ
ック、樹脂等からなる一般塵を破砕してから一般に用い
られている圧縮成形機で2〜150mmの大きさに成形
(RDF)した後、燃焼炉を用い、600〜900℃の
温度で燃焼した際に生成した灰である。この燃焼灰の組
成は、表1に示す通りであり、CaOを25.0〜7
7.0重量%、SiO2 を12.0〜31.0重量%、
Al23 を9.0〜27.0重量%主成分として含
み、更に、Na2 Oを0.45〜7.0重量%、MgO
を1.0〜5.0重量%、Clを0.05〜2.0重量
%、Feを0.5〜3.0重量%を含んでいる。他の成
分として、FeO、MnO、C、P、S等も極微量含ん
でいる。
Next, a refining agent for molten iron using dust combustion ash according to one embodiment of the present invention will be described. Combustion ash (RDF ash) used in the hot metal refining agent of the present embodiment is obtained by crushing raw dust such as residual rice, okara, fish chips, paper, wood chips, waste plastic, resin, and the like. It is ash generated when formed into a size of 2 to 150 mm (RDF) with a commonly used compression molding machine and then burned at a temperature of 600 to 900 ° C. using a combustion furnace. The composition of this combustion ash is as shown in Table 1, and CaO is 25.0 to 7
7.0% by weight, 12.0-31.0% by weight of SiO 2 ,
The al 2 O 3 comprises a 9.0 to 27.0 wt% main component, further, the Na 2 O from .45 to 7.0 wt%, MgO
1.0 to 5.0% by weight, 0.05 to 2.0% by weight of Cl, and 0.5 to 3.0% by weight of Fe. As other components, FeO, MnO, C, P, S and the like are also contained in a trace amount.

【0011】[0011]

【表1】 [Table 1]

【0012】燃焼灰は、微粉状であり、そのまま脱Pや
脱Sのフラックスとして用いることができるが、ハンド
リングや搬送中の発塵を防止するため、水等のバインダ
ーを添加して、2〜150mmの大きさの粒にして乾燥
したものを用いる。
The combustion ash is in the form of fine powder and can be used as it is as a flux for removing P and removing S. However, in order to prevent dust generation during handling and transport, a binder such as water is added to the combustion ash. The granules having a size of 150 mm and dried are used.

【0013】次に、本発明の一実施の形態に係る塵の燃
焼灰を用いた溶銑の精錬方法において、不純物の一例で
あるPの除去精錬、即ち脱P処理を溶銑予備処理装置1
0で行う場合について説明する。P濃度が0.08〜
0.09重量%であり、1330〜1348℃の溶銑1
1をトピードカー12に入れ、トピードカー12の出銑
口13からランス15を溶銑11内に浸漬し、脱P用の
フラックス14である前記したRDFから生成された燃
焼灰を単独、あるいは燃焼灰に更に内分で5〜50重量
%の生石灰を混合したものを20kg/溶銑トン、2〜
6kg/cm2 の酸素ガスにより搬送して、ランス15
の先端部から溶銑11内に吹き込んだ。そして、フラッ
クス14は、吹き込まれた酸素ガスからなるキャリアガ
スと共に、溶銑11内に乱流となって図中矢印で示すよ
うに分散し、酸素ガスによって酸化された燐酸化物(P
25 )とフラックス14中のCaOが反応し、3Ca
O・P25 を含むスラグ16を生成させることによ
り、溶銑11の脱Pが行われる。
Next, in the method for refining molten iron using the combustion ash of dust according to one embodiment of the present invention, the removal and refining of P, which is an example of impurities, that is, the removal of P, is performed by a molten iron pretreatment apparatus 1.
A case in which the process is performed at 0 will be described. P concentration is 0.08-
0.09% by weight, hot metal 1 at 1330-1348 ° C
1 is put into a torpedo car 12, a lance 15 is immersed in the hot metal 11 from a tap hole 13 of the torpedo car 12, and the combustion ash generated from the RDF, which is the flux 14 for removing P, is used alone or further into the combustion ash. 20kg / tonne of hot metal mixed with quick lime of 5-50% by weight
Conveyed by oxygen gas of 6 kg / cm 2 , lance 15
Was blown into the hot metal 11 from the tip. The flux 14 is dispersed as a turbulent flow in the hot metal 11 together with the carrier gas composed of the injected oxygen gas as shown by arrows in FIG.
2 O 5 ) reacts with CaO in the flux 14 to form 3Ca
By generating the slag 16 containing O.P 2 O 5 , the hot metal 11 is de-Ped.

【0014】また、ランス15から供給する酸素ガスを
窒素ガスに代えて、前記脱P処理と他の条件を同じに
し、溶銑11の脱S処理を行った。その結果、燃焼灰中
のCaOや混合した生石灰による溶銑11中のSの捕捉
効果が良好となって、十分に溶銑11の脱Sを行うこと
ができた。
Further, the oxygen gas supplied from the lance 15 was replaced with nitrogen gas, and the other conditions were made the same as the P removal treatment, and the S removal treatment of the hot metal 11 was performed. As a result, the effect of capturing S in the hot metal 11 by CaO in the combustion ash and the mixed quicklime was improved, and the hot metal 11 could be sufficiently removed from the S.

【0015】図2に、燃焼灰の脱P及び脱S特性の実験
結果を示すが、脱Pについて、従来行われているCaO
をフラックスとして用いた(図中○印)場合に対し、全
量を燃焼灰(RDF灰)にした(図中●印)場合では、
フラックスを添加した直後の脱Pの立ち上がりも良好で
あり、時間の延長と共に脱P率が向上し、殆ど大差ない
効果が得られている。更に、燃焼灰にCaOを5重量%
混合した(図中■印)場合や燃焼灰にCaOを50重量
%混合した(図中▲印)場合では、燃焼灰のみの場合よ
りも脱P率が高くなり、脱P剤として有効であることが
判る。なお、図中◇印はCaOに10重量%の蛍石(C
aF2 )を添加した場合の参考例である。図3は、同様
にして、脱S率について比較した場合であり、従来行わ
れているCaOをフラックスとして用いた(図中○印)
場合に対し、全量を燃焼灰にした(図中●印)場合で
は、脱S率が大幅に向上できた。更に、燃焼灰にCaO
を5重量%混合した(図中■印)場合、燃焼灰に50重
量%混合した(図中▲印)場合では、いずれとも燃焼灰
を単独で用いた場合より優れた脱S率が得られ、脱S剤
として有効である。
FIG. 2 shows the experimental results of the P and S characteristics of the combustion ash.
Was used as the flux (indicated by a circle in the figure), whereas when the entire amount was made into combustion ash (RDF ash) (indicated by a circle in the figure),
The rise of P removal immediately after the addition of the flux is also good, and the removal rate of P is improved with the elongation of the time, and an effect that is almost the same is obtained. Furthermore, 5% by weight of CaO is added to the combustion ash.
When mixed (■ in the figure) or when 50% by weight of CaO was mixed with the combustion ash (印 in the figure), the P removal rate was higher than that of the combustion ash alone, and it was effective as a P removal agent. You can see that. In the figure, a triangle indicates 10% by weight of fluorite (C
This is a reference example when aF 2 ) is added. FIG. 3 shows a case where the removal rate of S was compared in the same manner, and CaO conventionally used was used as a flux (indicated by a circle in the figure).
In contrast, in the case where the entire amount was made into combustion ash (indicated by ● in the figure), the S removal ratio was significantly improved. Furthermore, CaO is added to the combustion ash.
5% by weight (indicated by ■ in the figure) and 50% by weight in combustion ash (indicated by ▲ in the figure), a superior de-S rate was obtained in each case than when combustion ash was used alone. , Effective as a de-S agent.

【0016】[0016]

【実施例】次に、本発明に係る塵の燃焼灰を用いた溶銑
の精錬方法の実施例について説明する。燐(P)濃度が
0.082〜0.087重量%、硫黄(S)濃度が0.
029〜0.031重量%の溶銑をトピードカーに入
れ、溶銑内にランスを浸漬し、精錬剤 (フラックス)
として燃焼灰を単独、あるいは燃焼灰に5〜50重量%
の生石灰を混合したものを20kg/溶銑トン用い、2
〜6kg/cm2 の酸素ガスにより搬送して、ランスの
先端部から溶銑内に吹き込み脱P処理を行った場合(実
施例1〜3)と、酸素ガスを窒素ガスに変え、脱S処理
を行った場合(実施例4〜6)についてそれぞれ行っ
た。そして、処理前と処理後のP濃度(重量%)とS濃
度(重量%)、処理コスト良否、総合評価を調査した。
その結果を表2に示す。実施例1は、燃焼灰にCaOを
5重量%混合したものを用い脱Pを行った場合であり、
脱P効率を良好にでき、処理コストも低く(◎)、総合
評価として良い(○)が得られた。実施例2は、燃焼灰
にCaOを50重量%混合したものを用い脱Pを行った
場合であり、脱P効率に優れ、処理コストも低く
(○)、総合評価として優れた(◎)が得られた。実施
例3は、燃焼灰のみを用いて脱Pを行った場合であり、
脱P効率を良好にでき、処理コストも低く(◎)、総合
評価として良い(○)が得られた。実施例4は、燃焼灰
にCaOを5重量%混合したものを用い脱Sを行った場
合であり、脱S効率を良好にで、処理コストも低く
(◎)、総合評価として良い(○)が得られた。実施例
5は、燃焼灰にCaOを50重量%混合したものを用い
脱Sを行った場合であり、脱S効率に優れ、処理コスト
も低く(○)、総合評価として優れた(◎)が得られ
た。実施例6は、燃焼灰のみを用いて脱Sを行った場合
であり、脱S効率を良好にでき、処理コストも低く
(◎)、総合評価として良い(○)が得られた。
Next, an embodiment of a method for refining molten iron using dust combustion ash according to the present invention will be described. Phosphorus (P) concentration is 0.082 to 0.087% by weight, and sulfur (S) concentration is 0.08% by weight.
029-0.031% by weight of hot metal is put in a tope car, a lance is immersed in the hot metal, and a refining agent (flux)
Ash alone or 5 to 50% by weight of ash
20kg / tonne of hot metal using a mixture of quicklime
And carried by the oxygen gas ~6kg / cm 2, when subjected to de-P treatment blown into the hot metal from the lance tip portion (Example 1-3), changing the oxygen gas to nitrogen gas, de-S process Each case was performed (Examples 4 to 6). The P concentration (% by weight) and the S concentration (% by weight) before and after the treatment, the quality of the treatment cost, and the overall evaluation were examined.
Table 2 shows the results. Example 1 is a case in which P was removed using a mixture of CaO and 5% by weight of combustion ash,
The P removal efficiency was good, the processing cost was low (低 く), and a good overall evaluation (○) was obtained. Example 2 shows a case where de-P was performed using a mixture of CaO and 50% by weight of combustion ash. The de-P was excellent, the processing cost was low (○), and the overall evaluation was excellent (◎). Obtained. Example 3 is a case where de-P is performed using only combustion ash,
The P removal efficiency was good, the processing cost was low (低 く), and a good overall evaluation (○) was obtained. Example 4 is a case in which the removal of sulfur was performed using a mixture of CaO and 5% by weight of the combustion ash. The removal efficiency was good, the processing cost was low ((), and the overall evaluation was good (○). was gotten. Example 5 is a case in which S was removed using a mixture of CaO and 50% by weight of combustion ash. The removal efficiency was excellent, the processing cost was low (コ ス ト), and the overall evaluation was excellent (◎). Obtained. In Example 6, the removal of sulfur was performed using only the combustion ash, the removal efficiency was good, the processing cost was low (低 く), and a good overall evaluation (○) was obtained.

【0017】[0017]

【表2】 [Table 2]

【0018】これに対して、従来例1は、CaOのみを
用いて脱P処理を行った場合であり、脱P効率が悪く、
処理コストも高くなり、総合評価として悪い(×)結果
になった。従来例2は、CaOに10重量%のCaF2
を配合して脱P処理を行った場合であり、脱P効率は良
くなったが、処理コストが高くなり、総合評価としてや
や悪い(△)結果になった。
On the other hand, in Conventional Example 1, the de-P treatment was performed using only CaO, and the de-P efficiency was poor.
The processing cost was also high, and the overall evaluation was poor (x). In Conventional Example 2, 10% by weight of CaF 2 was added to CaO.
And the removal of P was performed, and the removal of P was improved, but the processing cost was increased and the overall evaluation was somewhat poor (△).

【0019】以上、本発明の実施の形態を説明したが、
本発明は、上記した形態に限定されるものでなく、要旨
を逸脱しない条件の変更等は全て本発明の適用範囲であ
る。例えば、燃焼灰を溶銑の脱P、脱Sのフラックスと
して用いる他に、溶鋼の精錬用のCaOの代替として用
いたり、取鍋精錬等の二次精錬のフラックスとして用い
ることができる。更に、燃焼灰を用いた脱P処理の際
に、ランスから吹き込む酸素を酸化鉄にしたり、酸素と
酸化鉄を混合して用いることもできる。
The embodiments of the present invention have been described above.
The present invention is not limited to the above-described embodiment, and all changes in conditions that do not depart from the gist are within the scope of the present invention. For example, in addition to using the combustion ash as a flux for removing P and S from molten iron, it can be used as a substitute for CaO for refining molten steel or as a flux for secondary refining such as ladle refining. Further, at the time of the de-P treatment using the combustion ash, the oxygen blown from the lance may be used as iron oxide, or a mixture of oxygen and iron oxide may be used.

【0020】[0020]

【発明の効果】請求項1〜3記載の塵の燃焼灰を用いた
溶銑の精錬剤は、塵を焼却炉で燃焼した際に生成する燃
焼灰を溶銑の不純物除去精錬に用いるので、焼却炉で燃
焼する際に、プリメルトされた燃焼灰を溶銑の脱P、脱
S剤に有効に活用し、生石灰や石灰石等の高価なフラッ
クスを節減することができ、燃焼灰の環境上の問題を同
時に解決することができる。
The refining agent for molten iron using dust combustion ash according to any one of claims 1 to 3 uses the combustion ash generated when the dust is burned in an incinerator for removing impurities from the molten iron for refining. When combusted in combustion, the pre-melted combustion ash can be effectively used as a de-P and S-removing agent for hot metal to save expensive fluxes such as quicklime and limestone, and simultaneously reduce the environmental problems of combustion ash. Can be solved.

【0021】特に、請求項2記載の塵の燃焼灰を用いた
溶銑の精錬剤は、燃焼灰の主成分として、CaOを25
〜77重量%、SiO2 を12〜31重量%、Al2
3 を9〜27重量%含有するので、溶解が良好であり、
低融点のスラグを形成して脱P、脱S反応をより促進す
ることができる。
In particular, the refining agent for hot metal using dust combustion ash according to claim 2 contains 25% CaO as a main component of the combustion ash.
To 77 wt%, a SiO 2 12 to 31 wt%, Al 2 O
3 to 9 to 27% by weight, so that the dissolution is good,
A slag having a low melting point can be formed to further promote the removal of P and S.

【0022】請求項3記載の塵の燃焼灰を用いた溶銑の
精錬剤は、燃焼灰に内分で5〜50重量%の生石灰を混
合するので、燃焼灰と生石灰の相乗した捕捉作用によ
り、より安定して脱P、脱S効率を向上することができ
る。
The refining agent for hot metal using the combustion ash of dust according to the third aspect of the present invention mixes the combustion ash with 5 to 50% by weight of quicklime in an internal part. The removal efficiency of P and S can be more stably improved.

【0023】請求項4記載の塵の燃焼灰を用いた溶銑の
精錬方法は、塵を焼却炉で燃焼した際に生成され、主成
分にCaOを25〜77重量%、SiO2 を12〜31
重量%、Al23 を9〜27重量%含有した燃焼灰を
溶銑に添加して、溶銑の脱燐、又は脱硫を行うので、溶
銑に接触した際に速やかに溶解して低融点のスラグを形
成して脱P、脱S反応を安定して促進し、廃棄物である
燃焼灰を有効活用して従来の脱P、脱S用フラックスを
用いた場合と変わらない効果を得ることができ、燃焼灰
の埋め立て等の環境上の問題を解決することができる。
The refining method of molten iron using the combustion ash dust according to claim 4 is generated upon burning the dust incinerators, 25-77 wt% of CaO as a main component, a SiO 2 12 to 31
By adding to the hot metal, combustion ash containing 9 to 27% by weight of Al 2 O 3 is added to the hot metal to dephosphorize or desulfurize the hot metal. To stably promote the de-P and de-S reactions and effectively utilize the waste ash to obtain the same effect as when using the conventional flux for de-P and de-S. In addition, environmental problems such as the reclamation of combustion ash can be solved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る塵の燃焼灰を用い
た溶銑の精錬方法に適用される溶銑予備処理装置の全体
図である。
FIG. 1 is an overall view of a hot metal pretreatment device applied to a hot metal refining method using dust combustion ash according to one embodiment of the present invention.

【図2】フラックス添加後の時間と脱P率の関係を表す
グラフである。
FIG. 2 is a graph showing the relationship between the time after addition of flux and the P removal ratio.

【図3】フラックス添加後の時間と脱S率の関係を表す
グラフである。
FIG. 3 is a graph showing the relationship between the time after the addition of flux and the S removal rate.

【符号の説明】[Explanation of symbols]

10:溶銑予備処理装置、11:溶銑、12:トピード
カー、13:出銑口、14:フラックス、15:ラン
ス、16:スラグ
10: Hot metal pretreatment device, 11: Hot metal, 12: Topped car, 13: Tap hole, 14: Flux, 15: Lance, 16: Slag

───────────────────────────────────────────────────── フロントページの続き (72)発明者 迫村 良一 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 若林 一男 岡山県上房郡北房町大字宮地2252 中山石 灰工業株式会社内 (72)発明者 上田 満 大阪府吹田市山田丘2−1 大阪大学工学 部内 Fターム(参考) 4D004 AA36 BA10 CA15 CA50 CB47 CC11 DA03 DA10 4K014 AA02 AA03 AB02 AB03 AB04 AC03 AC08 AC14 AC16 AD01 AD27  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Ryoichi Sakomura 1-1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (72) Inventor Kazuo Wakabayashi Kamifusa-gun Kita, Okayama Prefecture 2252 Nakayama Lime Industry Co., Ltd. (72) Inventor Mitsuru Ueda 2-1 Yamadaoka, Suita-shi, Osaka F-term (reference) 4D004 AA36 BA10 CA15 CA50 CB47 CC11 DA03 DA10 4K014 AA02 AA03 AB02 AB03 AB04 AC03 AC08 AC14 AC16 AD01 AD27

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 塵を焼却炉で燃焼させた際に生成する燃
焼灰を溶銑の不純物除去精錬に用いることを特徴とする
塵の燃焼灰を用いた溶銑の精錬剤。
1. A refining agent for hot metal using dust combustion ash, wherein combustion ash generated when the dust is burned in an incinerator is used for refining and removing impurities from the hot metal.
【請求項2】 請求項1記載の塵の燃焼灰を用いた溶銑
の精錬剤において、前記燃焼灰の主成分として、CaO
を25〜77重量%、SiO2 を12〜31重量%、A
23 を9〜27重量%含有することを特徴とする塵
の燃焼灰を用いた溶銑の精錬剤。
2. The refining agent for hot metal using dust combustion ash according to claim 1, wherein CaO is used as a main component of the combustion ash.
The 25-77 wt%, a SiO 2 12 to 31 wt%, A
refining agent of molten iron with combustion ash dust, characterized in that it contains l 2 O 3 9 to 27 wt%.
【請求項3】 請求項1又は2記載の塵の燃焼灰を用い
た溶銑の精錬剤において、前記燃焼灰に内分で5〜50
重量%の生石灰を混合したことを特徴とする塵の燃焼灰
を用いた溶銑の精錬剤。
3. The refining agent for hot metal using dust combustion ash according to claim 1 or 2, wherein the combustion ash has an internal content of 5 to 50 parts.
A refining agent for hot metal using dust combustion ash, characterized by mixing with quick weight of quick lime.
【請求項4】 塵を焼却炉で燃焼した際に生成され、主
成分としてCaOを25〜77重量%、SiO2 を12
〜31重量%、Al23 を9〜27重量%含有した燃
焼灰を溶銑に添加して、該溶銑の脱燐、又は脱硫を行う
ことを特徴とする塵の燃焼灰を用いた溶銑の精錬方法。
4. It is produced when dust is burned in an incinerator and contains 25 to 77% by weight of CaO and 12% of SiO 2 as main components.
To 31 wt%, it was added to the combustion ash of the Al 2 O 3 containing 9 to 27 wt% in the hot metal, the solution pig iron dephosphorization, or hot metal using the combustion ash dust and performing desulfurization Refining method.
JP2000236093A 2000-08-03 2000-08-03 Refining agent for molten iron using burnt ash of dust and refining method Withdrawn JP2002053910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000236093A JP2002053910A (en) 2000-08-03 2000-08-03 Refining agent for molten iron using burnt ash of dust and refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000236093A JP2002053910A (en) 2000-08-03 2000-08-03 Refining agent for molten iron using burnt ash of dust and refining method

Publications (1)

Publication Number Publication Date
JP2002053910A true JP2002053910A (en) 2002-02-19

Family

ID=18728204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000236093A Withdrawn JP2002053910A (en) 2000-08-03 2000-08-03 Refining agent for molten iron using burnt ash of dust and refining method

Country Status (1)

Country Link
JP (1) JP2002053910A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231495A (en) * 2007-03-20 2008-10-02 Jfe Mineral Co Ltd Method for manufacturing desulfurizing agent
JP2008231494A (en) * 2007-03-20 2008-10-02 Jfe Steel Kk Desulfurizing agent and method for desulfurizing molten iron
US7537638B2 (en) * 2002-05-15 2009-05-26 Peter Geoffrey Pope Metallurgical slag
JP2012193456A (en) * 2012-06-15 2012-10-11 Jfe Steel Corp Desulfurizing agent and method for desulfurizing molten iron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537638B2 (en) * 2002-05-15 2009-05-26 Peter Geoffrey Pope Metallurgical slag
JP2008231495A (en) * 2007-03-20 2008-10-02 Jfe Mineral Co Ltd Method for manufacturing desulfurizing agent
JP2008231494A (en) * 2007-03-20 2008-10-02 Jfe Steel Kk Desulfurizing agent and method for desulfurizing molten iron
JP2012193456A (en) * 2012-06-15 2012-10-11 Jfe Steel Corp Desulfurizing agent and method for desulfurizing molten iron

Similar Documents

Publication Publication Date Title
TWI495730B (en) The method of recovering slag from iron and steel phosphorus
JP5017935B2 (en) Hot metal desulfurization treatment method
JP2002053910A (en) Refining agent for molten iron using burnt ash of dust and refining method
JP2001032007A (en) Depressant for foaming of iron and steel slag
JP2000319047A (en) Reforming treatment of stainless steel refining slag
JP4082365B2 (en) Steel manufacturing method
JP4581751B2 (en) Prevention of dust from hot metal transport container
JP2006265623A (en) Method for pre-treating molten iron
JP4609010B2 (en) Steel manufacturing method
JP2653301B2 (en) Reusing method of low P converter slag
JPH0437136B2 (en)
JP4904858B2 (en) Hot metal dephosphorization method
JP4639943B2 (en) Hot metal desulfurization method
JP2002371311A (en) Method for dephosphorizing molten metal, dephosphorizing agent with low-temperature slag forming property therefor, and manufacturing method therefor
JP4254412B2 (en) Hot metal desulfurization method
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
JPS61153209A (en) Low-s operation method in blast furnace
JP2011058046A (en) Method for dephosphorizing molten iron
JP2004307943A (en) Dephosphorizing treatment method for molten iron utilizing desiliconization slag and decarburization slag
JPH07310108A (en) Pretreatment of molten iron
JP4598220B2 (en) Hot metal processing method using decarburized iron
TWI674321B (en) Steelmaking treatment agent and steelmaking method
JP3988578B2 (en) Reuse method of desulfurization slag
JP3756904B2 (en) Treatment method of chromium-containing waste
RU2027774C1 (en) Charge material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106