JP2002034951A - Method for taking image of length information in magnetic resonance image and method for correcting image - Google Patents

Method for taking image of length information in magnetic resonance image and method for correcting image

Info

Publication number
JP2002034951A
JP2002034951A JP2000224827A JP2000224827A JP2002034951A JP 2002034951 A JP2002034951 A JP 2002034951A JP 2000224827 A JP2000224827 A JP 2000224827A JP 2000224827 A JP2000224827 A JP 2000224827A JP 2002034951 A JP2002034951 A JP 2002034951A
Authority
JP
Japan
Prior art keywords
image
magnetic resonance
subject
length information
ruler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000224827A
Other languages
Japanese (ja)
Inventor
Takao Oishi
高生 大石
Keiji Matsuda
圭司 松田
Kenji Shimizu
賢二 清水
Kenji Kono
憲二 河野
Kenzo Kigami
謙三 樹神
Kenji Kamitsukuri
憲司 神作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000224827A priority Critical patent/JP2002034951A/en
Publication of JP2002034951A publication Critical patent/JP2002034951A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect distortion inside the field of vision(FOV) of imaging and to correct the distortion. SOLUTION: Rulers with a hollow part filled with a material which can be imaged by the MRI are disposed adjacent to a subject, and the images of rulers are taken in the image of the subject. Then by detecting the distortion in the image of the hollow part of the ruler, the distortion in the MRI image is detected and corrected. By using rulers with graduation units having a hollow part filled with a material which can be imaged by the MRI, and integrating the graduation units three-dimensionally to be brought into contact with the subject by each unit, the image of the graduations can be always picked up in any MRI slice image surface. The rulers may be disposed at right angles to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、医療用及び研究開
発用の磁気共鳴画像の画像に長さ情報を写し込んで撮影
する方法及び撮影された磁気共鳴画像を検出、補正方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of imprinting length information on images of magnetic resonance images for medical use and research and development, and a method for detecting and correcting the imaged magnetic resonance images.

【0002】[0002]

【従来の技術】磁気共鳴画像(MRI,Magnetic Reso
nance Imaging )装置は送信コイルでRF(Radio F
reqency,高周波)磁界を被検体に照射して、被検体内
のプロトン(proton)から返る信号を受信コイルで計測
する。被検体内のプロトンの位置情報は傾斜磁場を用い
て形成される傾斜磁場から得る。撮影視野(FOV:fi
eld of view)内に不均一性が生じると、得られるM
RI画像の位置が歪んでしまう。
2. Description of the Related Art Magnetic resonance imaging (MRI, Magnetic Reso
nance Imaging) device uses RF (Radio F)
The object is irradiated with a (reqency, high frequency) magnetic field, and a signal returned from protons in the object is measured by a receiving coil. Position information of protons in the subject is obtained from a gradient magnetic field formed using the gradient magnetic field. Field of view (FOV: fi
If non-uniformity occurs within the eld of view), the resulting M
The position of the RI image is distorted.

【0003】MRI装置の設置時や撮影条件(パラメー
タ)の設定変更時には、撮影空間にファントムを設置し
てファントムを撮影し、その撮影データを計算処理して
複数の磁場補正用コイル(SHIMコイル)の電流補正値を
求め、磁場補正用コイルの電流を補正値分だけ補正して
磁場の歪みを補正している。磁場の補正はソフトウェア
で行われ、この操作はシミング(shimming)と呼ばれて
いる。シミングを行う範囲の大きさをFOV中心からど
れだけにするかは撮影者が操作できるが、範囲が小さす
ぎれば得られた画像の周辺に大きな歪みが生じ、大きす
ぎれば補正の精度が下がる。
When installing an MRI apparatus or changing the setting of imaging conditions (parameters), a phantom is installed in an imaging space, an image of the phantom is taken, and the imaging data is processed to calculate a plurality of magnetic field correction coils (SHIM coils). Is calculated, and the current of the magnetic field correction coil is corrected by the correction value to correct the magnetic field distortion. The correction of the magnetic field is performed by software, and this operation is called shimming. The photographer can control the size of the shimming range from the center of the FOV. However, if the range is too small, a large distortion occurs around the obtained image, and if the range is too large, the accuracy of correction decreases.

【0004】[0004]

【発明が解決しようとする課題】ファントム撮影によっ
てMRI装置の画像パラメータを変更する方法だけで
は、被検体自体が及ぼす磁場の影響もあり、実際にどれ
だけ歪みのない画像が得られているかは明らかではなか
った。本発明の目的は、この問題を解決することにあ
る。
It is apparent that only the method of changing the image parameters of the MRI apparatus by phantom imaging is affected by the magnetic field exerted by the subject itself, and how much distortion-free images are actually obtained. Was not. An object of the present invention is to solve this problem.

【0005】[0005]

【課題を解決するための手段】本発明は、MRI装置で
明瞭に撮影できる物質を中空部に封入した定規を、磁気
共鳴画像撮影の範囲内に配置して磁気共鳴画像を撮影す
ることを特徴とする磁気共鳴画像に長さ情報を写し込む
方法を提供する。
SUMMARY OF THE INVENTION The present invention is characterized in that a ruler in which a substance which can be clearly imaged by an MRI apparatus is sealed in a hollow portion is arranged within the range of magnetic resonance image imaging and a magnetic resonance image is taken. And a method for imprinting length information on a magnetic resonance image.

【0006】又、本発明は、MRI装置で明瞭に撮影で
きる物質を中空部に封入した中空部を中心軸に設けた目
盛単位の複数個を立体的に集積し、各定規単位の中空部
側を被検体に接触可能に配置して、被検体に近接し、ど
のMRIスライス面画像に対しても長さ情報を写し込む
方法を提供する。更に、目盛単位複数個からなるブロッ
クの複数組を被検体に近接して異なる方向、例えば直角
に配置したことを特徴とする磁気共鳴画像に長さ情報を
写し込む方法としても良い。
The present invention also provides a three-dimensionally integrated plurality of graduation units provided on a central axis of a hollow part in which a substance which can be clearly imaged by an MRI apparatus is enclosed in the hollow part, and the ruler unit has a hollow part. Is provided so as to be in contact with a subject, and a method of imprinting length information on any MRI slice plane image in the vicinity of the subject. Furthermore, a method of imprinting length information on a magnetic resonance image characterized in that a plurality of sets of blocks each including a plurality of scale units are arranged in a different direction close to the subject, for example, at right angles.

【0007】さらに、これら定規を異なる方向、例えば
直角に配置すると、MRIの縦、横方向成分の歪みを検
出することができる。MRI装置を用いて被検体を撮影
する際に磁場の不均一性を検出した場合には長さを補正
するアルゴリズムにデータを提供し、撮影画像を補正す
ることができる。
Further, when these rulers are arranged in different directions, for example, at right angles, distortion in the vertical and horizontal components of MRI can be detected. When non-uniformity of the magnetic field is detected when imaging the subject using the MRI apparatus, data can be provided to an algorithm for correcting the length, and the captured image can be corrected.

【0008】[0008]

【発明の実施の形態】図1は本発明に使用する定規の1
実施例を示す。1は被検体、2,2Rは非磁性体の定
規、3はMRI装置で撮影できる物質、例えば水,硫酸
銅水溶液,油などの物質を満たした中空部を表してい
る。複数の中空部3は一定の長さ、一定の間隔で平行に
定規2,2R内に計器目盛状に配置された構造となって
いる。定規2と定規2Rとは互いに直角になるように設
置されて被検体1近くに支持されている。定規は一つで
も、又、定規2と定規2Rとを同一の高さに支持して
も、異なる高さに支持しても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows one of the rulers used in the present invention.
An example will be described. Reference numeral 1 denotes an object, 2 and 2R denote nonmagnetic rulers, and 3 denotes a hollow portion filled with a substance that can be imaged by an MRI apparatus, for example, water, copper sulfate aqueous solution, oil, or the like. The plurality of hollow portions 3 have a structure in which meter lengths are arranged in parallel with the rulers 2 and 2R at a fixed length and a fixed interval. The ruler 2 and the ruler 2R are installed at right angles to each other and are supported near the subject 1. One ruler may be provided, and ruler 2 and ruler 2R may be supported at the same height or at different heights.

【0009】図2(a),(b)は本発明に使用する定
規の他の実施例を示す。(a)の定規4はMRI装置で
撮影できる物質を満たした中空部3を一定の長さ、一定
の間隔で平行に配置した部材をL字曲尺状に構成した例
である。(b)の定規5はMRI装置で撮影できる物質
を満たしたコの字状の中空部6を配置した部材を直角に
構成した例である。なお、本明細書及び図面において同
じ参照符号が付されている部材は同じものを表してい
る。
FIGS. 2A and 2B show another embodiment of the ruler used in the present invention. (A) Ruler 4 is an example in which a member in which hollow portions 3 filled with a substance which can be imaged by an MRI apparatus are arranged in parallel at a fixed length and a fixed interval in an L-shaped curved shape. The ruler 5 shown in FIG. 3B is an example in which a member having a U-shaped hollow portion 6 filled with a substance that can be imaged by an MRI apparatus is arranged at a right angle. In the present specification and the drawings, members denoted by the same reference numerals represent the same members.

【0010】図3は本発明に使用する定規の更に他の実
施例を示す。(a)はMRIで撮影できる物質を満たし
た中空部を有する目盛単位を示し、(b)は(a)の目
盛単位から構成される定規9を示している。図3中、7
は目盛単位、8はMRI装置で撮影できる物質を満たし
た中空部を表している。中空部8は一定長さで、定規単
位の長手方向の中央軸に、一端面に接するように構成さ
れている。
FIG. 3 shows still another embodiment of the ruler used in the present invention. (A) shows a scale unit having a hollow portion filled with a substance that can be imaged by MRI, and (b) shows a ruler 9 composed of the scale unit of (a). In FIG.
Denotes a scale unit, and 8 denotes a hollow portion filled with a substance that can be imaged by an MRI apparatus. The hollow portion 8 has a fixed length, and is configured to be in contact with one end face of a central axis in the longitudinal direction of a ruler unit.

【0011】図3の定規9は同一形状の目盛単位7を中
空部8の方向を揃えて縦横に積重ねて複数個配置する。
中空部の間隔は目盛単位の幅方向によって決まる。図3
の例では目盛単位は直方体であるが、円筒形であっても
良く、積み重ねた際、目盛となる中空部8間の間隔が一
定に保持される構造であればよい。目盛単位は軸方向に
可動なので、各中空部の上記中空部側端面を被検体3に
接触させることがでる。
In the ruler 9 of FIG. 3, a plurality of graduation units 7 of the same shape are stacked vertically and horizontally with the direction of the hollow portion 8 aligned.
The interval between the hollow portions is determined by the width direction of the scale unit. FIG.
In the example, the scale unit is a rectangular parallelepiped, but may be cylindrical, and any structure may be used as long as the interval between the hollow portions 8 serving as scales is kept constant when stacked. Since the scale unit is movable in the axial direction, the hollow-side end surface of each hollow portion can be brought into contact with the subject 3.

【0012】図4により、本発明に使用する図3の定規
9と被検体1の関係を説明する。図4のように、各目盛
単位7の中空部8を被検体1に接触させて定規9を支持
する。MRI撮影可能な物質が満たされた中空部8は定
規目盛として、被検体1とともにMRI画像の各断層面
S1,S2,S3,・・・・に写し込まれる。又、傾斜
した断層面S1’,S2’,S3’,・・・のMRI画
像においても中空部目盛は長く設計されているので、一
定間隔で被検体とともに写しこまれる。別の定規9を図
の定規9に直角に配置して、直角方向に定規の中空部8
を写し込んでも良い。定規2,2R,4,5を組み合わ
せて写し込んでも良いのは勿論である。
Referring to FIG. 4, the relationship between the ruler 9 and the subject 1 in FIG. 3 used in the present invention will be described. As shown in FIG. 4, the hollow portion 8 of each scale unit 7 is brought into contact with the subject 1 to support the ruler 9. The hollow portion 8 filled with the MRI-capable substance is photographed together with the subject 1 on each tomographic plane S1, S2, S3,... Of the MRI image as a ruler scale. Also, in the MRI images of the inclined tomographic planes S1 ', S2', S3 ',..., The hollow scale is designed to be long, so that it is captured with the subject at regular intervals. Another ruler 9 is arranged at a right angle to the ruler 9 in the figure, and the hollow portion 8 of the ruler is
May be imprinted. Of course, the rulers 2, 2R, 4, and 5 may be combined and imprinted.

【0013】本発明に使用する定規の中空部の形態は以
上の実施例に限られず、中空部の端点の検出が容易な線
分,コの字型,或いはそれが連続した雷文状,四角形,
間隔の定まった所定長さの平行線分群のように長さ情報
を有するものであれば良い。又、複数個の定規(図1,
図2)若しくは複数の目盛単位からなるブロック(図
3)を複数組を直角に配置する代わりに異なる方向に配
置しても良い。定規は、撮影範囲内で、非磁性材料性支
持部により被検体にごく近接して支持される。
The shape of the hollow portion of the ruler used in the present invention is not limited to the above-described embodiment, but is a line segment, a U-shape, or a lightning pattern or a square shape in which the end point of the hollow portion is easily detected. ,
What is necessary is just to have length information, such as a parallel line segment group of a predetermined length with a fixed interval. Also, a plurality of rulers (FIG. 1,
Instead of arranging a plurality of sets (FIG. 2) or a plurality of scale units (FIG. 3) at right angles, they may be arranged in different directions. The ruler is supported in close proximity to the subject by the non-magnetic material support within the imaging range.

【0014】図5は、本発明によるMRI断層再構成画
像の例を示している。図6に写った一定間隔(1cm)
の白線11は定規の目盛(MRIで撮影可能な物質で満
たされた中空部)像で、画像上におけるMRI装置の機
械スケール12の表示目盛と一致している。白線11の
間隔が一定で、歪んでいないことから適正なシミングが
なされていることが、確認できる。
FIG. 5 shows an example of an MRI tomographic reconstruction image according to the present invention. Fixed interval (1cm) shown in Fig. 6
A white line 11 is an image of a ruler scale (hollow portion filled with a substance that can be imaged by MRI), which coincides with the display scale of the mechanical scale 12 of the MRI apparatus on the image. Since the interval between the white lines 11 is constant and not distorted, it can be confirmed that proper shimming is performed.

【0015】図6は、本発明によるMRI断層再構成画
像の他の例を示している。図7の下側右端に写った白線
13aが他の白線13と平行でないことから、その部分
はシミングの範囲外で、磁場が歪んでいることがわか
る。又、それより左の、脳が写っている部分では磁場が
歪んでいないことが確認できる。
FIG. 6 shows another example of an MRI tomographic reconstruction image according to the present invention. Since the white line 13a shown in the lower right end of FIG. 7 is not parallel to the other white lines 13, it can be seen that the magnetic field is distorted outside the shimming range. Further, it can be confirmed that the magnetic field is not distorted in the part on the left, in which the brain is shown.

【0016】次に、図7により本発明のMRI画像の歪
みを補正する方法について説明する。MRI装置の撮影
条件を変更する(ステップS1)と、ファントムを撮影し
て(ステップS2)、磁場歪みが許容範囲になるまでシミ
ングは繰り返され(ステップS3,S4)て、磁場の歪みが
許容範囲に収まると、補正は終了し次のステップで被検
体は撮影される。以上が従来の磁場歪みの補正方法であ
る。
Next, a method for correcting distortion of an MRI image according to the present invention will be described with reference to FIG. When the imaging conditions of the MRI apparatus are changed (step S1), the phantom is imaged (step S2), and shimming is repeated until the magnetic field distortion is within the allowable range (steps S3 and S4), and the magnetic field distortion is within the allowable range. , The correction ends and the subject is imaged in the next step. The above is the conventional correction method of the magnetic field distortion.

【0017】本発明の補正方法は、更に、被検体自体に
よる磁場の歪みを補正する方法である。図1ないし図4
で説明したように被検体とともに長さ情報(定規)をM
RI画像に写しこみ(ステップS5)、MRI撮影データ
により被検体による磁場の歪みを検出する(ステップS
6)。磁場の歪みが許容範囲外ならば、先ず、画像処理
のみで補正できる範囲内であるか否かを判断する(ステ
ップS7)。画像処理のみで補正できる範囲内であると判
断すると、公知の画像処理により撮影データを補正して
(ステップS9)、MRI画像を得る(ステップS10)。
そうでないと判断すると、シミングで補正する(ステッ
プS8)。ステップS7で磁場の歪みが許容範囲内ならば
(例えば図5の画像例)、撮影データでMRI画像を作
成する(ステップS10)。
The correction method according to the present invention is a method for correcting a magnetic field distortion caused by the subject itself. 1 to 4
The length information (ruler) together with the subject is
Imprinted on the RI image (step S5), the distortion of the magnetic field due to the subject is detected based on the MRI imaging data (step S5).
6). If the distortion of the magnetic field is out of the allowable range, first, it is determined whether the distortion is within a range that can be corrected only by the image processing (step S7). If it is determined that it is within the range that can be corrected only by image processing, the photographing data is corrected by known image processing (step S9), and an MRI image is obtained (step S10).
If not, the correction is performed by shimming (step S8). If the distortion of the magnetic field is within the allowable range in step S7 (for example, the image example in FIG. 5), an MRI image is created from the photographed data (step S10).

【0018】被検体と定規の撮影データが図5の画像の
ものである場合は、ステップS6の判断の「歪みは許容範
囲か」は「YES」とされ、補正は終了する。被検体と
定規の撮影データが図6の画像のものである場合には、
ステップS6の判断の「歪みは許容範囲か」は「NO」と
され、ステップS7の判断に移行する(実際には画像デー
タが必要な部位に磁気歪みがないと判断されるとステッ
プS6の判断の「歪みは許容範囲か」は「YES」とされ
る場合もある。)。この判断ステップS7の「画像のみで
補正するか」否かの判断基準は、撮影された長さ情報の
実物に対する誤差によって決められる。
If the photographing data of the subject and the ruler are those of the image shown in FIG. 5, the determination in step S6 of "Is distortion acceptable?" Is set to "YES", and the correction ends. When the imaging data of the subject and the ruler are those of the image of FIG.
In the determination of step S6, "is distortion allowable range?" Is set to "NO", and the process shifts to the determination of step S7 (if it is determined that there is no magnetic distortion in a portion where image data is actually required, the determination of step S6 is performed. "Is distortion acceptable?" May be set to "YES".) The criterion for determining whether or not to correct only with the image in the determination step S7 is determined by an error of the photographed length information with respect to the real thing.

【0019】この長さ情報の誤差が、撮影データを公知
の計算機処理に従って補正しても充分実用に耐えるMR
I画像が得られる範囲内のものであるときに、例えば、
1目盛の長さ若しくは角度が2割以下の誤差であると目
盛の撮影データに基づいて計算されたとき、画像のみで
MRI画像は補正される。この誤差がこの値以上のとき
はシミングにより磁場が補正され(ステップS8)、再度
被検体と定規の撮影データにより磁場歪みの度合いを計
算し、「歪みは許容範囲か」を判断する(ステップS
6)。
This error in the length information is sufficient for practical use even if the photographing data is corrected according to a known computer process.
When the I image is within the range that can be obtained, for example,
When the length or angle of one graduation is calculated to be an error of 20% or less based on the photographic data of the graduation, the MRI image is corrected only by the image. If this error is equal to or greater than this value, the magnetic field is corrected by shimming (step S8), and the degree of magnetic field distortion is calculated again based on the imaging data of the subject and the ruler, and it is determined whether the distortion is an allowable range (step S8).
6).

【0020】[0020]

【発明の効果】これまでは事前のファントム撮影のみで
磁場の調整を行っていたのに対し、本発明では被検体撮
影と同時に磁場の確認ができ、必要な場合には事後に歪
みの補正ができる。得られた核磁気共鳴画像の歪みがな
いことが確認できたり、歪みを補正できたりするため、
特に頭部撮影においては、画像と脳図譜との照合が容易
になり、より正確な治療や研究開発ができる。
While the magnetic field has been adjusted only by prior phantom imaging, the present invention allows the magnetic field to be checked at the same time as the imaging of the subject, and if necessary, corrects the distortion after the fact. it can. To be able to confirm that there is no distortion in the obtained nuclear magnetic resonance image or to correct the distortion,
In particular, in head photographing, matching of an image with a brain chart becomes easy, and more accurate treatment and R & D can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の長さ情報を含む定規例の配置を示す図
である。
FIG. 1 is a diagram showing an arrangement of a ruler example including length information of the present invention.

【図2】本発明の長さ情報を含む他の定規例の配置を示
す図である。
FIG. 2 is a diagram showing an arrangement of another ruler example including length information of the present invention.

【図3】本発明の長さ情報を含む他の定規例の配置を示
す図である。
FIG. 3 is a diagram showing an arrangement of another ruler example including length information of the present invention.

【図4】本発明の長さ情報を含む図3の定規とMRIス
ライスとの関係を示す図である。
FIG. 4 is a diagram showing the relationship between the ruler of FIG. 3 including length information of the present invention and an MRI slice.

【図5】本発明の方法で撮影された画像に歪みを検出し
ない例(例1)を示す図である。
FIG. 5 is a diagram showing an example (Example 1) in which no distortion is detected in an image captured by the method of the present invention.

【図6】本発明の方法で撮影された画像に歪みを検出し
た例(例2)を示す図である。
FIG. 6 is a diagram illustrating an example (Example 2) of detecting distortion in an image captured by the method of the present invention.

【図7】本発明のMRI画像の補正方法を説明するフロ
ー図である。
FIG. 7 is a flowchart illustrating a method of correcting an MRI image according to the present invention.

【符号の説明】[Explanation of symbols]

1 被検体 2,2R 定規 3,6,8 中空部 4,5,9 定規 7 目盛単位 11 中空部画像 13,13a 中空部画像 DESCRIPTION OF SYMBOLS 1 Subject 2, 2R ruler 3, 6, 8 Hollow part 4, 5, 9 Ruler 7 Scale unit 11 Hollow part image 13, 13a Hollow part image

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 憲二 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 樹神 謙三 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 神作 憲司 千葉県千葉市中央区亥鼻1−8−1 千葉 大学医学部内 Fターム(参考) 4C096 AA01 AB05 AB32 AB45 AC01 AD08 CA21 DC02 DC22 FA03 FA06 FA07  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kenji Kono 1-1-4 Umezono, Tsukuba City, Ibaraki Prefecture Inside the Electronic Technology Research Laboratory, Industrial Technology Institute (72) Inventor Kenzo Kigami 1-1-1 Umezono Tsukuba City, Ibaraki Prefecture 4 Within the Institute of Electronic Technology, National Institute of Industrial Science (72) Inventor Kenji Shinsaku 1-8-1 Ihana, Chuo-ku, Chiba-shi, Chiba F-term (reference) 4C096 AA01 AB05 AB32 AB45 AC01 AD08 CA21 DC02 DC22 FA03 FA06 FA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所定間隔若しくは所定形状で配置された
中空部に磁気共鳴画像装置で明瞭に撮影できる物質を封
入した定規を、磁気共鳴画像撮影の範囲内に配置して磁
気共鳴画像を撮影することを特徴とする磁気共鳴画像に
長さ情報を写し込む方法。
1. A magnetic resonance image is taken by placing a ruler in which a substance that can be clearly photographed by a magnetic resonance imaging device is sealed in a hollow portion arranged at a predetermined interval or a predetermined shape within a range of magnetic resonance image photographing. A method of imprinting length information on a magnetic resonance image.
【請求項2】 請求項1の定規が複数個、異なる方向で
配置されていることを特徴とする磁気共鳴画像に長さ情
報を写し込む方法。
2. A method of imprinting length information on a magnetic resonance image, wherein a plurality of the rulers according to claim 1 are arranged in different directions.
【請求項3】 一端側に、磁気共鳴画像装置で明瞭に撮
影できる物質を封入した中空部を中心軸に設けた目盛単
位の複数個を、被検体に中空部側の一端を接触させて立
体的に配置して磁気共鳴画像を撮影することを特徴とす
る磁気共鳴画像に長さ情報を写し込む方法。
3. A plurality of graduation units each having a hollow portion enclosing a substance which can be clearly photographed by a magnetic resonance imaging apparatus and having a central axis provided on one end side, and the one end of the hollow portion side is brought into contact with a subject to form a three-dimensional image. A method of imprinting length information on a magnetic resonance image, characterized in that the magnetic resonance image is photographed with the magnetic resonance images arranged in a horizontal direction.
【請求項4】 請求項3の目盛単位複数個からなるブロ
ックの複数組を被検体に近接して異なる方向に配置した
ことを特徴とする磁気共鳴画像に長さ情報を写し込む方
法。
4. A method for imprinting length information on a magnetic resonance image, wherein a plurality of sets of blocks each comprising a plurality of scale units according to claim 3 are arranged in different directions close to a subject.
【請求項5】 磁気共鳴画像に被検体とともに写し込
まれた長さ情報の画像データを基に撮影された被検体画
像の歪みを検出し、補正することを特徴とする画像補正
方法。
5. An image correction method, comprising detecting and correcting distortion of an image of a subject taken based on image data of length information imprinted together with the subject on a magnetic resonance image.
JP2000224827A 2000-07-26 2000-07-26 Method for taking image of length information in magnetic resonance image and method for correcting image Pending JP2002034951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000224827A JP2002034951A (en) 2000-07-26 2000-07-26 Method for taking image of length information in magnetic resonance image and method for correcting image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000224827A JP2002034951A (en) 2000-07-26 2000-07-26 Method for taking image of length information in magnetic resonance image and method for correcting image

Publications (1)

Publication Number Publication Date
JP2002034951A true JP2002034951A (en) 2002-02-05

Family

ID=18718713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000224827A Pending JP2002034951A (en) 2000-07-26 2000-07-26 Method for taking image of length information in magnetic resonance image and method for correcting image

Country Status (1)

Country Link
JP (1) JP2002034951A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167152A (en) * 2002-11-22 2004-06-17 National Institute Of Advanced Industrial & Technology Method and system for correcting deviation movement of the head in visual axis position measurement
JP2007159718A (en) * 2005-12-12 2007-06-28 Toshiba Corp Magnetic resonance imaging apparatus and image correction evaluation method
DE102018119542A1 (en) 2017-08-17 2019-02-21 Fujifilm Corporation Magnetic field distortion calculating apparatus, method and program
JP2020022571A (en) * 2018-08-06 2020-02-13 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167152A (en) * 2002-11-22 2004-06-17 National Institute Of Advanced Industrial & Technology Method and system for correcting deviation movement of the head in visual axis position measurement
JP2007159718A (en) * 2005-12-12 2007-06-28 Toshiba Corp Magnetic resonance imaging apparatus and image correction evaluation method
DE102018119542A1 (en) 2017-08-17 2019-02-21 Fujifilm Corporation Magnetic field distortion calculating apparatus, method and program
JP2019033913A (en) * 2017-08-17 2019-03-07 富士フイルム株式会社 Magnetic field distortion calculation apparatus, method, and program
US10719962B2 (en) 2017-08-17 2020-07-21 Fujifilm Corporation Magnetic field distortion calculation apparatus, method, and program
JP2020022571A (en) * 2018-08-06 2020-02-13 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging apparatus
JP7187206B2 (en) 2018-08-06 2022-12-12 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging device

Similar Documents

Publication Publication Date Title
US7486076B2 (en) Magnetic resonance imaging apparatus and method with adjustment in positioning within imaging space to correct deviation from desired position
US7227357B2 (en) Method for positioning a slice of a magnetic resonance measurement
US5545995A (en) Measurement of geometric distortion in MRI images
JP2002017710A (en) Method for three-dimensionally correcting distortion of image data set, and magnetic resonance device for executing the same
AU2003229389B2 (en) Method and apparatus for mapping and correcting geometric distortion in MRI
US8755582B2 (en) Method and device to determine distortion correction data
CN108027413A (en) One kind is used for the method for calibrating magnetic resonance imaging (MRI) body mould
US8805046B2 (en) Method and device for correcting a shimming device
CN110095741B (en) Magnetic resonance coil position determining method and device and magnetic resonance imaging system
US20210298628A1 (en) Magnetic resonance scanning method and system and computer-readable storage medium
JP2002034951A (en) Method for taking image of length information in magnetic resonance image and method for correcting image
US20110163750A1 (en) Method and apparatus for correcting the uniformity of a magnetic field
CN108802644B (en) Shimming method and device for gradient coil
JP2006502783A (en) Magnetic resonance imaging scanner with precisely aligned magnetic field modification structure
Yoshimaru et al. Design, manufacture, and analysis of customized phantoms for enhanced quality control in small animal MRI systems
CN103519815A (en) Labeling area determining apparatus, magnetic resonance apparatus, and program
US4710715A (en) Method of mapping magnetic field strength and tipping pulse accuracy of an NMR imager
US11774527B2 (en) Receiving coil device and magnetic resonance imaging apparatus including the same
CN111830450A (en) Method for determining and eliminating time delay between radio frequency pulse and selective layer gradient in magnetic resonance equipment
CN109946632B (en) Residual magnetism phase difference measuring method and residual magnetism measuring method
JPH0759750A (en) Nuclear magnetic resonance imaging system
US20090021258A1 (en) Method for determining local deviations of a main magnetic field of a magnetic resonance device
JPH09173314A (en) Magnetic resonance imaging method
JP2004358238A (en) System and method for gradient compensation in magnetic resonance imaging
JP4247511B2 (en) Gradient magnetic field measuring method and apparatus, and magnetic resonance imaging apparatus