JP2002033183A - Heating device - Google Patents
Heating deviceInfo
- Publication number
- JP2002033183A JP2002033183A JP2000217199A JP2000217199A JP2002033183A JP 2002033183 A JP2002033183 A JP 2002033183A JP 2000217199 A JP2000217199 A JP 2000217199A JP 2000217199 A JP2000217199 A JP 2000217199A JP 2002033183 A JP2002033183 A JP 2002033183A
- Authority
- JP
- Japan
- Prior art keywords
- cylindrical tube
- tube
- metal
- gas
- metallic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- General Induction Heating (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、空気やガスなどの
気体を加熱する加熱装置の熱交換器部の改良に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a heat exchanger of a heating apparatus for heating a gas such as air or gas.
【0002】[0002]
【従来の技術】従来のこのような流体を加熱する加熱装
置においては、金属管を加熱して、管路内に流体を通過
させて加熱を行うとき、流体が液体の場合の熱伝達率は
250〜5000kcal/m2hr℃であり、流体が
気体の場合の熱伝達率は10〜250kcal/m2h
r℃であり大きな差を有しているものである。2. Description of the Related Art In such a conventional heating apparatus for heating a fluid, when a metal pipe is heated and a fluid is passed through a pipe to perform heating, the heat transfer coefficient when the fluid is a liquid is as follows. 250 to 5000 kcal / m 2 hr ° C., and the heat transfer coefficient when the fluid is gas is 10 to 250 kcal / m 2 h.
r ° C., which is a large difference.
【0003】伝熱量の計算は下記の1式によって求めら
れる。金属管を加熱してここを通過する流体を加熱する
場合、液体は容易に加熱できるが、気体は容易に加熱出
来ないことが下記の計算式からも分かる。The amount of heat transfer is calculated by the following equation. When heating a metal tube to heat a fluid passing therethrough, it can be seen from the following equation that the liquid can be heated easily, but the gas cannot be heated easily.
【0004】 Q=α×S×(T1−T2)………………(1) Q:伝熱量 T1:高温部の温度 α:熱伝達率 T2:低温部の温度 S:面積 従って、気体を加熱する場合伝熱量を得るために、従来
の方法としては高温部の面積を大きくする。あるいは、
高温部の温度を高く保持する方式が一般的であった。こ
のため熱交換器が大型化する。あるいは高温部をより高
温に維持するために熱交換器の構造が複雑化するなどの
問題があった。Q = α × S × (T 1 −T 2 ) (1) Q: Heat transfer amount T 1 : Temperature of high temperature part α: Heat transfer coefficient T 2 : Temperature of low temperature part S: Area Therefore, when heating a gas, in order to obtain a heat transfer amount, the area of the high temperature part is increased as a conventional method. Or,
The method of keeping the temperature of the high temperature part high was common. This increases the size of the heat exchanger. Alternatively, there has been a problem that the structure of the heat exchanger is complicated in order to maintain the high temperature portion at a higher temperature.
【0005】[0005]
【発明が解決しようとする課題】前記1式において、高
温部の温度(T1)及び電熱面積(S)を変えずに伝熱
量(Q)を増加させる方法は熱伝達率(α)を大きくす
ることが有効であることが分かる。In the above equation ( 1 ), the method of increasing the heat transfer amount (Q) without changing the temperature (T 1 ) and the electric heating area (S) of the high-temperature portion increases the heat transfer coefficient (α). It turns out that it is effective to do so.
【0006】熱伝達率を大きくする方法は高温部分表面
に沿って流れる流体速度を増加させることが有効であ
る。[0006] One way to increase the heat transfer coefficient is to increase the velocity of the fluid flowing along the hot surface.
【0007】管路内に気体を流して通過速度を増す方法
は、管路内を通過する風量を増量する方法があるが、こ
の方法では熱伝達率が大きくなり、伝熱量は増加するが
トータル風量が増加するため流体の温度上昇が期待出来
ないという問題があった。As a method of increasing the passage speed by flowing a gas in a pipe, there is a method of increasing the amount of air passing through the pipe. In this method, the heat transfer coefficient increases, and the amount of heat transfer increases. There is a problem that the temperature of the fluid cannot be expected to rise due to an increase in the air volume.
【0008】また管路の径を小さくすると流体の速度は
速くなり熱伝達率は大きくなるが管路の径が細くなるこ
とによって伝熱面積が小さくなるため伝熱量が減少する
ものである。これをカバーするためには管の長さを長く
して伝熱面積を確保する必要がある。しかし、管の長さ
が長くなることはこれを加熱する手段が大型化する問題
がある。When the diameter of the pipe is reduced, the velocity of the fluid is increased and the heat transfer coefficient is increased. However, the heat transfer area is reduced by reducing the diameter of the pipe, thereby reducing the heat transfer area. In order to cover this, it is necessary to increase the length of the tube to secure a heat transfer area. However, when the length of the tube is increased, there is a problem that the means for heating the tube becomes large.
【0009】[0009]
【課題を解決するための手段】本発明は、上記課題を解
決するためになされたものであり、高温部の温度及び伝
熱面積を変えずに且つ気体通過量を増加させず流速を早
めて熱伝達率を大きくすることで伝熱量を増加するもの
である。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has been made to increase the flow rate without changing the temperature and heat transfer area of the high-temperature portion and without increasing the gas passage amount. The heat transfer rate is increased by increasing the heat transfer coefficient.
【0010】そのために本発明は、非金属製円筒管の内
側に金属製円筒管を、また金属製円筒管の内側に棒状流
体遮蔽物を配置してなり、金属製円筒管を所定の温度に
加熱し、これらの間隙に気体を高速で通過させることに
より効率良く熱交換するものである。[0010] For this purpose, the present invention provides a metal cylindrical tube inside a nonmetallic cylindrical tube and a rod-shaped fluid shield inside the metal cylindrical tube so that the metal cylindrical tube can be brought to a predetermined temperature. Heat is exchanged efficiently by heating and passing gas at a high speed through these gaps.
【0011】[0011]
【発明の実施の形態】本発明は、非金属製円筒管の内側
に、非金属製円筒管よりも僅かに小径の金属製円筒管を
同心円上に配置すると共に、金属製円筒管を適宜手段に
て所定の温度に加熱し、かつ非金属製円筒管内に強制的
に送風され通過する気体を加熱する加熱装置において、
金属製円筒管の内側に金属製円筒管よりも僅かに小径の
棒状流体遮蔽物を同心円上に配備し、非金属製円筒管内
を通過する気体は非金属製円筒管と金属製円筒管間及び
金属製円筒管と棒状流体遮蔽物間の僅かな隙間を高速で
通過することにより効率良く熱交換をする構造としたも
のである。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is to arrange a metal cylindrical tube slightly smaller in diameter than a nonmetallic cylindrical tube on the concentric circle inside the nonmetallic cylindrical tube, In a heating device that heats a gas that is forcibly blown and passed through a non-metallic cylindrical tube by heating to a predetermined temperature at
A rod-shaped fluid shield with a diameter slightly smaller than that of the metal cylindrical tube is arranged concentrically inside the metal cylindrical tube, and the gas passing through the non-metal cylindrical tube is between the non-metal cylindrical tube and the metal cylindrical tube and The heat exchange is performed efficiently by passing through a small gap between the metal cylindrical tube and the rod-shaped fluid shield at a high speed.
【0012】また、金属製円筒管の内側に配備された棒
状流体遮蔽物の両端を円錐状に形成して、金属製円筒管
と棒状流体遮蔽物間の隙間を高速で通過する気体に対し
て流路抵抗を減少させた加熱装置としたものである。Further, the rod-shaped fluid shield provided inside the metal cylindrical tube has both ends formed in a conical shape so that the gas passing through the gap between the metal cylindrical tube and the rod-shaped fluid shield at a high speed can be prevented. The heating device has a reduced flow path resistance.
【0013】本発明は、非金属製円筒管の外側に電磁誘
導加熱コイルを配備し、電磁誘導加熱によって金属製円
筒管を加熱し、金属製円筒管の温度を検出して電磁誘導
加熱の制御にフィードバックすることにより金属製円筒
管の温度を所定の温度にコントロールすることが出来る
ものである。According to the present invention, an electromagnetic induction heating coil is provided outside a nonmetallic cylindrical tube, the metal cylindrical tube is heated by electromagnetic induction heating, and the temperature of the metal cylindrical tube is detected to control the electromagnetic induction heating. The temperature of the metal cylindrical tube can be controlled to a predetermined temperature by feeding back to the above.
【0014】所定の温度にコントロールされた金属製円
筒管に沿って強制的に気体を送風され且つ気体の風速を
早めて熱伝達率を大きくするための手段として金属製円
筒管の内側にこの管より僅かに小径の棒状流体遮蔽物を
同心円上に配備し、非金属製円筒管内を通過する気体は
非金属製円筒管と金属製円筒管及び金属製円筒管と流体
遮蔽物の僅かな隙間を高速で通過することにより熱伝達
率を大きくすると共に金属製円筒管の両側に空気を流す
ことにより伝熱面積を大きくして効率良く熱交換をする
ものである。A gas is forcibly blown along a metal cylindrical tube controlled at a predetermined temperature, and the tube is provided inside the metal cylindrical tube as a means for increasing the wind speed of the gas and increasing the heat transfer coefficient. A rod-shaped fluid shield with a slightly smaller diameter is arranged concentrically, and gas passing through the non-metallic cylindrical tube has a small gap between the non-metallic cylindrical tube and the metal cylindrical tube, and a small gap between the metal cylindrical tube and the fluid shield. The heat transfer rate is increased by passing at a high speed, and the heat transfer area is increased by flowing air to both sides of the metal cylindrical tube to efficiently exchange heat.
【0015】また、金属製円筒管の内側に配備された棒
状流体遮蔽物の両端を円錐状にして金属製円筒管と棒状
流体遮蔽物の隙間を通過する気体に対して流路抵抗を減
少させることにより気体を送る送風装置を大型化する必
要がないなどのメリットを有するものである。[0015] Further, the rod-shaped fluid shield provided inside the metal cylindrical pipe has both ends conical so as to reduce the flow path resistance against gas passing through the gap between the metal cylindrical pipe and the rod-shaped fluid shield. This has the advantage that there is no need to increase the size of the blower that sends gas.
【0016】[0016]
【実施例】以下本発明の一実施例を図面に基づいて詳細
に説明する。図1は本発明の一実施例を示す加熱装置の
構造概略図である。図2は同じく別の実施例を示す加熱
装置の構造概略図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic structural view of a heating device showing one embodiment of the present invention. FIG. 2 is a schematic structural view of a heating apparatus showing another embodiment.
【0017】図において、1は非金属製円筒管(以下非
金属管と称す)であり、2は非金属管1の内側に配置し
た非金属管1より僅かに小径の金属製円筒管(以下金属
管と称す)である。そして金属管2は非金属管1と同心
円上に配置されている。3は金属管2の内側に配置させ
た金属管2より僅かに小径の棒状流体遮蔽物であり、金
属管2の同心円上に配備している。In FIG. 1, reference numeral 1 denotes a non-metallic cylindrical tube (hereinafter referred to as a non-metallic tube), and reference numeral 2 denotes a metal cylindrical tube (hereinafter referred to as a non-metallic tube 1) having a diameter slightly smaller than that of the non-metallic tube 1 disposed inside the non-metallic tube 1. Metal tube). The metal tube 2 is arranged concentrically with the non-metal tube 1. Reference numeral 3 denotes a rod-shaped fluid shield slightly smaller in diameter than the metal tube 2 disposed inside the metal tube 2, and is disposed on a concentric circle of the metal tube 2.
【0018】4は金属管2を加熱するための1手段とし
て電磁誘導加熱を行うための加熱コイルであり、非金属
管1の外周部に配備されている。5は加熱された金属管
2の周りに気体例えば空気を送る送風機である。6は非
金属管1の外周部に配備された加熱コイル4を冷却する
ため冷却空気を送るための冷却ファンである。7は冷却
ファン6から送られる冷却用空気が確実に加熱コイル4
に送られるための送風ガイドである。Reference numeral 4 denotes a heating coil for performing electromagnetic induction heating as one means for heating the metal tube 2, and is provided on the outer peripheral portion of the non-metal tube 1. Reference numeral 5 denotes a blower that sends gas, for example, air around the heated metal tube 2. Reference numeral 6 denotes a cooling fan for sending cooling air to cool the heating coil 4 provided on the outer peripheral portion of the non-metallic tube 1. 7, the cooling air sent from the cooling fan 6 ensures that the heating coil 4
It is an air blowing guide to be sent to.
【0019】8は金属管2の端末に取り付けられた温度
検知器であり、金属管2の温度を検出し、電磁誘導加熱
器の制御部9に信号を送り加熱を制御することにより金
属管2の温度を所定温度に温度制御するものである。Reference numeral 8 denotes a temperature detector attached to a terminal of the metal tube 2, which detects the temperature of the metal tube 2 and sends a signal to a control unit 9 of the electromagnetic induction heater to control heating, thereby controlling the heating. Is controlled to a predetermined temperature.
【0020】図2において、3′は金属管2の内側に配
置させた金属管2より僅かに小径の棒状流体遮蔽物であ
り両端が円錐状に形成してあるものである。これにより
周囲を流れる気体に対して抵抗を小さくして圧力損失を
最小に止めるための形状となっている。その他の構成は
図1と同様であるので説明は省略する。In FIG. 2, reference numeral 3 'denotes a rod-shaped fluid shield slightly smaller in diameter than the metal tube 2 disposed inside the metal tube 2, and both ends are formed in a conical shape. This is a shape for reducing the resistance to the gas flowing around and minimizing the pressure loss. Other configurations are the same as those in FIG.
【0021】次に上記構成からなる本実施例の作用につ
いて説明する。Next, the operation of the present embodiment having the above configuration will be described.
【0022】電磁誘導加熱装置の制御部9を操作するこ
とにより、加熱コイル4に通電し高周波電流を流し金属
管2を加熱する。金属管2の温度が上昇するとこれを温
度検知器8が検出し、前記制御部9に信号を送り加熱制
御することにより金属管2の温度が所定温度に保持され
るものである。By operating the control unit 9 of the electromagnetic induction heating apparatus, the heating coil 4 is energized to supply a high-frequency current to heat the metal tube 2. When the temperature of the metal tube 2 rises, the temperature detector 8 detects this and sends a signal to the control unit 9 to control the heating, so that the temperature of the metal tube 2 is maintained at a predetermined temperature.
【0023】次に送風機5が運転されることにより、送
風機5から送られた気体は非金属管1と金属管2間及び
金属管2と棒状流体遮蔽物3間の僅かな隙間、すなわち
加熱された金属管2の周りを高速で流れる。気体が高速
で流れることによりレイノズル数が大きくなり熱伝達率
も大きな値となり、よって伝熱量も大きくなるものであ
る。Next, when the blower 5 is operated, the gas sent from the blower 5 is slightly heated between the non-metallic tube 1 and the metallic tube 2 and between the metallic tube 2 and the rod-shaped fluid shield 3, that is, heated. Flows around the metal tube 2 at high speed. When the gas flows at a high speed, the number of Reynold nozzles increases, the heat transfer coefficient also increases, and the heat transfer amount also increases.
【0024】送風機5から送り出される風量が同一の場
合、例えば金属管2内側の棒状流体遮蔽物3が無かった
場合、気体が通過する断面積が広くなり流速が低下する
ためレイノズル数が小さくなり熱伝達率も小さくなって
伝熱量が小さくなる。また気体も流れに対して抵抗の少
ないところを流れるため高温の金属管2から遠い管の中
央を流れることになり高温の金属管2に接触すること無
くここを通過してしまうと熱伝達出来ない結果となる。When the amount of air blown out from the blower 5 is the same, for example, when the rod-shaped fluid shield 3 inside the metal tube 2 is not provided, the cross-sectional area through which the gas passes increases, the flow velocity decreases, and the number of Reynolds nozzles decreases. The transmissivity also decreases and the amount of heat transfer decreases. In addition, since the gas also flows in a place where resistance to the flow is small, it flows in the center of the tube far from the high-temperature metal tube 2, and if it passes therethrough without contacting the high-temperature metal tube 2, heat cannot be transferred. Results.
【0025】従って、本発明において金属管2の内側に
棒状流体遮蔽物3を配備することにより気体の通過面積
が小さくなって流速が早くなると共に流れる気体の全て
が高温に加熱された金属管2に沿って接触して流れるた
め高温の金属管2から気体に熱伝達が十分に行われるも
のである。Therefore, in the present invention, by disposing the rod-shaped fluid shield 3 inside the metal tube 2, the gas passage area is reduced, the flow velocity is increased, and all the flowing gas is heated to a high temperature. Therefore, heat is sufficiently transferred from the high-temperature metal tube 2 to the gas.
【0026】また、図2に示す実施例のものは棒状流体
遮蔽物3′の先端と後端を流線形形状(円錐形状)とす
ることによって気体が棒状流体遮蔽物3′と金属管2の
間の僅かな間隙に流れ込む際及び間隙通過後渦を生じて
気体の流れを乱すことも無く気体の流れが滑らかになる
ため、抵抗が小さく、流れによる圧力損失が小さく且つ
気体の流れを金属管2へ導くため気体と金属管2の接触
が十分に行われ熱伝達が確実に行われるものである。In the embodiment shown in FIG. 2, gas is formed between the rod-shaped fluid shield 3 ′ and the metal tube 2 by forming the front and rear ends of the rod-shaped fluid shield 3 ′ in a streamlined shape (conical shape). Since the gas flow becomes smooth without flowing into the slight gap between the gaps and after passing through the gap and disturbing the gas flow, the resistance is small, the pressure loss due to the flow is small, and the gas flow is 2, the gas and the metal tube 2 are sufficiently brought into contact with each other to ensure heat transfer.
【0027】金属管2から気体に熱伝達が行われると金
属管2の温度が低下するがこれを温度検知器8が検出し
て電磁誘導加熱装置の制御部9にフィードバックされ
る。これによって加熱コイル4に高周波電流が通電され
金属管2が加熱され所定の温度を保つ加熱制御が行われ
る。When heat is transferred from the metal tube 2 to the gas, the temperature of the metal tube 2 decreases. This is detected by the temperature detector 8 and fed back to the control unit 9 of the electromagnetic induction heating device. As a result, a high-frequency current is supplied to the heating coil 4 so that the metal tube 2 is heated and heating control for maintaining a predetermined temperature is performed.
【0028】加熱コイル4に高周波電流が流れると金属
管2が加熱されると共に加熱コイル4も自己発熱によっ
て温度上昇する。加熱コイル4の温度が異常に上昇する
と加熱コイル4の電気抵抗が低下し高周波電流が異常に
流れ電磁誘導加熱装置の故障につながるため加熱コイル
4の温度も所定の温度以下に保つ必要がある。このため
に電磁誘導加熱装置運転時は、冷却ファン6を運転して
加熱コイル4に大気中の冷風を当てて、加熱コイル4で
発生した熱を大気中に放熱して加熱コイル4の温度を所
定の温度に保つものである。When a high-frequency current flows through the heating coil 4, the metal tube 2 is heated and the temperature of the heating coil 4 also rises due to self-heating. If the temperature of the heating coil 4 rises abnormally, the electric resistance of the heating coil 4 will fall and a high-frequency current will flow abnormally, leading to a failure of the electromagnetic induction heating device. Therefore, it is necessary to keep the temperature of the heating coil 4 below a predetermined temperature. For this reason, when the electromagnetic induction heating device is operated, the cooling fan 6 is operated to blow cold air in the atmosphere onto the heating coil 4, and the heat generated in the heating coil 4 is radiated to the atmosphere to reduce the temperature of the heating coil 4. It is to keep at a predetermined temperature.
【0029】また、非金属管1が例えばセラミック製パ
イプのような非常に熱伝導率の小さい材質であれば非金
属管1の内側が高温であっても加熱コイル4側は殆ど温
度上昇しないため、金属管2を高温に維持しても加熱コ
イル4の温度が上昇することはない。If the non-metallic tube 1 is made of a material having a very low thermal conductivity, such as a ceramic pipe, the temperature of the heating coil 4 side hardly rises even if the inside of the non-metallic tube 1 is at a high temperature. Even if the metal tube 2 is maintained at a high temperature, the temperature of the heating coil 4 does not increase.
【0030】[0030]
【発明の効果】本発明は、金属管の内側に棒状流体遮蔽
物を配備することにより気体の通過面積が小さくなって
流速が早くなると共に流れる気体の全てが高温に加熱さ
れた金属管に沿って接触して流れるため高温の金属管か
ら気体に熱伝達が十分に行われるものである。According to the present invention, by disposing a rod-shaped fluid shield inside a metal pipe, the gas passage area is reduced, the flow velocity is increased, and all the flowing gas flows along the metal pipe heated to a high temperature. As a result, the heat is sufficiently transferred from the high-temperature metal pipe to the gas.
【0031】また、棒状流体遮蔽物の先端と後端を流線
形形状にすることによって気体が棒状流体遮蔽物と金属
管の間の僅かな間隙に流れ込む際及び間隙通過後渦を生
じて気体の流れを乱すこともなくなり気体の流れが滑ら
かになるため、抵抗が小さく、流れによる圧力損失が小
さくなるものである。Further, by forming the front end and the rear end of the rod-shaped fluid shield into a streamlined shape, when gas flows into a small gap between the rod-shaped fluid shield and the metal tube and after passing through the gap, a vortex is generated to generate gas. Since the flow does not disturb and the flow of the gas becomes smooth, the resistance is small and the pressure loss due to the flow is small.
【0032】非金属管が例えばセラミック製パイプのよ
うな非常に熱伝導率の小さい材質であれば非金属管の内
側が高温であっても加熱コイル側は温度上昇しないた
め、金属管を高温に維持しても加熱コイルの温度が上昇
することはない。If the non-metallic tube is made of a material having a very low thermal conductivity, such as a ceramic pipe, the temperature of the heating coil side does not rise even if the inside of the non-metallic tube is at a high temperature. Even if maintained, the temperature of the heating coil does not rise.
【0033】更に、非金属管の内側に配備される金属管
は非金属管に接触せず浮いた状態で且つ非金属管と金属
管の間隙に気体が流れているため金属管が高温であって
も非金属管に高温が熱伝導されないため金属管からの無
駄な放熱が行われず非金属管を加熱しないので加熱コイ
ルの温度が殆ど上昇することはない等のメリットを有
し、加熱効率も向上するものである。Further, the metal pipe provided inside the non-metal pipe is in a floating state without contacting the non-metal pipe, and gas flows through the gap between the non-metal pipe and the metal pipe. Even though the high temperature is not conducted to the non-metallic tube, wasteful heat is not dissipated from the metal tube and the non-metallic tube is not heated. It will improve.
【図1】本発明の一実施例を示す加熱装置の構造概略図
である。FIG. 1 is a schematic structural view of a heating device showing one embodiment of the present invention.
【図2】本発明の別の実施例を示す加熱装置の構造概略
図である。FIG. 2 is a schematic structural view of a heating device showing another embodiment of the present invention.
1 非金属製円筒管(非金属管) 2 金属製円筒管(金属管) 3 棒状流体遮蔽物 4 加熱コイル 5 送風機 DESCRIPTION OF SYMBOLS 1 Non-metallic cylindrical pipe (non-metallic pipe) 2 Metallic cylindrical pipe (metallic pipe) 3 Rod-shaped fluid shield 4 Heating coil 5 Blower
Claims (2)
製円筒管(1)よりも僅かに小径の金属製円筒管(2)
を同心円上に配置すると共に、金属製円筒管(2)を適
宜手段にて所定の温度に加熱し、かつ非金属製円筒管
(1)内に強制的に送風され通過する気体を加熱する加
熱装置において、金属製円筒管(2)の内側に金属製円
筒管(2)よりも僅かに小径の棒状流体遮蔽物(3)を
同心円上に配備し、非金属製円筒管(1)内を通過する
気体は非金属製円筒管(1)と金属製円筒管(2)間及
び金属製円筒管(2)と棒状流体遮蔽物(3)間の僅か
な隙間を高速で通過することにより効率良く熱交換をす
る構造を特徴とする加熱装置。1. A metal cylindrical tube (2) having a diameter slightly smaller than that of the nonmetallic cylindrical tube (1) inside the nonmetallic cylindrical tube (1).
Are arranged concentrically, the metal cylindrical tube (2) is heated to a predetermined temperature by appropriate means, and the gas which is forcibly blown through the non-metallic cylindrical tube (1) and passes therethrough is heated. In the apparatus, a rod-shaped fluid shield (3) having a diameter slightly smaller than that of the metal cylindrical tube (2) is arranged concentrically inside the metal cylindrical tube (2), and the inside of the non-metallic cylindrical tube (1) is disposed. The passing gas passes through a small gap between the non-metallic cylindrical pipe (1) and the metallic cylindrical pipe (2) and a small gap between the metallic cylindrical pipe (2) and the rod-shaped fluid shield (3) at a high speed, thereby being efficient. A heating device characterized by a structure that exchanges heat well.
棒状流体遮蔽物(3)の両端を円錐状に形成して、金属
製円筒管(2)と棒状流体遮蔽物(3)間の隙間を高速
で通過する気体に対して流路抵抗を減少させるようにし
たことを特徴とする請求項1記載の加熱装置。2. A cylindrical fluid pipe (2) and a rod-shaped fluid shield (3), wherein both ends of a rod-shaped fluid shield (3) provided inside a metal cylindrical pipe (2) are formed in a conical shape. 2. The heating device according to claim 1, wherein the flow path resistance is reduced for a gas passing through the gap between the high-speed and high-speed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000217199A JP2002033183A (en) | 2000-07-13 | 2000-07-13 | Heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000217199A JP2002033183A (en) | 2000-07-13 | 2000-07-13 | Heating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002033183A true JP2002033183A (en) | 2002-01-31 |
Family
ID=18712347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000217199A Pending JP2002033183A (en) | 2000-07-13 | 2000-07-13 | Heating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002033183A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020074318A (en) * | 2020-01-24 | 2020-05-14 | 森村Sofcテクノロジー株式会社 | Solid oxide fuel cell device |
KR20200107162A (en) * | 2019-03-06 | 2020-09-16 | 최윤수 | Induction heating device and heater using the same |
KR102655998B1 (en) * | 2023-03-23 | 2024-04-09 | 전용환 | Induction heater |
-
2000
- 2000-07-13 JP JP2000217199A patent/JP2002033183A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200107162A (en) * | 2019-03-06 | 2020-09-16 | 최윤수 | Induction heating device and heater using the same |
KR102169709B1 (en) * | 2019-03-06 | 2020-10-23 | 최윤수 | Induction heating device and heater using the same |
JP2020074318A (en) * | 2020-01-24 | 2020-05-14 | 森村Sofcテクノロジー株式会社 | Solid oxide fuel cell device |
KR102655998B1 (en) * | 2023-03-23 | 2024-04-09 | 전용환 | Induction heater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5685264B2 (en) | Method and apparatus for producing a glass sheet having a controlled thickness | |
US5206471A (en) | Microwave activated gas generator | |
JP2002033183A (en) | Heating device | |
JP4043113B2 (en) | Fixing device | |
CN202836968U (en) | Engine high-temperature heat-flux/radiation environment device | |
JPH1048981A (en) | Fixing device | |
JPS61201689A (en) | Temperature inclining furnace for treating material and temperature incline formation | |
JPH05296663A (en) | Heating device | |
JP5683322B2 (en) | Fixing device | |
CN108231372A (en) | Electromagnetic coil cooling system | |
JPH038738A (en) | Furnace and method for drawing optical fiber | |
JP2016074090A (en) | Blow molding die | |
US11612019B2 (en) | Air heater | |
CN109595789B (en) | Horizontal water heater | |
JP2002267102A (en) | Electric evaporator | |
JP2000172100A (en) | Induction heat fixing device | |
JPH09197854A (en) | Induction heating fixing device | |
JP2011528171A (en) | Heat treatment equipment for processed products | |
JP2001345166A (en) | Heating system and heating fixing system | |
JP4631236B2 (en) | Raw material supply method in glass base material manufacturing process | |
JP2000029336A (en) | Induction heat generating type fixing device | |
JP2002072738A (en) | Fixing apparatus | |
JP3940525B2 (en) | Induction heating type fixing device and image forming apparatus | |
KR200183921Y1 (en) | Heat exchanger for enlargement of heat efficiency in radiant tube type combustion apparatus | |
RU2016097C1 (en) | Plant for heating articles in controllable gaseous medium |