JP2002035773A - Method and apparatus for treating benzotriazole- containing wastewater - Google Patents

Method and apparatus for treating benzotriazole- containing wastewater

Info

Publication number
JP2002035773A
JP2002035773A JP2000226659A JP2000226659A JP2002035773A JP 2002035773 A JP2002035773 A JP 2002035773A JP 2000226659 A JP2000226659 A JP 2000226659A JP 2000226659 A JP2000226659 A JP 2000226659A JP 2002035773 A JP2002035773 A JP 2002035773A
Authority
JP
Japan
Prior art keywords
tank
copper
benzotriazole
wastewater
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000226659A
Other languages
Japanese (ja)
Inventor
Yasuyuki Yagi
康之 八木
Makiko Udagawa
万規子 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2000226659A priority Critical patent/JP2002035773A/en
Publication of JP2002035773A publication Critical patent/JP2002035773A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for treating benzotriazole-containing wastewater capable of efficiently oxidizing and decomposing benzotriazole used as a copper corrosion inhibitor in a semiconductor field for a short time. SOLUTION: In order to treat organic wastewater containing benzotriazole and copper or a copper compound, at first, the wastewater is introduced into an weak acidity adjusting tank 1 for adjusting the pH of the wastewater to weak acidity and the treated liquid flowing out of this adjusting tank is successively passed through an oxidative decomposition tank 2 for bringing the treated liquid into contact with an oxidizing substance, an alkalainity adjusting tank 3 for adjusting the treated liquid flowing out of the tank 2 to alkalinity of pH 10 or more and a sold-liquid separation tank 4 for subjecting formed copper hydroxide to solid-liquid separation, and part of the copper hydroxide-containing slurry formed in the solid-liquid separation tank 4 is returned to the weak acidity adjusting tank 1 through a line 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ベンゾトリアゾー
ルを含有する有機性廃水の処理に係り、特にベンゾトリ
アゾールと銅もしくは銅化合物を含有する有機性廃水を
オゾンや過酸化水素などの酸化性物質を用いて酸化分解
処理する方法及び装置に関する。
The present invention relates to the treatment of organic wastewater containing benzotriazole, and more particularly to the treatment of organic wastewater containing benzotriazole and copper or copper compounds with oxidizing substances such as ozone and hydrogen peroxide. The present invention relates to a method and an apparatus for oxidative decomposition treatment using the same.

【0002】[0002]

【従来技術】ベンゾトリアゾールは、銅防食剤としてメ
ッキ工業分野や写真工業分野で幅広く使用されている。
また、最近では半導体工業分野でも用いられ始めてお
り、このベンゾトリアゾールを含有する廃水の処理の重
要度が高まっている。半導体分野でのベンゾトリアゾー
ルの使用は、銅配線加工に由来し、銅の表面研磨工程か
ら大量に排出される。従来、メッキや写真工業からのベ
ンゾトリアゾール含有廃水は、濃厚廃水として焼却処理
されることが多かったが、半導体分野からのベンゾトリ
アゾール含有廃水は、数十から数百ppmと比較的低い
濃度であることから、焼却処理することはできない。従
って、半導体工業のベンゾトリアゾール含有廃水は、従
来の廃水処理装置で処理する必要がある。しかし、ベン
ゾトリアゾールは、化学的に安定で生物分解されにくい
とともに共存物として銅を含有することから通常の廃水
処理設備では処理することが困難である。このため、ベ
ンゾトリアゾール含有廃水は、オゾンや過酸化水素など
の酸化剤で分解する必要がある。しかし、前述した様に
ベンゾトリアゾールは、比較的化学的に安定した物質の
ため、酸化分解速度が低く、実用化する上でコスト面の
問題が大きい。また、ベンゾトリアゾールの使用は、将
来、半導体分野で大量に使用されることが予想されるこ
とから、ベンゾトリアゾール含有廃水について処理性能
の優れた分解技術の開発が求められている。
BACKGROUND OF THE INVENTION Benzotriazole is widely used as an anticorrosive for copper in the plating and photographic industries.
Further, recently, it has begun to be used in the semiconductor industry, and the importance of treating wastewater containing benzotriazole is increasing. The use of benzotriazole in the semiconductor field is derived from copper wiring processing, and is largely discharged from a copper surface polishing process. Conventionally, benzotriazole-containing wastewater from the plating and photographic industries has often been incinerated as concentrated wastewater, but benzotriazole-containing wastewater from the semiconductor field has a relatively low concentration of tens to hundreds of ppm. Therefore, it cannot be incinerated. Accordingly, wastewater containing benzotriazole in the semiconductor industry must be treated with conventional wastewater treatment equipment. However, benzotriazole is chemically stable, is hardly biodegradable, and contains copper as a coexistent substance, so that it is difficult to treat it with ordinary wastewater treatment equipment. For this reason, benzotriazole-containing wastewater needs to be decomposed with an oxidizing agent such as ozone or hydrogen peroxide. However, as described above, benzotriazole is a relatively chemically stable substance, and therefore has a low oxidative decomposition rate, and poses a significant cost problem in practical use. Further, since the use of benzotriazole is expected to be used in a large amount in the semiconductor field in the future, development of a decomposition technique having excellent treatment performance for benzotriazole-containing wastewater is required.

【0003】[0003]

【発明が解決しようとする課題】本発明は、半導体分野
で銅防食剤として使用されるベンゾトリアゾールを効率
よく短時間で酸化分解しうるベンゾトリアゾール含有廃
水の処理技術を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a benzotriazole-containing wastewater treatment technique which can efficiently and oxidatively decompose benzotriazole used as a copper corrosion inhibitor in the semiconductor field in a short time. .

【0004】[0004]

【課題を解決するための手段】本発明は、ベンゾトリア
ゾール含有廃水に微量の銅が含有されていることに着目
し、酸化分解速度の向上に銅の触媒作用を利用すること
により、廃水の効率のよい処理が可能になることを見出
し、本発明を完成した。すなわち、本発明は、ベンゾト
リアゾールと銅もしくは銅化合物を含む有機性廃水の処
理方法において、廃水のpHを弱酸性に調整する弱酸性
調整工程と、この工程から流出する処理液を酸化性物質
と接触させる酸化分解工程と、この工程から流出する処
理液をpH10以上のアルカリ性に調整するアルカリ性
調整工程と、生成した銅水酸化物を固液分離する固液分
離工程とから成ることを特徴とするベンゾトリアゾール
含有廃水の処理方法を提供するものである。本発明は、
さらに、ベンゾトリアゾールと銅もしくは銅化合物を含
む有機性廃水の処理装置において、廃水のpHを弱酸性
に調整する弱酸性調整槽と、この調整槽から流出する処
理液を酸化性物質と接触させる酸化分解槽と、この槽か
ら流出する処理液をpH10以上のアルカリ性に調整す
るアルカリ性調整槽と、生成した銅水酸化物を固液分離
する固液分離槽とから成ることを特徴とするベンゾトリ
アゾール含有廃水の処理装置を提供するものである。ま
た、本発明において、ベンゾトリアゾール含有廃水中に
共存する銅濃度が、ベンゾトリアゾール濃度と当量に満
たない場合に、固液分離槽で生成した銅水酸化物含有ス
ラリーの一部を弱酸性調整槽に返送するラインを設け
て、銅水酸化物含有スラリーを返送し、銅濃度を当量以
上にするのが好ましい。
DISCLOSURE OF THE INVENTION The present invention focuses on the fact that benzotriazole-containing wastewater contains a trace amount of copper, and utilizes the catalytic action of copper to improve the rate of oxidative decomposition, thereby improving the efficiency of wastewater. It has been found that good processing can be performed, and the present invention has been completed. That is, the present invention provides a method for treating an organic wastewater containing benzotriazole and copper or a copper compound, wherein a weakly acidic adjustment step of adjusting the pH of the wastewater to a slightly acidic, and a treatment solution flowing out of this step is treated with an oxidizing substance. The process comprises an oxidative decomposition step of bringing into contact, an alkalinity adjusting step of adjusting the treatment liquid flowing out of this step to an alkali of pH 10 or more, and a solid-liquid separation step of solid-liquid separation of the produced copper hydroxide. A method for treating benzotriazole-containing wastewater is provided. The present invention
Further, in a treatment apparatus for an organic wastewater containing benzotriazole and copper or a copper compound, a weakly acidic adjustment tank for adjusting the pH of the wastewater to slightly acidic, and an oxidizing method for bringing the treatment liquid flowing out of the adjustment tank into contact with an oxidizing substance. A benzotriazole-containing solution comprising: a decomposition tank; an alkali adjustment tank for adjusting a treatment liquid flowing out of the tank to an alkali of pH 10 or more; and a solid-liquid separation tank for solid-liquid separation of the produced copper hydroxide. An object of the present invention is to provide a wastewater treatment device. Further, in the present invention, when the copper concentration coexisting in the benzotriazole-containing wastewater is less than the equivalent of the benzotriazole concentration, a part of the copper hydroxide-containing slurry generated in the solid-liquid separation tank is weakly acidified. It is preferable that a copper hydroxide-containing slurry be returned by providing a line for returning the copper hydroxide to make the copper concentration equal to or more than the equivalent.

【0005】[0005]

【発明の実施の形態】前記のように、銅共存状態のベン
ゾトリアゾールの分解速度が好ましくはpH5〜6の弱
酸性領域でさらに向上することから、本発明においては
オゾン、過酸化水素など酸化性物質を用いる酸化分解槽
の前段に、弱酸性調整槽を設け、予め被処理液のpHを
弱酸性、すなわち、pH5〜6に調整する。なお、本発
明において、処理すべき廃水の種類によっては排出廃水
のpHが4程度の場合もある。この場合には、弱酸性調
整槽に酸を添加してpH調整を行う必要はないため、一
層安価な処理が期待できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the decomposition rate of benzotriazole in the coexistence state of copper is preferably further improved in the weakly acidic range of pH 5 to 6, and therefore, in the present invention, oxidizing agents such as ozone and hydrogen peroxide are used. A weakly acidic adjusting tank is provided before the oxidative decomposition tank using the substance, and the pH of the liquid to be treated is previously adjusted to a weakly acidic, that is, pH 5 to 6. In the present invention, the pH of the discharged wastewater may be about 4 depending on the type of the wastewater to be treated. In this case, it is not necessary to adjust the pH by adding an acid to the weakly acidic adjusting tank, so that a more inexpensive treatment can be expected.

【0006】また、この廃水中の銅濃度の違いによって
ベンゾトリアゾールの分解効率が大きく異なり、共存す
る銅濃度がベンゾトリアゾール濃度と当量以上含有され
る場合にオゾン等の酸化性物質によるベンゾトリアゾー
ル分解速度が向上する。したがって、これを実現する方
策として、装置後段に設けた固液分離槽から銅含有スラ
リーを返送する様に構成するのが好ましい。その際、酸
化分解槽の銅濃度は、後段の固液分離槽からの銅含有ス
ラリー返送率をコントロールすることで任意に設定する
ことが可能である。
[0006] Decomposition efficiency of benzotriazole varies greatly depending on the copper concentration in the wastewater, and when the coexisting copper concentration is equal to or higher than the benzotriazole concentration, the benzotriazole decomposition rate by oxidizing substances such as ozone is increased. Is improved. Therefore, as a measure for realizing this, it is preferable to return the copper-containing slurry from a solid-liquid separation tank provided at the latter stage of the apparatus. At this time, the copper concentration in the oxidative decomposition tank can be arbitrarily set by controlling the rate of returning the copper-containing slurry from the subsequent solid-liquid separation tank.

【0007】[0007]

【実施例】次に、図面を参照して本発明をさらに具体的
に説明する。図1は、本発明の一実施例を示すベンゾト
リアゾール含有廃水の処理装置の系統図である。図1に
おいて、原水、すなわち、ベンゾトリアゾール(以下、
BTAと略記することがある)と銅を含有する有機性廃
水は、弱酸性調整槽1内でpH5〜6の弱酸性領域に調
整された後、オゾン、過酸化水素などの酸化性物質と接
触させるため酸化分解槽2に送水される。なお、前記の
ように、原水が既に弱酸性であってpH調整の必要がな
い場合には、原水を直接、酸化分解槽2に送水すること
もできる。酸化分解槽2内で原水中のベンゾトリアゾー
ルは酸化分解される。酸化分解槽2から流出する処理水
は、アルカリ性調整槽3に導入され、アルカリ剤の添加
によりpH10以上に調整される。これにより処理水中
に含まれている銅イオンは、水酸化銅Cu(OH)2
なって沈殿し、固液分離槽4で固液分離される。固液分
離槽4の上澄液は、処理水として後段の設備に給水され
る。
Next, the present invention will be described more specifically with reference to the drawings. FIG. 1 is a system diagram of an apparatus for treating benzotriazole-containing wastewater showing one embodiment of the present invention. In FIG. 1, raw water, that is, benzotriazole (hereinafter, referred to as benzotriazole)
BTA) and organic wastewater containing copper are adjusted to a weakly acidic region of pH 5 to 6 in the weakly acidic adjusting tank 1 and then contacted with oxidizing substances such as ozone and hydrogen peroxide. Water is sent to the oxidative decomposition tank 2 in order to cause the oxidation. As described above, when the raw water is already weakly acidic and does not require pH adjustment, the raw water can be directly sent to the oxidative decomposition tank 2. Benzotriazole in raw water is oxidatively decomposed in the oxidative decomposition tank 2. The treated water flowing out of the oxidative decomposition tank 2 is introduced into the alkalinity adjusting tank 3 and adjusted to pH 10 or more by adding an alkaline agent. As a result, the copper ions contained in the treated water are precipitated as copper hydroxide Cu (OH) 2, and solid-liquid separated in the solid-liquid separation tank 4. The supernatant liquid of the solid-liquid separation tank 4 is supplied to the downstream equipment as treated water.

【0008】一方、固液分離槽4の底部からは、銅含有
スラリーが排出され、その一部は銅含有スラリー返送ラ
イン5により弱酸性調整槽1に返送され、残余は系外排
出汚泥として排出される。弱酸性調整槽1への銅含有ス
ラリーの返送によって、酸化分解槽2内の被処理水の銅
濃度を、原水中に含有されている銅濃度の数倍から数十
倍に保持するのが好ましい。銅含有スラリーの返送によ
り、酸化分解槽2ではBTA濃度に対して当量以上の銅
が存在することから、オゾンや過酸化水素による酸化分
解が促進され、廃水中のBTAは速やかに除去される。
On the other hand, a copper-containing slurry is discharged from the bottom of the solid-liquid separation tank 4, a part of which is returned to the weakly acidic adjusting tank 1 by a copper-containing slurry return line 5, and the remainder is discharged as sludge discharged outside the system. Is done. It is preferable that the copper concentration of the water to be treated in the oxidative decomposition tank 2 be maintained at several times to several tens times the copper concentration contained in the raw water by returning the copper-containing slurry to the weakly acidic adjusting tank 1. . By returning the copper-containing slurry, copper is present in the oxidative decomposition tank 2 in an amount equivalent to or more than the BTA concentration, so that oxidative decomposition by ozone or hydrogen peroxide is promoted, and BTA in the wastewater is quickly removed.

【0009】図2は、BTA含有濃度20ppm、銅濃
度2.5ppmの廃水を対象として種々の条件で酸化分
解処理を行ったときのBTA残留濃度の経時変化を示す
グラフである。この廃水の銅/BTAモル比は0.24
であり、銅の含有量はBTAの当量濃度には至っていな
い。そこで、この廃水に対して銅を添加し、オゾンでの
酸化分解効果を検討した結果、Cu/BTAモル比1.
0及び1.5の条件でBTA分解速度の大幅向上を確認
した。すなわち、BTA含有廃水は、共存する銅濃度に
よって酸化分解速度が変化し、Cu/BTAモル比とし
て1以上あれば大幅な性能向上となることが分かった。
FIG. 2 is a graph showing the change over time in the residual concentration of BTA when oxidative decomposition treatment is performed on wastewater having a BTA content of 20 ppm and a copper concentration of 2.5 ppm under various conditions. The copper / BTA molar ratio of this wastewater is 0.24
And the content of copper has not reached the equivalent concentration of BTA. Then, copper was added to this wastewater and the effect of oxidative decomposition with ozone was examined.
Under the conditions of 0 and 1.5, a significant improvement in the BTA decomposition rate was confirmed. That is, it was found that the oxidative decomposition rate of the BTA-containing wastewater changes depending on the concentration of coexisting copper, and that the performance is significantly improved if the Cu / BTA molar ratio is 1 or more.

【0010】さらに、図2に付記した様に、Cu/BT
Aモル比が同じであっても、酸化分解時のpHを弱酸性
領域とすることにより分解性能は一層向上することが明
らかとなった。この現象は、pH低下によるオゾンガス
の安定化や液中銅イオン濃度などが作用していると考え
られるが、詳細なメカニズムは必ずしも明らかとなって
いない。さらに、上記の結果に基づいて20リットル規
模のリアクタでの連続通水試験を実施した。その結果、
オゾン酸化槽の滞留時間30分で先に示したBTA含有
廃水を処理し、BTA1.0mg/L以下まで除去可能
であることを確認した。通常のオゾン酸化分解法での必
要滞留時間が2.5時間であったのに対して、本発明法
では約5倍の高性能化が図れ、オゾン必要量や装置規模
を大幅低減できることが分かった。
Further, as shown in FIG. 2, Cu / BT
It was clarified that the decomposition performance was further improved by setting the pH at the time of oxidative decomposition to a weakly acidic region even when the A molar ratio was the same. It is thought that this phenomenon is caused by the stabilization of ozone gas due to a decrease in pH, the concentration of copper ions in the liquid, and the like, but the detailed mechanism is not necessarily clear. Further, based on the above results, a continuous water flow test was performed in a 20-liter reactor. as a result,
The BTA-containing wastewater shown above was treated with a residence time of 30 minutes in the ozone oxidation tank, and it was confirmed that the BTA could be removed to 1.0 mg / L or less. While the required residence time in the normal ozone oxidative decomposition method was 2.5 hours, the method of the present invention can improve the performance by about 5 times, and can greatly reduce the required amount of ozone and the scale of the apparatus. Was.

【0011】[0011]

【発明の効果】本発明によるBTA酸化分解法を採用す
ることにより通常の酸化装置では得ることのできない高
性能酸化分解が可能となり、半導体分野などで銅防食剤
として使用されたベンゾトリアゾールを含有する廃水を
効率よく短時間で処理することができる。
The use of the BTA oxidative decomposition method according to the present invention enables high-performance oxidative decomposition that cannot be obtained with a normal oxidizer, and contains benzotriazole used as a copper anticorrosive in the field of semiconductors and the like. Wastewater can be efficiently treated in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すベンゾトリアゾール含
有廃水の処理装置の系統図である。
FIG. 1 is a system diagram of an apparatus for treating benzotriazole-containing wastewater showing one embodiment of the present invention.

【図2】酸化分解によるベンゾトリアゾールの残留濃度
の経時変化を示すグラフである。
FIG. 2 is a graph showing the change over time in the residual concentration of benzotriazole due to oxidative decomposition.

【符号の説明】[Explanation of symbols]

1 弱酸性調整槽 2 酸化分解槽 3 アルカリ性調整槽 4 固液分離槽 5 銅含有スラリー返送ライン DESCRIPTION OF SYMBOLS 1 Weak acid adjustment tank 2 Oxidation decomposition tank 3 Alkalinity adjustment tank 4 Solid-liquid separation tank 5 Copper-containing slurry return line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 9/00 502 C02F 9/00 502Z 502P 503 503C 504 504E 11/00 11/00 J 11/14 11/14 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 9/00 502 C02F 9/00 502Z 502P 503 503C 504 504E 11/00 11/00 J 11/14 11 / 14 B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ベンゾトリアゾールと銅もしくは銅化合
物を含む有機性廃水の処理方法において、廃水のpHを
弱酸性に調整する弱酸性調整工程と、この工程から流出
する処理液を酸化性物質と接触させる酸化分解工程と、
この工程から流出する処理液をpH10以上のアルカリ
性に調整するアルカリ性調整工程と、生成した銅水酸化
物を固液分離する固液分離工程とから成ることを特徴と
するベンゾトリアゾール含有廃水の処理方法。
1. A method for treating an organic wastewater containing benzotriazole and copper or a copper compound, comprising the steps of: adjusting a pH of the wastewater to a weak acidity; and contacting a treatment liquid flowing out of the step with an oxidizing substance. Oxidative decomposition step
A method for treating benzotriazole-containing wastewater, comprising: an alkalinity adjusting step of adjusting the treatment liquid flowing out of this step to an alkali having a pH of 10 or more; and a solid-liquid separation step of solid-liquid separation of the produced copper hydroxide. .
【請求項2】 固液分離工程で生成した銅水酸化物含有
スラリーの一部を弱酸性調整工程に返送する請求項1記
載のベンゾトリアゾール含有廃水の処理方法。
2. The method for treating benzotriazole-containing wastewater according to claim 1, wherein a part of the copper hydroxide-containing slurry generated in the solid-liquid separation step is returned to the weakly acidic adjustment step.
【請求項3】 ベンゾトリアゾールと銅もしくは銅化合
物を含む有機性廃水の処理装置において、廃水のpHを
弱酸性に調整する弱酸性調整槽と、この調整槽から流出
する処理液を酸化性物質と接触させる酸化分解槽と、こ
の槽から流出する処理液をpH10以上のアルカリ性に
調整するアルカリ性調整槽と、生成した銅水酸化物を固
液分離する固液分離槽とから成ることを特徴とするベン
ゾトリアゾール含有廃水の処理装置。
3. An apparatus for treating an organic wastewater containing benzotriazole and copper or a copper compound, comprising: a weakly acidic adjusting tank for adjusting the pH of the wastewater to slightly acidic; It is characterized by comprising an oxidative decomposition tank to be brought into contact, an alkali adjustment tank for adjusting the treatment liquid flowing out of this tank to an alkali of pH 10 or more, and a solid-liquid separation tank for solid-liquid separation of the produced copper hydroxide. Treatment equipment for wastewater containing benzotriazole.
【請求項4】 固液分離槽で生成した銅水酸化物含有ス
ラリーの一部を弱酸性調整槽に返送するラインを設けた
請求項3記載のベンゾトリアゾール含有廃水の処理装
置。
4. The apparatus for treating benzotriazole-containing wastewater according to claim 3, further comprising a line for returning a part of the copper hydroxide-containing slurry generated in the solid-liquid separation tank to the weakly acidic adjusting tank.
JP2000226659A 2000-07-27 2000-07-27 Method and apparatus for treating benzotriazole- containing wastewater Pending JP2002035773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000226659A JP2002035773A (en) 2000-07-27 2000-07-27 Method and apparatus for treating benzotriazole- containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000226659A JP2002035773A (en) 2000-07-27 2000-07-27 Method and apparatus for treating benzotriazole- containing wastewater

Publications (1)

Publication Number Publication Date
JP2002035773A true JP2002035773A (en) 2002-02-05

Family

ID=18720237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000226659A Pending JP2002035773A (en) 2000-07-27 2000-07-27 Method and apparatus for treating benzotriazole- containing wastewater

Country Status (1)

Country Link
JP (1) JP2002035773A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1502963A1 (en) * 2003-08-01 2005-02-02 Rohm and Haas Electronic Materials, L.L.C. Recovery of metals from azole containing waste fluid by ozonization and electrolysis
WO2010058674A1 (en) * 2008-11-19 2010-05-27 栗田工業株式会社 Process for treatment of water containing azole-type anticorrosive for copper
CN106794397A (en) * 2014-06-05 2017-05-31 苏伊士水务工程公司 Ozone oxidation method for processing the water containing azoles system and azole compounds
CN108217810A (en) * 2017-12-27 2018-06-29 浙江奇彩环境科技股份有限公司 A kind of method of benzotriazole pollutant in removal waste water
CN114341062A (en) * 2019-08-26 2022-04-12 懿华水处理技术有限责任公司 Treatment of azoles

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1502963A1 (en) * 2003-08-01 2005-02-02 Rohm and Haas Electronic Materials, L.L.C. Recovery of metals from azole containing waste fluid by ozonization and electrolysis
WO2010058674A1 (en) * 2008-11-19 2010-05-27 栗田工業株式会社 Process for treatment of water containing azole-type anticorrosive for copper
JP2010119956A (en) * 2008-11-19 2010-06-03 Kurita Water Ind Ltd Method of treating anti-corrosive-containing water for azole-based copper
KR20110101130A (en) 2008-11-19 2011-09-15 쿠리타 고교 가부시키가이샤 Process for treatment of water containing azole-type anticorrosive for copper
CN102216226A (en) * 2008-11-19 2011-10-12 栗田工业株式会社 Process for treatment of water containing azole-type anticorrosive for copper
CN102216226B (en) * 2008-11-19 2013-06-19 栗田工业株式会社 Process for treatment of water containing azole-type anticorrosive for copper
US8801937B2 (en) 2008-11-19 2014-08-12 Kurita Water Industries Ltd. Process for treatment of water containing azole-type anticorrosive for copper
CN106794397A (en) * 2014-06-05 2017-05-31 苏伊士水务工程公司 Ozone oxidation method for processing the water containing azoles system and azole compounds
EP3151941A4 (en) * 2014-06-05 2017-12-27 Suez Treatment Solutions Inc. Ozone oxidation process for treatment of water containing azoles and azole-type compounds
CN108217810A (en) * 2017-12-27 2018-06-29 浙江奇彩环境科技股份有限公司 A kind of method of benzotriazole pollutant in removal waste water
CN114341062A (en) * 2019-08-26 2022-04-12 懿华水处理技术有限责任公司 Treatment of azoles

Similar Documents

Publication Publication Date Title
JPS5948155B2 (en) Waste liquid treatment method
EA200000437A1 (en) METHOD FOR REMOVING SELENIUM FROM TECHNOLOGICAL WATER FLOWS AND DEVICE FOR ITS IMPLEMENTATION
JP2000501771A (en) Chemical mechanical polishing composition and chemical mechanical polishing method
US20220298045A1 (en) Treatment of Azoles
TW200902454A (en) Method and apparatus for organic matter removal
US8801937B2 (en) Process for treatment of water containing azole-type anticorrosive for copper
JP2002035773A (en) Method and apparatus for treating benzotriazole- containing wastewater
JP2014198286A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
JP5135697B2 (en) Surfactant-containing wastewater treatment method
JP4656379B2 (en) Method of treating wastewater containing iron cyanide
JPS59196796A (en) Treatment of liquid waste
JP4538881B2 (en) Membrane module cleaning method
JP2003126872A (en) Treating method of drainage containing nitrate nitrogen
JP2003236571A (en) Treatment method for organic wastewater containing copper
JP3019009B2 (en) Treatment method for wastewater containing fluorine
JPWO2004020347A1 (en) Treatment method for wastewater containing high concentration nitrate nitrogen
JPH0780479A (en) Treatment of organic compound-containing waste liquid
JP4135324B2 (en) Waste liquid treatment method
JPH1041262A (en) Cleaning and manufacturing method of semiconductor device
JP2006130498A (en) Method for treating fluorine-containing drainage
Wada et al. Recycling of wastewater containing iron-complex cyanides using UV photodecomposition and UV ozone oxidation in combination with an ion-exchange resin method
JP2000061453A (en) Treatment of water and apparatus therefor
KR20010079831A (en) Polishing liquid for polishing components, preferably wafers, especially for chemically-mechanically polishing components of this type
JP2006051468A (en) Method for treating persulfate-containing waste water
JPH01249187A (en) Method for purifying waste containing gallium and arsenic