JP2002031595A - Manufacturing method of flow cell and flow cell - Google Patents

Manufacturing method of flow cell and flow cell

Info

Publication number
JP2002031595A
JP2002031595A JP2000213854A JP2000213854A JP2002031595A JP 2002031595 A JP2002031595 A JP 2002031595A JP 2000213854 A JP2000213854 A JP 2000213854A JP 2000213854 A JP2000213854 A JP 2000213854A JP 2002031595 A JP2002031595 A JP 2002031595A
Authority
JP
Japan
Prior art keywords
hole
jig
conical
flow cell
microtube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000213854A
Other languages
Japanese (ja)
Inventor
Hiroaki Tobimatsu
弘晃 飛松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP2000213854A priority Critical patent/JP2002031595A/en
Publication of JP2002031595A publication Critical patent/JP2002031595A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To execute position adjustment and fixation of a micro-tube accurately and easily, when the micro-tube is used on a orifice part of a flow cell used for a particle analytical device or the like. SOLUTION: A circular cone part 7 of a jig 6 is inserted into a circular cone-shaped through hole 2 and brought into close contact therewith. Then, the micro-tube 5 is inserted into a cylindrical through hole 3 so as to be positioned coaxially with the jig 6, and the micro-tube 5 head is brought into contact with the jig 6. The circular cone part 7 of the jig 6 blocks a connection part between the circular cone-shaped through hole 2 and the cylindrical through hole 3, to thereby enable optimum position adjustment without projection of the micro-tube 5 head into the circular cone-shaped through hole 2, and without stay thereof into the cylindrical through hole 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、粒子分析装置等
に利用されるフローセルに微細管を用いる際の、フロー
セル製造方法およびそのフローセルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a flow cell when a fine tube is used as a flow cell used in a particle analyzer or the like, and to the flow cell.

【0002】[0002]

【従来の技術】血液分析や尿中成分分析等、検体検査に
おける粒子計測においては、その測定方法としてフロー
サイトメトリー法が多用されている。この方式では、ノ
ズルから吐出された試料液(粒子の浮遊液)の周囲にシ
ース液を流すことによってシースフローセル内で試料液
を細く絞り込む。そこで光学的、あるいは電気的測定を
行うことにより、試料液中の粒子の計測や分析を行うこ
とができる。なお、「シースフロー」とは、オリフィス
を層流状態で流れるシース液の中央部で粒子の浮遊液を
ほぼ粒子の外径まで絞り、粒子を精度良く一列に整列さ
せて通過させる流れをいう。また、フローセルの構造に
おいて、シース液とその中央部を流れる粒子の浮遊液と
の層流状態を作り出すためにシース液を助走させる部分
を「整流部」といい、前記層流を徐々に細く絞り込みな
がらオリフィスへ導く部分を「加速部」といい、光学的
あるいは電気的測定を行うために、粒子浮遊液を細く絞
った状態で流す部分を「オリフィス部」という。
2. Description of the Related Art In particle measurement in a sample test such as blood analysis or urine component analysis, a flow cytometry method is frequently used as a measuring method. In this method, a sample liquid (a suspension of particles) discharged from a nozzle is caused to flow around the sample liquid to narrow down the sample liquid in a sheath flow cell. Therefore, measurement or analysis of particles in the sample liquid can be performed by performing optical or electrical measurement. The “sheath flow” refers to a flow in which a suspended liquid of particles is narrowed to almost the outer diameter of the particles at the center of the sheath liquid flowing through the orifice in a laminar flow state, and the particles are accurately aligned in a line and passed therethrough. In the structure of the flow cell, a portion where the sheath liquid advances to create a laminar flow state of the sheath liquid and the suspended liquid of the particles flowing in the central part is called a “rectifying unit”, and the laminar flow is gradually narrowed down. The part that leads to the orifice while it is moving is called the "acceleration part", and the part that flows the particle suspension liquid in a finely squeezed state for performing optical or electrical measurement is called the "orifice part".

【0003】ところで昨今の検体検査では、病院の検査
室や検査センター内のみならず、患者の近くでの検査
(いわゆるpoint of care、POC )も重視されてきてい
るところ、POC分野検査装置には、小型、軽量、操作性
等と並び、安価であるという点が要求されている。だが
従来のフローセルは非常に高価なものであった。その理
由としては、シース液と試料液の安定した層流を確保す
るために、フローセルの内壁は可能な限り滑らかにする
必要があるところ、切削加工によりフローセルを製造す
るには非常な熟練を要した。また、オリフィス部の製造
にしても数枚のガラス片を貼り合わせて溶着させる、と
いった具合に非常に手間のかかる工程を要した。更に、
オリフィス部と加速部を個別に成形し、それらを接着す
る場合にも、精密な切削加工に加え、相互に熱や薬品な
どによって溶着させる方法を用い、一体成形を行ってき
た。つまり、従来のフローセルはその製造の困難さ、要
求される加工精度の高さゆえ、どうしても製造コストが
上がってしまうのである。
[0003] In recent laboratory tests, not only in a laboratory or a test center in a hospital, but also in the vicinity of a patient (so-called point of care (POC)), importance has been placed on the POC field test apparatus. It is required to be inexpensive along with small size, light weight and operability. However, conventional flow cells were very expensive. The reason is that the inner wall of the flow cell needs to be as smooth as possible to ensure a stable laminar flow of the sheath liquid and the sample liquid, but it requires a great deal of skill to manufacture the flow cell by cutting. did. Also, the production of the orifice portion requires a very troublesome process such as bonding and welding several pieces of glass. Furthermore,
When forming the orifice part and the acceleration part separately and bonding them together, in addition to precision cutting, they have been integrally formed using a method of mutually welding with heat or chemicals. That is, the manufacturing cost of the conventional flow cell is inevitably increased due to the difficulty of manufacturing and the required high processing accuracy.

【0004】このようなフローセルを用いた装置は製造
コストの面からPOC分野検査装置には不向きであった。
そこでフローセルのコストダウンを図るべく、オリフィ
ス部に安価な微細管を用いたフローセルの開発が進めら
れた。
[0004] An apparatus using such a flow cell is not suitable for a POC field inspection apparatus in terms of manufacturing cost.
Therefore, in order to reduce the cost of the flow cell, development of a flow cell using an inexpensive microtube in the orifice portion has been promoted.

【0005】[0005]

【発明が解決しようとする課題】整流部、加速部、オリ
フィス部が一体成形されている従来型フローセルは高価
である反面、使用時のセッティングは比較的容易であっ
た。一方、オリフィス部に安価な微細管を用いる場合に
は、以下図1、図2をもって説明するような問題が生ず
る。すなわち、保持部1(なお、本発明において「保持
部」とは、加速部となる円錐状貫通孔、および該円錐状
貫通孔の先端に対して微細管を保持・接続するための筒
状貫通孔を有するものとする。)と、オリフィス部とな
る微細管5との接合を要するところ、もし加速部2内に
少しでも微細管5が突出した状態で接合された場合(図
1)、試料液の層流が乱れ、粒子計測の正確さを欠く恐
れがある。また、微細管5が円錐状貫通孔2に届かない
状態で接合された場合(図2)、加速部(円錐状貫通孔
2)とオリフィス部(微細管5)の間に段差が生じるこ
ととなり、やはり試料液の層流が乱れ、粒子計測の正確
さを欠く恐れがある。
The conventional flow cell in which the rectifying section, the accelerating section, and the orifice section are integrally formed is expensive, but the setting at the time of use is relatively easy. On the other hand, when an inexpensive microtube is used for the orifice portion, a problem described below with reference to FIGS. 1 and 2 occurs. That is, the holding portion 1 (the “holding portion” in the present invention refers to a conical through-hole serving as an acceleration portion, and a cylindrical through-hole for holding and connecting a fine tube to the tip of the conical through-hole. It is necessary to join the micro tube 5 serving as an orifice portion. If the micro tube 5 is protruded into the accelerating part 2 even if it is slightly protruded (FIG. 1), the sample The laminar flow of the liquid may be disrupted, resulting in inaccurate particle measurement. When the micro tube 5 is joined without reaching the conical through hole 2 (FIG. 2), a step occurs between the accelerating portion (conical through hole 2) and the orifice portion (micro tube 5). Also, the laminar flow of the sample liquid may be disturbed, and the accuracy of particle measurement may be lost.

【0006】このような問題点を考慮し、微細管と保持
部との位置調整・固定を正確かつ容易になすことを可能
とするフローセルの製造方法、およびその方法によって
製造されたフローセルを提供することが本発明の目的で
ある。
[0006] In view of the above problems, a method of manufacturing a flow cell which can accurately and easily adjust and fix the position of a microtube and a holding portion, and a flow cell manufactured by the method are provided. That is the object of the present invention.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに本発明は、微細管と、微細管の端部に連接させる円
錐状貫通孔を備える保持部と、該円錐状貫通孔に密着す
るテーパ角度の円錐部を有する治具と、を用い、円錐状
貫通孔と治具の円錐部とを密着させる第1工程と、保持
部に対し、前記治具とは反対側から、該治具の同一軸上
に微細管を配置し、該微細管端部を治具の円錐部に接触
させる第2工程と、微細管と保持部を接着する第3工程
と、を含むことを特徴とするフローセルの製造方法、お
よびその方法によって製造されたフローセルを提供する
ものである。本発明によって、微細管と保持部の正確か
つ容易な位置調整・固定が可能となり、オリフィス部に
安価な微細管を用いたフローセルの製造が実現される。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a fine tube, a holding portion having a conical through hole connected to an end of the fine tube, and a holding portion having a conical through hole. And a jig having a conical portion having a tapered angle to make the conical through hole and the conical portion of the jig in close contact with each other. A second step of arranging the fine tube on the same axis of the tool and bringing the end of the fine tube into contact with the conical portion of the jig; and a third step of bonding the fine tube and the holding portion. And a flow cell manufactured by the method. According to the present invention, accurate and easy position adjustment and fixation of the fine tube and the holding portion can be performed, and the production of a flow cell using an inexpensive fine tube for the orifice portion is realized.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施にかかる一例
を図面に基づき説明する。なお、本実施例により本発明
の範囲が限定されるわけではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below with reference to the drawings. The scope of the present invention is not limited by the present embodiment.

【0009】図3において、円錐状貫通孔2、筒状貫通
孔3を有する保持部1は、円筒状の貫通孔を有する整流
部4と一体成形されている。そして図4に示すように、
筒状貫通孔3と微細管5とが接続されることにより、全
体としてフローセルを構成する。保持部の材質について
は、内部の貫通孔の表面が滑らかであって通過する液体
に侵されない物理的および化学的耐性を有するものであ
れば特に限定されない。例えば、ステンレス、無機ガラ
ス、塩化ビニル樹脂、アクリル樹脂等が挙げられる。な
お、本実施例における保持部の材質は塩化ビニル樹脂で
あり、また図3における各部の寸法は以下の通りであ
る。 A(整流部直径)=5mm B(整流部長)=46mm C(円錐状貫通孔長)=5mm 円錐状貫通孔テーパ角度=50度 D(筒状貫通孔長)=5mm
In FIG. 3, a holding section 1 having a conical through-hole 2 and a cylindrical through-hole 3 is integrally formed with a rectifying section 4 having a cylindrical through-hole. And as shown in FIG.
The flow cell is constituted as a whole by connecting the cylindrical through-hole 3 and the fine tube 5. The material of the holding portion is not particularly limited as long as the surface of the internal through-hole is smooth and has physical and chemical resistance not to be affected by the passing liquid. For example, stainless steel, inorganic glass, vinyl chloride resin, acrylic resin and the like can be mentioned. The material of the holding portion in this embodiment is a vinyl chloride resin, and the dimensions of each portion in FIG. 3 are as follows. A (rectifying portion diameter) = 5 mm B (rectifying portion length) = 46 mm C (conical through hole length) = 5 mm Conical through hole taper angle = 50 degrees D (cylindrical through hole length) = 5 mm

【0010】オリフィス部となる微細管の材質は、内部
孔の表面が滑らかであって通過する液体に侵されない物
理的および化学的耐性を有するものであれば、特に限定
されない。
[0010] The material of the fine tube serving as the orifice portion is not particularly limited as long as the surface of the internal hole is smooth and has physical and chemical resistance not to be affected by the passing liquid.

【0011】特に光学的測定を行う場合については、粒
子測定用の光を照射してその前方散乱光および側方散乱
光を得るため、内部孔に加えて外部の表面も滑らかであ
って光学的に透明であり、通過する液体に侵されない物
理的および化学的耐性を有する材質であればよい。例え
ば、無機ガラス、塩化ビニル樹脂、アクリル樹脂等の使
用ができる。また光が照射される部分の断面が正方形ま
たは長方形の角筒で構成されたものが好ましい。
In particular, in the case of performing an optical measurement, light for particle measurement is irradiated to obtain forward scattered light and side scattered light. Any material may be used as long as it is transparent and has physical and chemical resistance that is not affected by the passing liquid. For example, inorganic glass, vinyl chloride resin, acrylic resin and the like can be used. Further, it is preferable that the section to be irradiated with light is formed of a square or rectangular prism.

【0012】光学的測定を前提とした本実施例ではPoly
micro Technologies社製WWP100375(材質は無機ガラ
ス、断面形状は外縁部、内部孔共に正方形)を用いた。
これは表面にポリイミドコーティングがなされているた
め、使用時にはコーティングを除去する必要がある。そ
れについては、オーブン処理や火花放電等の熱処理、硫
酸による化学的処理等の方法により容易にコーティング
の除去ができる。なお、図5は本実施例で使用した微細
管の断面図である。外縁部、内部孔いずれの断面形状も
正方形となっている。外縁部断面の正方形の一辺は30
0μm(コーティング除去時)、内部孔断面の正方形の
一辺は100μmである。
In this embodiment on the premise of optical measurement, Poly
Micro Technologies WWP100375 (material is inorganic glass, cross-sectional shape is square at both outer edge and inner hole) was used.
This has a polyimide coating on the surface, so the coating must be removed before use. The coating can be easily removed by a method such as oven treatment, heat treatment such as spark discharge, and chemical treatment with sulfuric acid. FIG. 5 is a cross-sectional view of the fine tube used in this example. The cross-sectional shapes of both the outer edge and the inner hole are square. One side of the square of the outer edge section is 30
0 μm (at the time of coating removal), one side of the square of the cross section of the internal hole is 100 μm.

【0013】図6は治具の一例である。治具6は円柱の
先端に円錐を備えた形となっている。円錐部7は、円錐
状貫通孔2と密着するテーパ角度(本実施例においては
50度)を有している。治具6の直径は4mm、円錐部
7まで含めた治具6の全長は80mmである。材質は特
に限定されないが、本実施例においては真鍮を使用し
た。
FIG. 6 shows an example of a jig. The jig 6 has a shape having a cone at the tip of a cylinder. The conical portion 7 has a taper angle (50 degrees in the present embodiment) in close contact with the conical through hole 2. The diameter of the jig 6 is 4 mm, and the total length of the jig 6 including the conical portion 7 is 80 mm. Although the material is not particularly limited, brass is used in this example.

【0014】以下、微細管固定の手順につき説明する。
まず第1工程として、整流部4へ治具6を挿入し、治具
6の円錐部7と円錐状貫通孔2を密着させる。この状況
を示したのが図7である。
Hereinafter, the procedure for fixing the fine tubes will be described.
First, as a first step, the jig 6 is inserted into the straightening unit 4, and the conical portion 7 of the jig 6 and the conical through-hole 2 are brought into close contact with each other. FIG. 7 shows this situation.

【0015】次に第2工程として、微細管5を、筒状貫
通孔3に対し、治具6と同軸上に位置するよう挿入し、
微細管5先端と治具6を接触させる。この状況を示した
のが図8である。治具6先端の円錐部7が円錐状貫通孔
2と筒状貫通孔3の連接部分を塞ぐことにより、微細管
5先端が円錐状貫通孔2内に突出することなく、また筒
状貫通孔3内にとどまることもなく、最適な位置調整が
可能となる。
Next, as a second step, the fine tube 5 is inserted into the cylindrical through-hole 3 so as to be located coaxially with the jig 6.
The tip of the fine tube 5 is brought into contact with the jig 6. FIG. 8 shows this situation. The conical portion 7 at the tip of the jig 6 closes the connecting portion between the conical through-hole 2 and the cylindrical through-hole 3 so that the tip of the microtube 5 does not protrude into the conical through-hole 2 and the cylindrical through-hole 2 3, the position can be adjusted optimally.

【0016】次に第3工程として、微細管5と筒状貫通
孔3を接着する。方法としては接着剤の利用、あるいは
微細管と保持部の材質の選択によっては加熱、薬品によ
る溶着等が考えられる。本実施例では、耐水性、耐薬性
のある接着剤(住友3M社製DP-460)を接着剤塗布用横
穴8より注入、塗布し、微細管5と保持部1との隙間を
埋めることで、固定と共にシーリングの役割を持たせ
た。
Next, as a third step, the fine tube 5 and the cylindrical through hole 3 are bonded. As a method, heating, welding with a chemical, or the like can be considered depending on the use of an adhesive or the selection of the material of the microtube and the holding portion. In the present embodiment, a water-resistant and chemical-resistant adhesive (DP-460 manufactured by Sumitomo 3M) is injected and applied from the adhesive application side hole 8 to fill the gap between the fine tube 5 and the holding unit 1. , With the role of sealing together with fixing.

【0017】本実施例により製造されたフローセルは、
血液分析や尿中成分分析等の検体検査分野をはじめ、塗
料、トナー、顔料等の粒子の検査といった工業分野など
を含むさまざまな分野の粒子計測・粒子分析に応用する
ことができる。
The flow cell manufactured according to this embodiment is:
The present invention can be applied to particle measurement and particle analysis in various fields including a field of sample testing such as blood analysis and urine component analysis, and an industrial field such as testing of particles such as paints, toners, and pigments.

【0018】図9は本実施例によるフローセルを用いた
粒子計測方法の一例を示す模式図である。フローセル内
へ送り込まれたシース液は整流部4を通過し、加速部
(円錐状貫通孔2)へと流れ込む。一方ジェットノズル
9からは試料液がシース液の中央部に吐出される。これ
によりシース液と試料液は層流状態で加速部からオリフ
ィス部(微細管5)へと流入し、シースフローを形成す
る。そしてオリフィス部を通過したシース液と試料液は
排出口10から排出される。
FIG. 9 is a schematic view showing an example of a particle measuring method using the flow cell according to the present embodiment. The sheath liquid sent into the flow cell passes through the rectification unit 4 and flows into the acceleration unit (conical through-hole 2). On the other hand, the sample liquid is discharged from the jet nozzle 9 to the center of the sheath liquid. As a result, the sheath liquid and the sample liquid flow in a laminar state from the accelerating section into the orifice section (fine tube 5), and form a sheath flow. Then, the sheath liquid and the sample liquid that have passed through the orifice section are discharged from the discharge port 10.

【0019】光源11には半導体レーザー等の光源を、
受光部12にはフォトダイオード等の受光素子を用いる
ことができる。オリフィス部を流れる試料液は光源11
によって照射され、試料液中の粒子から発せられる散乱
光や蛍光等の光学情報を受光部12が検出する。この光
学情報に基づき、試料液中の粒子の分類、計数等が行わ
れる。
As the light source 11, a light source such as a semiconductor laser is used.
As the light receiving unit 12, a light receiving element such as a photodiode can be used. The sample liquid flowing through the orifice section is a light source 11
The light receiving unit 12 detects optical information such as scattered light and fluorescence emitted from particles in the sample liquid. Based on the optical information, classification, counting, and the like of particles in the sample liquid are performed.

【0020】なお、図9には省略したものの、光源11
と受光部12の間には、コリメータやコンデンサーレン
ズ、遮光板などの各種光学機器を配置することができ
る。また、光源や受光部を複数設けた構成とすることも
できる。
Although not shown in FIG.
Various optical devices such as a collimator, a condenser lens, and a light-shielding plate can be arranged between the light-receiving unit 12 and the light-receiving unit 12. In addition, a configuration in which a plurality of light sources and light receiving units are provided may be employed.

【0021】以下、本実施例によるフローセルを用い
た、シースフロー形成実験について説明する。図10は
本実験の構成を模式的に示したものである。光源11か
ら発せられ、コンデンサーレンズ13、微細管5、コレ
クターレンズ14を経たレーザー光によって、微細管内
部孔壁の像がスクリーン15に結像されるよう調整す
る。そして試料液とシース液の屈折率差により両液の境
界が暗線としてスクリーンに結像することを利用し、試
料液流径の計測を行う。なお、本実験では試料液として
エタノールを、シース液としてセルパック(II)(シス
メックス(株)製)を使用した。
Hereinafter, an experiment for forming a sheath flow using the flow cell according to the present embodiment will be described. FIG. 10 schematically shows the configuration of this experiment. The laser beam emitted from the light source 11 and passing through the condenser lens 13, the micro tube 5, and the collector lens 14 is adjusted so that the image of the inner wall of the micro tube is formed on the screen 15. Then, the flow diameter of the sample liquid is measured using the fact that the boundary between the liquid and the sheath liquid forms an image on the screen as a dark line due to the difference in the refractive index. In this experiment, ethanol was used as a sample liquid, and Cellpack (II) (manufactured by Sysmex Corporation) was used as a sheath liquid.

【0022】本実験においては、本発明のフローセルに
加え、同じ部品(保持部・微細管・接着剤)を用いたが
本発明の位置調整方法を用いずに製造したフローセルも
使用し、スクリーン上での結像の様子を比較した。図1
1、図12は本実験によってスクリーン上に結像した微
細管内部孔壁像16及び試料液とシース液の境界の暗線
17、18を示すものである。
In this experiment, in addition to the flow cell of the present invention, the same parts (holding part, microtube, adhesive) were used, but a flow cell manufactured without using the position adjusting method of the present invention was also used. The state of the image formation in was compared. Figure 1
1 and FIG. 12 show an image 16 of the inside wall of the microtube formed on the screen in this experiment, and dark lines 17 and 18 at the boundary between the sample liquid and the sheath liquid.

【0023】図11は、本発明により製造されたフロー
セルと同じ部品を用いつつ、本発明の位置調整方法を用
いずに製造したフローセルを使用した場合のスクリーン
上の結像の様子の一例を示すものである。微細管内部孔
壁像16の内側に試料液とシース液の境界の暗線17が
確認でき、一応シースフローを形成しているといえる
が、流れはかなり乱れ、その幅は広くなってしまってい
る。
FIG. 11 shows an example of image formation on a screen when a flow cell manufactured without using the position adjusting method of the present invention using the same parts as the flow cell manufactured according to the present invention. Things. The dark line 17 at the boundary between the sample liquid and the sheath liquid can be confirmed inside the microtube inner hole wall image 16, and it can be said that the sheath flow is formed temporarily, but the flow is considerably disturbed and the width is widened. .

【0024】図12は、本発明のフローセルを使用した
場合のスクリーン上の結像の様子の一例を示すものであ
る。微細管内部孔壁像16の内側に試料液とシース液の
境界の暗線17がほぼ平行に、近接して結像している。
このことから、細く、安定したシースフローの形成が確
認できる。
FIG. 12 shows an example of the state of image formation on a screen when the flow cell of the present invention is used. A dark line 17 at the boundary between the sample liquid and the sheath liquid is formed close to and parallel to the inside of the microtube inner hole wall image 16.
This confirms the formation of a thin and stable sheath flow.

【0025】本実験結果から、微細管と保持部の微妙な
位置調整がいかに重要かつ困難であるかがうかがえる。
同時に本実験結果は、本発明により微細管と保持部の正
確かつ容易な位置調整・固定が可能となり、また本発明
によって製造されたフローセルにおいてシースフローが
良好な状態で形成されたことを示すものである。
The results of this experiment show how important and difficult it is to finely adjust the position of the microtube and the holding section.
At the same time, the experimental results show that the present invention enables accurate and easy position adjustment and fixation of the microtube and the holding portion, and that the sheath flow was formed in a favorable state in the flow cell manufactured according to the present invention. It is.

【0026】本実験において、本発明のフローセルを使
用した場合の、形成が確認されたシースフローの試料液
流径は13μmであった。以下、本実験の諸条件をもとに
試料液流径の理論値を求める。
In this experiment, when the flow cell of the present invention was used, the sample liquid flow diameter of the sheath flow confirmed to be formed was 13 μm. Hereinafter, the theoretical value of the sample liquid flow diameter is obtained based on the conditions of this experiment.

【0027】まず、最適な試料液流径の理論値を求める
ための式について説明する。シース液の流量をQS 試料
液の流量をQC オリフィス部の内径をd、オリフィス部を
通過するシース液および試料液の平均流速をv、試料液
流径をDcとすると(図13)、連続の原理より、
First, an equation for obtaining the optimum theoretical value of the sample liquid flow diameter will be described. Assuming that the flow rate of the sheath liquid is Q S , the flow rate of the sample liquid is Q C , the inner diameter of the orifice portion is d, the average flow velocity of the sheath liquid and the sample liquid passing through the orifice portion is v, and the sample liquid flow diameter is Dc (FIG. 13). ), From the principle of continuity,

【数1】 の式が成り立つ。(Equation 1) Holds.

【0028】層流状態における管内の速度分布は放物線
状で Umax = 2v となり (Umax:オリフィス部中心最
大流速)、QS ≫ QC とすると、試料液がほぼ管の中心を
流れるため、
In a laminar flow state, the velocity distribution in the pipe is parabolic, and Umax = 2v (Umax: maximum flow velocity at the center of the orifice). If Q S ≫Q C , the sample liquid almost flows through the center of the pipe.

【数2】 とおく。上の条件より下流部の試料液流径DCは、(Equation 2) far. The sample liquid flow diameter D C downstream from the above conditions is

【数3】 となる。(Equation 3) Becomes

【0029】本実験における諸条件は次の通りである。 d(オリフィス部内径)=113[μm](一辺100μmの正方
形の面積に相当する円の直径) Qc(試料液流量)=1.4[μL/s] Qs(シース液流量)=42[μL/s]
The conditions in this experiment are as follows. d (inner diameter of orifice) = 113 [μm] (diameter of a circle corresponding to a square area of 100 μm on a side) Qc (sample liquid flow rate) = 1.4 [μL / s] Qs (sheath liquid flow rate) = 42 [μL / s ]

【数4】 に前記本実験諸条件の値を代入すると、本実験における
試料液流径の理論値はDc=14.6[μm]となる。測定され
た試料液流径は13μmであったから、本実験からはほぼ
理論値通りの結果が得られたといえる。すなわち本実験
結果は、本発明の実施により製造されたフローセルにお
いて、フローサイトメトリーで不可欠なシースフローが
良好な状態で形成されたことを示すものである。
(Equation 4) Substituting the values of the above-mentioned various conditions into this experiment, the theoretical value of the sample liquid flow diameter in this experiment is Dc = 14.6 [μm]. Since the measured sample liquid flow diameter was 13 μm, it can be said that the results of this experiment were almost the same as the theoretical values. That is, the results of this experiment show that a sheath flow, which is indispensable for flow cytometry, was formed in a favorable state in the flow cell manufactured according to the present invention.

【0030】[0030]

【発明の効果】この発明によれば、円錐状貫通孔と微細
管との正確かつ容易な位置調整・固定が可能となり、オ
リフィス部に安価な微細管を用いたフローセルの製造が
実現される。
According to the present invention, accurate and easy position adjustment and fixing of the conical through-hole and the fine tube can be performed, and the production of a flow cell using an inexpensive fine tube for the orifice portion can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】微細管の接合不良の一例を示す図。FIG. 1 is a diagram showing an example of a poor joining of a fine tube.

【図2】微細管の接合不良の一例を示す図。FIG. 2 is a view showing an example of a bonding failure of a fine tube.

【図3】本発明に用いる保持部の一実施例を示す図。FIG. 3 is a diagram showing an embodiment of a holding unit used in the present invention.

【図4】本発明の実施により製造されたフローセルの一
例を示す図。
FIG. 4 is a diagram showing an example of a flow cell manufactured according to an embodiment of the present invention.

【図5】本発明一実施例に用いた微細管の断面図。FIG. 5 is a sectional view of a fine tube used in one embodiment of the present invention.

【図6】本発明に用いる治具の一実施例を示す図。FIG. 6 is a view showing one embodiment of a jig used in the present invention.

【図7】本発明第1工程の一実施例を示す図。FIG. 7 is a view showing one embodiment of the first step of the present invention.

【図8】本発明第2工程の一実施例を示す図。FIG. 8 is a view showing one embodiment of the second step of the present invention.

【図9】本発明の実施によるフローセルを用いた粒子計
測方法の一例を示す図。
FIG. 9 is a diagram showing an example of a particle measuring method using a flow cell according to an embodiment of the present invention.

【図10】シースフロー形成実験の構成を示す図。FIG. 10 is a diagram showing a configuration of a sheath flow forming experiment.

【図11】シースフロー形成実験におけるスクリーン上
の結像を示す図。
FIG. 11 is a diagram showing an image formed on a screen in a sheath flow forming experiment.

【図12】シースフロー形成実験におけるスクリーン上
の結像を示す図。
FIG. 12 is a diagram showing an image formed on a screen in a sheath flow forming experiment.

【図13】試料液流径の理論値を求める計算を説明する
図。
FIG. 13 is a view for explaining calculation for obtaining a theoretical value of a sample liquid flow diameter.

【符号の説明】[Explanation of symbols]

1 保持部 2 円錐状貫通孔 3 筒状貫通孔 4 整流部 5 微細管 6 治具 7 円錐部 8 接着剤塗布用横穴 9 ジェットノズル 10 排出口 11 光源 12 受光部 13 コンデンサーレンズ 14 コレクターレンズ 15 スクリーン 16 微細管内部孔壁像 17 試料液とシース液の境界の暗線 18 試料液とシース液の境界の暗線 DESCRIPTION OF SYMBOLS 1 Holding part 2 Conical through-hole 3 Cylindrical through-hole 4 Rectifying part 5 Fine tube 6 Jig 7 Conical part 8 Adhesive application side hole 9 Jet nozzle 10 Outlet 11 Light source 12 Light-receiving part 13 Condenser lens 14 Collector lens 15 Screen 16 Image of pore wall inside microtube 17 Dark line at boundary between sample liquid and sheath liquid 18 Dark line at boundary between sample liquid and sheath liquid

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】微細管と、微細管の端部に連接させる円錐
状貫通孔を備える保持部と、該円錐状貫通孔に密着する
テーパ角度の円錐部を有する治具と、を用い、円錐状貫
通孔と治具の円錐部とを密着させる第1工程と、保持部
に対し、前記治具とは反対側から、該治具の同一軸上に
微細管を配置し、該微細管端部を治具の円錐部に接触さ
せる第2工程と、微細管と保持部を接着する第3工程
と、を含むことを特徴とするフローセルの製造方法。
1. A cone comprising a microtube, a holding portion having a conical through-hole connected to an end of the microtube, and a jig having a conical portion having a tapered angle in close contact with the conical through-hole. A first step of bringing the conical portion of the jig into close contact with the through hole, and disposing a microtube on the same axis of the jig from the side opposite to the jig with respect to the holding portion; A method for manufacturing a flow cell, comprising: a second step of bringing a part into contact with a conical part of a jig; and a third step of bonding a fine tube and a holding part.
【請求項2】微細管の断面形状において、外縁部の断面
形状と内部孔の断面形状のうち少なくとも一方は正方形
または長方形である微細管を用いた、請求項1に記載の
フローセルの製造方法。
2. The method for producing a flow cell according to claim 1, wherein in the cross-sectional shape of the microtube, at least one of the cross-sectional shape of the outer edge portion and the cross-sectional shape of the internal hole is a square or rectangular microtube.
【請求項3】前記円錐状貫通孔に整流部を連接してなる
保持部を用いた、請求項1に記載のフローセルの製造方
法。
3. The method for manufacturing a flow cell according to claim 1, wherein a holding portion formed by connecting a straightening portion to the conical through hole is used.
【請求項4】微細管と、微細管の端部に連接させる円錐
状貫通孔を備える保持部と、該円錐状貫通孔に密着する
テーパ角度の円錐部を有する治具と、を用い、円錐状貫
通孔と治具の円錐部とを密着させる第1工程と、保持部
に対し、前記治具とは反対側から、該治具の同一軸上に
微細管を配置し、該微細管端部を治具の円錐部に接触さ
せる第2工程と、微細管と保持部を接着する第3工程
と、を含む工程によって製造されるフローセル。
4. A cone comprising a microtube, a holding portion having a conical through-hole connected to an end of the microtube, and a jig having a conical portion having a tapered angle in close contact with the conical through-hole. A first step of bringing the conical portion of the jig into close contact with the through hole, and disposing a microtube on the same axis of the jig from the side opposite to the jig with respect to the holding portion; A flow cell manufactured by a step including a second step of bringing a part into contact with a conical part of a jig, and a third step of bonding a fine tube and a holding part.
【請求項5】微細管の断面形状において、外縁部の断面
形状と内部孔の断面形状のうち少なくとも一方は正方形
または長方形である微細管を用いた、請求項4に記載の
フローセル。
5. The flow cell according to claim 4, wherein in the cross-sectional shape of the microtube, at least one of the cross-sectional shape of the outer edge and the cross-sectional shape of the internal hole is a square or rectangular microtube.
【請求項6】前記円錐状貫通孔に整流部を連接してなる
保持部を用いた、請求項4に記載のフローセル。
6. The flow cell according to claim 4, wherein a holding portion formed by connecting a straightening portion to the conical through hole is used.
JP2000213854A 2000-07-14 2000-07-14 Manufacturing method of flow cell and flow cell Pending JP2002031595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213854A JP2002031595A (en) 2000-07-14 2000-07-14 Manufacturing method of flow cell and flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000213854A JP2002031595A (en) 2000-07-14 2000-07-14 Manufacturing method of flow cell and flow cell

Publications (1)

Publication Number Publication Date
JP2002031595A true JP2002031595A (en) 2002-01-31

Family

ID=18709538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213854A Pending JP2002031595A (en) 2000-07-14 2000-07-14 Manufacturing method of flow cell and flow cell

Country Status (1)

Country Link
JP (1) JP2002031595A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051238A1 (en) * 2002-12-03 2004-06-17 Bay Bioscience Kabushiki Kaisha Device for collecting information on biological particle
CN102890049A (en) * 2011-07-19 2013-01-23 希森美康株式会社 Flow cytometer and analyzer
CN107785587A (en) * 2016-08-26 2018-03-09 Jntg有限公司 Improve functional vanadium flow battery electrode and use its vanadium flow battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051238A1 (en) * 2002-12-03 2004-06-17 Bay Bioscience Kabushiki Kaisha Device for collecting information on biological particle
US7443491B2 (en) 2002-12-03 2008-10-28 Bay Bioscience Kabushiki Kaisha System for collecting information on biological particles
CN102890049A (en) * 2011-07-19 2013-01-23 希森美康株式会社 Flow cytometer and analyzer
CN107785587A (en) * 2016-08-26 2018-03-09 Jntg有限公司 Improve functional vanadium flow battery electrode and use its vanadium flow battery

Similar Documents

Publication Publication Date Title
Kummrow et al. Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining
Wang et al. Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements
US10466165B2 (en) Compound optical flow cells and method of manufacture and use
Nawaz et al. Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”
Chen et al. Analysis of sperm concentration and motility in a microfluidic device
JP3052665B2 (en) Flow cell device
Barat et al. Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer
TW200426107A (en) Chip-type micro-fluid particle 3-D focusing and detection device
JPS60238762A (en) Fluid blood corpuscle inspection device
Zhao et al. Microfluidic cytometers with integrated on-chip optical systems for red blood cell and platelet counting
AU711794B2 (en) Preanalysis chamber for a flow particle analyzer
Guo et al. A compact optofluidic cytometer for detection and enumeration of tumor cells
JP2003302330A (en) Planar flow cell device
CN106442278B (en) Measuring device and measuring method for single particle beam scattering light intensity distribution
JP2002031595A (en) Manufacturing method of flow cell and flow cell
US11525765B2 (en) Particle detection device and particle detection method
CN209034379U (en) A kind of high-pass cell separation device based on nano-micrometre combination channel AC dielectrophoresis
JP2006170687A (en) Flow sight meter and measurement method using flow sight meter
Serhatlioglu et al. Femtosecond laser fabrication of fiber based optofluidic platform for flow cytometry applications
Lin et al. A novel micro flow cytometer with 3-dimensional focusing utilizing dielectrophoretic and hydrodynamic forces
JPH0618275Y2 (en) Flow cell
CN104634719A (en) Flow chamber of flow cytometer
Zhao et al. Using binary optical elements (BOEs) to generate rectangular spots for illumination in micro flow cytometer
TW504491B (en) Chip-type device for counting/classifying and analyzing the micro-fluid particle and manufacturing method thereof
JPH01235833A (en) Flow cell and fine particle measuring instrument using said cell