JP2002051595A - Motor controller - Google Patents

Motor controller

Info

Publication number
JP2002051595A
JP2002051595A JP2000232681A JP2000232681A JP2002051595A JP 2002051595 A JP2002051595 A JP 2002051595A JP 2000232681 A JP2000232681 A JP 2000232681A JP 2000232681 A JP2000232681 A JP 2000232681A JP 2002051595 A JP2002051595 A JP 2002051595A
Authority
JP
Japan
Prior art keywords
motor
temperature
magnetic flux
current
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000232681A
Other languages
Japanese (ja)
Other versions
JP4701481B2 (en
Inventor
Yoshinobu Sato
芳信 佐藤
Shinichi Ishii
新一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000232681A priority Critical patent/JP4701481B2/en
Publication of JP2002051595A publication Critical patent/JP2002051595A/en
Application granted granted Critical
Publication of JP4701481B2 publication Critical patent/JP4701481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress the torque fluctuation of a motor caused by temperature. SOLUTION: For controlling a motor 4 in which a temperature detector 8 and a position detector 5 are incorporated as sensors, a computing unit 9 which estimates the magnetic flux of the motor 4 by computation based on the temperature detected by means of the temperature detector 8, and a current command correcting device 10 which performs prescribed correction on the current which causes the motor 4 to generate torque based on the estimated value of the magnetic flux, are provided. The motor 4 is made to generate torque that is not affected by temperature fluctuation by controlling the motor 4 by using the output of the correcting device 10 as a new current command value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電動機トルクを
制御するための電動機の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor control device for controlling a motor torque.

【0002】[0002]

【従来の技術】図4に電動機として表面磁石構造の永久
磁石形同期電動機(以下、単に同期電動機とも言う)を
用いた場合の、出力トルクを制御する制御装置の例を示
す。図4において、1はトルク指令から電流指令値を演
算する電流指令演算器、2はその電流指令値通りの電流
を流すための電圧指令値を求める電流制御部、3は電圧
指令値通りの電圧を出力するインバータ、4は同期電動
機、5はこの同期電動機に内蔵されている位置検出器、
6は同期電動機に供給されている電流を検出する電流検
出器、7は位置検出器の出力と電流検出器の出力とから
直交2軸の座標に分解した電流を求める3相/2相変換
器を示す(以下、直交2軸の座標系をdq軸という)
2. Description of the Related Art FIG. 4 shows an example of a control device for controlling an output torque when a permanent magnet type synchronous motor having a surface magnet structure (hereinafter, simply referred to as a synchronous motor) is used as an electric motor. In FIG. 4, 1 is a current command calculator for calculating a current command value from a torque command, 2 is a current control unit for obtaining a voltage command value for flowing a current according to the current command value, and 3 is a voltage according to the voltage command value. , 4 is a synchronous motor, 5 is a position detector built in this synchronous motor,
Reference numeral 6 denotes a current detector for detecting a current supplied to the synchronous motor, and reference numeral 7 denotes a three-phase / two-phase converter for obtaining a current decomposed into two orthogonal axes from the output of the position detector and the output of the current detector. (Hereinafter, the coordinate system of two orthogonal axes is referred to as dq axis)

【0003】動作について説明する。2反作用理論にお
いて、回転子のN極方向にd軸をとり、d軸から電気角
で90度の方向にq軸をとったd,q軸座標上での同期
電動機のトルクτを下記(1)式に示す(2反作用につ
いては、例えば“大学講義 電気・機械エネルギー変換
工学”宮入 庄太著 丸善発行の「11.同期機の動力
学」の項を参照されたい。)。 τ=PF {Ψm q +(Ld −Lq )id q } …(1) τ:トルク、PF :極対数、Ψm :基準温度(Tm0)で
の永久磁石が作る鎖交磁束、id ,iq :d軸,q軸電
流、Ld ,Lq :d軸,q軸インダクタンス表面磁石構
造の場合は、d軸インダクタンスLd とq軸インダクタ
ンスLq が等しいため(Ld =Lq )、上記(1)式は
次の(2)式となる。 τ=PF Ψm q …(2)
The operation will be described. In the two-reaction theory, the torque τ of the synchronous motor on the d- and q-axis coordinates in which the d-axis is taken in the direction of the N pole of the rotor and the q-axis is taken in the direction of 90 electrical degrees from the d-axis is given by (For the two reactions, see, for example, the section “11. Dynamics of Synchronous Machines” published by Shota Miyairi, “University Lecture on Electrical and Mechanical Energy Conversion Engineering,” published by Maruzen.) τ = P F {Ψ m i q + (L d -L q) i d i q} ... (1) τ: torque, P F: permanent magnet at a reference temperature (T m0): number of pole pairs, [psi m flux linkage making, i d, i q: d-axis, q-axis current, L d, L q: d-axis, in the case of q-axis inductance surface magnet structure, d-axis inductance L d and q-axis inductance L q is equal to Therefore, (L d = L q ), the above equation (1) becomes the following equation (2). τ = P F Ψ m i q ... (2)

【0004】外部からトルク指令τ* が与えられたとき
は、電流指令演算器1により次の(3)式からd,q軸
座標上の電流指令(id * ,iq * )(以下、これを従
来の電流指令という)が演算される。 id * =0,iq * =τ* /PF Ψm …(3) 位置検出器5,電流検出器6の各出力からd,q軸座標
上の電流検出値を3相/2相変換器7で求め、電流制御
部2において従来の電流指令値に上記電流検出値が追従
するように電圧指令値を演算し、インバータ3にてこの
電圧指令値通りの電圧を出力することにより、同期電動
機4において所望のトルクを得ることが可能となる。
When a torque command τ * is given from the outside, the current command calculator 1 calculates a current command ( id * , iq * ) (hereinafter, referred to as d * , iq * ) on d- and q-axis coordinates from the following equation (3). This is referred to as a conventional current command). i d * = 0, i q * = τ * / P F Ψ m ... (3) the position detector 5, 3-phase / 2-phase d, the current detection value on q-axis coordinate from the output of the current detector 6 The voltage command value is calculated by the converter 7 so that the current control unit 2 calculates the voltage command value so that the current detection value follows the conventional current command value, and the inverter 3 outputs a voltage according to the voltage command value. A desired torque can be obtained in the synchronous motor 4.

【0005】[0005]

【発明が解決しようとする課題】永久磁石が作る鎖交磁
束Ψm は、永久磁石の残留磁束密度Br に比例する。し
かし、この残留磁束密度には永久磁石の基準温度Tm0
現在の磁石温度Tm1とによる、図5のような温度係数K
Brがあることが知られている。例えば、希土類磁石であ
るNd−Fe−B磁石での残留磁束密度の温度係数は約
−0.1〔%/K〕である。そのため、磁石温度の変動
により永久磁石が作る鎖交磁束も変動し、電流指令演算
器1が(3)式で求めた電流指令値通りに電流を流して
も、所望のトルクを得られないという問題が発生する。
Permanent magnet [0005] make linkage flux [psi m is proportional to the remanence B r of the permanent magnet. However, this residual magnetic flux density has a temperature coefficient K as shown in FIG. 5 based on the reference temperature T m0 of the permanent magnet and the current magnet temperature T m1 .
It is known that there is Br . For example, the temperature coefficient of the residual magnetic flux density of an Nd—Fe—B magnet, which is a rare earth magnet, is about −0.1 [% / K]. For this reason, the linkage magnetic flux generated by the permanent magnet also fluctuates due to the fluctuation of the magnet temperature, and the desired torque cannot be obtained even if the current command calculator 1 supplies a current according to the current command value obtained by the equation (3). Problems arise.

【0006】このように変動する磁束を推定するものと
して、例えば特開平10−22970号公報,特開平1
0−327600号公報に示すものが知られている。前
者はトルク電圧指令とトルク電圧推定の差を利用するも
のであり、後者は電動機のコア温度を利用するものであ
る。これらは、温度により磁石の磁束が変化し、磁束に
より電流調節器の出力(トルク電圧指令値)が変化する
ので、磁石の磁束変化は「トルク電圧指令」でも「温度
検出値」でも求めることができる、ということに着目し
たものである。
For estimating such a fluctuating magnetic flux, for example, Japanese Patent Application Laid-Open No. 10-22970 and Japanese Patent Application Laid-Open
The thing shown in 0-327600 gazette is known. The former uses the difference between the torque voltage command and the torque voltage estimation, and the latter uses the core temperature of the electric motor. In these, the magnetic flux of the magnet changes according to the temperature, and the output (torque voltage command value) of the current regulator changes according to the magnetic flux. Therefore, the change in the magnetic flux of the magnet can be obtained by either the "torque voltage command" or the "temperature detection value". It focuses on what can be done.

【0007】しかし、前者のトルク電圧指令から求める
ものでは、温度以外の影響(出力電圧誤差,繰り返し運
転などで電流が一定値になるまでの過渡時の電圧)を強
く受けるという問題がある。また、後者のように電動機
自身の温度測定としてコアの温度を測定することは一般
的に行なわれているが、そのためにはコアに熱電対を取
りつけたり特別な配線をする必要が生じ、構造が複雑と
なりコストが増加するなどの問題がある。したがって、
この発明の課題は、構造を複雑化しコストを増加させる
ことなく、トルクの温度変動による影響を受け難くする
ことにある。
However, the former method, which is obtained from the torque voltage command, has a problem that it is strongly affected by effects other than temperature (output voltage error, voltage during transition until current becomes constant by repeated operation, etc.). It is common practice to measure the core temperature as the temperature measurement of the motor itself as in the latter case, but for that purpose it is necessary to attach a thermocouple to the core or make special wiring, and the structure is There are problems such as complexity and increased cost. Therefore,
An object of the present invention is to make the structure less susceptible to the temperature fluctuation of the torque without complicating the structure and increasing the cost.

【0008】[0008]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、温度検出手段および位置
検出手段をセンサとして組み込んだ電動機を制御する電
動機の制御装置において、前記センサの温度検出手段か
らの出力に基づき前記電動機の磁束を推定演算する磁束
演算手段と、この磁束演算手段による磁束演算値から電
動機のトルクを発生させるための電流に所定の補正を加
える電流補正手段とを設け、電動機トルクの温度による
変動を抑制することを特徴とする。
In order to solve such a problem, a first aspect of the present invention provides a motor control device for controlling a motor in which a temperature detecting means and a position detecting means are incorporated as sensors. Magnetic flux calculating means for estimating and calculating the magnetic flux of the motor based on the output from the temperature detecting means, and current correcting means for applying a predetermined correction to a current for generating a torque of the motor from a magnetic flux calculated by the magnetic flux calculating means. It is characterized in that fluctuations of the motor torque due to temperature are suppressed.

【0009】請求項2の発明では、電動機を制御するた
めの電動機の制御装置において、前記電動機の発生損失
演算値と電動機の熱抵抗モデルから電動機温度を求め、
この求めた温度に基づき前記電動機の磁束を推定演算す
る磁束演算手段と、この磁束演算手段による磁束演算値
から電動機のトルクを発生させるための電流に所定の補
正を加える電流補正手段とを設け、電動機トルクの温度
による変動を抑制することを特徴とする。
According to a second aspect of the present invention, in the motor control device for controlling the motor, the motor temperature is obtained from the calculated value of the generated loss of the motor and the thermal resistance model of the motor.
Magnetic flux calculating means for estimating and calculating the magnetic flux of the electric motor based on the obtained temperature, and current correcting means for applying a predetermined correction to a current for generating a torque of the electric motor from a magnetic flux calculated by the magnetic flux calculating means, It is characterized in that fluctuations of the motor torque due to temperature are suppressed.

【0010】請求項3の発明では、温度検出手段および
位置検出手段をセンサとして組み込んだ電動機を制御す
る電動機の制御装置において、前記電動機の発生損失演
算値と電動機の熱抵抗モデルから電動機温度を求め、こ
の求めた温度と前記センサの温度検出手段からの温度と
に基づき前記電動機の磁束を推定演算する磁束演算手段
と、この磁束演算手段による磁束演算値から電動機のト
ルクを発生させるための電流に所定の補正を加える電流
補正手段とを設け、電動機トルクの温度による変動を抑
制することを特徴とする。
According to a third aspect of the present invention, in a motor control device for controlling a motor in which a temperature detecting means and a position detecting means are incorporated as sensors, a motor temperature is obtained from a calculated loss generation value of the motor and a thermal resistance model of the motor. Magnetic flux calculating means for estimating and calculating the magnetic flux of the electric motor based on the obtained temperature and the temperature from the temperature detecting means of the sensor; and a current for generating a torque of the electric motor from a magnetic flux calculated by the magnetic flux calculating means. Current correction means for performing predetermined correction is provided to suppress fluctuations in motor torque due to temperature.

【0011】[0011]

【発明の実施の形態】実施の形態について説明する前
に、この発明の原理について説明する。図6は温度検出
手段と位置検出手段とをセンサとして組み込んだ同期電
動機の熱抵抗モデルを示す。ただし、図6の各符号の意
味は次の通りである。W0 :同期電動機の発熱量
〔W〕,R1 :同期電動機発熱部から磁石までの熱抵抗
〔K/W〕,R2 :磁石から周囲までの熱抵抗〔K/
W〕,R3 :同期電動機発熱部からセンサまでの熱抵抗
〔K/W〕,R4 :センサから周囲までの熱抵抗〔K/
W〕,R5 :同期電動機発熱部から周囲までの熱抵抗
〔K/W〕ところで、同期電動機で発生する損失には、
相電流の2乗に比例する銅損や、回転速度に比例するヒ
ステリシス損,回転速度の2乗に比例する渦電流損等の
鉄損がある。同期電動機の回転子には電流が流れないた
め、この同期電動機の発生損失は固定子分の銅損と鉄損
となる。そのため、同期電動機の発熱は、固定子部分に
あるとして以下説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing the embodiments, the principle of the present invention will be described. FIG. 6 shows a thermal resistance model of the synchronous motor in which the temperature detecting means and the position detecting means are incorporated as sensors. However, the meaning of each code in FIG. 6 is as follows. W 0 : heat value [W] of the synchronous motor, R 1 : thermal resistance [K / W] from the synchronous motor heating section to the magnet, R 2 : thermal resistance [K / W
W], R 3 : thermal resistance from the synchronous motor heating section to the sensor [K / W], R 4 : thermal resistance from the sensor to the surroundings [K / W]
W], R 5 : thermal resistance from the synchronous motor heating section to the surroundings [K / W] By the way, the loss generated in the synchronous motor includes:
There are iron losses such as copper loss proportional to the square of the phase current, hysteresis loss proportional to the rotational speed, and eddy current loss proportional to the square of the rotational speed. Since no current flows through the rotor of the synchronous motor, the generated loss of this synchronous motor is copper loss and iron loss for the stator. Therefore, the following description is based on the assumption that heat generated by the synchronous motor is generated in the stator portion.

【0012】いま、周囲温度をT0 とすると、磁石温度
m ,センサの温度検出値Ts は次の(4),(5)式
で表わされる。 Tm =T0 +ΔTm =T0 +(R3 +R4 )R2 5 0 /{(R1 +R2 + R3 +R4 )R5 +(R1 +R2 )(R3 +R4 )} …(4) Ts =T0 +ΔTs =T0 +(R1 +R2 )R4 5 0 /{(R1 +R2 + R3 +R4 )R5 +(R1 +R2 )(R3 +R4 )} …(5) ここに、ΔTm ,ΔTs は磁石温度,センサの温度検出
値の周囲温度からの各温度変化を示している。これら温
度変化には、次の(6)式のような関係にあることが分
かる。 ΔTm /ΔTs =(R3 +R4 )R2 /(R1 +R2 )R4 …(6)
Assuming that the ambient temperature is T 0 , the magnet temperature T m and the temperature detection value T s of the sensor are represented by the following equations (4) and (5). T m = T 0 + ΔT m = T 0 + (R 3 + R 4 ) R 2 R 5 W 0 / {(R 1 + R 2 + R 3 + R 4 ) R 5 + (R 1 + R 2 ) (R 3 + R 4) )} (4) T s = T 0 + ΔT s = T 0 + (R 1 + R 2 ) R 4 R 5 W 0 / {(R 1 + R 2 + R 3 + R 4 ) R 5 + (R 1 + R 2) ) (R 3 + R 4 )} (5) Here, ΔT m and ΔT s indicate temperature changes of the magnet temperature and the detected temperature of the sensor from the ambient temperature. It can be seen that these temperature changes have a relationship such as the following equation (6). ΔT m / ΔT s = (R 3 + R 4 ) R 2 / (R 1 + R 2 ) R 4 (6)

【0013】現在の磁石温度Tm1で永久磁石のつくる鎖
交磁束Ψm1(現在の鎖交磁束ともいう)は、残留磁束密
度の温度係数を考慮すると次の(7)式となり、また、
外部からトルク指令が与えられたときのd,q座標上の
電流指令を、現在の鎖交磁束を考慮して(8)式で求め
る。この新しいd,q座標上の電流指令値(id1 * ,i
q1 * :新しい電流指令値という)を用いることで、温度
により磁石の鎖交磁束が変化しても所望のトルクを得る
ことが可能となる。 Ψm1=Ψm0{1−kbr(Tm0−Tm1)}=Ψm0(1+kbrΔTm )…(7) id1 * =id0 * =0, iq1 * =τ* /PF Ψm1=Ψm0q0 * /Ψm1=iq0 * /(1+kbrΔTm ) ≒(1−kbrΔTm )iq0 * …(8)
The linkage flux Ψ m1 (also referred to as the current linkage flux) produced by the permanent magnet at the current magnet temperature T m1 is given by the following equation (7) in consideration of the temperature coefficient of the residual magnetic flux density.
The current command on the d and q coordinates when a torque command is given from the outside is obtained by the formula (8) in consideration of the current interlinkage magnetic flux. The current command value ( id1 * , i
q1 * : a new current command value), it is possible to obtain a desired torque even if the interlinkage magnetic flux of the magnet changes with temperature. Ψ m1 = Ψ m0 {1- k br (T m0 -T m1)} = Ψ m0 (1 + k br ΔT m) ... (7) i d1 * = i d0 * = 0, i q1 * = τ * / P F Ψ m1 = Ψ m0 i q0 * / Ψ m1 = i q0 * / (1 + k br ΔT m) ≒ (1-k br ΔT m) i q0 * ... (8)

【0014】以上のことから、請求項1の発明では、セ
ンサの温度検出値から上記(6)式を用いて磁石の温度
変化を演算するとともに、(7)式を用いて現在の鎖交
磁束を求め、さらに(8)式を用いて従来の電流指令に
補正を加えて求めた新しい電流指令値により電動機を制
御する。請求項2の発明では、相電流と巻線抵抗値とか
ら銅損を演算し、回転速度から鉄損を演算することによ
り同期電動機の発生損失を求め、これと予め測定してお
いて図6のような熱抵抗モデルから(4)式を用いて磁
石の温度変化を演算し、(7)式を用いて現在の鎖交磁
束を求め、さらに(8)式を用いて従来の電流指令に補
正を加えて求めた新しい電流指令値により電動機を制御
する。また、請求項3の発明では、磁石の温度変化をセ
ンサの温度検出値から求める方式と、同期電動機の発生
損失演算値と熱抵抗モデルとから求める方式とを併用す
ることにより、磁石の温度変化をより精度良く求め、制
御性能を向上させる。
From the above, according to the first aspect of the present invention, the temperature change of the magnet is calculated from the temperature detected value of the sensor by using the above equation (6), and the current flux linkage is calculated by using the equation (7). , And the motor is controlled by a new current command value obtained by adding a correction to the conventional current command by using the equation (8). According to the second aspect of the present invention, the copper loss is calculated from the phase current and the winding resistance value, and the iron loss is calculated from the rotation speed to determine the generated loss of the synchronous motor. The temperature change of the magnet is calculated from the thermal resistance model using Equation (4), the current flux linkage is obtained using Equation (7), and the current current command is obtained using Equation (8). The motor is controlled by the new current command value obtained by adding the correction. According to the third aspect of the present invention, the method of obtaining the temperature change of the magnet from the detected temperature value of the sensor and the method of obtaining the calculated value of the generated loss of the synchronous motor and the thermal resistance model are used in combination to obtain the temperature change of the magnet. Is more accurately obtained, and the control performance is improved.

【0015】図1はこの発明の第1の実施の形態を示す
構成図である。同図から明らかなように、図4に示す従
来例に対し同期電動機4に組み込まれた温度検出器8
と、この温度検出器8の出力である温度検出値から現在
の鎖交磁束を演算する鎖交磁束演算器9と、この演算器
9の出力である現在の鎖交磁束を用いて電流指令の補正
を行なう電流指令補正器10とが付加されて構成され
る。すなわち、温度検出器8にて検出されるセンサ温度
検出値から、鎖交磁束演算器9では現在の鎖交磁束を求
める。電流指令補償器10では、この現在の鎖交磁束と
電流指令演算器1によって求めた従来の電流指令値id
* ,iq * とから、新しい電流指令値id1 * ,iq1 *
求める。以下は従来と同じく、電流制御部2において新
しい電流指令値に電流検出値が追従するように電圧指令
値を演算し、インバータ3にてこの電圧指令値通りの電
圧を出力することにより、同期電動機4の磁石温度の影
響を受けないトルクを得るようにするものである。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention. As is clear from the figure, the temperature detector 8 incorporated in the synchronous motor 4 is different from the conventional example shown in FIG.
A flux linkage calculator 9 for calculating the current flux linkage from the detected temperature value output from the temperature detector 8, and a current command using the current flux linkage output from the calculator 9. A current command corrector 10 for performing correction is added. That is, from the sensor temperature detection value detected by the temperature detector 8, the linkage magnetic flux calculator 9 calculates the current linkage magnetic flux. In the current command compensator 10, a conventional current command value i d obtained by the current flux linkage and the current command calculator 1
*, From and i q *, the new current command value i d1 *, seek i q1 *. Hereinafter, as in the conventional case, the current control unit 2 calculates a voltage command value so that the current detection value follows the new current command value, and the inverter 3 outputs a voltage according to the voltage command value, thereby obtaining a synchronous motor. 4 is to obtain a torque that is not affected by the magnet temperature.

【0016】図2はこの発明の第2の実施の形態を示す
構成図である。図4に示すものに対し、現在の鎖交磁束
を用いて電流紙指令値を補正する電流指令補正器10
と、位置検出値の時間変化から同期電動機4の回転速度
を求める速度検出器11と、この速度検出器11からの
出力である回転速度と、同期電動機の熱抵抗モデルと、
上記電流指令補正器10の出力である新しい電流指令値
とから現在の鎖交磁束を求める鎖交磁束演算器12とを
設けた点が特徴である。そして、この新しい電流指令値
を用いることで、上記と同じく同期電動機4の磁石温度
の影響を受けないトルクを得ることができる。
FIG. 2 is a block diagram showing a second embodiment of the present invention. A current command corrector 10 for correcting the current sheet command value using the current linkage magnetic flux as compared with the one shown in FIG.
A speed detector 11 for obtaining the rotation speed of the synchronous motor 4 from a time change of the position detection value, a rotation speed output from the speed detector 11, a thermal resistance model of the synchronous motor,
The present invention is characterized in that a flux linkage calculator 12 for obtaining a current flux linkage from a new current command value output from the current command corrector 10 is provided. By using this new current command value, it is possible to obtain a torque that is not affected by the magnet temperature of the synchronous motor 4 as described above.

【0017】図3は図2の変形例を示す構成図で、図2
に示すものに対し温度検出器8を付加する以外は、大き
な相違はない。すなわち、図4に示す従来例に対し、同
期電動機4に組み込まれた温度検出器8と、電流指令の
補正を行なう電流指令補正器10と、位置検出値の時間
変化から同期電動機4の回転速度を求める速度検出器1
1と、この速度検出器11からの出力である回転速度
と、上記温度検出器8からのセンサ温度検出値と、上記
電流指令補正器10の出力である新しい電流指令値と、
同期電動機の熱抵抗モデルとから現在の鎖交磁束を求め
る鎖交磁束演算器13とを設けた点が特徴で、その他は
図2と同様である。
FIG. 3 is a block diagram showing a modification of FIG.
There is no significant difference except that a temperature detector 8 is added to the device shown in FIG. That is, as compared with the conventional example shown in FIG. 4, a temperature detector 8 incorporated in a synchronous motor 4, a current command corrector 10 for correcting a current command, and a rotational speed of the synchronous motor 4 based on a time change of a position detection value. Speed detector 1 for calculating
1, a rotation speed as an output from the speed detector 11, a sensor temperature detection value from the temperature detector 8, a new current command value as an output from the current command corrector 10,
It is characterized in that a linkage flux calculator 13 for obtaining the current linkage flux from the thermal resistance model of the synchronous motor is provided, and the other points are the same as those in FIG.

【0018】[0018]

【発明の効果】この発明によれば、温度によるトルク変
動を抑制でき、高精度の電動機制御を行なうことが可能
となる。また、温度検出手段を利用するものでは、従来
からもこれをセンサと制御装置間の通信処理装置(CP
UやIC等)の温度保護に利用している経緯もあること
から、機器を特別に付加することなく対応できる利点が
ある。さらに、磁石の温度変化をセンサの温度検出値か
ら求める方式と、同期電動機の発生損失演算値と熱抵抗
モデルとから求める方式とを併用するものでは、より精
度が上がり制御性能が向上することになる。
According to the present invention, torque fluctuation due to temperature can be suppressed, and high-precision motor control can be performed. In the case of using the temperature detecting means, the temperature detecting means has conventionally been used as a communication processing device (CP) between the sensor and the control device.
U and IC), there is an advantage that the device can be used without special equipment. In addition, the combination of the method of obtaining the temperature change of the magnet from the temperature detection value of the sensor and the method of obtaining the calculated loss value of the synchronous motor and the thermal resistance model improves accuracy and improves control performance. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態を示すブロック図
である。
FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】この発明の第2の実施の形態を示すブロック図
である。
FIG. 2 is a block diagram showing a second embodiment of the present invention.

【図3】この発明の第3の実施の形態を示すブロック図
である。
FIG. 3 is a block diagram showing a third embodiment of the present invention.

【図4】従来例を示すブロック図である。FIG. 4 is a block diagram showing a conventional example.

【図5】磁石の残留磁束密度の温度依存特性を示す特性
図である。
FIG. 5 is a characteristic diagram showing a temperature-dependent characteristic of a residual magnetic flux density of a magnet.

【図6】同期電動機の熱抵抗モデルを説明するための説
明図である。
FIG. 6 is an explanatory diagram for explaining a thermal resistance model of the synchronous motor.

【符号の説明】[Explanation of symbols]

1…電流指令演算器、2…電流制御部、3…インバー
タ、4…同期電動機、5…位置検出器、6…電流検出
器、7…3相/2相変換器、8…温度検出器、9,1
2,13…鎖交磁束演算器、10…電流指令補正器、1
1…速度検出器。
DESCRIPTION OF SYMBOLS 1 ... Current command calculator, 2 ... Current control part, 3 ... Inverter, 4 ... Synchronous motor, 5 ... Position detector, 6 ... Current detector, 7 ... Three-phase / two-phase converter, 8 ... Temperature detector 9,1
2, 13: flux linkage calculator, 10: current command corrector, 1
1. Speed detector.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H560 BB04 BB12 DA00 DC05 EB01 EB07 JJ16 JJ19 RR01 XA02 XA04 XA05 XB05 XB07 5H576 BB04 DD02 DD07 EE01 HB01 LL01 LL22 LL34 LL41 LL45 MM12  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 温度検出手段および位置検出手段をセン
サとして組み込んだ電動機を制御する電動機の制御装置
において、 前記センサの温度検出手段からの出力に基づき前記電動
機の磁束を推定演算する磁束演算手段と、この磁束演算
手段による磁束演算値から電動機のトルクを発生させる
ための電流に所定の補正を加える電流補正手段とを設
け、電動機トルクの温度による変動を抑制することを特
徴とする電動機の制御装置。
1. A motor control device for controlling a motor incorporating a temperature detecting means and a position detecting means as a sensor, wherein a magnetic flux calculating means for estimating and calculating a magnetic flux of the motor based on an output from the temperature detecting means of the sensor. A current correction means for applying a predetermined correction to a current for generating a torque of the motor from a magnetic flux calculation value by the magnetic flux calculation means, thereby suppressing fluctuations of the motor torque due to temperature. .
【請求項2】 電動機を制御するための電動機の制御装
置において、 前記電動機の発生損失演算値と電動機の熱抵抗モデルか
ら電動機温度を求め、この求めた温度に基づき前記電動
機の磁束を推定演算する磁束演算手段と、この磁束演算
手段による磁束演算値から電動機のトルクを発生させる
ための電流に所定の補正を加える電流補正手段とを設
け、電動機トルクの温度による変動を抑制することを特
徴とする電動機の制御装置。
2. A motor control device for controlling an electric motor, wherein a motor temperature is obtained from a calculation value of a generated loss of the electric motor and a thermal resistance model of the electric motor, and a magnetic flux of the electric motor is estimated and calculated based on the obtained temperature. A magnetic flux calculating means, and a current correcting means for applying a predetermined correction to a current for generating a torque of the motor from a magnetic flux calculated by the magnetic flux calculating means, wherein fluctuations of the motor torque due to temperature are suppressed. Motor control device.
【請求項3】 温度検出手段および位置検出手段をセン
サとして組み込んだ電動機を制御する電動機の制御装置
において、 前記電動機の発生損失演算値と電動機の熱抵抗モデルか
ら電動機温度を求め、この求めた温度と前記センサの温
度検出手段からの温度とに基づき前記電動機の磁束を推
定演算する磁束演算手段と、この磁束演算手段による磁
束演算値から電動機のトルクを発生させるための電流に
所定の補正を加える電流補正手段とを設け、電動機トル
クの温度による変動を抑制することを特徴とする電動機
の制御装置。
3. A motor control device for controlling a motor in which a temperature detecting means and a position detecting means are incorporated as sensors, wherein a motor temperature is obtained from a calculated loss value of the motor and a thermal resistance model of the motor. Magnetic flux calculating means for estimating and calculating the magnetic flux of the electric motor based on the temperature from the temperature detecting means of the sensor; and applying a predetermined correction to a current for generating a torque of the electric motor from a magnetic flux calculated by the magnetic flux calculating means. An electric motor control device, comprising: a current correcting means for suppressing fluctuations in electric motor torque due to temperature.
JP2000232681A 2000-08-01 2000-08-01 Electric motor control device Expired - Lifetime JP4701481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000232681A JP4701481B2 (en) 2000-08-01 2000-08-01 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000232681A JP4701481B2 (en) 2000-08-01 2000-08-01 Electric motor control device

Publications (2)

Publication Number Publication Date
JP2002051595A true JP2002051595A (en) 2002-02-15
JP4701481B2 JP4701481B2 (en) 2011-06-15

Family

ID=18725325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000232681A Expired - Lifetime JP4701481B2 (en) 2000-08-01 2000-08-01 Electric motor control device

Country Status (1)

Country Link
JP (1) JP4701481B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1407850A2 (en) * 2002-10-11 2004-04-14 Fanuc Ltd Spot welding system and method of controlling pressing force of spot welding gun
JP2007295716A (en) * 2006-04-25 2007-11-08 Yaskawa Electric Corp Torque control device of permanent magnet synchronous motor
JP2008206340A (en) * 2007-02-21 2008-09-04 Toyota Motor Corp Drive controller of rotating electrical machine and vehicle
JP2008543270A (en) * 2005-06-08 2008-11-27 ジーメンス ヴィディーオー オートモーティヴ アクチエンゲゼルシャフト Brushless DC motor control apparatus and brushless DC motor control method
JP2015173547A (en) * 2014-03-12 2015-10-01 日産自動車株式会社 Motor controller
CN107750427A (en) * 2015-06-22 2018-03-02 三菱电机株式会社 Control device of electric motor
JP2019191822A (en) * 2018-04-23 2019-10-31 多摩川精機株式会社 Swivel base control device and setting method for the same
JP2020065416A (en) * 2018-10-19 2020-04-23 株式会社ケーヒン Vector controller
EP3041635B1 (en) * 2013-09-06 2020-08-12 Amada Miyachi America, Inc. Weld head
JP2021182866A (en) * 2017-12-28 2021-11-25 株式会社デンソー Rotary electric machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5710030B2 (en) * 2012-01-20 2015-04-30 三菱電機株式会社 Control device and control method for permanent magnet motor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215992A (en) * 1982-06-07 1983-12-15 Toshiba Corp Vector contorller for induction motor
JPS61173692A (en) * 1985-01-25 1986-08-05 Toshiba Corp Malfunction monitor
JPS6343592A (en) * 1986-08-11 1988-02-24 Rinnai Corp Temperature correction device for brushless dc motor
JPH03503835A (en) * 1988-12-18 1991-08-22 ブック・ヴェルケ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・アンド・カンパニー Electrically commutated synchronous motor drive
JPH03222686A (en) * 1989-11-28 1991-10-01 Shinko Electric Co Ltd Torque detecting method for synchronous motor
JPH0654572A (en) * 1992-07-31 1994-02-25 Omron Corp Heat protection apparatus for motor
JPH0759399A (en) * 1993-08-06 1995-03-03 Fanuc Ltd Method for correcting secondary resistance of induction motor
JPH07212915A (en) * 1994-01-20 1995-08-11 Fuji Electric Co Ltd Control method for electric vehicle drive motor
JPH0847283A (en) * 1994-07-29 1996-02-16 Mitsubishi Heavy Ind Ltd Device and method for preventing temperature increase of brushless motor for vehicle air-conditioning device
JPH08331900A (en) * 1995-05-31 1996-12-13 Meidensha Corp Controller for electric rotating machine
JPH0928100A (en) * 1995-07-10 1997-01-28 Toyo Electric Mfg Co Ltd Torque fluctuation compensator of induction motor
JPH0951700A (en) * 1995-05-31 1997-02-18 Meidensha Corp Controlling device of rotary electric machine

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215992A (en) * 1982-06-07 1983-12-15 Toshiba Corp Vector contorller for induction motor
JPS61173692A (en) * 1985-01-25 1986-08-05 Toshiba Corp Malfunction monitor
JPS6343592A (en) * 1986-08-11 1988-02-24 Rinnai Corp Temperature correction device for brushless dc motor
JPH03503835A (en) * 1988-12-18 1991-08-22 ブック・ヴェルケ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・アンド・カンパニー Electrically commutated synchronous motor drive
JPH03222686A (en) * 1989-11-28 1991-10-01 Shinko Electric Co Ltd Torque detecting method for synchronous motor
JPH0654572A (en) * 1992-07-31 1994-02-25 Omron Corp Heat protection apparatus for motor
JPH0759399A (en) * 1993-08-06 1995-03-03 Fanuc Ltd Method for correcting secondary resistance of induction motor
JPH07212915A (en) * 1994-01-20 1995-08-11 Fuji Electric Co Ltd Control method for electric vehicle drive motor
JPH0847283A (en) * 1994-07-29 1996-02-16 Mitsubishi Heavy Ind Ltd Device and method for preventing temperature increase of brushless motor for vehicle air-conditioning device
JPH08331900A (en) * 1995-05-31 1996-12-13 Meidensha Corp Controller for electric rotating machine
JPH0951700A (en) * 1995-05-31 1997-02-18 Meidensha Corp Controlling device of rotary electric machine
JPH0928100A (en) * 1995-07-10 1997-01-28 Toyo Electric Mfg Co Ltd Torque fluctuation compensator of induction motor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1407850A2 (en) * 2002-10-11 2004-04-14 Fanuc Ltd Spot welding system and method of controlling pressing force of spot welding gun
EP1407850A3 (en) * 2002-10-11 2004-11-17 Fanuc Ltd Spot welding system and method of controlling pressing force of spot welding gun
US7002095B2 (en) 2002-10-11 2006-02-21 Fanuc Ltd Spot welding system and method of controlling pressing force of spot welding gun
JP2008543270A (en) * 2005-06-08 2008-11-27 ジーメンス ヴィディーオー オートモーティヴ アクチエンゲゼルシャフト Brushless DC motor control apparatus and brushless DC motor control method
JP2007295716A (en) * 2006-04-25 2007-11-08 Yaskawa Electric Corp Torque control device of permanent magnet synchronous motor
JP2008206340A (en) * 2007-02-21 2008-09-04 Toyota Motor Corp Drive controller of rotating electrical machine and vehicle
US8307929B2 (en) 2007-02-21 2012-11-13 Toyota Jidosha Kabushiki Kaisha Drive control apparatus for rotating electric machines and vehicle
EP3041635B1 (en) * 2013-09-06 2020-08-12 Amada Miyachi America, Inc. Weld head
JP2015173547A (en) * 2014-03-12 2015-10-01 日産自動車株式会社 Motor controller
CN107750427A (en) * 2015-06-22 2018-03-02 三菱电机株式会社 Control device of electric motor
US10469015B2 (en) 2015-06-22 2019-11-05 Mitsubishi Electric Corporation Motor control device
JP2021182866A (en) * 2017-12-28 2021-11-25 株式会社デンソー Rotary electric machine
JP7259898B2 (en) 2017-12-28 2023-04-18 株式会社デンソー Rotating electric machine
JP2019191822A (en) * 2018-04-23 2019-10-31 多摩川精機株式会社 Swivel base control device and setting method for the same
JP7058868B2 (en) 2018-04-23 2022-04-25 多摩川精機株式会社 Swing platform control device and its setting method
JP2020065416A (en) * 2018-10-19 2020-04-23 株式会社ケーヒン Vector controller

Also Published As

Publication number Publication date
JP4701481B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP3467961B2 (en) Control device for rotating electric machine
CN100517947C (en) Method of estimating magnetic pole position in motor and apparatus of controlling the motor based on the estimated position
JP4221307B2 (en) Synchronous motor control device, electrical equipment and module
JP3707535B2 (en) Method and apparatus for correcting estimated speed value of induction motor
JP6008264B2 (en) Magnetic pole position detection device for permanent magnet type synchronous motor
JP2009136085A (en) Controller of ac motor
CN102647144B (en) Method and apparatus for estimating rotor angle of synchronous reluctance motor
JP4701481B2 (en) Electric motor control device
JP3397013B2 (en) Control device for synchronous motor
WO2008065978A1 (en) Induction motor control device and its control method
JP2008286779A (en) Torque estimator for ipm motor
JP5050387B2 (en) Motor control device
JP4622068B2 (en) Electric motor control device
US6838843B2 (en) Controller for DC brushless motor
JP2019033582A (en) Control device and control method
JP3707659B2 (en) Constant identification method for synchronous motor
JP2006158046A (en) Sensorless control method and apparatus of ac electric motor
JP2023048833A (en) State estimation method for motor unit and state estimation device
US10526008B1 (en) Machine current limiting for permanent magnet synchronous machines
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP4281054B2 (en) Speed sensorless vector control method and apparatus for induction motor
JP4061446B2 (en) Resistance value identification method and control device for synchronous motor
JP2007082380A (en) Synchronous motor control device
US11936316B2 (en) Position estimation for permanent magnet synchronous machines via rotor flux space vector identification
JP2010252496A (en) Motor drive system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R150 Certificate of patent or registration of utility model

Ref document number: 4701481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term