JP2002050390A - Fuel cell having stack structure - Google Patents

Fuel cell having stack structure

Info

Publication number
JP2002050390A
JP2002050390A JP2000238244A JP2000238244A JP2002050390A JP 2002050390 A JP2002050390 A JP 2002050390A JP 2000238244 A JP2000238244 A JP 2000238244A JP 2000238244 A JP2000238244 A JP 2000238244A JP 2002050390 A JP2002050390 A JP 2002050390A
Authority
JP
Japan
Prior art keywords
hydrogen
supply path
fuel cell
stack structure
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000238244A
Other languages
Japanese (ja)
Inventor
Toshiaki Kanemitsu
俊明 金光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2000238244A priority Critical patent/JP2002050390A/en
Publication of JP2002050390A publication Critical patent/JP2002050390A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell having a structure in which the length of the whole structure in the direction of the stack has been made shorter by eliminating the separator and the structure of passages has been made simple, and also series or parallel connection between each generating element can be made freely. SOLUTION: Generating elements 2 of three layer structure made of a negative electrode 4, a positive electrode, and a conductor membrane 3 provided in close contact between the negative electrode and the positive electrode are arranged plural pieces in the direction of the layer. In this arrangement, the opposing electrodes between the adjoining generating elements are made to be the same pole, and the only hydrogen gas supply passage is provided between the opposing negative electrodes, and the only air supply passage is provided between the opposing positive electrodes, and hydrogen is supplied to the negative electrodes and air is supplied to the positive electrodes. The opposing electrodes between the adjoining generating elements are connected by an insulator 8 and the hydrogen gas supply passage and the air supply passage are sealed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はスタック構造を有する燃
料電池に関し、特に多数の発電素子(セル)を積層した
スタック構造を有する燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell having a stack structure, and more particularly to a fuel cell having a stack structure in which a number of power generation elements (cells) are stacked.

【0002】[0002]

【従来の技術】燃料電池は、発電素子と呼ばれるセルを
複数並べて接続し、燃料電池スタックとして使用するの
が一般的である。図4に示されるように、発電素子2
は、水素イオンだけを通す高分子の伝導体膜3を、陰極
4と陽極5からなる2枚の電極で挟んでおり、更にその
両側をセパレータ102で囲む構造である。陰極4は、
伝導体膜3の一方の面に密着する水素電極と、水素電極
に密着すると共に水素ガス通過用の貫通孔が形成された
集電体を備える。また陽極5は、伝導体膜3の他方の面
に密着する酸素電極と、酸素電極に密着すると共に、空
気通過用の貫通孔が形成された集電体を備える。そし
て、このような発電素子2を層方向に複数並べると共
に、隣接した発電素子間では、陽極5と陰極4が対向
し、陽極5と陰極4の間にはガス分離のための導電性の
セパレータ102が設けられる。更に、各電極とセパレ
ータ102との間には、供給されたガスを封止するため
の導電性のスペーサ103が設けられる。そして、陽極
5とセパレータ102との間は大気が導入される空気供
給路107をなし、陽極5側に空気のみが供給可能に構
成される。また、陰極4とセパレータ102との間は水
素ガスが導入される水素供給路106をなし、陰極4側
のみに水素ガスが供給可能に構成される。
2. Description of the Related Art A fuel cell is generally used by arranging a plurality of cells called power generation elements and connecting them to form a fuel cell stack. As shown in FIG.
Has a structure in which a polymer conductor film 3 that allows only hydrogen ions to pass through is sandwiched between two electrodes including a cathode 4 and an anode 5, and both sides are further surrounded by separators 102. The cathode 4
There is provided a hydrogen electrode which is in close contact with one surface of the conductor film 3 and a current collector which is in close contact with the hydrogen electrode and in which a through hole for passing hydrogen gas is formed. The anode 5 includes an oxygen electrode that is in close contact with the other surface of the conductor film 3 and a current collector that is in close contact with the oxygen electrode and has a through hole for air passage. A plurality of such power generating elements 2 are arranged in the layer direction, and an anode 5 and a cathode 4 face each other between adjacent power generating elements, and a conductive separator for separating gas is provided between the anode 5 and the cathode 4. 102 is provided. Furthermore, a conductive spacer 103 for sealing the supplied gas is provided between each electrode and the separator 102. An air supply path 107 through which the atmosphere is introduced is formed between the anode 5 and the separator 102, and only the air can be supplied to the anode 5 side. Further, a hydrogen supply path 106 through which hydrogen gas is introduced is formed between the cathode 4 and the separator 102, and the hydrogen gas can be supplied only to the cathode 4 side.

【0003】空気(酸素)と水素ガスが、セパレータ1
02によって仕切られたそれぞれの供給路106,10
7に互いに独立して供給されると、水素ガスは陰極4に
よって水素イオンとなり、伝導体膜3を通過して陽極5
側に移動する。このとき水素は電子を放出しそれが電位
差を生じさせる。電位差は1セル当りで1ボルト以下で
ありわずかであるが、上記のように、多数のセルを積層
し、導電性スペーサ103、導電性セパレータ102を
介して互いに直列接続することで、高い電圧が得られ
る。また以上のような水素ガス供給路106と空気供給
路107とが隣合った位置にある構造では、陽極5側で
発生した水を陰極4の加湿に用いるためには、レイアウ
ト上有利である。
[0003] Air (oxygen) and hydrogen gas are supplied to the separator 1
02, each of the supply paths 106, 10
7 are supplied independently of each other, the hydrogen gas is converted into hydrogen ions by the cathode 4 and passes through the conductor film 3 to form the anode 5.
Move to the side. At this time, hydrogen emits electrons, which generate a potential difference. Although the potential difference is 1 volt or less per cell, which is small, as described above, a high voltage can be obtained by stacking a large number of cells and connecting them in series via the conductive spacer 103 and the conductive separator 102. can get. In the structure in which the hydrogen gas supply path 106 and the air supply path 107 are adjacent to each other as described above, it is advantageous in terms of layout to use water generated on the anode 5 side for humidifying the cathode 4.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述した従来
のスタック構造を有する燃料電池101によると、隣合
う発電素子2,2間には、必ずセパレータ102が必要
となり、セパレータ102の両面には、異種のガス流路
106、107を形成する必要があり、流路構造が複雑
となる。また、隣合う発電素子2,2間には、積層方向
でみたとき、水素ガス供給路106、セパレータ10
2、空気供給路107の3層構造となり、その分だけ、
スタック構造全体の積層方向の長さが増大し、コンパク
ト化の要請に反する。加えて、従来のスタック構造で
は、直列による接続のみしか実現し得ず、スタック構造
全体の出力アップには貢献できるが、各発電素子間で任
意の接続をするという接続の自由度を向上させる要請に
は、応えることができない。
However, according to the fuel cell 101 having the above-mentioned conventional stack structure, the separator 102 is always required between the adjacent power generation elements 2 and 2. It is necessary to form different gas flow paths 106 and 107, and the flow path structure becomes complicated. In addition, between the adjacent power generation elements 2 and 2, when viewed in the stacking direction, the hydrogen gas supply path 106 and the separator 10
2. The air supply passage 107 has a three-layer structure.
The length of the entire stack structure in the stacking direction increases, which is against the demand for compactness. In addition, in the conventional stack structure, only the connection in series can be realized, which can contribute to the increase in the output of the entire stack structure. Can not respond.

【0005】そこで本発明は、セパレータを不要にして
スタック構造全体のスタック方向での長さを短縮可能と
すると共に流路の構成を簡素化し、また、各発電素子間
で直列又は並列接続を任意に実現できるスタック構造を
有する燃料電池を提供することを目的とする。
Therefore, the present invention makes it possible to reduce the length of the entire stack structure in the stack direction by eliminating the need for a separator, to simplify the structure of the flow path, and to optionally connect a series or parallel connection between the power generating elements. It is an object of the present invention to provide a fuel cell having a stack structure that can be realized at a high speed.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、水素電極及び集電体を有する陰極と、酸
素電極及び集電体を有する陽極と、該陰極と該陽極との
間に密着して設けられた伝導体膜とからなる3層構造の
発電素子を、層方向に複数配列すると共に、該水素電極
に水素を供給し該酸素電極に酸素を供給するために、各
発電素子間に水素ガス供給路及び空気供給路が配置され
た燃料電池のスタック構造において、隣合う発電素子間
の対向する電極が同極となるようにそれぞれの発電素子
が配置され、対向する陰極間には水素ガス供給路のみ
が、また対向する陽極間には空気供給路のみが設けら
れ、隣合う発電素子間の対向する電極間は、絶縁体で接
続されて該水素ガス供給路及び該空気供給路を封止する
スタック構造を有する燃料電池を提供している。
In order to achieve the above object, the present invention provides a cathode having a hydrogen electrode and a current collector, an anode having an oxygen electrode and a current collector, and In order to arrange a plurality of power generating elements having a three-layer structure including a conductor film provided in close contact with each other in the layer direction and to supply hydrogen to the hydrogen electrode and supply oxygen to the oxygen electrode, In a fuel cell stack structure in which a hydrogen gas supply path and an air supply path are arranged between the power generation elements, the respective power generation elements are arranged so that the opposing electrodes between adjacent power generation elements have the same polarity, and the opposing cathodes Only the hydrogen gas supply path is provided between the anodes, and only the air supply path is provided between the opposed anodes. The opposed electrodes between the adjacent power generation elements are connected by an insulator to form the hydrogen gas supply path and the Has a stack structure to seal the air supply path It has to offer fee battery.

【0007】ここで、隣合う発電素子間の対向する電極
間は、絶縁体で接続されて該水素ガス供給路及び該空気
供給路を封止すると共に、それぞれの発電素子を外部導
線にて任意に接続して、直列又は並列又は直列と並列の
組合せを任意に提供するのが好ましい。
Here, between the opposing electrodes between the adjacent power generating elements is connected with an insulator to seal the hydrogen gas supply path and the air supply path, and each power generation element is optionally connected with an external conductor. To optionally provide series or parallel or a combination of series and parallel.

【0008】[0008]

【発明の実施の形態】本発明の実施の形態によるスタッ
ク構造を有する燃料電池について図1乃至図3に基づき
説明する。図1に示されるスタック構造を有する燃料電
池1では、4本の発電素子2を直列に接続した例であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A fuel cell having a stack structure according to an embodiment of the present invention will be described with reference to FIGS. The fuel cell 1 having the stack structure shown in FIG. 1 is an example in which four power generation elements 2 are connected in series.

【0009】発電素子2は、図1に示されるように、水
素イオンだけを通す高分子の伝導体膜3を、陰極4と陽
極5からなる2枚の電極で挟む構成である。陰極4は、
伝導体膜3の一方の面に密着する水素電極と、水素電極
に密着すると共に水素ガス通過用の貫通孔が形成された
集電体を備える。また陽極5は、伝導体膜3の他方の面
に密着する酸素電極と、酸素電極に密着すると共に、空
気通過用の貫通孔が形成された集電体を備える。そし
て、このような発電素子2を層方向に複数並べると共
に、隣合う発電素子間の対向する電極が同極となるよう
にそれぞれの発電素子2が配置される。そして、隣合う
陰極4、4間には水素ガス供給路6のみが、また隣合う
陽極5、5間には空気供給路7のみが設けられている。
更に、隣合う発電素子2、2間の対向する電極間は、絶
縁体8で接続されて該水素ガス供給路6及び該空気供給
路7がそれぞれ封止されている。
As shown in FIG. 1, the power generating element 2 has a configuration in which a polymer conductive film 3 that allows only hydrogen ions to pass therethrough is sandwiched between two electrodes including a cathode 4 and an anode 5. The cathode 4
There is provided a hydrogen electrode which is in close contact with one surface of the conductor film 3 and a current collector which is in close contact with the hydrogen electrode and in which a through hole for passing hydrogen gas is formed. The anode 5 includes an oxygen electrode that is in close contact with the other surface of the conductor film 3 and a current collector that is in close contact with the oxygen electrode and has a through hole for air passage. Then, a plurality of such power generating elements 2 are arranged in the layer direction, and the respective power generating elements 2 are arranged such that opposing electrodes between adjacent power generating elements have the same polarity. Only the hydrogen gas supply path 6 is provided between the adjacent cathodes 4, and only the air supply path 7 is provided between the adjacent anodes 5.
Further, between the opposing electrodes between the adjacent power generating elements 2 and 2, the hydrogen gas supply path 6 and the air supply path 7 are respectively sealed by an insulator 8.

【0010】それぞれの発電素子2は、外部導線9A〜
9Cにて任意に接続される。図1に示される4本の発電
素子2を用いた構造では、第1の発電素子2の陰極4と
第2の発電素子2の陽極5とが導線9Aにて接続され、
第2の発電素子2の陰極4と第3の発電素子2の陽極5
とが導線9Bにて接続され、第3の発電素子2の陰極4
と第4の発電素子2の陽極5が導線9Cにて接続され
て、全体として直列接続となる。
Each power generating element 2 has an external conductor 9A-
It is arbitrarily connected at 9C. In the structure using four power generating elements 2 shown in FIG. 1, the cathode 4 of the first power generating element 2 and the anode 5 of the second power generating element 2 are connected by a conducting wire 9A,
The cathode 4 of the second power generation element 2 and the anode 5 of the third power generation element 2
Are connected by a conducting wire 9B, and the cathode 4 of the third power generating element 2
And the anode 5 of the fourth power generation element 2 are connected by a conducting wire 9C, and are connected in series as a whole.

【0011】水素供給路6に水素ガスが供給されると、
向い合う発電素子2、2の陰極4、4の集電板の貫通孔
を介して、水素電極に水素が供給される。水素ガスは水
素電極によって水素イオンとなり、水素イオンは伝導体
膜3を通過して酸素電極側に移動する。同時に空気供給
路7には空気(酸素)が供給されているので、陽極5の
集電体の貫通孔を介して、酸素電極に酸素が供給され
る。そして酸素電極において水素イオンと酸素イオンの
反応が起り水が生成される。同時に水素は水素電極に電
子を放出して、電位差を生じさせそれが出力となり、上
述した直列接続によって、所望の電力が出力できる。
When hydrogen gas is supplied to the hydrogen supply passage 6,
Hydrogen is supplied to the hydrogen electrode through the through holes of the current collectors of the cathodes 4 and 4 of the power generating elements 2 and 2 facing each other. The hydrogen gas is converted into hydrogen ions by the hydrogen electrode, and the hydrogen ions pass through the conductor film 3 and move to the oxygen electrode side. At the same time, since air (oxygen) is supplied to the air supply path 7, oxygen is supplied to the oxygen electrode via the through-hole of the current collector of the anode 5. Then, a reaction between hydrogen ions and oxygen ions occurs at the oxygen electrode, and water is generated. At the same time, hydrogen emits electrons to the hydrogen electrode to generate a potential difference, which becomes an output, and a desired power can be output by the above-described series connection.

【0012】図2に示されるスタック構造を有する燃料
電池11では、発電素子の配列方向や水素供給路6、空
気供給路7の配置については、図1のスタック構造と同
一であるが、導線19A〜19Eにより、4本の発電素
子2を並列に接続した例である。第1〜第4の発電素子
2の陰極4どうしを、導線19A、19Bで接続すると
共に、第1〜第4の発電素子の陽極どうしを、導線19
C、19D、19Eで接続することで、並列接続が実現
でき、出力アップの要請よりも、低出力の安定供給の要
請に応えることができる。
In the fuel cell 11 having the stack structure shown in FIG. 2, the arrangement direction of the power generation elements and the arrangement of the hydrogen supply passage 6 and the air supply passage 7 are the same as those of the stack structure of FIG. 19E shows an example in which four power generating elements 2 are connected in parallel. The cathodes 4 of the first to fourth power generation elements 2 are connected by conductors 19A and 19B, and the anodes of the first to fourth power generation elements are connected by conductor 19
By connecting at C, 19D, and 19E, parallel connection can be realized, and it is possible to respond to a demand for a stable supply of low output rather than a demand for an increase in output.

【0013】図3に示されるスタック構造を有する燃料
電池21も、発電素子の配列方向や水素供給路6、空気
供給路7の配置については、図1、図2のスタック構造
と同一であるが、導線29A〜29Eにより、4本の発
電素子について並列と直列を組合わせた例である。第
1、第2の発電素子2の陽極間と陰極間をそれぞれ導線
29A、29Bで並列接続し、第3と第4の発電素子に
ついても、陽極間と陰極間をそれぞれ導線29C、29
Dで並列接続する。そして、第2と第3の発電素子につ
いて、導線29Eで直列接続する。以上のような直列と
並列の組合せによって、所望の出力を得ることができ
る。
The fuel cell 21 having the stack structure shown in FIG. 3 has the same arrangement direction of the power generating elements and the arrangement of the hydrogen supply path 6 and the air supply path 7 as the stack structure of FIGS. This is an example in which four power generating elements are combined in parallel and in series by conducting wires 29A to 29E. Conductors 29A and 29B are connected in parallel between the anodes and the cathodes of the first and second power generation elements 2, respectively, and the conductors 29C and 29C are also connected between the anodes and the cathodes of the third and fourth power generation elements, respectively.
Connect in parallel with D. Then, the second and third power generation elements are connected in series by the conducting wire 29E. A desired output can be obtained by the combination of series and parallel as described above.

【0014】本発明による燃料電池のスタック構造は、
上述した実施の形態に限定されず、特許請求の範囲に記
載した範囲で種々の変形や改良が可能である。例えば、
本発明の水素電極に、フラーレン誘導体系プロトン伝導
体を含浸させ、酸素電極に有機物系プロトン伝導体を含
浸させた構造とすることにより、無加湿の状態で燃料電
池を動作させた場合でも、陰極内での水素イオンプロト
ン伝導を良好に実行することができる。この場合には、
陽極で発生した水を陰極の加湿に用いる必要がないこと
から、空気供給路と水素供給路とが近接しておらず各セ
ルによって互いに離間した位置関係にある本発明の構成
にとって、水素電極にフラーレン誘導体系プロトン伝導
体を含浸させることは有利である。また酸素電極におい
ては、水素イオンと酸素イオンとの反応により水が生成
されるので、その水で酸素電極の加湿を行うことができ
る。更に、伝導体膜にフラーレン誘導体系プロトン伝導
体を含浸させた構造とすることにより、無加湿状態でも
伝導体膜内で水素イオンプロトン伝導が行える。
The stack structure of the fuel cell according to the present invention comprises:
The present invention is not limited to the above embodiment, and various modifications and improvements can be made within the scope described in the claims. For example,
The hydrogen electrode of the present invention is impregnated with a fullerene derivative-based proton conductor, and the oxygen electrode is impregnated with an organic proton conductor, so that even when the fuel cell is operated in a non-humidified state, the cathode is Proton conduction of hydrogen ions in the inside can be satisfactorily performed. In this case,
Since it is not necessary to use the water generated at the anode for humidifying the cathode, the configuration of the present invention in which the air supply path and the hydrogen supply path are not close to each other and are separated from each other by each cell, It is advantageous to impregnate a fullerene derivative-based proton conductor. Further, in the oxygen electrode, water is generated by the reaction between hydrogen ions and oxygen ions, so that the oxygen electrode can be humidified with the water. Furthermore, by adopting a structure in which the conductor membrane is impregnated with a fullerene derivative-based proton conductor, hydrogen ion proton conduction can be performed in the conductor membrane even in a non-humidified state.

【0015】[0015]

【発明の効果】請求項1記載のスタック構造を有する燃
料電池によれば、隣合う発電素子間の対向する電極が同
極となるようにそれぞれの発電素子が配置され、対向す
る陰極間には水素ガス供給路のみが、また対向する陽極
間には空気供給路のみが設けられ、 隣合う発電素子間
の対向する電極間は、絶縁体で接続されて該水素ガス供
給路及び該空気供給路を封止する構成なので、隣合う発
電素子間でセパレータを設けてガスを分離する必要がな
くなり、よってガス流路の機械的構成が簡略化され、ま
た、スタック方向の長さを短くすることができる。
According to the fuel cell having the stack structure according to the first aspect, the power generating elements are arranged such that the electrodes facing each other between the adjacent power generating elements have the same polarity, and between the opposing cathodes. Only the hydrogen gas supply path is provided, and only the air supply path is provided between the opposed anodes. The opposed electrodes between the adjacent power generation elements are connected by an insulator to form the hydrogen gas supply path and the air supply path. , It is not necessary to provide a separator between adjacent power generating elements to separate gas, so that the mechanical configuration of the gas flow path is simplified and the length in the stack direction can be reduced. it can.

【0016】請求項2記載のスタック構造を有する燃料
電池によれば、それぞれの発電素子を外部導線にて任意
に接続可能に設けられるので、直接接続のみならず、所
望の並列又は直列と並列の組合せを任意に提供すること
ができ、接続の自由度を高めることができ、電圧や電流
を所望の値に変更することが可能となる。
According to the fuel cell having the stack structure according to the second aspect, since each power generating element is provided so as to be arbitrarily connectable with the external conductor, not only the direct connection but also the desired parallel or series and parallel Any combination can be provided, the degree of freedom of connection can be increased, and the voltage and current can be changed to desired values.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態によるスタック構造を有す
る燃料電池の断面図であって、直列接続により構成した
もの。
FIG. 1 is a cross-sectional view of a fuel cell having a stack structure according to an embodiment of the present invention, which is configured by series connection.

【図2】本発明の実施の形態によるスタック構造を有す
る燃料電池の断面図であって、並列接続により構成した
もの。
FIG. 2 is a cross-sectional view of a fuel cell having a stack structure according to an embodiment of the present invention, which is configured by parallel connection.

【図3】本発明の実施の形態によるスタック構造を有す
る燃料電池の断面図であって、直列接続と並列接続の組
合せにより構成したもの。
FIG. 3 is a cross-sectional view of a fuel cell having a stack structure according to an embodiment of the present invention, which is configured by a combination of series connection and parallel connection.

【図4】従来のスタック構造を有する燃料電池の断面
図。
FIG. 4 is a cross-sectional view of a fuel cell having a conventional stack structure.

【符号の説明】[Explanation of symbols]

1、11、21 スタック構造を有する燃料電池 2 セル 3 伝導体膜 4 陰極 5 陽極 6 水素供給路 7 空気供給路 8 絶縁体 9A〜9C、19A〜19E、29A〜29E 導線 1, 11, 21 Fuel cell having stack structure 2 Cell 3 Conductor film 4 Cathode 5 Anode 6 Hydrogen supply path 7 Air supply path 8 Insulator 9A-9C, 19A-19E, 29A-29E Conductor

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年8月16日(2000.8.1
6)
[Submission date] August 16, 2000 (2008.1.
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、水素電極及び集電体を有する陰極と、酸
素電極及び集電体を有する陽極と、該陰極と該陽極との
間に密着して設けられた伝導体膜とからなる3層構造の
発電素子を、層方向に複数配列すると共に、該水素電極
に水素を供給し該酸素電極に酸素を供給するために、各
発電素子間に水素ガス供給路及び空気供給路が配置され
スタック構造を有する燃料電池において、 隣合う発
電素子間の対向する電極が同極となるようにそれぞれの
発電素子が配置され、対向する陰極間には水素ガス供給
路のみが、また対向する陽極間には空気供給路のみが設
けられ、隣合う発電素子間の対向する電極間は、絶縁体
で接続されて該水素ガス供給路及び該空気供給路を封止
するスタック構造を有する燃料電池を提供している。
In order to achieve the above object, the present invention provides a cathode having a hydrogen electrode and a current collector, an anode having an oxygen electrode and a current collector, and In order to arrange a plurality of power generating elements having a three-layer structure including a conductor film provided in close contact with each other in the layer direction and to supply hydrogen to the hydrogen electrode and supply oxygen to the oxygen electrode, In a fuel cell having a stack structure in which a hydrogen gas supply path and an air supply path are arranged between power generation elements, the respective power generation elements are arranged so that opposing electrodes between adjacent power generation elements have the same polarity, and face each other. Only the hydrogen gas supply path is provided between the cathodes, and only the air supply path is provided between the opposed anodes. The opposed electrodes between the adjacent power generation elements are connected by an insulator to form the hydrogen gas supply path and A stack structure for sealing the air supply path And a fuel cell having the same.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】本発明によるスタック構造を有する燃料電
は、上述した実施の形態に限定されず、特許請求の範
囲に記載した範囲で種々の変形や改良が可能である。例
えば、本発明の水素電極に、フラーレン誘導体系プロト
ン伝導体を含浸させ、酸素電極に有機物系プロトン伝導
体を含浸させた構造とすることにより、無加湿の状態で
燃料電池を動作させた場合でも、陰極内での水素イオン
プロトン伝導を良好に実行することができる。この場合
には、陽極で発生した水を陰極の加湿に用いる必要がな
いことから、空気供給路と水素供給路とが近接しておら
ず各セルによって互いに離間した位置関係にある本発明
の構成にとって、水素電極にフラーレン誘導体系プロト
ン伝導体を含浸させることは有利である。また酸素電極
においては、水素イオンと酸素イオンとの反応により水
が生成されるので、その水で酸素電極の加湿を行うこと
ができる。更に、伝導体膜にフラーレン誘導体系プロト
ン伝導体を含浸させた構造とすることにより、無加湿状
態でも伝導体膜内で水素イオンプロトン伝導が行える。
A fuel cell having a stack structure according to the present invention
The pond is not limited to the embodiments described above, and various modifications and improvements are possible within the scope described in the claims. For example, the hydrogen electrode of the present invention is impregnated with a fullerene derivative-based proton conductor, and the oxygen electrode is impregnated with an organic-based proton conductor, so that even when the fuel cell is operated in a non-humidified state. In addition, proton conduction of hydrogen ions in the cathode can be favorably performed. In this case, since the water generated at the anode does not need to be used for humidifying the cathode, the configuration of the present invention in which the air supply path and the hydrogen supply path are not close to each other but are separated from each other by each cell. Therefore, it is advantageous to impregnate the hydrogen electrode with a fullerene derivative-based proton conductor. Further, in the oxygen electrode, water is generated by the reaction between hydrogen ions and oxygen ions, so that the oxygen electrode can be humidified with the water. Furthermore, by adopting a structure in which the conductor membrane is impregnated with a fullerene derivative-based proton conductor, hydrogen ion proton conduction can be performed in the conductor membrane even in a non-humidified state.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素電極及び集電体を有する陰極と、酸
素電極及び集電体を有する陽極と、該陰極と該陽極との
間に密着して設けられた伝導体膜とからなる3層構造の
発電素子を、層方向に複数配列すると共に、該水素電極
に水素を供給し該酸素電極に酸素を供給するために、各
発電素子間に水素ガス供給路及び空気供給路が配置され
た燃料電池のスタック構造において、 隣合う発電素子間の対向する電極が同極となるようにそ
れぞれの発電素子が配置され、対向する陰極間には水素
ガス供給路のみが、また対向する陽極間には空気供給路
のみが設けられ、隣合う発電素子間の対向する電極間
は、絶縁体で接続されて該水素ガス供給路及び該空気供
給路を封止することを特徴とするスタック構造を有する
燃料電池。
1. A three-layer structure comprising a cathode having a hydrogen electrode and a current collector, an anode having an oxygen electrode and a current collector, and a conductor film provided in close contact between the cathode and the anode. A plurality of power generating elements having a structure are arranged in the layer direction, and a hydrogen gas supply path and an air supply path are arranged between the power generation elements to supply hydrogen to the hydrogen electrode and supply oxygen to the oxygen electrode. In the fuel cell stack structure, each power generating element is arranged so that the opposing electrodes between adjacent power generating elements have the same polarity, only the hydrogen gas supply path is provided between the opposing cathodes, and between the opposing anodes. Has a stack structure in which only an air supply path is provided, and the opposed electrodes between adjacent power generation elements are connected by an insulator to seal the hydrogen gas supply path and the air supply path. Fuel cell.
【請求項2】 それぞれの発電素子を外部導線にて任意
に接続して、直列又は並列又は直列と並列の組合せを任
意に提供することを特徴とする請求項1記載のスタック
構造を有する燃料電池。
2. The fuel cell having a stack structure according to claim 1, wherein each power generating element is arbitrarily connected by an external conductor to provide a series or parallel or a combination of series and parallel. .
JP2000238244A 2000-08-07 2000-08-07 Fuel cell having stack structure Pending JP2002050390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000238244A JP2002050390A (en) 2000-08-07 2000-08-07 Fuel cell having stack structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000238244A JP2002050390A (en) 2000-08-07 2000-08-07 Fuel cell having stack structure

Publications (1)

Publication Number Publication Date
JP2002050390A true JP2002050390A (en) 2002-02-15

Family

ID=18729975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000238244A Pending JP2002050390A (en) 2000-08-07 2000-08-07 Fuel cell having stack structure

Country Status (1)

Country Link
JP (1) JP2002050390A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071780A1 (en) * 2004-01-27 2005-08-04 Canon Kabushiki Kaisha Fuel cell unit
KR100580964B1 (en) * 2003-12-30 2006-05-17 주식회사 엘지화학 Fuel battery
WO2006090464A1 (en) * 2005-02-24 2006-08-31 Octec, Inc. Solid polymer fuel cell and method for producing same
EP1930975A1 (en) * 2005-09-07 2008-06-11 Ngk Insulators, Ltd. Electrochemical device and electrochemical apparatus
JP2008186594A (en) * 2007-01-26 2008-08-14 Tomoki Yamazaki Mea structure of fuel cell and structure of fuel cell
WO2009119434A1 (en) * 2008-03-24 2009-10-01 ソニー株式会社 Fuel cell unit, fuel cell stack and electronic device
KR100933856B1 (en) * 2007-08-20 2009-12-24 삼성에스디아이 주식회사 Fuel cell system
KR20180019943A (en) * 2016-08-17 2018-02-27 류보현 Stack Assembly with High temperature Fuel Cell Unit-cell with Homopolar plates
KR20180019942A (en) * 2016-08-17 2018-02-27 류보현 High temperature Fuel Cell Unit-cell Assembly with Homopolar plates
KR20200080949A (en) * 2018-12-27 2020-07-07 스탠다드에너지(주) A Battery Cell for Redox flow battery having a mixed serial and parallel structure

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100580964B1 (en) * 2003-12-30 2006-05-17 주식회사 엘지화학 Fuel battery
WO2005071780A1 (en) * 2004-01-27 2005-08-04 Canon Kabushiki Kaisha Fuel cell unit
WO2006090464A1 (en) * 2005-02-24 2006-08-31 Octec, Inc. Solid polymer fuel cell and method for producing same
EP1930975A1 (en) * 2005-09-07 2008-06-11 Ngk Insulators, Ltd. Electrochemical device and electrochemical apparatus
EP1930975A4 (en) * 2005-09-07 2009-01-21 Ngk Insulators Ltd Electrochemical device and electrochemical apparatus
JP2008186594A (en) * 2007-01-26 2008-08-14 Tomoki Yamazaki Mea structure of fuel cell and structure of fuel cell
KR100933856B1 (en) * 2007-08-20 2009-12-24 삼성에스디아이 주식회사 Fuel cell system
US8440361B2 (en) 2007-08-20 2013-05-14 Samsung Sdi Co., Ltd. Monopolar separator with an insulation layer for a fuel cell system
JP2009231111A (en) * 2008-03-24 2009-10-08 Sony Corp Fuel cell unit, fuel cell stack and electronic device
WO2009119434A1 (en) * 2008-03-24 2009-10-01 ソニー株式会社 Fuel cell unit, fuel cell stack and electronic device
CN101978539A (en) * 2008-03-24 2011-02-16 索尼公司 Fuel cell unit, fuel cell stack, and electronic device
KR20180019943A (en) * 2016-08-17 2018-02-27 류보현 Stack Assembly with High temperature Fuel Cell Unit-cell with Homopolar plates
KR20180019942A (en) * 2016-08-17 2018-02-27 류보현 High temperature Fuel Cell Unit-cell Assembly with Homopolar plates
KR101951078B1 (en) 2016-08-17 2019-02-21 류보현 High temperature Fuel Cell Unit-cell Assembly with Homopolar plates
KR101962267B1 (en) 2016-08-17 2019-03-26 류보현 Stack Assembly with High temperature Fuel Cell Unit-cell with Homopolar plates
KR20200080949A (en) * 2018-12-27 2020-07-07 스탠다드에너지(주) A Battery Cell for Redox flow battery having a mixed serial and parallel structure
KR102283441B1 (en) * 2018-12-27 2021-07-30 스탠다드에너지(주) A Battery Cell for Redox flow battery having a mixed serial and parallel structure

Similar Documents

Publication Publication Date Title
US4648955A (en) Planar multi-junction electrochemical cell
JP2002280016A (en) Single electrode type cell pack for direct methanol fuel cell
JP2002056855A (en) Flat fuel cell
US7794891B2 (en) Fuel cell with interweaving current collector and membrane electrode assembly
JP2012212678A (en) Fuel cell
JP4750018B2 (en) Planar fuel cell and method of manufacturing the fuel cell
JPH08130023A (en) Fuel cell
JP2002050390A (en) Fuel cell having stack structure
CA2441623C (en) Fuel cell with a seal member defining a reactant gas flow field
JP6895368B2 (en) Electrochemical cell stack, fuel cell and hydrogen generator
JP2004152684A (en) Fuel cell stack
JP2007217209A (en) Oxygen enrichment device
US7638219B2 (en) Fuel cell without Z-like connection plates and the method producing the same
JP2008027805A (en) Fuel cell stack and water content measuring device of fuel cell stack
JP4324347B2 (en) Fuel cell
KR100387244B1 (en) Monopolar cell pack of direct methanol fuel cell
JP2005535081A (en) Plate element for fuel cell stack
KR102236530B1 (en) Fuel cell and Fuel cell stack comprising the same
JPH0227670A (en) Fuel cell
JPH0945356A (en) Stack structure of plate type solid electrolyte fuel cell
JP2004273264A (en) Fuel-cell stack
JP3622682B2 (en) Fuel cell and cell unit
JP5157095B2 (en) Double-sided separator, fuel cell structure and fuel cell stack using the same
JP2004303651A (en) Planar laminated layer type fuel battery
WO2021095340A1 (en) Fuel battery stack

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040602

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040602

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040629