JP2002033500A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JP2002033500A
JP2002033500A JP2000217372A JP2000217372A JP2002033500A JP 2002033500 A JP2002033500 A JP 2002033500A JP 2000217372 A JP2000217372 A JP 2000217372A JP 2000217372 A JP2000217372 A JP 2000217372A JP 2002033500 A JP2002033500 A JP 2002033500A
Authority
JP
Japan
Prior art keywords
film
microcrystalline
bond
photovoltaic device
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000217372A
Other languages
Japanese (ja)
Other versions
JP4289768B2 (en
Inventor
Masao Isomura
雅夫 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000217372A priority Critical patent/JP4289768B2/en
Priority to US09/901,629 priority patent/US6521883B2/en
Publication of JP2002033500A publication Critical patent/JP2002033500A/en
Application granted granted Critical
Publication of JP4289768B2 publication Critical patent/JP4289768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To provide a photovoltaic device in which a microcrystal silicon semiconductor thin film in a thin film thickness is used as a photoactive layer. SOLUTION: In the photovoltaic device, an n-type microcrystal Si film 4, an i-type microcrystal SiGe film 5 and a p-type microcrystal Si film 6 are laminated and formed on a substrate. As the film 5, a microcrystal SiGe film whose composition ratio of Ge is at 20 to 40 atomic %, whose signal intensity from a Ge-Ge bond is at 30 to 60% with reference to a signal intensity from an Si-Si bond observed by Raman spectroscopy, and whose signal intensity from an Si-Ge bond is between the two signal intensities, is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、微結晶シリコン
ゲルマニウム(μc−SiGe)を光活性層に用いた光
起電力素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic element using microcrystalline silicon germanium (.mu.c-SiGe) for a photoactive layer.

【0002】[0002]

【従来の技術】従来、原料ガスのグロー放電分解や光C
VD法により形成される非晶質シリコン(以下、a−S
iと記す。)を主材料にした光起電力装置は、薄膜、大
面積化が容易という特長を持ち、低コスト光起電力装置
として期待されている。
2. Description of the Related Art Conventionally, glow discharge decomposition of raw material gas and light C
Amorphous silicon (hereinafter a-S) formed by the VD method
Write i. The photovoltaic device using () as a main material has features that it can be easily formed into a thin film and has a large area, and is expected as a low-cost photovoltaic device.

【0003】この種の光起電力装置の構造としては、p
in接合を有するpin型a−Si光起電力装置が一般
的である。図7はこのような光起電力装置の構造を示
し、ガラス基板21上に、透明電極22、p型a−Si
層23、真性(i)型a−Si層24、n型a−Si層
25、金属電極26を順次積層することにより作成され
る。この光起電力装置は、ガラス基板21を通して入射
する光により光起電力が発生する。
[0003] The structure of this type of photovoltaic device includes p
A pin-type a-Si photovoltaic device having an in-junction is common. FIG. 7 shows the structure of such a photovoltaic device, in which a transparent electrode 22 and a p-type a-Si
It is formed by sequentially laminating a layer 23, an intrinsic (i) type a-Si layer 24, an n-type a-Si layer 25, and a metal electrode 26. In this photovoltaic device, photovoltaic power is generated by light incident through the glass substrate 21.

【0004】上記したa−Si光起電力装置は、光照射
後、光劣化が生じることが知られている。そこで、薄膜
で且つ光照射に対して安定性の高い材料として、微結晶
シリコンがあり、この微結晶シリコンを光活性層に用い
た光起電力装置が提案されている(例えば、特開平5−
10055号公報参照。)。この微結晶シリコンは微結
晶Si相とa−Si相とが混在する薄膜である。
It is known that the a-Si photovoltaic device described above undergoes photodegradation after light irradiation. Then, microcrystalline silicon is known as a material which is thin and has high stability to light irradiation, and a photovoltaic device using this microcrystalline silicon for a photoactive layer has been proposed (for example, Japanese Patent Application Laid-Open No. H05-205,052).
See No. 10055. ). This microcrystalline silicon is a thin film in which a microcrystalline Si phase and an a-Si phase are mixed.

【0005】[0005]

【発明が解決しようとする課題】上記したように、非晶
質シリコン(Si)系の半導体膜の持つ欠点である光劣
化を克服する技術として、微結晶シリコン(Si)が注
目されているが、微結晶シリコンは非晶質シリコンに比
べ吸収係数が小さい。このため、光活性層に用いようと
すると、2μmもしくはそれ以上の膜厚を要するため、
太陽電池の生産性を考えた場合、非常に速い成膜速度を
要求される。しかしながら、現状では良質な特性を維持
したままこのような成膜速度を達成することはできな
い。
As described above, microcrystalline silicon (Si) has been attracting attention as a technique for overcoming the photodegradation which is a disadvantage of the amorphous silicon (Si) based semiconductor film. Microcrystalline silicon has a smaller absorption coefficient than amorphous silicon. For this reason, a film thickness of 2 μm or more is required for use in a photoactive layer.
Considering the productivity of the solar cell, a very high deposition rate is required. However, at present, such a film formation rate cannot be achieved while maintaining good quality characteristics.

【0006】そこで、この発明者は、微結晶シリコンよ
り光吸収係数が大きい微結晶シリコンゲルマニウム(S
iGe)を光活性層に用い、必要な光活性層の膜厚を薄
くすることで、従来の問題点を解決することを鋭意検討
した。問題解決には以下の点が満足されなくてはならな
い。
Accordingly, the present inventor has proposed that microcrystalline silicon germanium (S) having a larger light absorption coefficient than microcrystalline silicon.
Using iGe) for the photoactive layer, the present inventors have intensively studied to solve the conventional problems by reducing the required film thickness of the photoactive layer. The following points must be satisfied to solve the problem.

【0007】活性層の膜厚を1μm以下にするためには
少なくとも微結晶シリコンの3倍程度の吸収係数が必要
である。このためには、微結晶シリコンゲルマニウム
(SiGe)の中のゲルマニウム(Ge)の組成比が2
0原子%以上である必要がある。
To reduce the thickness of the active layer to 1 μm or less, an absorption coefficient at least about three times that of microcrystalline silicon is required. For this purpose, the composition ratio of germanium (Ge) in microcrystalline silicon germanium (SiGe) is 2
It must be at least 0 atomic%.

【0008】この発明は、上記事情に鑑みなされたもの
にして、膜厚の薄い微結晶シリコン系半導体薄膜を光活
性層に用いた光起電力装置を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and has as its object to provide a photovoltaic device using a thin microcrystalline silicon-based semiconductor thin film as a photoactive layer.

【0009】[0009]

【課題を解決するための手段】この発明は、ゲルマニウ
ムの組成比が20原子%以上40原子%以下、且つラマ
ン分光法によって観察されるシリコンとシリコンの結合
からの信号強度に対し、ゲルマニウムとゲルマニウムの
結合からの信号強度が30%以上60%以下、シリコン
とゲルマニウムの結合強度が上記2信号強度の間である
微結晶シリコンゲルマニウムを光活性層として用い、且
つその膜厚が1μm以下であることを特徴とする。
According to the present invention, there is provided a method for controlling the intensity of a signal from a bond between silicon and silicon observed by Raman spectroscopy in which the composition ratio of germanium is not less than 20 atomic% and not more than 40 atomic%. The microcrystalline silicon germanium having a signal intensity of 30% or more and 60% or less from the coupling of silicon and the coupling intensity of silicon and germanium between the two signal intensities is used as a photoactive layer, and the film thickness is 1 μm or less. It is characterized by.

【0010】また、ラマン分光法によって観察されるシ
リコンとシリコンの結合からの信号強度に対し前記ゲル
マニウムとゲルマニウムの結合からの信号強度が35%
以上55%以下にするとよい。
The signal intensity from the bond between germanium and germanium is 35% of the signal intensity from the bond between silicon and silicon observed by Raman spectroscopy.
It is better to set it to 55% or less.

【0011】上記の構成によれば、膜厚の薄い微結晶シ
リコンゲルマニウムを光活性層に用いて、変換効率の良
好な光起電力装置が得られる。
According to the above configuration, a photovoltaic device having good conversion efficiency can be obtained by using microcrystalline silicon germanium having a small film thickness for the photoactive layer.

【0012】[0012]

【発明の実施の形態】以下、この発明の実施の形態につ
き図面を参照して説明する。図1は微結晶シリコンゲル
マニウム(SiGe)膜を光活性層に用いたこの発明の
実施形態にかかる光起電力装置を示す断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a photovoltaic device according to an embodiment of the present invention using a microcrystalline silicon germanium (SiGe) film as a photoactive layer.

【0013】図1に示すようにこの発明にかかる光起電
力装置は、ガラス、金属などからなる支持基板1上に、
銀(Ag)などの高反射金属膜2が形成される。なお、
基板1表面には光閉じ込め効果を備えるために、エッチ
ングなどにより微小の凹凸が形成されている。この凹凸
は高反射金属膜2表面に設けてもよい。そして、高反射
金属膜2上に膜厚500ÅのZnOからなる透明導電膜
3が設けられる。この透明導電膜3は次に形成されるn
型微結晶シリコン(Si)層4と高反射金属膜2との合
金化反応等を阻止する。
As shown in FIG. 1, a photovoltaic device according to the present invention comprises a support substrate 1 made of glass, metal, or the like.
A highly reflective metal film 2 such as silver (Ag) is formed. In addition,
Fine irregularities are formed on the surface of the substrate 1 by etching or the like in order to provide a light confinement effect. The irregularities may be provided on the surface of the highly reflective metal film 2. Then, a transparent conductive film 3 made of ZnO having a thickness of 500 ° is provided on the high-reflection metal film 2. This transparent conductive film 3 is formed by n
An alloying reaction between the type microcrystalline silicon (Si) layer 4 and the highly reflective metal film 2 is prevented.

【0014】この透明導電膜3上に、膜厚300Åのn
型微結晶Si膜4、膜厚5000Åのこの発明にかかる
i型微結晶SiGe膜5及び膜厚300Åのp型微結晶
Si膜6が順次積層形成されている。そして、p型微結
晶Si膜6上に膜厚500ÅのZnOからなる表面透明
導電膜7が設けられている。さらに、透明導電膜7上に
銀などからなる櫛形電極8が設けられる。光は透明導電
膜7側から入射する。
On this transparent conductive film 3, a 300-nm thick n
A microcrystalline Si film 4, an i-type microcrystalline SiGe film 5 of 5000 nm in thickness according to the present invention, and a p-type microcrystalline Si film 6 of 300 mm in thickness are sequentially laminated. Then, a surface transparent conductive film 7 made of ZnO having a thickness of 500 ° is provided on the p-type microcrystalline Si film 6. Further, a comb-shaped electrode 8 made of silver or the like is provided on the transparent conductive film 7. Light enters from the transparent conductive film 7 side.

【0015】上記したZnO膜はスパッター法、n型微
結晶Si膜4とp型微結晶Si膜6は13.56MHz
の平行平板型RFプラズマCVDにより形成されてい
る。尚、微結晶SiGe膜5以外の部分は特に作成法の
指定はなく、この発明の効果が得られるものであれば何
でも良い。また、透明導電膜3、7はZnO膜以外のS
nO2膜、ITOでも良い。
The above ZnO film is formed by sputtering, and the n-type microcrystalline Si film 4 and the p-type microcrystalline Si film 6 are formed at 13.56 MHz.
Is formed by the parallel plate type RF plasma CVD. It should be noted that, except for the microcrystalline SiGe film 5, there is no particular designation of the preparation method, and any material can be used as long as the effects of the present invention can be obtained. Further, the transparent conductive films 3 and 7 are made of S other than ZnO film.
An nO 2 film or ITO may be used.

【0016】ところで、通常微結晶シリコンを光活性層
に用いた光起電力素子は、2μm以上の膜厚を要する
が、使用材料量、スループット、素子の安定性等を考慮
すると、光活性層の膜厚は0.1〜1.0μmが適当で
ある。そこで、この発明の特徴とするi型微結晶SiG
e膜5は次のように形成している。
By the way, a photovoltaic element using microcrystalline silicon for a photoactive layer usually requires a film thickness of 2 μm or more. However, considering the amount of materials used, the throughput, the stability of the element, etc. The film thickness is suitably from 0.1 to 1.0 μm. Therefore, i-type microcrystalline SiG which is a feature of the present invention
The e film 5 is formed as follows.

【0017】微結晶SiGe膜5は、13.56MHz
の平行平板RFプラズマCVDにより、投入電力は20
0mW/cm2、圧力は39.9Pa、基板温度250℃
で形成する。そして、水素希釈率(H2/SiH4+Ge
4)は30、ゲルマン流量比(GeH4/SiH4+G
eH4)は10%の条件で形成した。尚、プラズマCV
Dの電源周波数は特に指定するものではなく、さらに高
周波であってもかまわないし、直流であってもかまわな
い。
The microcrystalline SiGe film 5 has a frequency of 13.56 MHz.
Input power is 20 by parallel plate RF plasma CVD.
0 mW / cm 2 , pressure 39.9 Pa, substrate temperature 250 ° C.
Formed. Then, the hydrogen dilution rate (H 2 / SiH 4 + Ge)
H 4 ) is 30, the germane flow rate ratio (GeH 4 / SiH 4 + G)
eH 4 ) was formed under the condition of 10%. In addition, plasma CV
The power frequency of D is not particularly specified, and may be higher or DC.

【0018】上記条件で作成すると、微結晶SiGe膜
5のGe組成比は30原子%、成膜速度は約2Å/秒で
ある。また、上記微結晶SiGe膜5は20Å〜300
Åの粒径のSi、Ge、SiGe結晶粒と非晶質部から
なり、非晶質部分の比率は10%未満である。また、光
吸収係数はそれぞれ800nmで5000cm-1、90
0nmで1500cm-1、1000nmで800cm-1
以上であり、これは微結晶シリコンの値の約4倍であ
る。このため、膜厚は微結晶シリコンの場合の1/4で
ある5000Åとした。
When the microcrystalline SiGe film 5 is formed under the above conditions, the Ge composition ratio of the microcrystalline SiGe film 5 is 30 atomic%, and the film forming rate is about 2 ° / sec. The microcrystalline SiGe film 5 has a thickness of 20 ° to 300 °.
It is composed of Si, Ge, and SiGe crystal grains having a grain size of Å and an amorphous portion, and the ratio of the amorphous portion is less than 10%. The light absorption coefficients are 5000 cm −1 at 800 nm and 90 cm, respectively.
1500cm -1 in 0nm, 800cm -1 at 1000nm
This is about four times the value of microcrystalline silicon. For this reason, the film thickness was set to 5000 °, which is の of the case of microcrystalline silicon.

【0019】図2は、上記した方法により形成したのG
e組成比が30原子%の微結晶SiGe膜をラマン分光
法で測定したラマン分光スペクトル図である。なお、物
質に振動数υ0の単色光を当てて散乱させると、ラマン
効果によってストークス線υ0−υmnと反ストークス線
υ0+υmnのラマン線が表れる。このラマン線の波長や
散乱強度を測定することにより、物質の同定や定量を行
うものをラマン分光法という。
FIG. 2 shows the G formed by the method described above.
FIG. 5 is a Raman spectrum diagram of a microcrystalline SiGe film having an e composition ratio of 30 atomic% measured by Raman spectroscopy. Incidentally, the scattering by applying monochromatic light of frequency [upsilon 0 to substances, Raman line of Stokes lines υ 0mn and anti-Stokes lines υ 0 + υ mn appears by the Raman effect. Raman spectroscopy is used to identify and quantify a substance by measuring the wavelength and scattering intensity of the Raman ray.

【0020】図2に示すように、上記した方法により形
成したのGe組成比が30原子%の微結晶SiGe膜に
おいては、500cm-1付近のピークがシリコンとシリ
コンの結合(Si−Si)からの信号、400cm-1
近のピークがシリコンとゲルマニウムの結合(Si−G
e)からの信号、そして、280cm-1付近のピークが
ゲルマニウムとゲルマニウムの結合(Ge−Ge)から
の信号である。Si−Geからの信号はピーク高さで比
べるとSi−Siのものと比べて70%、Ge−Geか
らの信号はSi−Siのものと比べて50%である。S
i−Geの結合からの信号がSi−SiとGe−Geか
らの信号の間となる。
As shown in FIG. 2, in the microcrystalline SiGe film formed by the above-mentioned method and having a Ge composition ratio of 30 atomic%, the peak near 500 cm -1 is due to the bond between silicon and silicon (Si-Si). Signal, the peak near 400 cm -1 is the bond between silicon and germanium (Si-G
The signal from e) and the peak near 280 cm -1 are the signals from the bond of germanium and germanium (Ge-Ge). The signal from Si-Ge is 70% as compared with that of Si-Si in terms of peak height, and the signal from Ge-Ge is 50% as compared with that of Si-Si. S
The signal from the i-Ge combination is between the signals from Si-Si and Ge-Ge.

【0021】また、この微結晶シリコンゲルマニウム
(SiGe)膜を光活性層に用いた光起電力装置をAM
−1.5、100mW/cm2光照射下で変換効率を測定
したところ、変換効率は8%を示した。これは活性層と
して膜厚2μmの微結晶Siを用いた以外は同条件で形
成した光起電力素子と同等の値であり、1/4の光活性
層の膜厚で同じ特性が得られたことになる。
A photovoltaic device using this microcrystalline silicon germanium (SiGe) film as a photoactive layer is called AM
When the conversion efficiency was measured under irradiation of -1.5 and 100 mW / cm 2 light, the conversion efficiency was 8%. This is the same value as a photovoltaic element formed under the same conditions except that microcrystalline Si having a film thickness of 2 μm was used as the active layer, and the same characteristics were obtained with a film thickness of 1 / of the photoactive layer. Will be.

【0022】次に、比較のためにGeの組成比は30原
子%である微結晶シリコンゲルマニウム(SiGe)で
あるが、ラマン分光法によって測定される信号強度が上
記した実施形態とは異なる微結晶シリコンゲルマニウム
膜を形成した。図3は、この比較のために形成したGe
組成比が30原子%の微結晶SiGe膜をラマン分光法
で測定したラマン分光スペクトル図である。この形成条
件は、投入電力を1000mW/cm2、圧力を399P
aにした以外は上記の条件と同じである。
Next, for comparison, Ge is microcrystalline silicon germanium (SiGe) having a composition ratio of 30 atomic%, but the signal intensity measured by Raman spectroscopy is different from that of the above embodiment. A silicon germanium film was formed. FIG. 3 shows a Ge formed for this comparison.
FIG. 5 is a Raman spectrum diagram of a microcrystalline SiGe film having a composition ratio of 30 at% measured by Raman spectroscopy. The formation conditions are as follows: input power: 1000 mW / cm 2 , pressure: 399P
The conditions are the same as those described above, except that a is set.

【0023】この条件で形成すると、気相で重合が起こ
ること、表面反応時間が十分でないなどの原因により、
組成に偏りができやすくなる。このため、Si−Geか
らの信号はピーク高さで比べるとSi−Siのものと比
べて45%、Ge−Geからの信号は70%となった。
When formed under these conditions, polymerization occurs in the gas phase and the surface reaction time is not sufficient.
The composition tends to be biased. For this reason, the signal from Si-Ge was 45% of the peak height, and the signal from Ge-Ge was 70% as compared with that of Si-Si.

【0024】この微結晶シリコンゲルマニウム(SiG
e)膜を光活性層に用いた光起電力装置をAM−1.
5、100mW/cm2光照射下で変換効率を測定したと
ころ、変換効率は3%であった。
This microcrystalline silicon germanium (SiG
e) A photovoltaic device using the film for the photoactive layer is referred to as AM-1.
5, When the conversion efficiency was measured under irradiation of 100 mW / cm 2 light, the conversion efficiency was 3%.

【0025】次に、投入電力及び圧力を変化させてSi
−Siの結合からの信号強度に対するGe−Geの結合
からの信号が変化した微結晶SiGeを形成し、この膜
を光活性層に用いた光起電力装置を作成した。これら光
起電力装置をAM−1.5、100mW/cm2光照射下
で測定した変換効率の変化を図4に示す。
Next, by changing the input power and pressure, Si
Microcrystalline SiGe was formed in which the signal intensity from the Ge-Ge bond changed with respect to the signal intensity from the -Si bond, and a photovoltaic device using this film as a photoactive layer was produced. FIG. 4 shows changes in the conversion efficiency of these photovoltaic devices measured under irradiation with light of AM-1.5 and 100 mW / cm 2 .

【0026】図4から分かるように、ラマン分光法によ
って観察されるSi−Siの結合からの信号強度に対
し、ピーク高さで比べてGe−Geの結合からの信号強
度が30%未満及び60%を越えると、僅かな変化によ
っても変換効率が大幅に減少する。一方、ラマン分光法
によって観察されるSi−Siの結合からの信号強度に
対し、ピーク高さで比べてGe−Geの結合からの信号
強度が30%以上60%以下の場合には、信号強度が多
少変化しても変換効率は僅かしか変化しない。量産効率
等を考慮した場合、多少の組成の変化により大幅に変換
効率が変化することは好ましくない。このため、ラマン
分光法によって観察されるSi−Siの結合からの信号
強度に対し、ピーク高さで比べてGe−Geの結合から
の信号強度が30%以上60%以下の場合であれば、組
成の変化によっても大幅に変換効率が変わらずよい特性
が得られる。さらに、ラマン分光法によって観察される
Si−Siの結合からの信号強度に対し、ピーク高さで
比べてGe−Ge結合からの信号強度が35%以上55
%以下の場合には、より良好な結果が得られる。
As can be seen from FIG. 4, the signal intensity from the Ge—Ge bond is less than 30% and 60% as compared to the signal intensity from the Si—Si bond observed by Raman spectroscopy. %, The conversion efficiency is greatly reduced by a small change. On the other hand, when the signal intensity from the Ge—Ge bond is 30% or more and 60% or less compared to the signal intensity from the Si—Si bond observed by Raman spectroscopy, the signal intensity is Slightly changes the conversion efficiency. In consideration of mass production efficiency and the like, it is not preferable that the conversion efficiency greatly changes due to a slight change in composition. Therefore, if the signal intensity from the Ge—Ge bond is 30% or more and 60% or less compared to the signal intensity from the Si—Si bond observed by Raman spectroscopy, Good characteristics are obtained in which the conversion efficiency does not significantly change even when the composition changes. Further, the signal intensity from the Ge—Ge bond is 35% or more 55% higher than the signal intensity from the Si—Si bond observed by Raman spectroscopy.
%, Better results are obtained.

【0027】次に、13.56MHzの平行平板RFプ
ラズマCVDにより、投入電力は200mW/cm2、圧
力は39.9Pa、基板温度250℃に設定し、水素希
釈率(H2/SiH4+GeH4)を30、ゲルマン流量
比(GeH4/SiH4+GeH4)を5%から50%ま
で変化させて、Geの組成比を変化させて微結晶SiG
e膜を形成した。この条件で形成した微結晶SiGe膜
は、ラマン分光法によって観察されるSi−Siの結合
からの信号強度に対し、ピーク高さで比べてGe−Ge
の結合からの信号強度が30%以上60%以下であっ
た。そして、この微結晶シリコンゲルマニウム膜を光活
性層に用いた光起電力装置を作成した。これら光起電力
装置をAM−1.5、100mW/cm2光照射下で測定
した変換効率の変化を図5に示す。この図5より、Ge
の組成比が20原子%から40原子%の間で良好な値が
得られていることが分かる。
Next, by 13.56 MHz parallel plate RF plasma CVD, the input power was set to 200 mW / cm 2 , the pressure was set to 39.9 Pa, the substrate temperature was set to 250 ° C., and the hydrogen dilution ratio (H 2 / SiH 4 + GeH 4) was set. ) Was changed to 30 and the germane flow rate ratio (GeH 4 / SiH 4 + GeH 4 ) was changed from 5% to 50% to change the Ge composition ratio to change the microcrystalline SiG.
An e film was formed. The microcrystalline SiGe film formed under these conditions has a higher peak height than that of the signal intensity from the Si—Si bond observed by Raman spectroscopy.
Was 30% or more and 60% or less. Then, a photovoltaic device using this microcrystalline silicon germanium film as a photoactive layer was produced. FIG. 5 shows the change in conversion efficiency of these photovoltaic devices measured under irradiation of light of AM-1.5 and 100 mW / cm 2 . As shown in FIG.
It can be seen that a good value is obtained when the composition ratio is between 20 atomic% and 40 atomic%.

【0028】次に、この発明の第2の実施形態を図6に
示す。図6は、この発明の第2の実施形態にかかる光起
電力装置を示す断面図である。尚、上記した実施の形態
と同じ部分には、同じ符号を付し、説明を省略する。こ
の実施の形態は、nip構造の半導体層を数段階積層し
た構造を持つ。すなわち、支持基板1上に高反射金属膜
2、透明導電膜3を設け、その上にn型微結晶Si膜4
(4a)、i型半導体膜5(5a)、p型半導体膜6
(6a)をこの順序で数段階積層形成している。
Next, a second embodiment of the present invention is shown in FIG. FIG. 6 is a sectional view showing a photovoltaic device according to a second embodiment of the present invention. The same parts as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted. This embodiment has a structure in which semiconductor layers having a nip structure are stacked in several stages. That is, a highly reflective metal film 2 and a transparent conductive film 3 are provided on a support substrate 1, and an n-type microcrystalline Si film 4 is formed thereon.
(4a), i-type semiconductor film 5 (5a), p-type semiconductor film 6
(6a) is laminated in several steps in this order.

【0029】この図6に示す実施形態は、図1に示す実
施形態の光起電力素子の入射側にn型微結晶Si膜4
a、i型非晶質Si膜5a、p型非晶質SiC膜6aの
光起電力素子を積層した構造である。p型非晶質SiC
膜6aとi型非晶質Si膜5aは13.56MHzの平
行平板型RFプラズマCVDで形成されている。それ以
外は上記した実施形態と同じである。
In the embodiment shown in FIG. 6, an n-type microcrystalline Si film 4 is formed on the incident side of the photovoltaic element of the embodiment shown in FIG.
a, an i-type amorphous Si film 5a and a p-type amorphous SiC film 6a are stacked. p-type amorphous SiC
The film 6a and the i-type amorphous Si film 5a are formed by 13.56 MHz parallel plate RF plasma CVD. Otherwise, the configuration is the same as the above-described embodiment.

【0030】上記した第2の実施形態では、第1の実施
形態と同測定条件下で、短絡電流12mA/cm2、開放
電圧1.30V、曲線因子0.71、変換効率11%を
示した。これも微結晶SiGe活性層を微結晶Siにし
た以外は同条件で形成した光起電力素子と同等の値であ
り、本発明の効果が示された。
In the second embodiment, the short-circuit current was 12 mA / cm 2 , the open-circuit voltage was 1.30 V, the fill factor was 0.71, and the conversion efficiency was 11% under the same measurement conditions as in the first embodiment. . This is also a value equivalent to that of the photovoltaic element formed under the same conditions except that the microcrystalline SiGe active layer is made of microcrystalline Si, and the effect of the present invention was shown.

【0031】なお、この発明は、上記した第1の実施形
態のように、基板上にnip構造の半導体層を単層に形
成した構造、第2の実施形態のように、基板上にnip
構造の半導体層を2層に形成した構造の光起電力装置に
限らず、3層以上の構造を有する積層型光起電力装置に
も適用することはもちろん可能である。さらに、上記実
施の形態とは逆の方向から光が入射するタイプ、すなわ
ち、基板側から光が入射するタイプの光起電力装置にも
もちろんこの発明は適用できる。
The present invention has a structure in which a semiconductor layer having a nip structure is formed as a single layer on a substrate as in the first embodiment described above, and a nip is formed on a substrate as in the second embodiment.
The present invention can be applied not only to a photovoltaic device having a structure in which two semiconductor layers are formed but also to a stacked photovoltaic device having a structure having three or more layers. Further, the present invention is naturally applicable to a photovoltaic device in which light is incident from the opposite direction to the above-described embodiment, that is, a type in which light is incident from the substrate side.

【0032】[0032]

【発明の効果】以上説明したように、この発明によれ
ば、膜厚の薄い微結晶シリコンゲルマニウムを光活性層
に用いて、変換効率の良好な光起電力装置を得ることが
できる。
As described above, according to the present invention, a photovoltaic device having good conversion efficiency can be obtained by using microcrystalline silicon germanium having a small thickness for the photoactive layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】微結晶シリコンゲルマニウム(SiGe)膜を
光活性層に用いたこの発明の実施形態にかかる光起電力
装置を示す断面図である。
FIG. 1 is a sectional view showing a photovoltaic device according to an embodiment of the present invention using a microcrystalline silicon germanium (SiGe) film as a photoactive layer.

【図2】この発明の実施形態にかかるGe組成比が30
原子%の微結晶SiGe膜をラマン分光法で測定したラ
マン分光スペクトル図である。
FIG. 2 shows a Ge composition ratio of 30 according to an embodiment of the present invention.
FIG. 4 is a Raman spectrum diagram of a microcrystalline SiGe film of atomic% measured by Raman spectroscopy.

【図3】比較のために形成したGe組成比が30原子%
の微結晶SiGe膜をラマン分光法で測定したラマン分
光スペクトル図である。
FIG. 3 shows a Ge composition ratio of 30 atomic% formed for comparison.
FIG. 3 is a Raman spectrum diagram of the microcrystalline SiGe film of FIG. 1 measured by Raman spectroscopy.

【図4】Si−Siの結合からの信号強度に対するGe
−Geの結合からの信号が変化した微結晶SiGeを光
活性層に用いた光起電力装置の変換効率を測定した特性
図である。
FIG. 4 shows Ge versus signal intensity from a Si—Si bond.
FIG. 9 is a characteristic diagram showing a measurement of the conversion efficiency of a photovoltaic device using microcrystalline SiGe in which a signal from -Ge coupling has changed in a photoactive layer.

【図5】Ge組成比を変化させた微結晶SiGeを光活
性層に用いた光起電力装置の変換効率を測定した特性図
である。
FIG. 5 is a characteristic diagram obtained by measuring the conversion efficiency of a photovoltaic device using microcrystalline SiGe with a changed Ge composition ratio for a photoactive layer.

【図6】この発明の第2の実施形態にかかる光起電力素
子を示す断面図である。
FIG. 6 is a sectional view showing a photovoltaic device according to a second embodiment of the present invention.

【図7】従来の光起電力素子の構造を示す断面図であ
る。
FIG. 7 is a cross-sectional view illustrating a structure of a conventional photovoltaic element.

【符号の説明】[Explanation of symbols]

1 支持基板 2 高反射金属膜 3 透明導電膜 4 n型微結晶Si膜 5 i型微結晶SiGe膜 6 p型微結晶Si膜 7 表面透明導電膜 8 櫛形電極 REFERENCE SIGNS LIST 1 support substrate 2 highly reflective metal film 3 transparent conductive film 4 n-type microcrystalline Si film 5 i-type microcrystalline SiGe film 6 p-type microcrystalline Si film 7 surface transparent conductive film 8 comb-shaped electrode

【手続補正書】[Procedure amendment]

【提出日】平成13年7月19日(2001.7.1
9)
[Submission date] July 19, 2001 (2001.7.1)
9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】上記したa−Si光起電力装置は、光照射
後、光劣化が生じることが知られている。そこで、薄膜
で且つ光照射に対して安定性の高い材料として、微結晶
シリコンがあり、この微結晶シリコンを光活性層に用い
た光起電力装置が提案されている。この微結晶シリコン
は微結晶Si相とa−Si相とが混在する薄膜である。
It is known that the a-Si photovoltaic device described above undergoes photodegradation after light irradiation. Therefore, microcrystalline silicon is available as a thin film material having high stability to light irradiation, and a photovoltaic device using this microcrystalline silicon for a photoactive layer has been proposed . This microcrystalline silicon is a thin film in which a microcrystalline Si phase and an a-Si phase are mixed.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】[0009]

【課題を解決するための手段】この発明は、ゲルマニウ
ムの組成比が20原子%以上40原子%以下、且つラマ
ン分光法によって観察されるシリコンとシリコンの結合
からの信号強度に対し、ゲルマニウムとゲルマニウムの
結合からの信号強度が30%以上60%以下、シリコン
とゲルマニウムの結合からの信号強度が上記2信号強度
の間である微結晶シリコンゲルマニウムを光活性層とし
て用い、且つその膜厚が1μm以下であることを特徴と
する。
According to the present invention, there is provided a method for controlling the intensity of a signal from a bond between silicon and silicon observed by Raman spectroscopy in which the composition ratio of germanium is not less than 20 atomic% and not more than 40 atomic%. Microcrystalline silicon germanium having a signal intensity of 30% or more and 60% or less and a signal intensity of the combination of silicon and germanium between the above two signal intensities is used as a photoactive layer, and the film thickness is 1 μm or less. It is characterized by being.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ゲルマニウムの組成比が20原子%以上
40原子%以下、且つラマン分光法によって観察される
シリコンとシリコンの結合からの信号強度に対し、ゲル
マニウムとゲルマニウムの結合からの信号強度が30%
以上60%以下、シリコンとゲルマニウムの結合強度が
上記2信号強度の間である微結晶シリコンゲルマニウム
を光活性層として用い、且つその膜厚が1μm以下であ
ることを特徴とする光起電力装置。
1. The composition ratio of germanium is not less than 20 at% and not more than 40 at%, and the signal intensity from the bond between germanium and germanium is 30 times the signal intensity from the bond between silicon and silicon observed by Raman spectroscopy. %
A photovoltaic device characterized in that microcrystalline silicon germanium having a bond strength of silicon and germanium between the above two signal intensities of 60% or less is used as a photoactive layer, and the film thickness is 1 μm or less.
【請求項2】 ラマン分光法によって観察されるシリコ
ンとシリコンの結合からの信号強度に対し前記ゲルマニ
ウムとゲルマニウムの結合からの信号強度が35%以上
55%以下であることを特徴とする請求項1に記載の光
起電力装置。
2. The method according to claim 1, wherein the signal intensity from the bond between germanium and germanium is 35% or more and 55% or less with respect to the signal intensity from the bond between silicon and silicon observed by Raman spectroscopy. The photovoltaic device according to claim 1.
JP2000217372A 2000-07-18 2000-07-18 Photovoltaic device Expired - Fee Related JP4289768B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000217372A JP4289768B2 (en) 2000-07-18 2000-07-18 Photovoltaic device
US09/901,629 US6521883B2 (en) 2000-07-18 2001-07-11 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000217372A JP4289768B2 (en) 2000-07-18 2000-07-18 Photovoltaic device

Publications (2)

Publication Number Publication Date
JP2002033500A true JP2002033500A (en) 2002-01-31
JP4289768B2 JP4289768B2 (en) 2009-07-01

Family

ID=18712491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217372A Expired - Fee Related JP4289768B2 (en) 2000-07-18 2000-07-18 Photovoltaic device

Country Status (1)

Country Link
JP (1) JP4289768B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075052B2 (en) 2002-10-08 2006-07-11 Sanyo Electric Co., Ltd. Photoelectric conversion device
WO2007114432A1 (en) * 2006-04-03 2007-10-11 Mitsubishi Heavy Industries, Ltd. Photoelectric converter device and process for producing the same
JP2012522403A (en) * 2009-05-06 2012-09-20 シンシリコン・コーポレーション Photovoltaic cell and method for enhancing light capture in a semiconductor layer stack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075052B2 (en) 2002-10-08 2006-07-11 Sanyo Electric Co., Ltd. Photoelectric conversion device
WO2007114432A1 (en) * 2006-04-03 2007-10-11 Mitsubishi Heavy Industries, Ltd. Photoelectric converter device and process for producing the same
JP2007281018A (en) * 2006-04-03 2007-10-25 Mitsubishi Heavy Ind Ltd Photoelectric conversion device, and its manufacturing method
JP2012522403A (en) * 2009-05-06 2012-09-20 シンシリコン・コーポレーション Photovoltaic cell and method for enhancing light capture in a semiconductor layer stack

Also Published As

Publication number Publication date
JP4289768B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
US6521883B2 (en) Photovoltaic device
Isomura et al. Microcrystalline silicon–germanium solar cells for multi-junction structures
KR100976010B1 (en) Silicon-based thin-film photoelectric converter and method of manufacturing the same
US5942049A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
JPH0370183A (en) Photovoltaic element
JP2001189478A (en) Semiconductor element and manufacturing method therefor
JP2007281018A (en) Photoelectric conversion device, and its manufacturing method
Chowdhury et al. Fabrication of thin film nanocrystalline silicon solar cell with low light-induced degradation
JP2002033500A (en) Photovoltaic device
JP3792376B2 (en) Silicon-based thin film photoelectric conversion device
JPS6334632B2 (en)
JP2001284619A (en) Phtovoltaic device
JP2002033499A (en) Photovoltaic device
JPH11274527A (en) Photovoltaic device
JPS6252975A (en) Amorphous solar battery
WO2006006368A1 (en) Method for manufacturing thin film photoelectric converter
JPH10247737A (en) Functional thin film and photovoltaic device
Conte et al. Optoelectronic properties of amorphous hydrogenated silicon-germanium alloys
US20070006915A1 (en) Multi-crystalline silicon-germanium bulk crystal for use as a solar cell and method of making
Mandal et al. Fabrication of single junction amorphous silicon solar cell/mini module using novel n-type nanocrystalline SiO x: F: H back reflector
JP2003142705A (en) Photovoltaic element
JPS60142575A (en) Photovoltaic element
KR880002131B1 (en) Photo responsive device processing method
Schropp et al. Hot Wire CVD for thin film triple junction cells and for ultrafast deposition of the SiN passivation layer on polycrystalline Si solar cells
JP4592866B2 (en) Hybrid thin film photoelectric conversion device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees