JP2002050351A - Manufacturing method of battery hydrogen storing alloy - Google Patents

Manufacturing method of battery hydrogen storing alloy

Info

Publication number
JP2002050351A
JP2002050351A JP2000236332A JP2000236332A JP2002050351A JP 2002050351 A JP2002050351 A JP 2002050351A JP 2000236332 A JP2000236332 A JP 2000236332A JP 2000236332 A JP2000236332 A JP 2000236332A JP 2002050351 A JP2002050351 A JP 2002050351A
Authority
JP
Japan
Prior art keywords
alloy
melting
metal
added
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000236332A
Other languages
Japanese (ja)
Inventor
Takao Maeda
孝雄 前田
Satoshi Shima
聡 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000236332A priority Critical patent/JP2002050351A/en
Publication of JP2002050351A publication Critical patent/JP2002050351A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of securing safety when the furnace is opened to the atmosphere after vacuum melting or atmospheric melting by suppressing the evaporation of melted magnesium while containing a prescribed amount of magnesium in the alloy. SOLUTION: As a material for adding Mg, a Mg metal or a Mg alloy having a melting point of 650 deg.C or more is used, and further Mg is added after a high melting point metal such as Ni and Co or the like are melted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金の製
造方法に関し、特に、ニッケル水素二次電池に用いられ
る負極用の水素吸蔵合金の製造方法に関するものであ
る。
The present invention relates to a method for producing a hydrogen storage alloy, and more particularly to a method for producing a hydrogen storage alloy for a negative electrode used in a nickel-metal hydride secondary battery.

【0002】[0002]

【従来の技術】ニッケル水素二次電池において、負極に
用いられる水素吸蔵合金の溶解方法として従来から高周
波溶解方法、アーク溶解法等が用いられてきている。ま
た、原料は、La、Ce、Pr、Nd、Sm等の希土類
金属や、それらの混合物であるミッシュメタル(以下、
「Mm」という。)とニッケル、コバルト、マンガン、
アルミニウムの金属を使用してきた。最近、これらの金
属以外にマグネシウムを合金中に0.5重量%程度含有
させることにより微粉化が抑制されたり、水素吸蔵合量
が増大したりすることがわかってきた。従来のMm等に
もMgが不純物として含まれているが、溶解中に蒸発
し、ほとんどできあがった合金中に残存していない。そ
の理由としては、マグネシウムの飽和蒸気圧が他の金属
に比べ高いことと希土類とMgとの合金は融点が低くな
るため、溶解が早くなり、結果的に溶湯にいる時間が長
くなり、溶解中に蒸発してしまうことがわかっている。
蒸発したマグネシウムは、溶解炉壁に付着し、溶解、鋳
込み後、雰囲気置換チャンバーを大気に解放したとき、
燃焼、又は爆発の可能性があり非常に危険である。
2. Description of the Related Art In a nickel-hydrogen secondary battery, a high-frequency melting method, an arc melting method, and the like have been conventionally used as a method of melting a hydrogen storage alloy used for a negative electrode. The raw material is a rare earth metal such as La, Ce, Pr, Nd, or Sm or a misch metal (hereinafter, a mixture thereof).
It is called “Mm”. ) And nickel, cobalt, manganese,
Aluminum metal has been used. Recently, it has been found that by adding about 0.5% by weight of magnesium in the alloy in addition to these metals, pulverization is suppressed and the amount of hydrogen occlusion is increased. Conventional Mm and the like also contain Mg as an impurity, but evaporate during melting and hardly remain in the completed alloy. The reason is that the saturation vapor pressure of magnesium is higher than that of other metals, and the alloy of rare earth and Mg has a lower melting point, so that melting is faster, and as a result, the time in the molten metal is longer, and Is known to evaporate.
Evaporated magnesium adheres to the melting furnace wall, melts, casts, and then releases the atmosphere replacement chamber to the atmosphere,
Very flammable with possible burning or explosion.

【0003】[0003]

【発明が解決しようとする課題】本発明は、これら従来
技術の課題を解決するもので、溶解中のマグネシウムの
蒸発を抑制し、所定量のマグネシウムを合金内に含有さ
せ、真空溶解、又は雰囲気溶解後に炉内を大気に解放す
るときの安全を確保する方法を提供するものである。
SUMMARY OF THE INVENTION The present invention solves these problems of the prior art, in which evaporation of magnesium during melting is suppressed, a predetermined amount of magnesium is contained in the alloy, and vacuum melting or atmosphere melting is performed. An object of the present invention is to provide a method for ensuring safety when the inside of a furnace is released to the atmosphere after melting.

【0004】[0004]

【課題を解決するための手段】本発明は、Mgを添加す
るための原料として融点が650℃以上のMg金属、又
はMg合金を使用することに特徴をもち、さらに、N
i、Co等の高融点金属を溶解した後に添加することを
特徴とする。そこで、Mgの添加原料は、融点を650
℃以上にした合金、又はマグネシウムメタルを添加する
場合、NiやCo等の高融点金属が溶融した後に添加す
ることにより、マグネシウムの含有された金属が溶湯と
して存在している時間が短くなり、溶湯から蒸発するM
g量が抑制される効果が期待される。結果として、炉壁
等へのMgの付着量が減少し、炉内を大気解放時により
安全に作業を進めることができるようになり、さらに、
できあがった合金中のマグネシウム含有量を高くするこ
とができる。
The present invention is characterized in that a Mg metal or a Mg alloy having a melting point of 650 ° C. or more is used as a raw material for adding Mg.
It is characterized in that it is added after dissolving a high melting point metal such as i or Co. Therefore, the added material of Mg has a melting point of 650.
° C or more, or when adding magnesium metal, by adding after melting a high melting point metal such as Ni or Co, the time during which the magnesium-containing metal is present as a molten metal is shortened, M evaporating from
The effect of suppressing the amount of g is expected. As a result, the amount of Mg adhering to the furnace walls and the like is reduced, and the furnace can be operated more safely when the furnace is opened to the atmosphere.
The magnesium content in the finished alloy can be increased.

【0005】[0005]

【発明の実施の形態】本発明の対象となる水素吸蔵合金
は、LaNi5、MmNi5、LmNi5(LmはLaリ
ッチなミッシュメタルを表す。)系合金であることを特
徴としており、Niの一部を、Co、Al、Mnで置換
してもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage alloy to which the present invention is applied is a LaNi 5 , MmNi 5 , LmNi 5 (Lm represents a La-rich misch metal) series alloy, and is characterized by being composed of Ni. Some may be replaced with Co, Al, Mn.

【0006】本発明の水素吸蔵合金製造方法は、以下の
ようにして行う。所定量の各元素を秤量し、高周波溶解
炉にてArガス等の不活性ガス(0.02〜0.2MP
a)で溶解する。この溶解原料としてMg金属や融点6
50℃以上の合金を用いる。例えば、MgNi2等が挙
げられる。添加量としては、用いる水素吸蔵合金に対
し、0.05〜2.0重量%、好ましくは0.1〜1.
0重量%とするとよい。本発明の方法は、希土類系水素
吸蔵合金がNi及び/又はCoを含み、Mgの添加原料
を溶解時に添加する場合、少なくともNi及び/又はC
oの高融点金属を溶解した後、溶湯内に添加することを
特徴とする。例えば、溶解の際、初期の坩堝内には、所
定量秤量したNi、Co、Mn、Alをいれて溶解をは
じめる。それらが溶解した後、La、Ce、Pr、N
d、又はMmの秤量品と同時にMg金属、又はMg合金
を溶湯内に添加する。このとき、一旦、溶湯温度が低下
するので再び所定温度まで上昇するのを待って、鋳型、
又はテーブル上に傾注し、冷却する。
The method for producing a hydrogen storage alloy according to the present invention is performed as follows. A predetermined amount of each element is weighed, and an inert gas such as Ar gas (0.02 to
Dissolve in a). As the melting raw material, Mg metal or melting point 6
Use an alloy at 50 ° C. or higher. For example, MgNi 2 and the like can be mentioned. The amount of addition is 0.05-2.0% by weight, preferably 0.1-1.
The content is preferably 0% by weight. In the method of the present invention, when the rare earth-based hydrogen storage alloy contains Ni and / or Co, and the additive material of Mg is added at the time of melting, at least Ni and / or C
After melting the high melting point metal of o, it is added to the molten metal. For example, at the time of melting, a predetermined amount of weighed Ni, Co, Mn, and Al is put into the initial crucible and melting is started. After they dissolve, La, Ce, Pr, N
At the same time as d or Mm, the Mg metal or Mg alloy is added to the molten metal. At this time, once the molten metal temperature drops, wait for the temperature to rise again to the predetermined temperature,
Alternatively, pour onto a table and cool.

【0007】本発明の製造法で得られた合金は、既知の
方法で、熱処理、粉砕し、電極用水素吸蔵合金とする。
例えば、Arガス等の不活性雰囲気下(0.08〜0.
2MPa)で800〜1200℃で5〜20時間熱処理
を行い、その後、Ar等の不活性雰囲気下で衝撃式又は
摩砕式粉砕機又はジェットミルなどの粉砕機にて平均粒
径4〜70μmになるように粉砕して本発明の水素吸蔵
合金を得ることができる。
The alloy obtained by the production method of the present invention is heat-treated and pulverized by a known method to obtain a hydrogen storage alloy for an electrode.
For example, under an inert atmosphere such as Ar gas (0.08-0.
2 MPa) at 800 to 1200 ° C. for 5 to 20 hours, and thereafter, under an inert atmosphere such as Ar or the like, to an average particle size of 4 to 70 μm by a pulverizer such as an impact or pulverizer or a jet mill. Thus, the hydrogen storage alloy of the present invention can be obtained.

【0008】[0008]

【実施例】以下、実施例によって本発明を詳述するが、
本発明はこれに限定されるものではない。 実施例1、比較例1 下記組成式(1)に示される合金に、該合金に対してM
gを0.28重量%添加した合金を作製するのに、合金
溶解時に、まず、Ni、Co、Mn、Alを溶解し、そ
の後、Mmと同時にMgメタルを添加する水素吸蔵合金
の製造方法を実施例1とし、MgをMm、Ni、Co、
Mn、Alと同時に添加し、初期から溶解した場合を、
比較例1とした。溶解時のMg添加量に対する合金中の
Mg量を残存率として、表1に示した。溶解は高周波溶
解炉、アルゴンガス(0.034MPa)を用い、温度
は1340〜1420℃であった。 MmNi4.17Co0.4Mn0.38Al0.30 (1) Mmとしては、La80重量%、Ce12重量%、Pr
4重量%、Nd4重量%の組成を用いた。
Hereinafter, the present invention will be described in detail with reference to Examples.
The present invention is not limited to this. Example 1, Comparative Example 1 An alloy represented by the following composition formula (1)
In order to produce an alloy containing 0.28% by weight of g, a method of manufacturing a hydrogen storage alloy in which Ni, Co, Mn, and Al are first dissolved when the alloy is melted, and then Mg metal is added simultaneously with Mm. In Example 1, Mg was Mm, Ni, Co,
When added simultaneously with Mn and Al and dissolved from the beginning,
Comparative Example 1 was used. Table 1 shows the amount of Mg in the alloy relative to the amount of Mg added during melting as a residual ratio. The melting was performed using a high-frequency melting furnace and argon gas (0.034 MPa), and the temperature was 1340 to 1420 ° C. MmNi 4.17 Co 0.4 Mn 0.38 Al 0.30 (1) As Mm, La 80% by weight, Ce 12% by weight, Pr
A composition of 4% by weight and 4% by weight of Nd was used.

【0009】[0009]

【表1】 [Table 1]

【0010】実施例2、比較例2 実施例1に示した製造方法にて、添加するMgをNiと
合金化し、融点を高くした(1100℃)合金を添加す
る方法を実施例2とし、MgとAlとの合金にて融点を
低くした(550℃)合金を添加する方法を比較例2と
し、実施例1の場合と同じようにMgの残存率を表2に
示した。
Example 2 and Comparative Example 2 In the manufacturing method shown in Example 1, a method of alloying Mg to be added with Ni and adding an alloy having a higher melting point (1100 ° C.) is referred to as Example 2, Comparative Example 2 was a method of adding an alloy of which the melting point was low (550 ° C.) with an alloy of Al and Al, and the residual ratio of Mg is shown in Table 2 in the same manner as in Example 1.

【0011】[0011]

【表2】 [Table 2]

【0012】表1、表2からわかるとおり、Ni、Co
等を溶解後にMgを添加し、また、融点がMg金属(6
59℃)以上であるほうが合金内により多く残存し、合
金外への放散が抑制され、溶解作業時に炉内を大気に解
放してもより安全に作業することが可能となることがわ
かる。
As can be seen from Tables 1 and 2, Ni, Co
Mg is added after dissolution, and the melting point is Mg metal (6
It can be seen that a temperature of 59 ° C. or higher remains more in the alloy, the radiation to the outside of the alloy is suppressed, and it is possible to work more safely even if the furnace is opened to the atmosphere during the melting operation.

【0013】[0013]

【発明の効果】本発明の水素吸蔵合金の製造方法により
合金中のMg含有量を所定のものにし、溶解時の蒸発を
抑制することにより、より安全な水素吸蔵合金の製造が
できる。
According to the method for producing a hydrogen storage alloy of the present invention, a safer hydrogen storage alloy can be produced by setting the Mg content in the alloy to a predetermined value and suppressing evaporation during melting.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Mgを添加する希土類系水素吸蔵合金の
製造方法であって、該Mgの添加原料として融点が65
0℃以上であるMg合金、又はMg金属を使用すること
を特徴とする水素吸蔵合金の製造方法。
1. A method for producing a rare earth-based hydrogen storage alloy to which Mg is added, wherein a melting point of the Mg-added material is 65
A method for producing a hydrogen storage alloy, comprising using an Mg alloy or Mg metal at 0 ° C. or higher.
【請求項2】 上記希土類系水素吸蔵合金がNi及び/
又はCoを含み、上記Mgの添加原料を溶解時に添加す
る場合、少なくとも該Ni及び/又はCoの高融点金属
を溶解した後、溶湯内に添加する請求項1に記載の水素
吸蔵合金の製造方法。
2. The method according to claim 1, wherein the rare earth hydrogen storage alloy is Ni and / or Ni.
2. The method for producing a hydrogen storage alloy according to claim 1, wherein when the additive material of Mg is added at the time of melting, at least the high melting point metal of Ni and / or Co is added to the molten metal. .
JP2000236332A 2000-08-04 2000-08-04 Manufacturing method of battery hydrogen storing alloy Pending JP2002050351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000236332A JP2002050351A (en) 2000-08-04 2000-08-04 Manufacturing method of battery hydrogen storing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000236332A JP2002050351A (en) 2000-08-04 2000-08-04 Manufacturing method of battery hydrogen storing alloy

Publications (1)

Publication Number Publication Date
JP2002050351A true JP2002050351A (en) 2002-02-15

Family

ID=18728392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000236332A Pending JP2002050351A (en) 2000-08-04 2000-08-04 Manufacturing method of battery hydrogen storing alloy

Country Status (1)

Country Link
JP (1) JP2002050351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080617A1 (en) * 2004-02-20 2005-09-01 Japan Metals And Chemicals Co., Ltd. METHOD FOR PRODUCING Mg-REM-Ni BASE HYDROGEN OCCLUDING ALLOY

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080617A1 (en) * 2004-02-20 2005-09-01 Japan Metals And Chemicals Co., Ltd. METHOD FOR PRODUCING Mg-REM-Ni BASE HYDROGEN OCCLUDING ALLOY
JPWO2005080617A1 (en) * 2004-02-20 2007-08-30 日本重化学工業株式会社 Method for producing Mg-REM-Ni-based hydrogen storage alloy
CN100378234C (en) * 2004-02-20 2008-04-02 日本重化学工业株式会社 Method for producing Mg-Rem-Ni base hydrogen occluding alloy
US7988800B2 (en) 2004-02-20 2011-08-02 Japan Metals And Chemicals Co., Ltd. Method for producing Mg-REM-Ni based hydrogen-absorbing alloy
JP4805816B2 (en) * 2004-02-20 2011-11-02 日本重化学工業株式会社 Method for producing Mg-REM-Ni-based hydrogen storage alloy

Similar Documents

Publication Publication Date Title
TWI267555B (en) Method for producing Mg-REM-Ni base hydrogen occluding alloy
JP5856056B2 (en) Method for producing rare earth-Mg-Ni hydrogen storage alloy
JP4601755B2 (en) Method for producing hydrogen storage alloy
JP2002050351A (en) Manufacturing method of battery hydrogen storing alloy
JP3603013B2 (en) Hydrogen storage alloy and nickel hydrogen secondary battery
JP2001040442A (en) Hydrogen storage alloy
JP4102429B2 (en) Hydrogen storage alloy and method for producing the same
KR20070107757A (en) Method of melting alloy containing high-vapor-pressure metal
JP4634256B2 (en) Hydrogen storage alloy, method for producing the same, and nickel metal hydride secondary battery
JP3022019B2 (en) Heat treatment method for hydrogen storage alloy for Ni-hydrogen battery
JP2001266864A (en) Hydrogen-storing alloy, alloy powder for nickel hydrogen secondary battery negative electrode and negative electrode for the same
US6063524A (en) Hydrogen absorbing alloy for a negative electrode of an alkaline storage battery
US5910379A (en) Hydrogen absorbing alloy for a negative electrode of an alkaline storage battery
JP2896433B2 (en) Magnesium hydrogen storage alloy
JP2004292838A (en) Hydrogen storage alloy and manufacturing method
JP2662436B2 (en) Method for improving characteristics of metal material for hydrogen storage
KR101776644B1 (en) Ni-Gd master alloy for alloy having excellent neutron absorption ability
JP2022177730A (en) Method for producing rare earth transition metal alloy powder
JPH0352526B2 (en)
JP5704087B2 (en) Hydrogen storage alloy
JP2001181763A (en) Hydrogen storage alloy
JP2000219928A (en) Hydrogen storage alloy and its production
JPH0551685A (en) Hydrogen storage alloy and hydrogen storage electrode
JP2002212601A (en) Method for producing hydrogen occlusion alloy
JPH10317017A (en) Production of hydrogen storage alloy cast pulverized powder