JP2002040120A - Position-detecting system for radio wave source - Google Patents

Position-detecting system for radio wave source

Info

Publication number
JP2002040120A
JP2002040120A JP2000225170A JP2000225170A JP2002040120A JP 2002040120 A JP2002040120 A JP 2002040120A JP 2000225170 A JP2000225170 A JP 2000225170A JP 2000225170 A JP2000225170 A JP 2000225170A JP 2002040120 A JP2002040120 A JP 2002040120A
Authority
JP
Japan
Prior art keywords
radio wave
conjugate product
sensor stations
complex conjugate
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000225170A
Other languages
Japanese (ja)
Other versions
JP3739078B2 (en
Inventor
Takuro Sato
拓朗 佐藤
Soichi Watanabe
壮一 渡邊
Kenichi Ito
建一 伊藤
Yoshimasa Ito
良昌 伊藤
Yoshisaburo Hoshiko
芳三郎 星子
Akira Watabe
朗 渡部
Takehiko Okubo
武彦 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MINISTRY OF PUBLIC MAN HOME AF
Ministry Of Public Management Home Affairs Posts & Telecommunications
Koden Electronics Co Ltd
Original Assignee
MINISTRY OF PUBLIC MAN HOME AF
Ministry Of Public Management Home Affairs Posts & Telecommunications
Koden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MINISTRY OF PUBLIC MAN HOME AF, Ministry Of Public Management Home Affairs Posts & Telecommunications, Koden Electronics Co Ltd filed Critical MINISTRY OF PUBLIC MAN HOME AF
Priority to JP2000225170A priority Critical patent/JP3739078B2/en
Publication of JP2002040120A publication Critical patent/JP2002040120A/en
Application granted granted Critical
Publication of JP3739078B2 publication Critical patent/JP3739078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a position-detecting system for a radio wave source, which is enhanced in detection accuracy by eliminating influence of phase difference (ϕa-ϕb), that is caused from a phase shift due to multipath propagation or fading. SOLUTION: The position-detecting system for a radio wave source comprises a plurality of sensor stations (S1, S2, S3), which receive electric waves emitted by a radio wave source (unknown station) to decompose a receiving signal waveform within a prescribed period of time from a reference time into a real part and an imaginary part and then transmits complex frequency components produced by Fourier-transforming each part to a center station (C), an the center station (C), which calculates a complex conjugate product between complex frequency components received from these sensor stations (S1, S2, S3) to calculate a difference between the arrival time of each sensor station from a relation between the phase revolution quantity and the frequency of this complex conjugate product, and then detects the position of the radio wave source, based on this calculated difference of the arrival times.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、移動体などから
放射される電波の放射位置を検出するシステムに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for detecting a radiation position of a radio wave radiated from a moving body or the like.

【0002】[0002]

【従来の技術】従来、電波を放射する移動体などの未知
局と称される電波源の位置を検出するシステムとして、
「Ken-ichi Itho, Soichi Watanabe, Takuro Sato and
Yoshi-saburo Hoshiko," Radio Source Positioning Us
ing Received Time of ArrivalDifferences " Proc.VT
C 1999-Fall, pp 2062-2066, Sept.1999 に記載された
方法が知られている。この方法によれば、二つのセンサ
局を離間して設置し、未知の電波源が発射した電波をこ
れらのセンサ局で受信し、基準時刻から所定時間内の受
信信号波形を実部と虚部とに分解し、各部をフーリエ変
換することによって複素周波数成分を作成しこれらの複
数周波数成分間の複素共役積を算定し、この複素共役積
の位相回転量と周波数との関係から各センサ局間の到達
時間差が算定される。
2. Description of the Related Art Conventionally, as a system for detecting the position of a radio wave source called an unknown station such as a moving body that radiates radio waves,
`` Ken-ichi Itho, Soichi Watanabe, Takuro Sato and
Yoshi-saburo Hoshiko, "Radio Source Positioning Us
ing Received Time of ArrivalDifferences "Proc. VT
The method described in C 1999-Fall, pp 2062-2066, Sept. 1999 is known. According to this method, two sensor stations are set apart from each other, radio waves emitted by unknown radio wave sources are received by these sensor stations, and a received signal waveform within a predetermined time from a reference time is converted into a real part and an imaginary part. The complex frequency components are created by Fourier transforming each part, and the complex conjugate product between these multiple frequency components is calculated. Is calculated.

【0003】ここで、未知の電波源から放射された電波
が上記二つのセンサ局AとBとに伝播するのに要する伝
播所要時間をそれぞれta 、tb とする。この電波源か
ら発射されてセンサ局Aとセンサ局Bとに受信される電
波に含まれる周波数fm の成分に着目すれば、センサ局
A、Bで受信されるこの周波数成分は、それぞれ、expj
[( 2πfm・ta+φa)] 、exp[j( 2πfm・tb+φb)] とな
る。
[0003] Here, propagation times required for a radio wave radiated from an unknown radio wave source to propagate to the two sensor stations A and B are denoted by ta and tb, respectively. Focusing on the frequency fm component contained in the radio waves emitted from this radio source and received by the sensor stations A and B, the frequency components received by the sensor stations A and B are expj
[(2πfm · ta + φa)] and exp [j (2πfm · tb + φb)].

【0004】これらの周波数成分の共役積は、exp[j( 2
πfm(ta −tb) + (φa −φb)] となる。この共役積の
位相回転量Θ= 2πfm(ta −tb) + (φa −φb)を周波
数fmで除算することにより、電波の伝播時間差τ=ta −
tb+ (φa −φb)/ fmが検出される。ここで、位相差
(φa −φb)は、マルチパス伝播や、フェージングによ
る位相ずれなどに起因して生ずる。
[0004] The conjugate product of these frequency components is exp [j (2
πfm (ta−tb) + (φa−φb)]. By dividing the phase rotation amount of the conjugate product Θ = 2πfm (ta−tb) + (φa−φb) by the frequency fm, the propagation time difference τ = ta−
tb + (φa−φb) / fm is detected. Where the phase difference
(φa−φb) occurs due to multipath propagation, phase shift due to fading, and the like.

【0005】[0005]

【発明が解決しようとする課題】上記未知の電波源の位
置検出システムは、二つの方向探知装置を組み合わせる
従来の方式に比べて空中線系が簡易なため、システムが
安価に実現できるという利点がある。しかしながら、電
波の伝播時間差の算定値の中に位相差 (φa −φb)が含
まれ、この位相差が伝播時間差τに対する誤差となると
いう問題がある。
The system for detecting the position of an unknown radio wave source has an advantage that the system can be realized at a low cost because the antenna system is simpler than the conventional system in which two direction finding devices are combined. . However, there is a problem that the calculated value of the propagation time difference of the radio wave includes the phase difference (φa−φb), and this phase difference becomes an error with respect to the propagation time difference τ.

【0006】従って、本発明の目的は、マルチパス伝播
や、フェージングによる位相ずれなどに起因して生ずる
位相差 (φa −φb)の影響を除去することにより、検出
精度を高めた位置検出システムを提供することにある。
Accordingly, an object of the present invention is to provide a position detection system with improved detection accuracy by removing the influence of a phase difference (φa−φb) caused by multipath propagation or phase shift due to fading. To provide.

【0007】[0007]

【課題を解決するための手段】上記従来技術の課題を解
決する本発明に係わる電波源の位置検出システムは、電
波源が発射した電波を受信し、基準時刻から所定時間内
の受信信号波形を実部と虚部とに分解し、各部をフーリ
エ変換することによって作成した複素周波数成分をセン
ター局に送信する複数のセンサ局と、これらのセンサ局
から受信した複素周波数成分間の複素共役積を算定し、
この複素共役積の位相回転量と周波数との関係から各セ
ンサ局間の到達時間差を算定し、この算定した到達時間
差に基づき電波源の位置を検出するセンター局とを備え
ている。
A position detecting system for a radio wave source according to the present invention for solving the above-mentioned problems of the prior art receives a radio wave emitted from the radio wave source and converts a received signal waveform within a predetermined time from a reference time. Decompose into a real part and an imaginary part, a plurality of sensor stations that transmit complex frequency components created by performing Fourier transform of each part to the center station, and a complex conjugate product between complex frequency components received from these sensor stations. Calculated,
A center station that calculates the arrival time difference between the sensor stations based on the relationship between the phase rotation amount of the complex conjugate product and the frequency, and detects the position of the radio wave source based on the calculated arrival time difference.

【0008】そして、本第1の発明のよれば、上記セン
ター局は、異なる二つの周波数と異なる二つのセンサ局
間に関する二重の複素共役積を作成し、この二重の複素
共役積の位相回転量と周波数差との関係から、前記各セ
ンサ局間の到達時間差の算定を行うことにより、位相差
(φa −φb)を相殺させて消去し、検出精度を高めるよ
うに構成されている。
According to the first aspect of the present invention, the center station creates a double complex conjugate product between two different frequencies and two different sensor stations, and calculates the phase of the double complex conjugate product. By calculating the arrival time difference between the sensor stations from the relationship between the rotation amount and the frequency difference, the phase difference
(φa−φb) is canceled and erased to increase the detection accuracy.

【0009】また、本第2の発明によれば、上記センタ
ー局は、上記二重の複素共役積の代わりに、異なる二つ
の周波数と異なる二つのセンサ局間に関する複素共役積
を作成し、この複素共役積に対して到達時間差の推定値
に基づく位相回転量を付与しながら所定の周波数範囲に
わたる総和を算定し、この総和が最大になる時点で推定
した到達時間差を真の到達時間差として検出することに
より、位相差と雑音を相殺させて消去し、検出精度を高
めるように構成されている。
According to the second aspect, the center station creates a complex conjugate product between two different frequencies and two different sensor stations instead of the double complex conjugate product. A sum over a predetermined frequency range is calculated while giving a phase rotation amount based on the estimated value of the arrival time difference to the complex conjugate product, and the arrival time difference estimated at the time when the sum is maximized is detected as a true arrival time difference. Thus, the phase difference and the noise are cancelled by canceling each other, and the detection accuracy is improved.

【0010】[0010]

【発明の実施の形態】本第1の発明の好適な実施の形態
によれば、上記二重の複素共役積の作成は、まず、同一
の周波数について二つのセンサ局間で行われ、次に、異
なる二つの周波数について行われる。
According to a preferred embodiment of the first aspect of the present invention, the creation of the double complex conjugate product is first performed between two sensor stations for the same frequency. Is performed for two different frequencies.

【0011】本第2の発明の他の好適な実施の形態によ
れば、上記二重の複素共役積を作成するための異なる二
つの周波数成分として、それぞれ周波数軸上で優勢な二
つが選択される。
[0011] According to another preferred embodiment of the second invention, two different dominant components on the frequency axis are selected as two different frequency components for generating the double complex conjugate product. You.

【0012】本第2の発明の他の好適な実施の形態によ
れば、センター局は、算定した二重複素共役積に対して
到達時間差の推定値に基づく位相回転量を付与しながら
所定の周波数範囲にわたる総和を算定し、この総和が最
大になる時点で推定した到達時間差を真の到達時間差と
して検出することにより、雑音などによるばらつきを吸
収して、高精度の検出を実現するように構成されてい
る。
According to another preferred embodiment of the second invention, the center station assigns a predetermined amount of phase rotation based on the estimated value of the arrival time difference to the calculated double complex conjugate product. By calculating the sum over the frequency range and detecting the arrival time difference estimated at the time when this sum becomes the maximum as the true arrival time difference, it absorbs variations due to noise and realizes highly accurate detection. Have been.

【0013】本第1,第2の発明の好適な実施の形態に
よれば、センター局は、上記複素共役積の算定に先立っ
て、各センサ局から受信した複素成分の周波数成分に対
して相互相関に基づくオフセット補償を行うことによ
り、検出精度を一層高めるように構成されている。
According to the preferred embodiments of the first and second aspects of the present invention, before the calculation of the complex conjugate product, the center station performs a mutual operation on the frequency component of the complex component received from each sensor station. By performing offset compensation based on the correlation, the detection accuracy is further improved.

【0014】本第1,第2の発明の更に他の好適な実施
の形態によれば、基準時刻をGPSを利用して設定する
ことにより、簡易の構成のもとに高い検出精度を実現す
るように構成されている。
According to still another preferred embodiment of the first and second aspects of the present invention, the reference time is set using the GPS, thereby realizing high detection accuracy with a simple configuration. It is configured as follows.

【0015】[0015]

【原理】本発明の位置検出システムによれば、伝播時間
差の検出誤差の原因となる位相差 (φa −φb)は、次の
ようにして除去される。すなわち、電波源から発射され
てセンサ局Aとセンサ局Bとに受信される電波に含まれ
る周波数fn の成分に着目すると、上述した周波数fm
の成分の場合と全く同様にして、センサ局A、Bにおけ
る受信信号の共役積は、exp[j( 2πfn(ta −tb) + (φ
a −φb)] で与えられる。
[Principle] According to the position detecting system of the present invention, the phase difference (φa−φb) causing the detection error of the propagation time difference is removed as follows. That is, when focusing on the component of the frequency fn contained in the radio waves emitted from the radio wave source and received by the sensor stations A and B, the above-mentioned frequency fm
The conjugate product of the received signals at the sensor stations A and B is exp [j (2πfn (ta−tb) + (φ
a −φb)].

【0016】周波数fnの成分について作成したセンサ局
間の共役積と、周波数fmの成分について作成したセンサ
局間の共役積との間で更に相互の共役積をとると、二重
の共役積exp[j( 2π(fn −fm)(ta−tb) ] が得られる。
この二重の共役積の作成の過程で位相差(φa −φb)が
相殺されて式中から消去される。目的とする伝播時間差
(ta −tb) は、この二重の共役積の位相 2π(fn −fm)
(ta−tb) を差周波数δf= 2π(fn −fm) で除算する
ことにより検出される。周波数差δf=fn−fmの一例し
て、FFTの最隣接サンプル間の周波数などが選択され
る。
If a mutual conjugate product is further taken between the conjugate product between the sensor stations created for the component of the frequency fn and the conjugate product between the sensor stations created for the component of the frequency fm, the double conjugate product exp [j (2π (fn −fm) (ta−tb)] is obtained.
In the process of creating this double conjugate product, the phase difference (φa−φb) is canceled and eliminated from the equation. Desired propagation time difference
(ta −tb) is the phase of this double conjugate product 2π (fn −fm)
It is detected by dividing (ta−tb) by the difference frequency δf = 2π (fn−fm). As an example of the frequency difference δf = fn−fm, a frequency between the nearest neighbor samples of the FFT is selected.

【0017】[0017]

【実施例】図2は、本発明の一実施例に係わる電波源の
位置検出システムの全体構成を示す機能ブロック図であ
る。3個のセンサ局S1,S2,S3とセンター局Cと
が離間して設置されており、各センサ局S1,S2,S
3とセンター局Cとの間が有線又は無線伝送路で接続さ
れている。×印を付して示す電波源(未知局)から発射
された電波は、センサ局S1,S2,S3のアンテナを
経て各センサ局に受信され、基準時刻の複素周波数成分
が作成され、伝送路を介してセンター局に転送される。
FIG. 2 is a functional block diagram showing an entire configuration of a radio wave source position detecting system according to an embodiment of the present invention. The three sensor stations S1, S2, S3 and the center station C are installed apart from each other, and each of the sensor stations S1, S2, S3
3 and the center station C are connected by a wired or wireless transmission path. Radio waves emitted from radio sources (unknown stations) indicated by crosses are received by the sensor stations via the antennas of the sensor stations S1, S2, and S3, and complex frequency components at a reference time are created. Is transferred to the center station via.

【0018】図3は、センサ局S1,S2,S3の構成
を示す機能ブロック図である。探索対象の電波源(未知
局)から送信された電波は、アンテナ1に受信され、複
数の周波数帯域ごとに設置されている局部発振器の一つ
である局部発振器2から供給される局発信号と混合器3
で混合される。混合によって発生する差周波のビート信
号が帯域通過濾波器4を通過せしめられることにより、
受信信号が低周波数のアナログ信号(中間周波信号やベ
ースバンド信号)に変換される。
FIG. 3 is a functional block diagram showing the configuration of the sensor stations S1, S2, S3. A radio wave transmitted from a radio source (unknown station) to be searched is received by an antenna 1 and a local oscillation signal supplied from a local oscillator 2 which is one of local oscillators installed for each of a plurality of frequency bands. Mixer 3
Mixed in. The difference frequency beat signal generated by the mixing is passed through the band-pass filter 4,
The received signal is converted into a low frequency analog signal (intermediate frequency signal or baseband signal).

【0019】低周波数のアナログ信号は、A/D変換回
路5に供給され、ここで、GPS受信機6を利用して正
確に定められる基準時刻から所定時間分(例えば0.5 秒
間分)がディジタル信号に変換される。このディジタル
信号は、乗算器8と9のそれぞれにおいて、中間周波信
号発振器7から供給される第1の信号と、この第1の信
号に直交する第2の信号と乗算されたのち、直線位相デ
ィジタルFIRフィルタから成る低域通過濾波器10と
11とを通過することにより、実数成分Iと虚数成分Q
とから成る複素ベースバンド信号に変換される。
The low-frequency analog signal is supplied to an A / D conversion circuit 5 where a predetermined time (for example, 0.5 seconds) from a reference time accurately determined by using a GPS receiver 6 is used as a digital signal. Is converted to This digital signal is multiplied in each of multipliers 8 and 9 by a first signal supplied from intermediate frequency signal oscillator 7 and a second signal orthogonal to the first signal. By passing through low-pass filters 10 and 11 consisting of FIR filters, real component I and imaginary component Q
Is converted into a complex baseband signal consisting of

【0020】この際、低域通過濾波器10と11の帯域
幅は、位相ひずみを抑えるために、信号帯域の2倍程度
の値に設定される。また、前段のA/D変換器5におけ
るディジタル信号への変換に際しては、エリアシングに
よる測定誤差を防ぐために、低域通過濾波器10と11
の上限周波数の2倍以上のサンプリング周波数でA/D
変換が行われる。
At this time, the bandwidths of the low-pass filters 10 and 11 are set to about twice the signal bandwidth in order to suppress phase distortion. When converting the digital signal in the A / D converter 5 in the preceding stage, the low-pass filters 10 and 11 are used in order to prevent a measurement error due to aliasing.
A / D at a sampling frequency more than twice the upper limit frequency of
Conversion is performed.

【0021】低域通過濾波器10と11から出力された
複素ベースバンド信号I,Qは、並列/直列変換器12
において、実部と虚部とが前後に配列された直列信号に
変換されたのち、データ量を圧縮するために百分の一程
度にダウン・サンプリングされ、ランダム・アクセス・
メモリ14に蓄積される。メモリ14から読み出された
複素ベースバンド信号に対して、直列/並列変換器15
において、再び、実部と虚部とから成る並列データに変
換され、実部と虚部のそれぞれについて高速離散フーリ
エ変換(FFT)が行われ、複素周波数スペクトルに変
換される。
The complex baseband signals I and Q output from the low-pass filters 10 and 11 are converted into parallel / serial converters 12 and
After the real part and the imaginary part are converted into serial signals arranged in front and back, they are down-sampled to about one hundredth in order to compress the amount of data, and
It is stored in the memory 14. A serial / parallel converter 15 converts the complex baseband signal read from the memory 14
Is converted again into parallel data consisting of a real part and an imaginary part, and a fast discrete Fourier transform (FFT) is performed on each of the real part and the imaginary part to convert the data into a complex frequency spectrum.

【0022】FFTで得られた複素周波数スペクトル
は、信号変換・濾波部17において、正側部分と負側部
分との入替えや、信号帯域幅の外側部分の削除などの信
号変換と濾波とを受けたのち、有線又は無線伝送路を介
してセンター局に転送される。このように、信号帯域幅
の外側部分を削除することにより、回線容量の低減も可
能になる。
The complex frequency spectrum obtained by the FFT is subjected to signal conversion and filtering in the signal conversion / filtering unit 17 such as replacement of the positive side part with the negative side part and deletion of the outer part of the signal bandwidth. Thereafter, the data is transferred to the center station via a wired or wireless transmission path. As described above, by deleting the outer part of the signal bandwidth, the line capacity can be reduced.

【0023】なお、FFT周波数分解能の整数倍以外の
周波数成分は、FFT出力の位相特性を変動させ、時間
差検出精度を劣化させる。この実施例では、この不要周
波数成分を除去するためのFFT窓として、矩形窓、バ
ートレット窓、ブラックマン窓、ハニング窓、ハミング
窓、カイザー窓、チェビシェフ窓について評価を行っ
た。その結果、ブラックマン窓を用いることにより、フ
ェージング環境下における精度の劣化が最小となること
が確認された。また、FFTの前段にメモリを設置した
ことにより、バースト性の送信信号と受信信号の急激な
変動に対処することが可能となる。
Note that frequency components other than an integer multiple of the FFT frequency resolution fluctuate the phase characteristics of the FFT output and deteriorate the time difference detection accuracy. In this embodiment, rectangular windows, Bartlett windows, Blackman windows, Hanning windows, Hamming windows, Kaiser windows, and Chebyshev windows were evaluated as FFT windows for removing the unnecessary frequency components. As a result, it was confirmed that the use of the Blackman window minimized the deterioration of accuracy in a fading environment. In addition, the provision of the memory before the FFT makes it possible to cope with a sudden change in the transmission signal and the reception signal having the burst property.

【0024】センター局では、各センサ局から転送され
てきた基準時刻の複素周波数スペクトルが、FIFO形
式のバッファメモリを経ることによって局間の伝送路上
の転送時間のバラツキが吸収されたのち、データ処理装
置に転送される。このデータ処理装置は、各センサ局か
ら転送されたきた複素周波数スペクトルについて図1の
フローチャートに示す手順で処理することにより、電波
源の位置を検出する。
In the center station, the complex frequency spectrum at the reference time transferred from each sensor station passes through a FIFO type buffer memory, so that the variation in the transfer time on the transmission path between the stations is absorbed. Transferred to device. This data processing device detects the position of the radio wave source by processing the complex frequency spectrum transferred from each sensor station according to the procedure shown in the flowchart of FIG.

【0025】図1のフローチャートを参照すると、デー
タ処理装置は、各センサ局からの複素周波数スペクトル
を受け取ると(ステップ21)、まず、各センサ局間の
周波数オフセットの補正を行う(ステップ22)。この
周波数オフセットの補正は、受信信号の周波数変換に使
用される局部発振信号の周波数がセンサ局ごとにばらつ
き、これが誤差の原因となることを防止するために行わ
れる。データ処理装置では、各センサ局から送られてき
た複素周波数スペクトルどうしの相互相関が周波数をず
らしながら算定され、この算定値を最大とするように、
各センサ局の複素周波数スペクトルに周波数のオフセッ
ト量が付与される(ステップ22)。
Referring to the flowchart of FIG. 1, upon receiving the complex frequency spectrum from each sensor station (step 21), the data processing device first corrects the frequency offset between the sensor stations (step 22). The correction of the frequency offset is performed in order to prevent the frequency of the local oscillation signal used for the frequency conversion of the received signal from being varied for each sensor station, and preventing this from causing an error. In the data processing device, the cross-correlation between the complex frequency spectra sent from each sensor station is calculated while shifting the frequency, and so as to maximize this calculated value,
A frequency offset amount is assigned to the complex frequency spectrum of each sensor station (step 22).

【0026】次に、周波数オフセットが付与された各局
の複素周波数スペクトルの同一周波数成分について、複
素共役積が算定される(ステップ23)。すなわち、図
4に例示するように、あるセンサ局(例えばセンサ局S
1)の複素周波数スペクトル中に含まれる周波数fm
成分Sm1と、他のセンサ局(例えばセンサ局S2)の複
素周波数スペクトル中に含まれる隣接する周波数fm
成分Sm2との複素共役積Sm1・Sm2 * が算定される。
Next, a complex conjugate product is calculated for the same frequency component of the complex frequency spectrum of each station to which the frequency offset has been added (step 23). That is, as illustrated in FIG. 4, a certain sensor station (for example, the sensor station S
The complex conjugate of the component S m1 of the frequency f m included in the complex frequency spectrum of 1) and the component S m2 of the adjacent frequency f m included in the complex frequency spectrum of another sensor station (for example, the sensor station S2). The product S m1 · S m2 * is calculated.

【0027】同様に、センサ局S1の複素周波数スペク
トル中に含まれる他の周波数fn の成分Sn1と、センサ
局S2の複素周波数スペクトル中に含まれる対応の周波
数f n の成分Sn2との複素共役積Sn1・Sn2 * などの算
定が、複素FFTデータに含まれる全ての周波数成分に
ついて行われる。
Similarly, the complex frequency spectrum of the sensor station S1 is
Other frequencies f included in the torquenComponent S ofn1And the sensor
The corresponding frequency contained in the complex frequency spectrum of station S2
Number f nComponent S ofn2Complex conjugate product Sn1・ Sn2 *Calculations such as
Is applied to all frequency components contained in the complex FFT data.
It is done about.

【0028】次に、上述のように算定された各周波数成
分のセンサ局間の複素共役積のうち、周波数軸上で優勢
な(レベルの大きな)二つのものどうしについて二重の
複素共役積が算定される(ステップ24)。すなわち、
例えば、周波数fm と周波数fn の成分がそのような二
つのものとすれば、先行のステップ23で算定されたセ
ンサ局間の複素共役積Sm1・Sm2 * とSn1・Sn2 * との
複素共役積(Sm1・S m2 * )・(Sn1・Sn2 * * の算
定が行われ、この結果、異なるセンサ局と異なる周波数
に関する二重の複素共役積が作成される。残りの周波数
成分についても、センサ局間の同一周波数成分について
算定された複素共役積について、周波数軸上で優勢な二
つの成分どうしについて二重の複素共役積が算定され
る。
Next, each frequency component calculated as described above is calculated.
Dominant on the frequency axis among complex conjugate products between sensor stations
Two (higher level)
A complex conjugate product is calculated (step 24). That is,
For example, the frequency fmAnd frequency fnThe components of such two
In the case of
Complex conjugate product S between sensor stationsm1・ Sm2 *And Sn1・ Sn2 *With
Complex conjugate product (Sm1・ S m2 *) ・ (Sn1・ Sn2 *)*Calculation
Settings, resulting in different sensor stations and different frequencies.
A double complex conjugate product for is created. Remaining frequency
For the same frequency component between sensor stations
For the calculated complex conjugate product, the two dominant
Double complex conjugate product is calculated for two components
You.

【0029】次のステップ25では、伝播時間差τに関
するメトリック推定が行われる。すなわち、先行のステ
ップ24で算定された二重の複素共役積のそれぞれに対
して、センサ局間の到達時間差の推定値τ0 に基づく位
相回転量が乗算される。例えば、複素共役積(Sm1・S
m2 * )・(Sn1・Sn2 * * については、到達時間差の
推定値τ0 に基づく位相回転量2π( fn −fm ) τ0
が乗算される。
In the next step 25, a metric estimation regarding the propagation time difference τ is performed. That is, each of the double complex conjugate products calculated in the preceding step 24 is multiplied by the amount of phase rotation based on the estimated value τ 0 of the arrival time difference between the sensor stations. For example, the complex conjugate product (S m1 · S
m2 *) · (S n1 · S n2 *) * For the phase rotation amount based on the estimated value tau 0 the arrival time difference 2π (f n -f m) τ 0
Is multiplied.

【0030】この伝播時間差の推定値τ0 に基づく位相
回転量の乗算を、先行のステップ24で算定された全て
の複素共役積について実行し、これらの総和をメトリッ
クとする。上記伝播時間差の推定値が真値に最も近い場
合に、上記メトリックは最大値をとる。本実施例では、
このメトリックの手法を利用してセンサ局間の到達時間
差の推定値τ0 が算定される。
The multiplication of the amount of phase rotation based on the estimated value τ 0 of the propagation time difference is performed for all complex conjugate products calculated in the preceding step 24, and the sum of the products is used as a metric. When the estimated value of the propagation time difference is closest to the true value, the metric takes the maximum value. In this embodiment,
Using this metric technique, an estimated value τ 0 of the arrival time difference between the sensor stations is calculated.

【0031】次に、2個のセンサ局間の到達時間差の推
定値τ0 に、電波の伝播速度が乗算されて伝播行路差d
が算定される。そして、既知の距離L離間して存在する
2個のセンサ局間に対して伝播行路差dを持つ未知の電
波源の位置の軌跡として各センサ局を焦点とする双曲線
が算定される。このような双曲線がセンサ局の各対につ
いて算定され、未知の電波源の位置は、これらの双曲線
の交点として算定される(ステップ26)。算定された
電波源は、センター局内の表示装置に画面表示される。
Next, the estimated value τ 0 of the arrival time difference between the two sensor stations is multiplied by the propagation speed of the radio wave to obtain the propagation path difference d.
Is calculated. Then, a hyperbola with the focus on each sensor station is calculated as a locus of the position of an unknown radio source having a propagation path difference d between two sensor stations existing at a known distance L apart. Such a hyperbola is calculated for each pair of sensor stations, and the location of the unknown radio source is calculated as the intersection of these hyperbolas (step 26). The calculated radio wave source is displayed on a screen of a display device in the center station.

【0032】以上、二重の複素共役積の算定に際し、ま
ず同一の周波数についてセンサ局間の複素共役積を算定
し、次に二つの周波数間で複素共役積を算定する構成を
例示した。しかしながら、これとは逆に、まず、それぞ
れのセンサ局について、異なる周波数について複素共役
積を算定し、次に二つのセンサ局間で対応の複素共役積
どうしを算定することにより二重の複素共役積を算定す
る構成とすることもできる。
As described above, in the calculation of the double complex conjugate product, the configuration in which the complex conjugate product between sensor stations is calculated for the same frequency, and then the complex conjugate product is calculated between the two frequencies has been exemplified. However, conversely, for each sensor station, the complex conjugate product is first calculated for different frequencies, and then the corresponding complex conjugate product is calculated between the two sensor stations to form a double complex conjugate product. A configuration for calculating the product may be employed.

【0033】また,周波数軸上で優勢な二つの周波数成
分の間で二重の複素共役積を算定する構成を例示した。
しかしながら、必要な場合、最隣接、一つ跳び、二つ跳
びなど離れた二つの周波数成分どうしについて複素共役
積を作成すくこともできる。
Further, the configuration for calculating a double complex conjugate product between two dominant frequency components on the frequency axis has been exemplified.
However, if necessary, a complex conjugate product can be created for two frequency components separated from each other, such as the nearest neighbor, one jump, and two jumps.

【0034】さらに、センサ局間の伝播時間差の算定に
際しメトリック法を適用することにより検出精度を高め
る構成を例示した。しかしながら、それほどの検出精度
を要しない場合などには、いくつかの周波数成分から得
られた伝播時間差を単純に平均化処理する構成とするこ
ともできる。
Further, a configuration in which the detection accuracy is improved by applying a metric method in calculating the propagation time difference between the sensor stations has been exemplified. However, when not much detection accuracy is required, a configuration may be adopted in which the propagation time differences obtained from some frequency components are simply averaged.

【0035】以上、二重の複素共役積から位相回転量と
周波数差との関係から各センサ局間の到達時間差を算定
する構成を説明した。しかしながら、各周波数成分の二
重の複素共役積を算定する代わりに、異なる二つのセン
サ局と同一の周波数成分について一重の複素共役積を算
定し、この一重の複素共役積にメトリック法を採用する
ことによって各センサ局間の到達時間差を算定すること
によっても、各センサ局間の位相差(φa−φb)を実
質的に除去できる。
The configuration for calculating the arrival time difference between the sensor stations from the relationship between the amount of phase rotation and the frequency difference from the double complex conjugate product has been described above. However, instead of calculating a double complex conjugate product of each frequency component, a single complex conjugate product is calculated for the same frequency component at two different sensor stations, and a metric method is employed for the single complex conjugate product. By calculating the arrival time difference between the sensor stations, the phase difference (φa−φb) between the sensor stations can be substantially removed.

【0036】すなわち、複数の周波数m、m+1、m+
2、m+3・・・・についての二つのセンサ局1,2間
の複素共役積の算定結果は、図5に例示するようなもの
となる。各複素共役積の算定結果には、センサ局間の位
相差(φa−φb)や、雑音による変動成分が含まれて
いる。これらの複数共役積にメトリック法を適用する
と、図6に示すような合成ベクトルが得られる。この合
成ベクトルの位相回転量からは雑音の影響が除去されて
いるが、センサ局間の位相差(φa−φb)に基づく固
定的な位相回転量が含まれることになる。
That is, a plurality of frequencies m, m + 1, m +
The calculation result of the complex conjugate product between the two sensor stations 1 and 2 for 2, m + 3... Is as illustrated in FIG. The calculation result of each complex conjugate product includes a phase difference (φa−φb) between sensor stations and a fluctuation component due to noise. When the metric method is applied to these multiple conjugate products, a composite vector as shown in FIG. 6 is obtained. Although the influence of noise is removed from the phase rotation amount of the combined vector, a fixed phase rotation amount based on the phase difference (φa−φb) between the sensor stations is included.

【0037】しかしながら、算定対象は、この合成ベク
トルの位相回転量ではなく、この合成ベクトルの絶対値
を最大とするために付与した伝播時間差τの推定値であ
り、このτはセンサ局間の位相差(φa−φb)に依存
しない。このように、二つのセンサ間の同一周波数の一
重の複素共役積にメトリック法を採用することにより、
各センサ局間の位相差(φa−φb)を実質的に除去す
ることができる。なお、雑音が存在しない場合には、合
成ベクトルは折れ線ではなく直線になる。
However, the object of calculation is not the amount of phase rotation of the combined vector, but the estimated value of the propagation time difference τ given to maximize the absolute value of the combined vector. It does not depend on the phase difference (φa−φb). Thus, by employing the metric method for a single complex conjugate product of the same frequency between two sensors,
The phase difference (φa−φb) between the sensor stations can be substantially eliminated. When no noise is present, the combined vector is not a broken line but a straight line.

【0038】また、GPSを利用して基準時刻を設定す
る構成を例示した。しかしながら、この基準時刻の設定
は、GPS以外の他の適宜な方法、例えば、局間で同期
信号の送受することによる局間の同期化動作などを採用
することもできる。
Further, the configuration in which the reference time is set using the GPS has been exemplified. However, the setting of the reference time can also employ an appropriate method other than GPS, for example, a synchronization operation between stations by transmitting and receiving a synchronization signal between stations.

【0039】[0039]

【発明の効果】以上詳細に説明したように、本第1の発
明のシステムによれば、異なる二つの周波数と異なる二
つのセンサ局間に関する二重の複素共役積を作成し、こ
の二重の複素共役積の位相回転量と周波数差との関係か
ら、前記各センサ局間の到達時間差を算定する構成であ
るから、マルチパス伝播や、フェージングなどに起因し
て生ずる位相差 (φa −φb)が相殺されて消去され、検
出精度が大幅に高められるという効果が奏される。
As described in detail above, according to the system of the first aspect of the present invention, a double complex conjugate product between two different frequencies and two different sensor stations is created, and this double complex conjugate product is created. From the relationship between the phase rotation amount of the complex conjugate product and the frequency difference, the arrival time difference between the sensor stations is calculated, so that multipath propagation or phase difference (φa−φb) caused by fading or the like is obtained. Are cancelled and eliminated, and the effect of greatly improving the detection accuracy is achieved.

【0040】本発明の好適な実施例によれば、メトリッ
ク手法を適用することにより、雑音などに起因する検出
値のバラツキが平均化によって除去され、検出精度が一
層高められる。
According to the preferred embodiment of the present invention, by applying the metric method, variations in the detection values due to noise and the like are eliminated by averaging, and the detection accuracy is further improved.

【0041】また、本第2の発明のシステムによれば、
二局間の一重の複数共役積にメトリック法を適用するこ
とによっても、フェージングなどに起因して生ずる位相
差 (φa −φb)や雑音が相殺されて消去され、検出精度
が大幅に高められるという効果が奏される。
According to the system of the second aspect,
Even if the metric method is applied to a single multiple conjugate product between two stations, the phase difference (φa − φb) and noise caused by fading etc. are canceled and eliminated, and the detection accuracy is greatly improved. The effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係わる電波源の位置検出シ
ステムのセンター局において行われる位置検出処理の内
容を説明するためのフローチャートである。
FIG. 1 is a flowchart for explaining the contents of a position detection process performed in a center station of a position detection system for a radio wave source according to an embodiment of the present invention.

【図2】上記実施例の位置検出システムの全体構成を示
す機能ブロック図である。
FIG. 2 is a functional block diagram showing an entire configuration of the position detection system of the embodiment.

【図3】上記実施例の位置検出システムを構成するセン
サ局の構成を示す機能ブロック図である。
FIG. 3 is a functional block diagram showing a configuration of a sensor station constituting the position detection system of the embodiment.

【図4】上記実施例の位置検出システムを構成するセン
ター局が行う処理の内容を説明するための概念図であ
る。
FIG. 4 is a conceptual diagram for explaining the contents of processing performed by a center station constituting the position detection system of the embodiment.

【図5】本第2の発明の原理を説明するための概念図で
ある。
FIG. 5 is a conceptual diagram for explaining the principle of the second invention.

【図6】上記第2の発明の原理を説明するための概念図
である。
FIG. 6 is a conceptual diagram for explaining the principle of the second invention.

【符号の説明】[Explanation of symbols]

S1〜S3 センサ局 C センター局 X 電波源 1 アンテナ 2,7 局部発振器 3,8,9 ミキサー 5 A/D変換器 6 GPS受信機 12 並列/ 直列変換 15 直列/3並列変換 16 高速フーリエ変換回路 S m,1 センサ局1の受信スペクトル中の周波数mの
成分 S m,2 センサ局2の受信スペクトル中の周波数mの
成分
S1-S3 sensor station C center station X radio source 1 antenna 2,7 local oscillator 3,8,9 mixer 5 A / D converter 6 GPS receiver 12 parallel / serial conversion 15 serial / 3 parallel conversion 16 fast Fourier transform circuit S m, 1 The component of the frequency m in the reception spectrum of the sensor station 1 S m, 2 The component of the frequency m in the reception spectrum of the sensor station 2

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 建一 新潟県新潟市浦山4−5−56 (72)発明者 伊藤 良昌 東京都世田谷区東玉川1−20−10 (72)発明者 星子 芳三郎 東京都世田谷区世田谷3−22−4イリス世 田谷10B (72)発明者 渡部 朗 東京都品川区小山4−13−13コーポ稲葉 201 (72)発明者 大久保 武彦 神奈川県横浜市旭区左近山6−27−503 Fターム(参考) 5J062 CC07 5K067 DD02 DD20 EE02 EE10 EE13 FF03 GG01 GG11 JJ53 JJ57 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenichi Ito 4-5-56 Urayama, Niigata City, Niigata Prefecture (72) Inventor Yoshimasa Ito 1-20-10 Higashi Tamagawa, Setagaya-ku, Tokyo (72) Inventor Yoshi Hoshiko Saburo 3-22-4 Setagaya, Setagaya-ku, Tokyo 10-22B, Tani 10B −27−503 F term (reference) 5J062 CC07 5K067 DD02 DD20 EE02 EE10 EE13 FF03 GG01 GG11 JJ53 JJ57

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】電波源が発射した電波を受信し、基準時刻
から所定時間内の受信信号波形を実部と虚部とに分解
し、各部をフーリエ変換することによって作成した複素
周波数成分をセンター局に送信する複数のセンサ局と、 これらのセンサ局から受信した複素周波数成分間の複素
共役積を算定し、この複素共役積の位相回転量と周波数
との関係から各センサ局間の到達時間差を算定し、これ
らの到達時間差に基づき電波源の位置を検出するセンタ
ー局とを備え、 このセンター局は、異なる二つの周波数と異なる二つの
センサ局間に関する二重の複素共役積を作成し、この二
重の複素共役積の位相回転量と周波数差との関係から、
前記各センサ局間の到達時間差の算定を行うことを特徴
とする電波源の位置検出システム。
A complex frequency component generated by receiving a radio wave emitted by a radio wave source, decomposing a received signal waveform within a predetermined time from a reference time into a real part and an imaginary part, and performing a Fourier transform on each part. A complex conjugate product between a plurality of sensor stations to be transmitted to the station and complex frequency components received from these sensor stations is calculated. And a center station that detects the position of the radio source based on the time difference of arrival, and this center station creates a double complex conjugate product between two different frequencies and two different sensor stations, From the relationship between the phase rotation amount of this double complex conjugate product and the frequency difference,
A position detection system for a radio wave source, wherein a difference in arrival time between the sensor stations is calculated.
【請求項2】請求項1において、 前記二重の複素共役積の作成は、まず、同一の周波数に
ついて二つのセンサ局間で行われ、これが異なる二つの
周波数について行われることを特徴とする電波源の位置
検出システム。
2. The radio wave according to claim 1, wherein the double complex conjugate product is first created between two sensor stations for the same frequency, and is created for two different frequencies. Source location system.
【請求項3】請求項1と2のそれぞれにおいて、 前記二重の複素共役積を作成するための異なる二つの周
波数成分として、それぞれ周波数軸上で優勢な二つが選
択されることを特徴とする伝播源の位置検出システム。
3. The method according to claim 1, wherein two dominant frequency components are selected as two different frequency components for generating the double complex conjugate product. A source location system.
【請求項4】請求項1乃至3のそれぞれにおいて、 前記センター局は、前記算定した二重の複素共役積に対
して到達時間差の推定値に基づく位相回転量を付与しな
がら所定の周波数範囲にわたる総和を算定し、この総和
が最大になる時点で推定した到達時間差を真の到達時間
差として検出することを特徴とする電波源の位置検出シ
ステム。
4. The system according to claim 1, wherein the center station applies a phase rotation amount based on the estimated value of the arrival time difference to the calculated double complex conjugate product over a predetermined frequency range. A position detection system for a radio wave source, wherein a sum is calculated, and an arrival time difference estimated at a time when the sum is maximized is detected as a true arrival time difference.
【請求項5】請求項1乃至4のそれぞれにおいて、 前記センター局は、前記二重の複素共役積の算定に先立
って、前記各センサ局から受信した複素成分の周波数成
分に対して相互相関に基づくオフセット補償を行うこと
を特徴とする電波源の位置検出システム。
5. The apparatus according to claim 1, wherein the center station performs a cross-correlation on a frequency component of a complex component received from each of the sensor stations before calculating the double complex conjugate product. A position detection system for a radio wave source, wherein offset detection is performed based on the offset.
【請求項6】請求項1乃至5のそれぞれにおいて、 前記基準時刻は、GPSを利用して設定されることを特
徴とする電波源の位置検出システム。
6. The position detecting system according to claim 1, wherein the reference time is set using a GPS.
【請求項7】請求項1乃至6のそれぞれにおいて、 前記各センサ局が行う前記フーリエ変換は、離散高速フ
ーリエ変換であることを特徴とする電波源の位置検出シ
ステム。
7. The radio wave source position detecting system according to claim 1, wherein the Fourier transform performed by each of the sensor stations is a discrete fast Fourier transform.
【請求項8】電波源が発射した電波を受信し、基準時刻
から所定時間内の受信信号波形を実部と虚部とに分解
し、各部をフーリエ変換することによって作成した複素
周波数成分をセンター局に送信する複数のセンサ局と、 これらのセンサ局から受信した複素周波数成分間の複素
共役積を算定し、この複素共役積の位相回転量と周波数
との関係から各センサ局間の到達時間差を算定し、これ
らの到達時間差に基づき電波源の位置を検出するセンタ
ー局とを備え、 このセンター局は、異なる二つの周波数と異なる二つの
センサ局間に関する複素共役積を作成し、この複素共役
積に対して到達時間差の推定値に基づく位相回転量を付
与しながら所定の周波数範囲にわたる総和を算定し、こ
の総和が最大になる時点で推定した到達時間差を真の到
達時間差として検出することを特徴とする電波源の位置
検出システム。
8. A complex frequency component generated by receiving a radio wave emitted by a radio wave source, decomposing a received signal waveform within a predetermined time from a reference time into a real part and an imaginary part, and performing a Fourier transform on each part. A complex conjugate product between the plurality of sensor stations to be transmitted to the station and the complex frequency components received from these sensor stations is calculated, and the arrival time difference between the sensor stations is determined from the relationship between the phase rotation amount and the frequency of the complex conjugate product. And a center station for detecting the position of the radio source based on the difference between the arrival times. The center station creates a complex conjugate product between two different frequencies and two different sensor stations, and The sum over a predetermined frequency range is calculated while giving the amount of phase rotation based on the estimated value of the arrival time difference to the product, and the arrival time difference estimated at the time when the sum is maximized is calculated as the true arrival time. The position detection system of the radio wave sources and detecting as between difference.
【請求項9】請求項8において、 前記センター局は、前記複素共役積の算定に先立って、
前記各センサ局から受信した複素成分の周波数成分に対
して相互相関に基づくオフセット補償を行うことを特徴
とする電波源の位置検出システム。
9. The system according to claim 8, wherein the center station calculates the complex conjugate product before
A radio wave source position detecting system, wherein offset compensation based on cross-correlation is performed on a frequency component of a complex component received from each of the sensor stations.
【請求項10】請求項8と9のそれぞれにおいて、 前記基準時刻は、GPSを利用して設定されることを特
徴とする電波源の位置検出システム。
10. The system according to claim 8, wherein the reference time is set using a GPS.
JP2000225170A 2000-07-26 2000-07-26 Radio wave source position detection system Expired - Lifetime JP3739078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000225170A JP3739078B2 (en) 2000-07-26 2000-07-26 Radio wave source position detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000225170A JP3739078B2 (en) 2000-07-26 2000-07-26 Radio wave source position detection system

Publications (2)

Publication Number Publication Date
JP2002040120A true JP2002040120A (en) 2002-02-06
JP3739078B2 JP3739078B2 (en) 2006-01-25

Family

ID=18718990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000225170A Expired - Lifetime JP3739078B2 (en) 2000-07-26 2000-07-26 Radio wave source position detection system

Country Status (1)

Country Link
JP (1) JP3739078B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190631A (en) * 2002-12-13 2004-07-08 Mitsubishi Heavy Ind Ltd Output limit control system for gas turbine
JP2005286928A (en) * 2004-03-30 2005-10-13 Koden Electronics Co Ltd Receiving device and receiving method
JP2006292677A (en) * 2005-04-14 2006-10-26 National Institute Of Information & Communication Technology Bidirectional time comparison method using plural carrier wave comparison, and satellite bidirectional time comparison method
JP2009216568A (en) * 2008-03-11 2009-09-24 Toshiba Corp Array antenna system
JP2010025942A (en) * 2009-09-11 2010-02-04 Koden Electronics Co Ltd Receiving device
JP2010156580A (en) * 2008-12-26 2010-07-15 Mitsubishi Electric Corp Positioning device and positioning method
US8040280B2 (en) 2005-12-08 2011-10-18 Electronics And Telecommunications Research Institute Apparatus and method for computing location of a moving beacon using received signal strength and multi-frequencies
US8094061B2 (en) 2007-02-22 2012-01-10 Nec Corporation Multiband transceiver and positioning system using the transceiver
JP2012194184A (en) * 2012-05-28 2012-10-11 Koden Electronics Co Ltd Positioning device
WO2014109472A1 (en) * 2013-01-10 2014-07-17 Lee Heung Soo Position finding system and method therefor
JPWO2017014011A1 (en) * 2015-07-17 2018-04-05 株式会社村田製作所 Position detection system and computer program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186241A (en) * 2008-02-04 2009-08-20 Sumitomo Electric Ind Ltd Receiving device range-finding system, positioning system, computer program, and reception time point determining method
KR101708199B1 (en) * 2015-12-24 2017-02-20 한국항공우주연구원 System for estimating the lacation of radio source

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190631A (en) * 2002-12-13 2004-07-08 Mitsubishi Heavy Ind Ltd Output limit control system for gas turbine
JP2005286928A (en) * 2004-03-30 2005-10-13 Koden Electronics Co Ltd Receiving device and receiving method
JP2006292677A (en) * 2005-04-14 2006-10-26 National Institute Of Information & Communication Technology Bidirectional time comparison method using plural carrier wave comparison, and satellite bidirectional time comparison method
US8040280B2 (en) 2005-12-08 2011-10-18 Electronics And Telecommunications Research Institute Apparatus and method for computing location of a moving beacon using received signal strength and multi-frequencies
US8094061B2 (en) 2007-02-22 2012-01-10 Nec Corporation Multiband transceiver and positioning system using the transceiver
JP2009216568A (en) * 2008-03-11 2009-09-24 Toshiba Corp Array antenna system
JP2010156580A (en) * 2008-12-26 2010-07-15 Mitsubishi Electric Corp Positioning device and positioning method
JP2010025942A (en) * 2009-09-11 2010-02-04 Koden Electronics Co Ltd Receiving device
JP2012194184A (en) * 2012-05-28 2012-10-11 Koden Electronics Co Ltd Positioning device
WO2014109472A1 (en) * 2013-01-10 2014-07-17 Lee Heung Soo Position finding system and method therefor
JPWO2017014011A1 (en) * 2015-07-17 2018-04-05 株式会社村田製作所 Position detection system and computer program

Also Published As

Publication number Publication date
JP3739078B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
JP4462574B2 (en) System and method for processing wideband pre-detection signals for passive coherent search applications
EP2294439B1 (en) Measurement of time of arrival
JP4448184B2 (en) Signal processing method
JP3739078B2 (en) Radio wave source position detection system
US8619908B2 (en) Wireless ranging system and related methods
GB2443226A (en) Locating source of interfering signal
JP5089460B2 (en) Propagation delay time measuring apparatus and radar apparatus
US20120268141A1 (en) Method and arrangement for measuring the signal delay between a transmitter and a receiver
RU2004115813A (en) METHOD AND DEVICE FOR DETERMINING COORDINATES OF A RADIO EMISSION SOURCE
JP5110531B2 (en) FM-CW radar equipment
JP6075960B2 (en) Multi-tone signal synchronization
JP4711305B2 (en) Object identification device
JP4711304B2 (en) Object identification device
US9780944B2 (en) Frequency control data synchronization
JP4992139B2 (en) Target identification device
EP1936896A2 (en) Delay profile extimation device and correlator
CN112051555B (en) Digital IQ calibration method based on complex signal spectrum operation
CN110651196A (en) Method and apparatus for compensating phase noise
CN117060985B (en) Shipborne dual-antenna PCMA system signal recapturing method and device
CN113406621B (en) Phase synchronization method, satellite-borne radar and ground receiving station
JP4414804B2 (en) Receiving apparatus and receiving method
US20220404456A1 (en) Method for reducing interference effects in a radar system
RU2528405C1 (en) Clock synchronisation method and device therefor
CN115616499A (en) Radar apparatus and signal processing method thereof
CN115932826A (en) Radar apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050714

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

R150 Certificate of patent or registration of utility model

Ref document number: 3739078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term