JP2002047096A - Method for simulating distribution of point defect in single crystal - Google Patents

Method for simulating distribution of point defect in single crystal

Info

Publication number
JP2002047096A
JP2002047096A JP2000230850A JP2000230850A JP2002047096A JP 2002047096 A JP2002047096 A JP 2002047096A JP 2000230850 A JP2000230850 A JP 2000230850A JP 2000230850 A JP2000230850 A JP 2000230850A JP 2002047096 A JP2002047096 A JP 2002047096A
Authority
JP
Japan
Prior art keywords
single crystal
mesh
temperature distribution
silicon
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000230850A
Other languages
Japanese (ja)
Other versions
JP4096499B2 (en
Inventor
Kouyukikai Kitamura
浩之介 北村
Naoki Ono
直樹 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP2000230850A priority Critical patent/JP4096499B2/en
Priority to TW090101842A priority patent/TW498402B/en
Priority to DE10106948A priority patent/DE10106948A1/en
Priority to US09/793,862 priority patent/US6451107B2/en
Priority to CNB011083166A priority patent/CN1249272C/en
Priority to KR10-2001-0009978A priority patent/KR100411553B1/en
Publication of JP2002047096A publication Critical patent/JP2002047096A/en
Application granted granted Critical
Publication of JP4096499B2 publication Critical patent/JP4096499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simulation method in which the calculation value of the point defect distribution in a single crystal extremely well matches up to an actual measurement. SOLUTION: This simulation method comprises modeling a hot zone of a pulling-up machine into a mesh structure (a first step), inputting the physical values of respective members into a computer (a second step), obtaining the surface temperature distribution of each member based on the physical value or the like (a third step), obtaining the interior temperature distribution of each member based on the above surface temperature distribution and further obtaining the inside temperature of a melted liquid 12 taking account of convection (a fourth step), obtaining the shape of the interface of solid and liquid conforming to an isothermal line including the triple point S of the single crystal (a fifth step), repeating the third to fifth steps until the above triple point becomes the melting point of the single crystal (a sixth step), repeating the first to sixth steps while changing the length of single crystal pulling-up to find the coordinates and temperature of single crystal mesh, and solving a diffusion equation based on the diffusion coefficient and boundary condition of vacancy in the crystal and interstitial atom to obtain the concentration distributions of the vacancy and interstitial atom after the cooling of the single crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チョクラルスキー
(以下、CZという。)法にて引上げられるシリコン等
の単結晶の点欠陥分布をコンピュータシミュレーション
する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for computer simulation of a point defect distribution of a single crystal such as silicon pulled by the Czochralski (CZ) method.

【0002】[0002]

【従来の技術】従来、この種のシミュレーション方法と
して、図4に示すように、総合伝熱シミュレータを用い
てCZ法によるシリコン単結晶4引上げ時の引上げ機1
内のホットゾーン構造及びそのシリコン単結晶4の引上
げ速度に基づいて、シリコン融液2の熱伝導率を操作す
ることによりシリコン融液2の内部温度分布を予測し、
この内部温度分布からシリコン単結晶4のメッシュの座
標及び温度をそれぞれ求め、更にシリコン単結晶4内の
格子間シリコン及び空孔の拡散係数及び境界条件に基づ
いて拡散方程式を解くことにより、上記格子間シリコン
及び空孔の濃度分布をコンピュータを用いて求める方法
が知られている。このシミュレーション方法では、ホッ
トゾーンの各部材がメッシュ分割されてモデル化され
る。特にシリコン融液2のメッシュは計算時間を短くす
るために10mm程度と比較的粗く設定される。
2. Description of the Related Art Conventionally, as a simulation method of this kind, as shown in FIG. 4, a pulling machine 1 for pulling a silicon single crystal 4 by a CZ method using an integrated heat transfer simulator.
Predicting the internal temperature distribution of the silicon melt 2 by manipulating the thermal conductivity of the silicon melt 2 based on the hot zone structure in the inside and the pulling speed of the silicon single crystal 4,
The coordinates and temperature of the mesh of the silicon single crystal 4 are obtained from the internal temperature distribution, and the diffusion equation is solved based on the diffusion coefficients and boundary conditions of interstitial silicon and vacancies in the silicon single crystal 4, thereby obtaining the above lattice. There is known a method of obtaining the concentration distribution of intersilicon and voids using a computer. In this simulation method, each member of the hot zone is modeled by mesh division. In particular, the mesh of the silicon melt 2 is set to be relatively coarse at about 10 mm in order to shorten the calculation time.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の格
子間シリコン及び空孔の濃度分布のシミュレーション方
法では、実際の引上げ機においては発生するシリコン融
液の対流を考慮しておらず、またシリコン融液のメッシ
ュが比較的粗いため、格子間シリコン及び空孔の濃度分
布(図5(b))が実測値(図5(e))と大幅に相違
する不具合があった。本発明の目的は、単結晶内の点欠
陥分布の計算値が実測値と極めて良く一致する、単結晶
の点欠陥分布のシミュレーション方法を提供することに
ある。
However, the conventional method of simulating the concentration distribution of interstitial silicon and vacancies does not take into account the convection of the silicon melt generated in an actual pulling machine. Since the mesh of the melt was relatively coarse, the concentration distribution of interstitial silicon and vacancies (FIG. 5B) was significantly different from the actually measured values (FIG. 5E). An object of the present invention is to provide a method for simulating a point defect distribution of a single crystal, in which a calculated value of a point defect distribution in the single crystal is in good agreement with an actually measured value.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
図1〜図3に示すように、引上げ機11により単結晶1
4を所定長さまで引上げた状態における単結晶14の引
上げ機11のホットゾーンをメッシュ構造でモデル化す
る第1ステップと、ホットゾーンの各部材毎にメッシュ
をまとめかつこのまとめられたメッシュに対する各部材
の物性値と単結晶14の引上げ長及びこの引上げ長に対
応する単結晶14の引上げ速度をそれぞれ与える第2ス
テップと、各部材の表面温度分布をヒータの発熱量及び
各部材の輻射率に基づいて求める第3ステップと、各部
材の表面温度分布及び熱伝導率に基づいて熱伝導方程式
を解くことにより各部材の内部温度分布を求めた後に融
液12が乱流であると仮定して得られた乱流モデル式及
びナビエ・ストークスの方程式を連結して解くことによ
り対流を考慮した融液12の内部温度分布を更に求める
第4ステップと、単結晶14及び融液12の固液界面形
状を単結晶の三重点Sを含む等温線に合せて求める第5
ステップと、第3ステップから第5ステップを三重点S
が単結晶14の融点になるまで繰返し引上げ機11内の
温度分布を計算して単結晶14のメッシュの座標及び温
度を求めこれらのデータをそれぞれ与える第6ステップ
と、単結晶14の引上げ長を段階的に変えて第1ステッ
プから第6ステップまでを繰返し引上げ機11内の温度
分布を計算して単結晶14のメッシュの座標及び温度を
求めこれらのデータをそれぞれ与える第7ステップと、
単結晶14のメッシュの座標及び温度のデータと単結晶
14内の空孔及び格子間原子の拡散係数及び境界条件を
それぞれ与える第8ステップと、単結晶14のメッシュ
の座標及び温度と空孔及び前記格子間原子の拡散係数及
び境界条件に基づいて拡散方程式を解くことにより単結
晶14の冷却後の空孔及び格子間原子の濃度分布を求め
る第9ステップとを含む単結晶の点欠陥分布のシミュレ
ーション方法である。
The invention according to claim 1 is
As shown in FIGS. 1 to 3, the single crystal 1
A first step of modeling the hot zone of the puller 11 of the single crystal 14 in a state in which the single crystal 4 has been pulled up to a predetermined length by a mesh structure; a mesh for each member of the hot zone; A second step of providing the physical property values of the single crystal 14 and the pulling speed of the single crystal 14 corresponding to the pulling length, and the surface temperature distribution of each member based on the calorific value of the heater and the emissivity of each member. And obtaining the internal temperature distribution of each member by solving the heat conduction equation based on the surface temperature distribution and the thermal conductivity of each member, and assuming that the melt 12 is turbulent. A fourth step of further calculating the internal temperature distribution of the melt 12 in consideration of convection by connecting and solving the turbulence model equation and the Navier-Stokes equation thus obtained; Fifth determining the solid-liquid interface shape of a crystal 14 and melt 12 in accordance with the isotherm containing triple point S of the single crystal
Step and the third to fifth steps are the triple point S
The sixth step of repeatedly calculating the temperature distribution in the puller 11 until the melting point of the single crystal 14 is reached, obtaining the coordinates and temperature of the mesh of the single crystal 14 and providing these data, and the pulling length of the single crystal 14 A seventh step in which the temperature distribution in the puller 11 is calculated by repeatedly changing the first step to the sixth step stepwise to obtain the coordinates and temperature of the mesh of the single crystal 14 and to provide these data;
An eighth step of providing data of the coordinates and temperature of the mesh of the single crystal 14, the diffusion coefficient of vacancies and interstitial atoms in the single crystal 14, and boundary conditions, respectively; A ninth step of obtaining a concentration distribution of vacancies and interstitial atoms after cooling of the single crystal 14 by solving a diffusion equation based on the diffusion coefficient and boundary conditions of the interstitial atoms. This is a simulation method.

【0005】この請求項1に記載された単結晶の点欠陥
分布のシミュレーション方法では、融液12の対流を考
慮して単結晶14の内部温度分布を求め、この単結晶1
4の内部温度分布に基づきかつ単結晶14内の点欠陥の
拡散を考慮して単結晶14内の点欠陥分布を求めたの
で、単結晶14内の点欠陥分布の計算値が実測値と極め
て良く一致する。
In the method for simulating the point defect distribution of a single crystal according to the present invention, the internal temperature distribution of the single crystal is determined in consideration of the convection of the melt.
Since the point defect distribution in the single crystal 14 was determined based on the internal temperature distribution of No. 4 and in consideration of the diffusion of the point defect in the single crystal 14, the calculated value of the point defect distribution in the single crystal 14 was extremely different from the actually measured value. Good agreement.

【0006】[0006]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図3に示すように、シリコン単結晶
引上げ機11のチャンバ内には、シリコン融液12を貯
留する石英るつぼ13が設けられる。この石英るつぼ1
3は図示しないが黒鉛サセプタ及び支軸を介してるつぼ
駆動手段に接続され、るつぼ駆動手段は石英るつぼ13
を回転させるとともに昇降させるように構成される。ま
た石英るつぼ13の外周面は石英るつぼ13から所定の
間隔をあけてヒータ(図示せず)により包囲され、この
ヒータは保温筒(図示せず)により包囲される。ヒータ
は石英るつぼ13に投入された高純度のシリコン多結晶
体を加熱・溶融してシリコン融液12にする。またチャ
ンバの上端には図示しないが円筒状のケーシングが接続
され、このケーシングには引上げ手段が設けられる。引
上げ手段はシリコン単結晶14を回転させながら引上げ
るように構成される。
Embodiments of the present invention will now be described with reference to the drawings. As shown in FIG. 3, a quartz crucible 13 for storing a silicon melt 12 is provided in the chamber of the silicon single crystal pulling machine 11. This quartz crucible 1
3 is connected to the crucible driving means via a graphite susceptor and a support shaft (not shown), and the crucible driving means is a quartz crucible 13.
Is configured to rotate and move up and down. Further, the outer peripheral surface of the quartz crucible 13 is surrounded by a heater (not shown) at a predetermined interval from the quartz crucible 13, and this heater is surrounded by a heat retaining tube (not shown). The heater heats and melts the high-purity polycrystalline silicon charged into the quartz crucible 13 to form a silicon melt 12. Although not shown, a cylindrical casing (not shown) is connected to the upper end of the chamber, and the casing is provided with pulling means. The pulling means is configured to pull while rotating the silicon single crystal 14.

【0007】このように構成されたシリコン単結晶引上
げ機11におけるシリコン単結晶14の点欠陥分布のシ
ミュレーション方法を図1〜図3に基づいて説明する。
先ず第1ステップとして、シリコン単結晶14を所定長
さL1(例えば100mm)まで引上げた状態における
シリコン単結晶引上げ機11のホットゾーンの各部材、
即ちチャンバ,石英るつぼ13,シリコン融液12,シ
リコン単結晶14,黒鉛サセプタ,保温筒等をメッシュ
分割してモデル化する。具体的には上記ホットゾーンの
各部材のメッシュ点の座標データをコンピュータに入力
する。このときシリコン融液12のメッシュのうちシリ
コン単結晶14の径方向のメッシュであってかつシリコ
ン融液12のシリコン単結晶14直下の一部又は全部の
メッシュ(以下、径方向メッシュという。)を0.01
〜5.00mm、好ましくは0.25〜1.00mmに
設定する。またシリコン融液12のメッシュのうちシリ
コン単結晶14の長手方向のメッシュであってかつシリ
コン融液12の一部又は全部のメッシュ(以下、長手方
向メッシュという。)を0.01〜5.00mm、好ま
しくは0.1〜0.5mmに設定する。
A method of simulating the point defect distribution of the silicon single crystal 14 in the silicon single crystal pulling machine 11 configured as described above will be described with reference to FIGS.
First, as a first step, each member of the hot zone of the silicon single crystal pulling machine 11 in a state where the silicon single crystal 14 is pulled up to a predetermined length L 1 (for example, 100 mm),
That is, the chamber, the quartz crucible 13, the silicon melt 12, the silicon single crystal 14, the graphite susceptor, the heat retaining cylinder, and the like are modeled by mesh division. Specifically, the coordinate data of the mesh points of each member of the hot zone is input to a computer. At this time, a part or all of the mesh of the silicon melt 12 in the radial direction of the silicon single crystal 14 and directly below the silicon single crystal 14 of the silicon melt 12 (hereinafter referred to as a radial mesh). 0.01
To 5.00 mm, preferably 0.25 to 1.00 mm. The mesh of the silicon melt 12 in the longitudinal direction of the silicon single crystal 14 and a part or all of the mesh of the silicon melt 12 (hereinafter referred to as a longitudinal mesh) is 0.01 to 5.00 mm. , Preferably set to 0.1 to 0.5 mm.

【0008】径方向メッシュを0.01〜5.00mm
の範囲に限定したのは、0.01mm未満では計算時間
が極めて長くなり、5.00mmを越えると計算が不安
定になり、繰返し計算を行っても固液界面形状が一定に
定まらなくなるからである。また長手方向メッシュを
0.01〜5.00mmの範囲に限定したのは、0.0
1mm未満では計算時間が極めて長くなり、5.00m
mを越えると固液界面形状の計算値が実測値と一致しな
くなるからである。なお、径方向メッシュの一部を0.
01〜5.00の範囲に限定する場合には、シリコン単
結晶14直下のシリコン融液12のうちシリコン単結晶
14外周縁近傍のシリコン融液12を上記範囲に限定す
ることが好ましく、長手方向メッシュの一部を0.01
〜5.00の範囲に限定する場合には、シリコン融液1
2の液面近傍及び底近傍を上記範囲に限定することが好
ましい。
[0008] The radial mesh is 0.01 to 5.00 mm
The reason is that the calculation time is extremely long when the length is less than 0.01 mm, the calculation becomes unstable when the length exceeds 5.00 mm, and the shape of the solid-liquid interface is not fixed even when the calculation is repeated. is there. The reason why the longitudinal mesh is limited to the range of 0.01 to 5.00 mm is that
If the length is less than 1 mm, the calculation time becomes extremely long, and 5.00 m
If it exceeds m, the calculated value of the solid-liquid interface shape does not match the actually measured value. Note that a part of the radial mesh is set to 0.
In the case of limiting to the range of 01 to 5.00, it is preferable to limit the silicon melt 12 near the outer peripheral edge of the silicon single crystal 14 in the silicon melt 12 immediately below the silicon single crystal 14 to the above range, 0.01 part of mesh
When the range is limited to the range of ~ 5.00, the silicon melt 1
It is preferable that the vicinity of the liquid surface and the vicinity of the bottom of No. 2 are limited to the above ranges.

【0009】第2ステップとして上記ホットゾーンの各
部材毎にメッシュをまとめ、かつこのまとめられたメッ
シュに対して各部材の物性値をそれぞれコンピュータに
入力する。例えば、チャンバがステンレス鋼にて形成さ
れていれば、そのステンレス鋼の熱伝導率,輻射率,粘
性率,体積膨張係数,密度及び比熱がコンピュータに入
力される。またシリコン単結晶14の引上げ長及びこの
引上げ長に対応するシリコン単結晶14の引上げ速度
と、後述する乱数モデル式(1)の乱数パラメータCと
をコンピュータに入力する。
As a second step, meshes are grouped for each member in the hot zone, and the physical property values of the members are input to the computer for the grouped meshes. For example, if the chamber is made of stainless steel, the thermal conductivity, emissivity, viscosity, volume expansion coefficient, density, and specific heat of the stainless steel are input to the computer. Further, a pulling length of the silicon single crystal 14, a pulling speed of the silicon single crystal 14 corresponding to the pulling length, and a random number parameter C of a random number model formula (1) described later are input to the computer.

【0010】第3ステップとして、ホットゾーンの各部
材の表面温度分布をヒータの発熱量及び各部材の輻射率
に基づいてコンピュータを用いて求める。即ち、ヒータ
の発熱量を任意に設定してコンピュータに入力するとと
もに、各部材の輻射率から各部材の表面温度分布をコン
ピュータを用いて求める。次に第4ステップとしてホッ
トゾーンの各部材の表面温度分布及び熱伝導率に基づい
て熱伝導方程式(2)をコンピュータを用いて解くこと
により各部材の内部温度分布を求める。ここでは、記述
を簡単にするためxyz直交座標系を用いたが、実際の
計算では円筒座標系を用いる。
As a third step, the surface temperature distribution of each member in the hot zone is obtained by using a computer based on the calorific value of the heater and the emissivity of each member. That is, the calorific value of the heater is arbitrarily set and input to the computer, and the surface temperature distribution of each member is obtained from the emissivity of each member using the computer. Next, as a fourth step, the internal temperature distribution of each member is obtained by solving the heat conduction equation (2) using a computer based on the surface temperature distribution and the thermal conductivity of each member in the hot zone. Here, an xyz rectangular coordinate system is used for simplicity of description, but a cylindrical coordinate system is used in actual calculation.

【0011】[0011]

【数1】 ここで、ρは各部材の密度であり、cは各部材の比熱で
あり、Tは各部材の各メッシュ点での絶対温度であり、
tは時間であり、λx,λy及びλzは各部材の熱伝導率
のx,y及びz方向成分であり、qはヒータの発熱量で
ある。一方、シリコン融液12に関しては、上記熱伝導
方程式(2)でシリコン融液12の内部温度分布を求め
た後に、このシリコン融液12の内部温度分布に基づ
き、シリコン融液12が乱流であると仮定して得られた
乱流モデル式(1)及びナビエ・ストークスの方程式
(3)〜(5)を連結して、シリコン融液12の内部流
速分布をコンピュータを用いて求める。
(Equation 1) Here, ρ is the density of each member, c is the specific heat of each member, T is the absolute temperature at each mesh point of each member,
t is time, λ x , λ y, and λ z are the x, y, and z components of the thermal conductivity of each member, and q is the heating value of the heater. On the other hand, with respect to the silicon melt 12, after the internal temperature distribution of the silicon melt 12 is obtained by the heat conduction equation (2), the silicon melt 12 is turbulent based on the internal temperature distribution of the silicon melt 12. The turbulence model equation (1) and the Navier-Stokes equations (3) to (5), which are obtained assuming that there is, are connected to obtain the internal flow velocity distribution of the silicon melt 12 using a computer.

【0012】[0012]

【数2】 ここで、κtはシリコン融液12の乱流熱伝導率であ
り、cはシリコン融液12の比熱であり、Prtはプラ
ントル数であり、ρはシリコン融液12の密度であり、
Cは乱流パラメータであり、dはシリコン融液12を貯
留する石英るつぼ13壁からの距離であり、kはシリコ
ン融液12の平均流速に対する変動成分の二乗和であ
る。
(Equation 2) Here, kappa t is turbulent thermal conductivity of the silicon melt 12, c is the specific heat of the silicon melt 12, Pr t is the Prandtl number, [rho is the density of the silicon melt 12,
C is a turbulence parameter, d is a distance from the wall of the quartz crucible 13 storing the silicon melt 12, and k is a sum of squares of a fluctuation component with respect to an average flow velocity of the silicon melt 12.

【0013】[0013]

【数3】 (Equation 3)

【0014】ここで、u,v及びwはシリコン融液12
の各メッシュ点での流速のx,y及びz方向成分であ
り、νlはシリコン融液12の分子動粘性係数(物性
値)であり、νtはシリコン融液12の乱流の効果によ
る動粘性係数であり、Fx,Fy及びFzはシリコン融液
12に作用する体積力のx,y及びz方向成分である。
上記乱流モデル式(1)はkl(ケイエル)−モデル式
と呼ばれ、このモデル式の乱流パラメータCは0.4〜
0.6の範囲内の任意の値が用いられることが好まし
い。乱流パラメータCを0.4〜0.6の範囲に限定し
たのは、0.4未満又は0.6を越えると計算により求
めた界面形状が実測値と一致しないという不具合がある
からである。また上記ナビエ・ストークスの方程式
(3)〜(5)はシリコン融液12が非圧縮性であって
粘度が一定である流体としたときの運動方程式である。
上記求められたシリコン融液12の内部流速分布に基づ
いて熱エネルギ方程式(6)を解くことにより、シリコ
ン融液12の対流を考慮したシリコン融液12の内部温
度分布をコンピュータを用いて更に求める。
Here, u, v and w are the silicon melt 12
Are the x, y and z-direction components of the flow velocity at each mesh point, ν l is the molecular kinematic viscosity coefficient (physical value) of the silicon melt 12, and ν t is due to the turbulence effect of the silicon melt 12 F x , F y, and F z are the kinematic viscosity coefficients, and are the x, y, and z direction components of the body force acting on the silicon melt 12.
The turbulence model equation (1) is called a kl (Kel) -model equation, and a turbulence parameter C of the model equation is 0.4 to 0.4.
Preferably, any value within the range of 0.6 is used. The reason why the turbulence parameter C is limited to the range of 0.4 to 0.6 is that if it is less than 0.4 or exceeds 0.6, there is a problem that the calculated interface shape does not match the actually measured value. . The Navier-Stokes equations (3) to (5) are equations of motion when the silicon melt 12 is a fluid that is incompressible and has a constant viscosity.
By solving the thermal energy equation (6) based on the obtained internal flow velocity distribution of the silicon melt 12, the internal temperature distribution of the silicon melt 12 in consideration of the convection of the silicon melt 12 is further obtained using a computer. .

【0015】[0015]

【数4】 ここで、u,v及びwはシリコン融液12の各メッシュ
点での流速のx,y及びz方向成分であり、Tはシリコ
ン融液12の各メッシュ点での絶対温度であり、ρはシ
リコン融液12の密度であり、cはシリコン融液12の
比熱であり、κ lは分子熱伝導率(物性値)であり、κt
は式(1)を用いて計算される乱流熱伝導率である。
(Equation 4)Here, u, v and w are each mesh of the silicon melt 12.
X, y, and z components of the flow velocity at a point, where T is
Is the absolute temperature at each mesh point of the melt 12 and ρ is
C is the density of the silicon melt 12, and c is the density of the silicon melt 12.
Specific heat, κ lIs the molecular thermal conductivity (physical property value), κt
Is the turbulent thermal conductivity calculated using equation (1).

【0016】次いで第5ステップとして、シリコン単結
晶14及びシリコン融液12の固液界面形状を図2の点
Sで示すシリコンの三重点S(固体と液体と気体の三重
点(tri-junction))を含む等温線に合せてコンピュータ
を用いて求める。第6ステップとして、コンピュータに
入力するヒータの発熱量を変更し(次第に増大し)、上
記第3ステップから第5ステップを三重点がシリコン単
結晶14の融点になるまで繰返した後に、引上げ機11
内の温度分布を計算してシリコン単結晶のメッシュの座
標及び温度を求め、これらのデータをコンピュータに記
憶させる。
Next, as a fifth step, the shape of the solid-liquid interface between the silicon single crystal 14 and the silicon melt 12 is indicated by a point S in FIG. 2 and is a triple point S of silicon (tri-junction of solid, liquid and gas). ) Is determined using a computer in accordance with the isotherm including As a sixth step, the heating value of the heater input to the computer is changed (increased gradually), and the third to fifth steps are repeated until the triple point reaches the melting point of the silicon single crystal 14.
The temperature distribution in the inside is calculated to determine the coordinates and temperature of the silicon single crystal mesh, and these data are stored in a computer.

【0017】次に第7ステップとして、シリコン単結晶
14の引上げ長L1にδ(例えば50mm)だけ加えて
上記第1ステップから第6ステップまでを繰返した後
に、引上げ機11内の温度分布を計算してシリコン単結
晶14のメッシュの座標及び温度を求め、これらのデー
タをコンピュータに記憶させる。この第7ステップはシ
リコン単結晶14の引上げ長L1がL2に達するまで行わ
れる。シリコン単結晶14の引上げ長L1がL2に達する
と、第8ステップに移行して、シリコン単結晶14内の
格子間シリコン及び空孔の拡散係数及び境界条件をそれ
ぞれコンピュータに入力する。更にこれらの格子間シリ
コン及び空孔の拡散係数及び境界条件に基づいて拡散方
程式を解くことによりシリコン単結晶14の冷却後の格
子間シリコン及び空孔の濃度分布を求める。
Next, as a seventh step, after adding δ (for example, 50 mm) to the pulling length L 1 of the silicon single crystal 14 and repeating the first to sixth steps, the temperature distribution in the pulling machine 11 is reduced. The coordinates and temperature of the mesh of the silicon single crystal 14 are obtained by calculation, and these data are stored in a computer. This seventh step is performed until the pulling length L 1 of the silicon single crystal 14 reaches L 2 . When the pulling length L 1 of the silicon single crystal 14 reaches L 2 , the process proceeds to an eighth step, in which the diffusion coefficient and boundary conditions of interstitial silicon and vacancies in the silicon single crystal 14 are input to a computer. Further, the concentration distribution of the interstitial silicon and the vacancies after cooling the silicon single crystal 14 is obtained by solving the diffusion equation based on the diffusion coefficients of the interstitial silicon and the vacancies and the boundary conditions.

【0018】具体的には、格子間シリコンの濃度Ci
計算式が次の式(7)で、空孔の濃度Cvの計算式が次
の式(8)で示される。式(7)及び式(8)におい
て、濃度Ci及び濃度Cvの経時的進展を計算するため
に、格子間シリコンと空孔の熱平衡が結晶の側面、上面
及び固液界面では維持されると仮定する。
More specifically, the following equation (7) is used to calculate the concentration C i of interstitial silicon, and the following equation (8) is used to calculate the concentration C v of vacancies. In equations (7) and (8), the thermal equilibrium between interstitial silicon and vacancies is maintained at the side, top, and solid-liquid interfaces of the crystal to calculate the evolution of concentration C i and concentration C v over time. Assume that

【0019】[0019]

【数5】 ここで、K1及びK2は定数、Ei及びEvはそれぞれ格子
間シリコン及び空孔の形成エネルギー、肩付き文字eは
平衡量、kはボルツマン定数、Tは絶対温度を意味す
る。上記平衡式は時間で微分され、格子間シリコン及び
空孔に対してそれぞれ次の式(9)及び式(10)にな
る。
(Equation 5) Here, K 1 and K 2 are constants, E i and E v are the formation energies of interstitial silicon and vacancies, the superscript e is the equilibrium amount, k is the Boltzmann constant, and T is the absolute temperature. The equilibrium equation is differentiated with respect to time, and the following equations (9) and (10) are obtained for interstitial silicon and holes.

【0020】[0020]

【数6】 式(9)及び(10)のそれぞれ右側の第1項のDi
びDvは、次の式(11)及び(12)に示すように拡
散係数を有するFickian拡散を表す。
(Equation 6) D i and D v of each of the first term on the right side of formula (9) and (10) represents the Fickian diffusion with diffusion coefficient as shown in the following equation (11) and (12).

【0021】[0021]

【数7】 ここで△Ei及び△Evはそれぞれ格子間シリコン及び空
孔の活性化エネルギーであり、di及びdvはそれぞれ定
数である。また式(9)及び式(10)のそれぞれ右側
の第2項の
(Equation 7) Here △ E i and △ E v is the activation energy of each interstitial silicon and vacancy, d i and d v are each constant. Also, the second term on the right side of each of the equations (9) and (10)

【0022】[0022]

【数8】 は熱拡散による格子間シリコン及び空孔の活性化エネル
ギーであり、式(9)及び式(10)のそれぞれ右側の
第3項のkivは格子間シリコン及び空孔ペアの再結合定
数である。
(Equation 8) Is the activation energy of interstitial silicon and vacancies due to thermal diffusion, and k iv in the third term on the right side of equations (9) and (10) is the recombination constant of the interstitial silicon and vacancy pairs. .

【0023】このように計算して得られたシリコン単結
晶14の点欠陥分布は実測値とほぼ一致する。この結
果、引上げ機11の設計段階でこの引上げ機11にて引
上げられるシリコン単結晶14内の点欠陥分布を予測で
き、逆に引上げられるシリコン単結晶14内の点欠陥を
所望の分布にするために、引上げ機11の設計段階で構
造を検討することができる。なお、この実施の形態で
は、シリコン単結晶を挙げたが、GaAs単結晶,In
P単結晶,ZnS単結晶若しくはZnSe単結晶でもよ
い。
The point defect distribution of the silicon single crystal 14 obtained by the above calculation substantially matches the actually measured value. As a result, at the design stage of the pulling machine 11, the distribution of point defects in the silicon single crystal 14 pulled by the pulling machine 11 can be predicted. In addition, the structure of the pulling machine 11 can be considered at the design stage. In this embodiment, a silicon single crystal has been described, but a GaAs single crystal, In
P single crystal, ZnS single crystal or ZnSe single crystal may be used.

【0024】[0024]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1>図3に示すように、石英るつぼ13に貯留
されたシリコン融液12から直径6インチのシリコン単
結晶14を引上げる場合の、シリコン単結晶14内の点
欠陥分布を、図1及び図2のフローチャートに基づくシ
ミュレーション方法により求めた。即ち、シリコン単結
晶引上げ機11のホットゾーンをメッシュ構造でモデル
化した。ここで、シリコン融液12のシリコン単結晶1
4直下のシリコン単結晶14の径方向のメッシュを0.
75mmに設定し、シリコン融液12のシリコン単結晶
14直下以外のシリコン単結晶14の径方向のメッシュ
を1〜5mmに設定した。またシリコン融液12のシリ
コン単結晶14の長手方向のメッシュを0.25〜5m
mに設定し、乱流モデル式の乱流パラメータCとして
0.45を用いた。このような条件下で、シリコン融液
12の対流を考慮してシリコン単結晶14の内部温度分
布を求め、このシリコン単結晶14の内部温度分布に基
づきかつシリコン単結晶14内の点欠陥の拡散を考慮し
てシリコン単結晶14内の点欠陥分布を求めた。
Next, examples of the present invention will be described in detail together with comparative examples. <Example 1> As shown in FIG. 3, a point defect distribution in a silicon single crystal 14 when pulling a silicon single crystal 14 having a diameter of 6 inches from a silicon melt 12 stored in a quartz crucible 13 is shown. 1 and a simulation method based on the flowchart of FIG. That is, the hot zone of the silicon single crystal pulling machine 11 was modeled with a mesh structure. Here, the silicon single crystal 1 of the silicon melt 12
The mesh in the radial direction of the silicon single crystal 14 just below 4 is set to 0.
The mesh in the radial direction of the silicon single crystal 14 other than immediately below the silicon single crystal 14 of the silicon melt 12 was set to 75 mm. Further, the mesh in the longitudinal direction of the silicon single crystal 14 of the silicon melt 12 is 0.25 to 5 m.
m, and 0.45 was used as the turbulence parameter C of the turbulence model equation. Under such conditions, the internal temperature distribution of the silicon single crystal 14 is determined in consideration of the convection of the silicon melt 12, and the diffusion of point defects based on the internal temperature distribution of the silicon single crystal 14 and within the silicon single crystal 14 is performed. In consideration of the above, the point defect distribution in the silicon single crystal 14 was obtained.

【0025】<比較例1>図4に示すように、石英るつ
ぼ3に貯留されたシリコン融液2から直径6インチのシ
リコン単結晶4を引上げる場合の、シリコン単結晶4内
の点欠陥分布を従来のシミュレーション方法により求め
た。即ち、シリコン単結晶引上げ機1のホットゾーンを
メッシュ構造でモデル化した。ここで、シリコン融液2
のシリコン単結晶4の径方向のメッシュを10mmに設
定し、シリコン融液2のシリコン単結晶4の長手方向の
メッシュを10mmに設定した。またシリコン融液2の
対流を考慮しなかった(乱流モデル式及びナビエ・スト
ークスの方程式を連結した式は用いなかった。)。上記
以外は実施例1と同様にコンピュータを用いてシミュレ
ーションを行った。
Comparative Example 1 As shown in FIG. 4, a point defect distribution in a silicon single crystal 4 when a silicon single crystal 4 having a diameter of 6 inches is pulled from a silicon melt 2 stored in a quartz crucible 3. Was determined by a conventional simulation method. That is, the hot zone of the silicon single crystal pulling machine 1 was modeled with a mesh structure. Here, silicon melt 2
The mesh in the radial direction of the silicon single crystal 4 was set to 10 mm, and the mesh in the longitudinal direction of the silicon single crystal 4 of the silicon melt 2 was set to 10 mm. In addition, the convection of the silicon melt 2 was not taken into account (the turbulence model equation and the equation connecting the Navier-Stokes equations were not used). A simulation was performed using a computer in the same manner as in Example 1 except for the above.

【0026】<比較例2>シリコン融液の対流を考慮し
たけれども、シリコン単結晶内の点欠陥の拡散を考慮し
なかったことを除いて、実施例1と同様にしてコンピュ
ータを用いてシミュレーションを行った。 <比較例3>シリコン融液の対流及びシリコン単結晶内
の点欠陥の拡散のいずれも考慮しなかったことを除い
て、実施例1と同様にしてコンピュータを用いてシミュ
レーションを行った。
<Comparative Example 2> A simulation was performed using a computer in the same manner as in Example 1, except that the convection of the silicon melt was taken into account, but the diffusion of point defects in the silicon single crystal was not taken into account. went. Comparative Example 3 A computer was simulated in the same manner as in Example 1 except that neither the convection of the silicon melt nor the diffusion of point defects in the silicon single crystal was taken into account.

【0027】<比較試験及び評価>実施例1及び比較例
1〜3のシミュレーション方法によりシリコン単結晶の
点欠陥分布を求めた。その結果を図5(a)〜(d)を
シリコン単結晶の点欠陥分布の実測値(図5(d))と
ともに示す。図5から明らかなように、比較例1〜3の
シミュレーション方法で得られたシリコン単結晶の点欠
陥分布(図5(b)〜(d))は実測値(図5(c))
と大幅に相違しているのに対し、実施例1のシミュレー
ション方法で得られたシリコン単結晶の点欠陥分布(図
5(a))は実測値とほぼ一致していることが判った。
<Comparative Test and Evaluation> The point defect distribution of the silicon single crystal was determined by the simulation method of Example 1 and Comparative Examples 1 to 3. The results are shown in FIGS. 5A to 5D together with measured values of the point defect distribution of the silicon single crystal (FIG. 5D). As is clear from FIG. 5, the point defect distributions (FIGS. 5B to 5D) of the silicon single crystals obtained by the simulation methods of Comparative Examples 1 to 3 are actually measured values (FIG. 5C).
On the other hand, the point defect distribution (FIG. 5A) of the silicon single crystal obtained by the simulation method of Example 1 was found to substantially match the measured value.

【0028】[0028]

【発明の効果】以上述べたように、本発明によれば、融
液の対流を考慮して単結晶の内部温度分布を求め、この
単結晶の内部温度分布に基づきかつ単結晶内の点欠陥の
拡散を考慮して単結晶内の点欠陥分布を求めたので、単
結晶内の点欠陥分布の計算値が実測値と極めて良く一致
する。この結果、単結晶引上げ機の設計段階でこの引上
げ機にて引上げられる単結晶内の点欠陥分布を予測で
き、逆に引上げられる単結晶内の点欠陥を所望の分布に
するために、引上げ機の設計段階で構造を検討すること
ができる。
As described above, according to the present invention, the internal temperature distribution of a single crystal is determined in consideration of the convection of the melt, and the point defect in the single crystal is determined based on the internal temperature distribution of the single crystal. The point defect distribution in the single crystal was determined in consideration of the diffusion of, and the calculated value of the point defect distribution in the single crystal agrees very well with the actually measured value. As a result, at the design stage of the single crystal pulling machine, it is possible to predict the distribution of point defects in the single crystal pulled by the pulling machine, and conversely, to obtain the desired distribution of point defects in the single crystal pulled by the pulling machine. The structure can be considered at the design stage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施形態シリコン単結晶の点欠陥分布の
シミュレーション方法の前半を示すフローチャート。
FIG. 1 is a flowchart showing the first half of a method for simulating a point defect distribution of a silicon single crystal according to an embodiment of the present invention.

【図2】そのシリコン単結晶の点欠陥分布のシミュレー
ション方法の後半を示すフローチャート。
FIG. 2 is a flowchart showing the latter half of the method for simulating the point defect distribution of the silicon single crystal.

【図3】本発明のシリコン融液をメッシュ構造としたシ
リコン単結晶の引上げ機の要部断面図。
FIG. 3 is a sectional view of an essential part of a silicon single crystal pulling machine having a mesh structure of a silicon melt according to the present invention.

【図4】従来例のシリコン融液をメッシュ構造としたシ
リコン単結晶の引上げ機の要部断面図。
FIG. 4 is a sectional view of a main part of a conventional silicon single crystal pulling machine having a mesh structure of a silicon melt.

【図5】実施例1、比較例1(従来例)、比較例2、比
較例3及び実際に測定したシリコン単結晶内の格子間シ
リコン及び空孔の分布を示す縦断面図。
FIG. 5 is a longitudinal sectional view showing distributions of interstitial silicon and vacancies in a silicon single crystal actually measured in Example 1, Comparative Example 1 (conventional example), Comparative Examples 2 and 3, and actually measured.

【符号の説明】[Explanation of symbols]

11 シリコン単結晶引上げ機 12 シリコン融液 14 シリコン単結晶 S シリコンの三重点 11 silicon single crystal pulling machine 12 silicon melt 14 silicon single crystal S triple point of silicon

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年4月13日(2001.4.1
3)
[Submission Date] April 13, 2001 (2001.4.1
3)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
図1〜図3に示すように、引上げ機11により単結晶1
4を所定長さまで引上げた状態における単結晶14の引
上げ機11のホットゾーンをメッシュ構造でモデル化す
る第1ステップと、ホットゾーンの各部材毎にメッシュ
をまとめかつこのまとめられたメッシュに対する各部材
の物性値と単結晶14の引上げ長及びこの引上げ長に対
応する単結晶14の引上げ速度をそれぞれコンピュータ
に入力する第2ステップと、各部材の表面温度分布をヒ
ータの発熱量及び各部材の輻射率に基づいて求める第3
ステップと、各部材の表面温度分布及び熱伝導率に基づ
いて熱伝導方程式を解くことにより各部材の内部温度分
布を求めた後に融液12が乱流であると仮定して得られ
た乱流モデル式及びナビエ・ストークスの方程式を連結
して解くことにより対流を考慮した融液12の内部温度
分布を更に求める第4ステップと、単結晶14及び融液
12の固液界面形状を単結晶の三重点Sを含む等温線に
合せて求める第5ステップと、第3ステップから第5ス
テップを三重点Sが単結晶14の融点になるまで繰返し
引上げ機11内の温度分布を計算して単結晶14のメッ
シュの座標及び温度を求めこれらのデータをそれぞれ
ンピュータに入力する第6ステップと、単結晶14の引
上げ長を段階的に変えて第1ステップから第6ステップ
までを繰返し引上げ機11内の温度分布を計算して単結
晶14のメッシュの座標及び温度を求めこれらのデータ
をそれぞれコンピュータに入力する第7ステップと、単
結晶14のメッシュの座標及び温度のデータと単結晶1
4内の空孔及び格子間原子の拡散係数及び境界条件をそ
れぞれコンピュータに入力する第8ステップと、単結晶
14のメッシュの座標及び温度と空孔及び前記格子間原
子の拡散係数及び境界条件に基づいて拡散方程式を解く
ことにより単結晶14の冷却後の空孔及び格子間原子の
濃度分布を求める第9ステップとを含むコンピュータを
用いて単結晶の点欠陥分布のシミュレーションを行う
法である。
The invention according to claim 1 is
As shown in FIGS. 1 to 3, the single crystal 1
A first step of modeling the hot zone of the puller 11 of the single crystal 14 in a state in which the single crystal 4 has been pulled up to a predetermined length by a mesh structure; a mesh for each member of the hot zone; computer pull-up length of the physical properties of the single crystal 14 and the pulling rate of the single crystal 14 corresponding to the pull-up length, respectively
And a third step of obtaining the surface temperature distribution of each member based on the calorific value of the heater and the emissivity of each member.
Turbulent flow obtained by assuming that the melt 12 is turbulent after obtaining the internal temperature distribution of each member by solving the heat conduction equation based on the step and the surface temperature distribution and thermal conductivity of each member A fourth step of further calculating the internal temperature distribution of the melt 12 in consideration of convection by connecting and solving the model equation and the Navier-Stokes equation; and forming the solid-liquid interface shape of the single crystal 14 and the melt 12 The fifth step, which is determined according to the isotherm including the triple point S, and the third to fifth steps are repeated until the triple point S reaches the melting point of the single crystal 14, and the temperature distribution in the puller 11 is calculated to calculate the single crystal. these data respectively co sought coordinates and temperature of 14 mesh
The sixth step to be input to the computer and the first step to the sixth step are repeated by gradually changing the pulling length of the single crystal 14 to calculate the temperature distribution in the pulling machine 11 to calculate the coordinates of the mesh of the single crystal 14 and A seventh step of obtaining temperatures and inputting these data to a computer, and data of the coordinates and temperature of the mesh of the single crystal 14 and the single crystal 1
An eighth step of inputting the diffusion coefficients and boundary conditions of the vacancies and interstitial atoms in the computer 4 to the computer, respectively. the computer includes a ninth step of obtaining a concentration distribution of vacancies and interstitials after cooling of the single crystal 14 by solving the diffusion equation based
This is a method of simulating a point defect distribution of a single crystal using the method.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】第2ステップとして上記ホットゾーンの各
部材毎にメッシュをまとめ、かつこのまとめられたメッ
シュに対して各部材の物性値をそれぞれコンピュータに
入力する。例えば、チャンバがステンレス鋼にて形成さ
れていれば、そのステンレス鋼の熱伝導率,輻射率,粘
性率,体積膨張係数,密度及び比熱がコンピュータに入
力される。またシリコン単結晶14の引上げ長及びこの
引上げ長に対応するシリコン単結晶14の引上げ速度
と、後述する乱モデル式(1)の乱パラメータCと
をコンピュータに入力する。
As a second step, meshes are grouped for each member in the hot zone, and the physical property values of the members are input to the computer for the grouped meshes. For example, if the chamber is made of stainless steel, the thermal conductivity, emissivity, viscosity, volume expansion coefficient, density, and specific heat of the stainless steel are input to the computer. The inputs and pulling speed of the silicon single crystal 14 corresponding to the pull-up length and the pull-up length of the silicon single crystal 14, and a turbulence parameter C turbulence model expression (1) described below to the computer.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】第3ステップとして、ホットゾーンの各部
材の表面温度分布をヒータの発熱量及び各部材の輻射率
に基づいてコンピュータを用いて求める。即ち、ヒータ
の発熱量を任意に設定してコンピュータに入力するとと
もに、各部材の輻射率から各部材の表面温度分布をコン
ピュータを用いて求める。次に第4ステップとしてホッ
トゾーンの各部材の表面温度分布及び熱伝導率に基づい
て熱伝導方程式()をコンピュータを用いて解くこと
により各部材の内部温度分布を求める。ここでは、記述
を簡単にするためxyz直交座標系を用いたが、実際の
計算では円筒座標系を用いる。
As a third step, the surface temperature distribution of each member in the hot zone is obtained by using a computer based on the calorific value of the heater and the emissivity of each member. That is, the calorific value of the heater is arbitrarily set and input to the computer, and the surface temperature distribution of each member is obtained from the emissivity of each member using the computer. Next, as a fourth step, the internal temperature distribution of each member is obtained by solving the heat conduction equation ( 1 ) using a computer based on the surface temperature distribution and the thermal conductivity of each member in the hot zone. Here, an xyz rectangular coordinate system is used for simplicity of description, but a cylindrical coordinate system is used in actual calculation.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】[0011]

【数1】 ここで、ρは各部材の密度であり、cは各部材の比熱で
あり、Tは各部材の各メッシュ点での絶対温度であり、
tは時間であり、λx,λy及びλzは各部材の熱伝導率
のx,y及びz方向成分であり、qはヒータの発熱量で
ある。一方、シリコン融液12に関しては、上記熱伝導
方程式()でシリコン融液12の内部温度分布を求め
た後に、このシリコン融液12の内部温度分布に基づ
き、シリコン融液12が乱流であると仮定して得られた
乱流モデル式()及びナビエ・ストークスの方程式
(3)〜(5)を連結して、シリコン融液12の内部流
速分布をコンピュータを用いて求める。
(Equation 1) Here, ρ is the density of each member, c is the specific heat of each member, T is the absolute temperature at each mesh point of each member,
t is time, λ x , λ y, and λ z are the x, y, and z components of the thermal conductivity of each member, and q is the heating value of the heater. On the other hand, with respect to the silicon melt 12, after the internal temperature distribution of the silicon melt 12 is obtained by the heat conduction equation ( 1 ), the silicon melt 12 is turbulent based on the internal temperature distribution of the silicon melt 12. The turbulence model equation ( 2 ) and the Navier-Stokes equations (3) to (5), which are obtained assuming that there is, are connected to obtain the internal flow velocity distribution of the silicon melt 12 using a computer.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】次に第7ステップとして、シリコン単結晶
14の引上げ長L1にδ(例えば50mm)だけ加えて
上記第1ステップから第6ステップまでを繰返した後
に、引上げ機11内の温度分布を計算してシリコン単結
晶14のメッシュの座標及び温度を求め、これらのデー
タをコンピュータに記憶させる。この第7ステップはシ
リコン単結晶14の引上げ長L1長さ2に達するまで
行われる。シリコン単結晶14の引上げ長L1長さ2
に達すると、第8ステップに移行して、シリコーン単結
晶14のメッシュの座標及び温度のデータを、シリコン
単結晶14内の格子間シリコン及び空孔の拡散係数及び
境界条件とともにそれぞれコンピュータに入力する。更
にこれらの格子間シリコン及び空孔の拡散係数及び境界
条件に基づいて拡散方程式を解くことによりシリコン単
結晶14の冷却後の格子間シリコン及び空孔の濃度分布
を求める。
Next, as a seventh step, after adding δ (for example, 50 mm) to the pulling length L 1 of the silicon single crystal 14 and repeating the first to sixth steps, the temperature distribution in the pulling machine 11 is reduced. The coordinates and temperature of the mesh of the silicon single crystal 14 are obtained by calculation, and these data are stored in a computer. The seventh step is carried out until the pull-up length L 1 of the silicon single crystal 14 reaches a length L 2. Pull-up length L 1 is the length L 2 of the silicon single crystal 14
When reached, the process proceeds to the eighth step, the silicone single binding
The data of the coordinates and temperature of the mesh of the crystal 14 are input to a computer together with the diffusion coefficients and boundary conditions of interstitial silicon and vacancies in the silicon single crystal 14. Further, the concentration distribution of the interstitial silicon and the vacancies after cooling the silicon single crystal 14 is obtained by solving the diffusion equation based on the diffusion coefficients of the interstitial silicon and the vacancies and the boundary conditions.

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Correction target item name] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0027】<比較試験及び評価>実施例1及び比較例
1〜3のシミュレーション方法によりシリコン単結晶の
点欠陥分布を求めた。その結果を図5(a)〜(d)
シリコン単結晶の点欠陥分布の実測値(図5())と
ともに示す。図5から明らかなように、比較例1〜3の
シミュレーション方法で得られたシリコン単結晶の点欠
陥分布(図5(b)〜(d))は実測値(図5())
と大幅に相違しているのに対し、実施例1のシミュレー
ション方法で得られたシリコン単結晶の点欠陥分布(図
5(a))は実測値とほぼ一致していることが判った。
<Comparative Test and Evaluation> The point defect distribution of the silicon single crystal was determined by the simulation method of Example 1 and Comparative Examples 1 to 3. The results are shown in conjunction with FIG. 5 (a) ~ <br/> measured values of point defect distribution of a silicon single crystal (d) (Fig. 5 (e)). 5 As is clear from, the point defect distribution of the silicon single crystal obtained by the simulation method of the Comparative Examples 1 to 3 (FIG. 5 (b) ~ (d) ) the actual value (Fig. 5 (e))
On the other hand, the point defect distribution (FIG. 5A) of the silicon single crystal obtained by the simulation method of Example 1 was found to substantially match the measured value.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G077 AA02 BA04 CF10 EH06 PF51 PF55  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G077 AA02 BA04 CF10 EH06 PF51 PF55

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 引上げ機(11)により単結晶(14)を所定長
さまで引上げた状態における前記単結晶(14)の引上げ機
(11)のホットゾーンをメッシュ構造でモデル化する第1
ステップと、 前記ホットゾーンの各部材毎にメッシュをまとめかつこ
のまとめられたメッシュに対する前記各部材の物性値と
ともに前記単結晶(14)の引上げ長及びこの引上げ長に対
応する前記単結晶(14)の引上げ速度をそれぞれ与える第
2ステップと、 前記各部材の表面温度分布をヒータの発熱量及び前記各
部材の輻射率に基づいて求める第3ステップと、 前記各部材の表面温度分布及び熱伝導率に基づいて熱伝
導方程式を解くことにより前記各部材の内部温度分布を
求めた後に融液(12)が乱流であると仮定して得られた乱
流モデル式及びナビエ・ストークスの方程式を連結して
解くことにより対流を考慮した前記融液(12)の内部温度
分布を更に求める第4ステップと、 前記単結晶(14)及び前記融液(12)の固液界面形状を前記
単結晶の三重点(S)を含む等温線に合せて求める第5ス
テップと、 前記第3ステップから前記第5ステップを前記三重点
(S)が前記単結晶(14)の融点になるまで繰返し前記引上
げ機(11)内の温度分布を計算して前記単結晶(14)のメッ
シュの座標及び温度を求めこれらのデータをそれぞれ与
える第6ステップと、 前記単結晶(14)の引上げ長を段階的に変えて前記第1ス
テップから前記第6ステップまでを繰返し前記引上げ機
(11)内の温度分布を計算して前記単結晶(14)のメッシュ
の座標及び温度を求めこれらのデータをそれぞれ与える
第7ステップと、 前記単結晶(14)内の空孔及び格子間原子の拡散係数及び
境界条件をそれぞれ与える第8ステップと、 前記単結晶(14)のメッシュの座標及び温度と前記空孔及
び前記格子間原子の拡散係数及び境界条件に基づいて拡
散方程式を解くことにより前記単結晶(14)の冷却後の前
記空孔及び前記格子間原子の濃度分布を求める第9ステ
ップとを含む単結晶の点欠陥分布のシミュレーション方
法。
An apparatus for pulling a single crystal (14) in a state where the single crystal (14) is pulled up to a predetermined length by a puller (11).
The first to model the hot zone of (11) with a mesh structure
Step, a mesh for each member of the hot zone, and a pulling length of the single crystal (14) together with a physical property value of each member for the collected mesh and the single crystal (14) corresponding to the pulling length. A second step of providing a pulling speed of each member; a third step of obtaining a surface temperature distribution of each member based on a calorific value of a heater and an emissivity of each member; and a surface temperature distribution and thermal conductivity of each member. After solving for the internal temperature distribution of each member by solving the heat conduction equation based on, the turbulence model equation and the Navier-Stokes equation obtained by assuming that the melt (12) is turbulent are connected. A fourth step of further calculating the internal temperature distribution of the melt (12) in consideration of convection by solving the melt, and the solid-liquid interface shape of the single crystal (14) and the melt (12) Including triple point (S) A fifth step in accordance with the isotherm;
(S) repeatedly calculates the temperature distribution in the pulling machine (11) until the melting point of the single crystal (14) is obtained, obtains the coordinates and temperature of the mesh of the single crystal (14), and gives these data, respectively. A sixth step, wherein the pulling length of the single crystal (14) is changed stepwise, and the first to sixth steps are repeated to repeat the pulling.
A seventh step of calculating the temperature distribution in (11) to determine the coordinates and temperature of the mesh of the single crystal (14) and providing these data, respectively; and vacancies and interstitial atoms in the single crystal (14). An eighth step of respectively giving the diffusion coefficient and the boundary condition of: and solving the diffusion equation based on the coordinates and temperature of the mesh of the single crystal (14), the diffusion coefficient of the vacancies and the interstitial atoms, and the boundary condition. A ninth step of obtaining a concentration distribution of the vacancies and the interstitial atoms after cooling of the single crystal (14).
JP2000230850A 2000-04-26 2000-07-31 Simulation method of point defect distribution of single crystal Expired - Lifetime JP4096499B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000230850A JP4096499B2 (en) 2000-07-31 2000-07-31 Simulation method of point defect distribution of single crystal
TW090101842A TW498402B (en) 2000-04-26 2001-01-31 Method for simulating the shape of the solid-liquid interface between a single crystal and a molten liquid, and the distribution of point defect of a single crystal
DE10106948A DE10106948A1 (en) 2000-04-26 2001-02-15 Process for simulating the shape of a solid-liquid boundary surface between a single crystal and a melt comprises using a computer to calculate the shape of a solid-liquid boundary surface in agreement with an isothermic line
US09/793,862 US6451107B2 (en) 2000-04-26 2001-02-26 Method for simulating the shape of the solid-liquid interface between a single crystal and a molten liquid, and the distribution of point defects of the single crystal
CNB011083166A CN1249272C (en) 2000-04-26 2001-02-27 Single crystal and melt solid-liquid interface shape and single crystal point defect distribution simulation method
KR10-2001-0009978A KR100411553B1 (en) 2000-04-26 2001-02-27 Method for Simulating the Shape of the Solid-Liquid Interface Between a Single Crystal and a Molten Liquid, and the Distribution of Point Defects of the Single Crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000230850A JP4096499B2 (en) 2000-07-31 2000-07-31 Simulation method of point defect distribution of single crystal

Publications (2)

Publication Number Publication Date
JP2002047096A true JP2002047096A (en) 2002-02-12
JP4096499B2 JP4096499B2 (en) 2008-06-04

Family

ID=18723754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000230850A Expired - Lifetime JP4096499B2 (en) 2000-04-26 2000-07-31 Simulation method of point defect distribution of single crystal

Country Status (1)

Country Link
JP (1) JP4096499B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488902B1 (en) * 2002-11-18 2005-05-11 주식회사 실트론 Methods for forecasting structure loss rate of silicon crystal ingot, for manufacturing silicon crystal ingot growing funace, and for growing silicon crystal ingot at the furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488902B1 (en) * 2002-11-18 2005-05-11 주식회사 실트론 Methods for forecasting structure loss rate of silicon crystal ingot, for manufacturing silicon crystal ingot growing funace, and for growing silicon crystal ingot at the furnace

Also Published As

Publication number Publication date
JP4096499B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
EP2385025B1 (en) Method for calculating temperature distribution in crucible
JP4380537B2 (en) Method for producing silicon single crystal
KR100411553B1 (en) Method for Simulating the Shape of the Solid-Liquid Interface Between a Single Crystal and a Molten Liquid, and the Distribution of Point Defects of the Single Crystal
JP2009190926A (en) Numerical analysis method in production of silicon single crystal
Ding et al. The influence mechanism of melt flow instability on the temperature fluctuation on the crystal/melt interface during Czochralski silicon crystal growth
CN106029958A (en) Silicon single crystal production device
Miller Numerical simulations of bulk crystal growth on different scales: silicon and GeSi
JP4106880B2 (en) Method for simulating density distribution and size distribution of defects in single crystal
JP3846155B2 (en) Method for simulating solid-liquid interface shape of single crystal and melt
JP2002047096A (en) Method for simulating distribution of point defect in single crystal
KR100719207B1 (en) Method of simulation with respect to density distribution and size distribution of void defect within single crystal and oxygen precipitation nucleus within single crystal
JP4604462B2 (en) Simulation method of density distribution and size distribution of oxygen precipitation nuclei in single crystal
JP4403722B2 (en) Simulation method for density distribution and size distribution of void defect in silicon single crystal
KR100665683B1 (en) Method for manufacturing silicon single crystal
CN114048659A (en) Thermal field generation method for single crystal furnace
JP4449347B2 (en) OSF ring distribution prediction method by simulation
Masi et al. Sensitivity analysis on indium phosphide liquid encapsulated czochralski growth
Jing et al. Global analysis of heat transfer considering three-dimensional unsteady melt flow in CZ crystal growth of oxide
Xu et al. Unsteady melt heat flow coupling optimization method for sapphire crystal seeding growth by the Kyropoulos method
JP2020189766A (en) System and method for evaluating single crystal pulling apparatus
JP2004091316A (en) Simulation method for maximizing non-defect zone of single crystal
JP2004026567A (en) Process for simulating region without defect in single crystal
Yang et al. The sensitivity of investment casting simulations to the accuracy of thermophysical property values
Virzi Numerical study of Czochralski silicon full process thermokinetics
Sheikhi Experimentally verified numerical simulation of single crystal growth process with a low melt height and an axial vibration

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4096499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term