JP2002028670A - Method for treating hardly decomposable waste - Google Patents
Method for treating hardly decomposable wasteInfo
- Publication number
- JP2002028670A JP2002028670A JP2000213658A JP2000213658A JP2002028670A JP 2002028670 A JP2002028670 A JP 2002028670A JP 2000213658 A JP2000213658 A JP 2000213658A JP 2000213658 A JP2000213658 A JP 2000213658A JP 2002028670 A JP2002028670 A JP 2002028670A
- Authority
- JP
- Japan
- Prior art keywords
- waste
- reactor
- oxidizing agent
- fuel
- supplied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、亜臨界水或いは超
臨界水中での難燃性有機廃棄物、含窒素酸化物廃棄物、
含硫黄廃棄物又は含塩素廃棄物等の難分解性廃棄物の処
理方法に関する。TECHNICAL FIELD The present invention relates to a flame-retardant organic waste, a nitrogen-containing oxide waste in subcritical water or supercritical water,
The present invention relates to a method for treating hard-to-decompose waste such as sulfur-containing waste or chlorine-containing waste.
【0002】[0002]
【従来の技術】近年、亜臨界水或いは超臨界水中での廃
棄物の処理技術の開発が盛んに行われているが、この亜
臨界水或いは超臨界水中での処理技術は大気を媒体とす
る酸化燃焼と類似して、亜臨界水或いは超臨界水という
媒体の中で基本的に廃棄物と酸化剤を燃焼させるもので
ある。その特徴としては、媒体が超臨界水である場合、
超臨界水中に廃棄物及び酸化剤を供給すると廃棄物が超
臨界水中に均一に分散する。また同時に酸化剤も超臨界
水中に均一に分散するため、比較的低温で効率よく燃焼
させることができる。更に窒素酸化物(NOx)やダイ
オキシン等の有害酸化物が発生しにくいマイルドな燃焼
を行うことができる。2. Description of the Related Art In recent years, techniques for treating waste in subcritical water or supercritical water have been actively developed, but the processing technique in subcritical or supercritical water uses the atmosphere as a medium. Similar to oxidative combustion, it basically burns waste and oxidant in a medium called subcritical water or supercritical water. As a feature, when the medium is supercritical water,
When the waste and the oxidizing agent are supplied into the supercritical water, the waste is uniformly dispersed in the supercritical water. At the same time, the oxidizing agent is also uniformly dispersed in the supercritical water, so that it can be efficiently burned at a relatively low temperature. Further, mild combustion in which harmful oxides such as nitrogen oxide (NOx) and dioxin are hardly generated can be performed.
【0003】[0003]
【発明が解決しようとする課題】しかし、廃棄物中に含
まれる有機物の大部分は、酸化燃焼が容易な直鎖系の有
機物等と異なり、難燃性の芳香環を有しているため、超
臨界水中で酸化剤とともに廃棄物を供給して単純に燃焼
させただけでは、分解しないか、或いは分解処理に長時
間かかる問題があった。例えば、従来におけるポリ塩化
ビフェニール(PCB)を含んだ廃棄物の処理では、P
CBに含まれる塩素は比較的短時間で処理されるもの
の、残りの芳香環の部分はチューブラー型の長い二次反
応管により長時間にわたって十分に燃焼処理されてい
る。また、このような難燃性の物質を燃焼させるには、
酸化剤を多めに供給する必要があるため、酸化による装
置内の腐食も大きくなる問題があった。また、硝酸イオ
ンのように酸化物形態を含んだ廃棄物は、単純に酸化燃
焼させただけでは、その形態をより安定な化学物質に変
化させることが難しく、それ以上の処理は困難である問
題もあった。However, most of the organic matter contained in the waste has a flame-retardant aromatic ring unlike a straight-chain organic matter which is easily oxidized and burned. Simply supplying the waste together with the oxidizing agent in supercritical water and burning it does not result in decomposition or takes a long time for the decomposition treatment. For example, in the conventional treatment of waste containing polychlorinated biphenyl (PCB), P
Although chlorine contained in CB is treated in a relatively short time, the remaining aromatic ring portion is sufficiently combusted for a long time by a long tubular secondary reaction tube. In order to burn such a flame-retardant substance,
Since it is necessary to supply a large amount of the oxidizing agent, there is a problem that corrosion in the apparatus due to oxidation is increased. In addition, it is difficult to change the form of waste containing oxide forms such as nitrate ions into more stable chemical substances by simply oxidizing and burning, and further processing is difficult. There was also.
【0004】本発明の目的は、難分解性廃棄物を比較的
短時間で完全に分解する難分解性廃棄物の処理方法を提
供することにある。本発明の別の目的は、可燃性の有用
成分を回収する難分解性廃棄物の処理方法を提供するこ
とにある。本発明の更に別の目的は、完全燃焼させる場
合に、酸素の供給割合を低減し、装置の腐食を低減する
難分解性廃棄物の処理方法を提供することにある。An object of the present invention is to provide a method for treating hard-to-decompose waste, which completely decomposes hard-to-decompose waste in a relatively short time. Another object of the present invention is to provide a method for treating hard-to-decompose waste that recovers combustible useful components. Still another object of the present invention is to provide a method for treating hard-to-decompose waste, which reduces the supply rate of oxygen and reduces the corrosion of the apparatus when completely combusted.
【0005】[0005]
【課題を解決するための手段】請求項1に係る発明は、
水の亜臨界又は超臨界状態の第1反応器に燃料とともに
この燃料を部分燃焼させるだけの酸化剤を供給して第1
反応器内を700〜1200℃の高温雰囲気にして燃料
から活性種を生成する工程と、難燃性有機廃棄物、含窒
素酸化物廃棄物、含硫黄廃棄物及び含塩素廃棄物からな
る群より選ばれた1種又は2種以上の難分解性廃棄物を
反応器に供給して活性種と高温雰囲気下で反応させるこ
とにより難分解性廃棄物を熱分解させる工程とを含むこ
とを特徴とする難分解性廃棄物の処理方法である。請求
項1に係る発明では、燃料を部分燃焼させることにより
活性種を生成させ、この生成した活性種と部分燃焼によ
り作り出された高温雰囲気下で難分解性廃棄物を反応さ
せることにより、難分解性廃棄物を速やかに熱分解する
ことができる。The invention according to claim 1 is
The first reactor in the subcritical or supercritical state of water is supplied with the fuel and an oxidant sufficient to partially burn the fuel and the first reactor is supplied with the fuel.
A step of generating an active species from a fuel by setting the inside of the reactor to a high-temperature atmosphere of 700 to 1200 ° C., and a group consisting of flame-retardant organic waste, nitrogen-containing oxide waste, sulfur-containing waste, and chlorine-containing waste Supplying one or more selected hardly decomposable wastes to a reactor and reacting them with active species in a high-temperature atmosphere to thermally decompose the hardly decomposable wastes. This is a method for treating hard-to-decompose waste. In the invention according to claim 1, active species are generated by partially burning the fuel, and the generated active species are reacted with the hard-to-decompose waste in a high-temperature atmosphere created by the partial combustion, whereby the hard-to-decompose waste is generated. Pyrolytic waste can be quickly pyrolyzed.
【0006】請求項2に係る発明は、請求項1に係る発
明であって、燃料の燃焼に対する酸化剤の理論必要量の
25〜100%となるように酸化剤を供給することによ
り活性種の生成を行う処理方法である。請求項2に係る
発明では、反応器の温度が700〜1200℃になるよ
うに酸化剤を供給する。酸化剤の供給量が25%未満
で、温度が700℃未満であると燃料の未燃焼部分が多
くなり、活性種を十分に生成できない。また100%を
越えると、燃料がほとんど燃焼してしまい、活性種を十
分に生成することができないばかりか、第1反応器内が
酸化雰囲気になり高温雰囲気下でもあまり難分解性廃棄
物の熱分解が進まなくなる。第1反応器内の温度は80
0〜1000℃が好ましい。According to a second aspect of the present invention, there is provided the first aspect of the present invention, wherein the oxidizing agent is supplied so that the theoretical amount of the oxidizing agent for the combustion of the fuel is 25 to 100%. This is a processing method for generating. In the invention according to claim 2, the oxidizing agent is supplied such that the temperature of the reactor becomes 700 to 1200 ° C. If the supply amount of the oxidizing agent is less than 25% and the temperature is less than 700 ° C., the unburned portion of the fuel increases, and active species cannot be sufficiently generated. On the other hand, if it exceeds 100%, the fuel is almost burned and active species cannot be sufficiently generated. In addition, the first reactor becomes an oxidizing atmosphere, and the heat of the hardly decomposable waste is very low even in a high temperature atmosphere. Decomposition does not proceed. The temperature in the first reactor is 80
0-1000 ° C is preferred.
【0007】請求項3に係る発明は、請求項1又は2に
係る発明であって、難分解性廃棄物が一部に易分解性物
質を含むとき、燃料及び酸化剤とともに難分解性廃棄物
の一部を水の亜臨界又は超臨界状態の第1反応器に供給
して難分解性廃棄物の一部の燃焼により活性種の生成を
行う処理方法である。請求項3に係る発明では、難分解
性廃棄物の一部の燃焼により、燃料の供給量を低減し、
第1反応器内を高温雰囲気に容易にすることができる。
易分解性物質としては直鎖系炭化水素などが挙げられ
る。[0007] The invention according to claim 3 is the invention according to claim 1 or 2, wherein when the hardly decomposable waste partially contains an easily decomposable substance, the hardly decomposable waste together with the fuel and the oxidizing agent is used. This is a treatment method in which a part of water is supplied to a first reactor in a subcritical or supercritical state of water to generate active species by burning a part of the hardly decomposable waste. In the invention according to claim 3, the fuel supply amount is reduced by burning a part of the hardly decomposable waste,
The inside of the first reactor can be easily made to have a high temperature atmosphere.
Examples of easily decomposable substances include linear hydrocarbons.
【0008】請求項4に係る発明は、請求項1ないし3
いずれかに係る発明であって、難分解性廃棄物がハロゲ
ン化合物又は硫黄化合物を含むとき、難分解性廃棄物と
ともにナトリウム、カリウム、カルシウムの水酸化物又
は炭酸塩を水の亜臨界又は超臨界状態の第1反応器に供
給して分解生成物を中和する処理方法である。請求項4
に係る発明では、ナトリウム、カリウム、カルシウムの
イオンが難分解性廃棄物の分解生成物に含まれるハロゲ
ン又は硫黄を中和して無害化する。The invention according to claim 4 is the invention according to claims 1 to 3
In the invention according to any of the above, when the hard-to-decompose waste contains a halogen compound or a sulfur compound, sodium, potassium, calcium hydroxide or carbonate together with the hard-to-decompose waste is subcritical or supercritical water. This is a treatment method in which the decomposition product is supplied to the first reactor in a neutral state to neutralize decomposition products. Claim 4
In the invention according to the above, ions of sodium, potassium and calcium neutralize halogens or sulfur contained in the decomposition product of the hardly decomposable waste to make them harmless.
【0009】請求項5に係る発明は、請求項1ないし4
いずれかに係る発明であって、第1反応器から排出され
た難分解性廃棄物の分解生成物を水の超臨界状態の第2
反応器に酸化剤とともに供給して分解生成物を完全燃焼
させる処理方法である。請求項5に係る発明では、分解
生成物を酸化剤とともに水の超臨界状態の第2反応器に
供給して完全燃焼させる。難分解性廃棄物が含硫黄廃棄
物の場合、分解生成物に含まれる硫化水素を酸化させて
硫黄酸化物にする。難分解性廃棄物が含窒素酸化物廃棄
物の場合、活性種との作用によりアンモニウムとなる
が、これを酸化させて無害の窒素ガスに転換する。The invention according to claim 5 is the invention according to claims 1 to 4.
The invention according to any one of the above, wherein a decomposition product of the hardly decomposable waste discharged from the first reactor is converted into a second supercritical water.
This is a treatment method in which the decomposition product is completely burned by supplying it to the reactor together with the oxidizing agent. In the invention according to claim 5, the decomposition product is supplied to the second reactor in a supercritical state of water together with the oxidizing agent, and is completely burned. When the hardly decomposable waste is a sulfur-containing waste, hydrogen sulfide contained in the decomposition product is oxidized to a sulfur oxide. When the hard-to-decompose waste is nitrogen-containing oxide waste, it becomes ammonium by the action of the active species, which is oxidized and converted to harmless nitrogen gas.
【0010】請求項6に係る発明は、請求項1ないし5
いずれかに係る発明であって、燃料がエタノール、メタ
ノール、プロパノール、ブタノール、ペンタノール及び
炭素数が1〜5の炭化水素からなる群より選ばれた1種
又は2種以上の炭化水素化合物である処理方法である。
請求項6に係る発明では、燃料はエタノール、メタノー
ル、プロパノール、ブタノール、ペンタノール及び炭素
数が1〜5の炭化水素からなる群より選ばれた1種又は
2種以上の混合物である。特に、メタノール、エタノー
ルが燃焼し易く好ましい。請求項7に係る発明は、請求
項1ないし6いずれか係る発明であって、酸化剤が過酸
化水素、酸素又は空気である処理方法である。The invention according to claim 6 is the invention according to claims 1 to 5
The invention according to any one of the above, wherein the fuel is one or more hydrocarbon compounds selected from the group consisting of ethanol, methanol, propanol, butanol, pentanol, and a hydrocarbon having 1 to 5 carbon atoms. Processing method.
In the invention according to claim 6, the fuel is one or a mixture of two or more selected from the group consisting of ethanol, methanol, propanol, butanol, pentanol, and a hydrocarbon having 1 to 5 carbon atoms. Particularly, methanol and ethanol are preferable because they easily burn. The invention according to claim 7 is the processing method according to any one of claims 1 to 6, wherein the oxidizing agent is hydrogen peroxide, oxygen, or air.
【0011】[0011]
【発明の実施の形態】本発明の処理対象である難分解性
廃棄物は、難燃性有機廃棄物、含窒素酸化物廃棄物、含
硫黄廃棄物又は含塩素廃棄物を少なくとも一種以上含
む。難燃性有機廃棄物としては、芳香環を含んだ物質に
多く、PVC中に含まれるフタル酸類、スチレン類及び
その他フェニル化合物等が挙げられる。また、含窒素酸
化物廃棄物には、硝酸アンモニウム、硝酸エステル類及
び硝酸塩類等が挙げられる。また、含硫黄廃棄物には、
DBT等のチオフェン系化合物等が挙げられる。更に、
含塩素廃棄物には、PCB、ダイオキシン類等が挙げら
れる。高温で難分解性物質の分解に作用する活性種とし
ては、H2、CH、CH2、CH3、OH等が挙げられ
る。本発明の水の亜臨界状態とは700〜1200℃、
10〜22MPaの状態をいい、水の超臨界状態とは4
50〜1200℃、22〜35MPaの状態をいう。BEST MODE FOR CARRYING OUT THE INVENTION The hard-to-decompose waste to be treated according to the present invention contains at least one kind of flame-retardant organic waste, nitrogen-containing oxide waste, sulfur-containing waste or chlorine-containing waste. Flame-retardant organic waste, which is abundant in substances containing an aromatic ring, includes phthalic acids, styrenes, and other phenyl compounds contained in PVC. Examples of the nitrogen-containing oxide waste include ammonium nitrate, nitrates and nitrates. In addition, sulfur-containing waste includes
Thiophene-based compounds such as DBT are exemplified. Furthermore,
Examples of the chlorine-containing waste include PCB and dioxins. Examples of the active species that act on the decomposition of the hardly decomposable substance at a high temperature include H 2 , CH, CH 2 , CH 3 , and OH. The subcritical state of water of the present invention is 700 to 1200 ° C,
The state of 10-22MPa, the supercritical state of water is 4
It refers to a state of 50 to 1200 ° C. and 22 to 35 MPa.
【0012】本第1の実施の形態を含硫黄廃棄物として
ジベンゾチオフェン((C6H4)2S:以下、DBTとい
う。)を使用した場合について図1に基づいて説明す
る。 (a) 燃料の部分燃焼・水性ガス化反応による発熱と活性
種の生成 先ず水の亜臨界或いは超臨界状態の第1反応器に燃料と
ともにこの燃料を部分燃焼させるだけの酸化剤を供給す
る。本実施の形態では燃料にエタノール、酸化剤に酸素
を用いる。酸化剤の供給量は燃料の燃焼に対する酸化剤
の理論必要量の25〜100%となるように供給する。
燃料中の炭素に対する酸化剤中の酸素の比(O/C)で
は1〜3である。部分燃焼前の第1反応器内の温度が7
00℃未満であって、圧力が10MPa未満であると分
解し難くなる。後述する第2反応器において燃焼により
更に処理する場合には、第1反応器の圧力条件を22〜
35MPaにすることが好ましい。The first embodiment will be described with reference to FIG. 1 in which dibenzothiophene ((C 6 H 4 ) 2 S: hereinafter, referred to as DBT) is used as the sulfur-containing waste. (a) Heat generation and generation of active species by partial combustion and water gasification reaction of fuel First, an oxidant sufficient to partially burn this fuel is supplied together with fuel to a first reactor in a subcritical or supercritical state of water. In this embodiment, ethanol is used as fuel and oxygen is used as oxidant. The supply amount of the oxidant is supplied so as to be 25 to 100% of the theoretical required amount of the oxidant for fuel combustion.
The ratio of the oxygen in the oxidant to the carbon in the fuel (O / C) is 1-3. The temperature in the first reactor before partial combustion is 7
If the temperature is lower than 00 ° C. and the pressure is lower than 10 MPa, it is difficult to decompose. In the case of further processing by combustion in the second reactor described below, the pressure condition of the first reactor is set to 22 to
Preferably, the pressure is 35 MPa.
【0013】 C2H5OH + aO2 → bCO2 + cH2O + dH2 +・・・+ Q ……(1) C2H5OH + eH2O+ Q' → fCO2 + gH2 + hCH + iCH2 + jCH3 + kOH…(2) なお、化学式中のQ及びQ’は熱を示す。C 2 H 5 OH + aO 2 → bCO 2 + cH 2 O + dH 2 +... + Q (1) C 2 H 5 OH + eH 2 O + Q ′ → fCO 2 + gH 2 + hCH + iCH 2 + jCH 3 + kOH ... (2) It should be noted, shows the Q and Q 'heat in the chemical formula.
【0014】上記式(1)及び式(2)に示すように、
水の亜臨界或いは超臨界状態中に供給した燃料であるエ
タノールを部分燃焼させ、活性な水素を含んだガスと熱
とを生成させる。この反応により生成した活性種である
水素は、700〜1200℃の温度範囲では、非常に反
応性に富み、難分解性の有機物であっても、水素化分解
反応などにより、残渣の発生を伴うことなく、速やかに
分解することができる。また上記式(1)に示す反応の
発熱により反応器は加熱されて700〜1200℃の高
温になる。第1反応器内の温度が上がらず、500〜7
00℃程度の比較的低温となる場合、式(2)の反応は
吸熱反応であるため、式(2)による活性水素の発生割
合が低下する。この場合には、ギ酸を追加添加すること
により、式(3)に示すように、式(1)に示す燃料の
燃焼による温度上昇と、その雰囲気下でのギ酸の分解に
よって活性水素の生成させ、分解を促進させることもで
きる。As shown in the above equations (1) and (2),
The fuel, which is a fuel supplied during the subcritical or supercritical state of water, is partially burned to generate a gas containing active hydrogen and heat. Hydrogen, which is an active species generated by this reaction, is extremely reactive in a temperature range of 700 to 1200 ° C., and even if it is a hardly decomposable organic substance, it is accompanied by generation of a residue due to a hydrogenolysis reaction or the like. It can be quickly decomposed without any need. Further, the reactor is heated by the heat generated by the reaction represented by the above formula (1), and becomes a high temperature of 700 to 1200 ° C. The temperature in the first reactor does not rise,
At a relatively low temperature of about 00 ° C., since the reaction of the formula (2) is an endothermic reaction, the generation rate of active hydrogen according to the formula (2) decreases. In this case, by adding formic acid additionally, as shown in equation (3), the temperature rise due to the combustion of the fuel shown in equation (1) and the generation of active hydrogen by the decomposition of formic acid in the atmosphere are performed. , Can also promote decomposition.
【0015】 HCOOH + Q → CO2 + H2 ……(3) (b) 活性種との反応による含硫黄廃棄物の分解反応 次に含硫黄廃棄物であるDBTを第1反応器内に供給し
て式(1)及び式(2)の反応により生成した活性種で
ある活性水素とDBTとを接触させて上記式(4)に示
すように、DBTを水素化反応等により分解する。また
次に述べる分解生成物の完全燃焼のためにNaOH等の
中和剤を廃棄物とともに添加して第1反応器に供給す
る。HCOOH + Q → CO 2 + H 2 (3) (b) Decomposition reaction of sulfur-containing waste by reaction with active species Next, DBT, which is sulfur-containing waste, is supplied into the first reactor. Then, DBT is brought into contact with active hydrogen, which is an active species generated by the reaction of the formulas (1) and (2), to decompose the DBT by a hydrogenation reaction or the like as shown in the above formula (4). Further, a neutralizing agent such as NaOH is added together with the waste and supplied to the first reactor for complete combustion of the decomposition product described below.
【0016】 (C6H4)2S + hH2 → iCH4 + jC2H2 + kC2H4 + ・・・ + H2S ……(4) この分解により生成された物質は、有用な燃料性の物質
であるため、回収してこれらを化学原料として有効活用
できる。また、燃料の代替物としても用いることができ
る。(C 6 H 4 ) 2 S + hH 2 → iCH 4 + jC 2 H 2 + kC 2 H 4 +... + H 2 S (4) The substance produced by this decomposition is useful. Since it is a highly fuel substance, it can be recovered and used effectively as a chemical raw material. It can also be used as a fuel substitute.
【0017】(c) 分解生成物の完全燃焼 上記水素化反応等により分解生成された物質は第2反応
器において燃焼により更に処理することもできる。即
ち、第1反応器内で式(4)の反応により分解した分解
生成物を第2反応器に分解生成物を酸化剤とともに供給
して式(5)に示すように、燃焼分解する。第2反応器
内の燃焼分解反応は温度450〜650℃、圧力22〜
25MPaの水の超臨界状態により行われる。第1反応
器で添加された中和剤のアルカリ金属又はアルカリ土類
金属は分解生成物とともに第2反応器に供給される。(C) Complete Combustion of Decomposition Products The substances decomposed and generated by the hydrogenation reaction and the like can be further processed by combustion in the second reactor. That is, the decomposition product decomposed by the reaction of the formula (4) in the first reactor is supplied to the second reactor together with the oxidizing agent to be decomposed by combustion as shown in the formula (5). The combustion decomposition reaction in the second reactor is performed at a temperature of 450 to 650 ° C and a pressure of 22 to
This is performed in a supercritical state of 25 MPa water. The alkali metal or alkaline earth metal of the neutralizing agent added in the first reactor is supplied to the second reactor together with the decomposition products.
【0018】 CH4 + C2H2 + C2H4 + ・・・ + H2S + O2 → mCO2 + nH2O + SOx……(5) この分解生成物は軽質化されているため、低い温度での
酸化燃焼も可能であり、また燃焼分解が速やかに生じ、
酸化剤の供給割合も少なくて済むため、反応器内の酸化
腐食が低減される。式(5)では式(4)の反応で発生
したH2Sが酸化されて酸化物SOxとなる。このSO
xは第1反応器から第2反応器に供給されたアルカリ金
属又はアルカリ土類金属と反応して例えば式(6)に示
すように、容易に中和され、無害化されて系外へ除去さ
れる。CH 4 + C 2 H 2 + C 2 H 4 +... + H 2 S + O 2 → mCO 2 + nH 2 O + SOx (5) This decomposition product is lightened. Therefore, oxidative combustion at low temperature is also possible, and combustion decomposition occurs quickly,
Since the supply ratio of the oxidizing agent is small, oxidative corrosion in the reactor is reduced. In the formula (5), H 2 S generated by the reaction of the formula (4) is oxidized to an oxide SOx. This SO
x reacts with the alkali metal or alkaline earth metal supplied from the first reactor to the second reactor, and is easily neutralized, rendered harmless and removed out of the system, for example, as shown in Formula (6). Is done.
【0019】 2Na+ + SO4 2- → Na2SO4 ……(6) 次に本第2の実施の形態を含窒素酸化物廃棄物として硝
酸アンモニウムを使用した場合について説明する。 (a) 燃料の部分燃焼・水性ガス化反応による発熱と活性
種の生成 先ず水の亜臨界或いは超臨界状態の第1反応器に燃料と
ともにこの燃料を部分燃焼させるだけの酸化剤を供給す
る。ここでは第1の実施の形態での反応と同様に酸化剤
比(O/C)が1〜3となるように供給し、式(1)及
び(2)に示すように、水の亜臨界或いは超臨界状態中
に供給したエタノールを部分燃焼させ、活性な水素を含
んだガスと熱とを生成させる。2Na + + SO 4 2- → Na 2 SO 4 (6) Next, a case where ammonium nitrate is used as nitrogen-containing oxide waste in the second embodiment will be described. (a) Heat generation and generation of active species by partial combustion and water gasification reaction of fuel First, an oxidant sufficient to partially burn this fuel is supplied together with fuel to a first reactor in a subcritical or supercritical state of water. Here, similarly to the reaction in the first embodiment, the oxidizing agent is supplied so that the oxidizing agent ratio (O / C) becomes 1 to 3, and as shown in the equations (1) and (2), the subcriticality of water is obtained. Alternatively, ethanol supplied in the supercritical state is partially burned to generate a gas containing active hydrogen and heat.
【0020】(b) 活性種との反応による含窒素酸化物廃
棄物の分解反応 次に含窒素酸化物廃棄物である硝酸アンモニウムを第1
反応器内に供給して式(1)及び式(2)の反応により
生成した活性種である活性水素と硝酸アンモニウムとを
接触させて、式(7)に示すように、硝酸アンモニウム
を水素化反応等により分解させ、硝酸アンモニウムに含
まれる窒素酸化物をアンモニアに転換させる。(B) Decomposition reaction of nitrogen-containing oxide waste by reaction with active species
Active hydrogen, which is an active species generated by the reaction of Formulas (1) and (2) supplied into the reactor, is brought into contact with ammonium nitrate, and as shown in Formula (7), ammonium nitrate is hydrogenated. To convert nitrogen oxides contained in ammonium nitrate into ammonia.
【0021】 NH4NO3 + 4H2 → 2NH3 + 3H2O ……(7) (c) 分解生成物の完全燃焼 式(7)の反応で生成した分解生成物であるアンモニア
は第2反応器において酸化剤を吹込んで、式(8)に示
すように、更に酸化燃焼させることもできる。空気中の
酸化ではアンモニアは酸化物であるNOxとなるが、超
臨界水中での燃焼ではアンモニアはNOxとはならず、
水と窒素ガスとなるため無害化される。 4NH3 + 3O2 → 6H2O + 2N2 ……(8)NH 4 NO 3 + 4H 2 → 2NH 3 + 3H 2 O (7) (c) Complete Combustion of Decomposition Products Ammonia, which is a decomposition product generated by the reaction of the formula (7), is subjected to the second reaction. An oxidizer may be blown into the vessel to further oxidize and burn as shown in equation (8). In the oxidation in air, ammonia becomes NOx which is an oxide, but in combustion in supercritical water, ammonia does not become NOx,
It becomes harmless because it becomes water and nitrogen gas. 4NH 3 + 3O 2 → 6H 2 O + 2N 2 …… (8)
【0022】[0022]
【実施例】次に本発明の実施例を説明する。 <実施例1>含硫黄廃棄物の模擬物として1重量%のD
BTを用意した。また、燃料としてエタノール、酸化剤
として過酸化水素をそれぞれ用意した。先ずこのエタノ
ールを過酸化水素とともに燃料中の炭素に対する酸化剤
中の酸素の比である酸化剤比(O/C)が1.0の割合
で燃焼部温度で1000℃、反応部出口付近で700
℃、圧力25MPaに維持された第1反応器に供給し
た。第1反応器内に生成している水素活性種の濃度をガ
ス生成量より測定したところ25容積%であった。次に
模擬物を第1反応器に供給した。模擬物を第1反応器内
に約5秒間滞留させて熱分解させ、分解生成物を生成さ
せた。Next, embodiments of the present invention will be described. <Example 1> 1% by weight of D as a simulated sulfur-containing waste
BT was prepared. Further, ethanol was prepared as a fuel, and hydrogen peroxide was prepared as an oxidizing agent. First, this ethanol was added together with hydrogen peroxide to an oxidizer ratio (O / C) of 1.0, which is a ratio of oxygen in the oxidizer to carbon in the fuel, at a combustion section temperature of 1000 ° C. and 700 near the reaction section outlet.
C. and supplied to a first reactor maintained at a pressure of 25 MPa. The concentration of the active hydrogen species generated in the first reactor was measured from the gas generation amount, and was found to be 25% by volume. Next, the simulated material was supplied to the first reactor. The simulated material was retained in the first reactor for about 5 seconds and thermally decomposed to generate a decomposition product.
【0023】<実施例2>酸化剤比を1.5の割合にし
た以外は実施例1と同一の模擬物を用意し、実施例1と
同様の条件で模擬物を反応させた。燃焼温度を同じにす
るため、余剰の水を付加した。なお、第1反応器内に生
成している水素活性種の濃度をガス生成量より測定した
ところ20容積%であった。 <比較例1>酸化剤比を3.0の割合にした以外は実施
例1と同一の模擬物を用意し、実施例1と同様の条件で
模擬物を反応させた。燃焼温度を同じにするため、余剰
の水を付加した。なお、第1反応器内に生成している水
素活性種の濃度をガス生成量より測定したところ3容積
%であった。 <比較評価1>実施例1,2及び比較例1の模擬物であ
るDBTの第1反応器内における分解率を表1に示す。Example 2 The same simulated material as in Example 1 was prepared except that the ratio of the oxidizing agent was 1.5, and the simulated material was reacted under the same conditions as in Example 1. Excess water was added to make the combustion temperature the same. The concentration of the active hydrogen species generated in the first reactor was measured by the gas generation amount, and was found to be 20% by volume. <Comparative Example 1> The same simulated material as in Example 1 was prepared except that the oxidizing agent ratio was changed to 3.0, and the simulated material was reacted under the same conditions as in Example 1. Excess water was added to make the combustion temperature the same. The concentration of the active hydrogen species generated in the first reactor was 3% by volume when measured from the gas generation amount. <Comparative Evaluation 1> Table 1 shows the decomposition rate of DBT, which is a simulated product of Examples 1 and 2 and Comparative Example 1, in the first reactor.
【0024】[0024]
【表1】 表1より明らかなように、酸化剤比が大きい比較例1に
比べて実施例1,2では分解率が高い。また、実施例2
に比べて酸化剤比が小さい実施例1の方が活性種濃度及
び分解率が高く、酸化剤比が小さければより多くの割合
で活性種を生成することを確認した。即ち、酸化剤によ
り酸化分解するよりも、活性種による分解が難分解性物
質に対しては効果的であることが判った。[Table 1] As is clear from Table 1, the decomposition rates are higher in Examples 1 and 2 than in Comparative Example 1 where the oxidizing agent ratio is large. Example 2
It was confirmed that the concentration of the active species and the decomposition rate were higher in Example 1 where the oxidizing agent ratio was smaller than that of Example 1, and that the active species was generated at a higher ratio when the oxidizing agent ratio was lower. That is, it was found that decomposition by active species is more effective for hardly decomposable substances than oxidative decomposition by oxidizing agents.
【0025】<実施例3>含窒素酸化物廃棄物の模擬物
として1000ppmの硝酸アンモニウムを用意した。
また、燃料としてエタノール、酸化剤として過酸化水素
をそれぞれ用意した。先ずこのエタノールを過酸化水素
とともに酸化剤比が1.0の割合で温度1000℃、圧
力25MPaに維持された第1反応器に供給した。第1
反応器内に生成している水素活性種の濃度をガス生成量
より測定したところ25容積%であった。次に模擬物を
第1反応器に供給した。模擬物を第1反応器内に約5秒
間滞留させて反応させた。Example 3 As a simulated nitrogen-containing oxide waste, 1000 ppm of ammonium nitrate was prepared.
Further, ethanol was prepared as a fuel, and hydrogen peroxide was prepared as an oxidizing agent. First, this ethanol was supplied together with hydrogen peroxide at a ratio of an oxidant of 1.0 to a first reactor maintained at a temperature of 1000 ° C. and a pressure of 25 MPa. First
The concentration of the active hydrogen species generated in the reactor was measured from the gas generation amount, and was found to be 25% by volume. Next, the simulated material was supplied to the first reactor. The simulated material was allowed to stay in the first reactor for about 5 seconds to react.
【0026】<実施例4>酸化剤比を1.5の割合にし
た以外は実施例3と同一の模擬物を用意し、実施例3と
同様の条件で模擬物を反応させた。なお、第1反応器内
に生成している水素活性種の濃度をガス生成量より測定
したところ20容積%であった。 <比較例1>酸化剤比を3.0の割合にした以外は実施
例3と同一の模擬物を用意し、実施例3と同様の条件で
模擬物を反応させた。なお、第1反応器内に生成してい
る水素活性種の濃度をガス生成量より測定したところ3
容積%であった。 <比較評価2>実施例3,4及び比較例2における硝酸
アンモニウムの第1反応器内における転換率を表2に示
す。Example 4 The same simulated material as in Example 3 was prepared except that the oxidizing agent ratio was changed to 1.5, and the simulated material was reacted under the same conditions as in Example 3. The concentration of the active hydrogen species generated in the first reactor was measured by the gas generation amount, and was found to be 20% by volume. <Comparative Example 1> The same simulated material as in Example 3 was prepared except that the oxidizing agent ratio was changed to 3.0, and the simulated material was reacted under the same conditions as in Example 3. The concentration of the active hydrogen species generated in the first reactor was measured based on the amount of gas generated.
% By volume. <Comparative Evaluation 2> Table 2 shows the conversion ratio of ammonium nitrate in the first reactor in Examples 3, 4 and Comparative Example 2.
【0027】[0027]
【表2】 表2より明らかなように、活性種の濃度が低い比較例2
に比べて実施例3,4では活性種の濃度が高くなるにつ
れて転換率が上がっているのが確認された。[Table 2] As is clear from Table 2, Comparative Example 2 in which the concentration of the active species was low
In comparison, in Examples 3 and 4, it was confirmed that the conversion ratio increased as the concentration of the active species increased.
【0028】<実施例5>実施例3で得られた分解生成
物を測定試料として用意した。また、酸化剤として過酸
化水素を用意した。この過酸化水素を測定試料とともに
酸化剤比がアンモニア中の水素が燃焼するための理論量
に対して1.1の割合で温度500℃、圧力25MPa
に維持された第2反応器に供給した。供給物を第2反応
器内に約1分間維持して完全燃焼させた。燃焼物を回収
してイオン電極式アンモニアメータにより測定を行い、
残留しているアンモニア量を測定した。Example 5 The decomposition product obtained in Example 3 was prepared as a measurement sample. In addition, hydrogen peroxide was prepared as an oxidizing agent. The hydrogen peroxide was added together with the measurement sample at an oxidizing agent ratio of 1.1 to the theoretical amount for burning hydrogen in ammonia at a temperature of 500 ° C. and a pressure of 25 MPa.
To the second reactor maintained at The feed was maintained in the second reactor for about 1 minute to complete combustion. Combustion material is collected and measured with an ion electrode type ammonia meter,
The amount of remaining ammonia was measured.
【0029】<実施例6>酸化剤比を1.2の割合にし
た以外は実施例5と同一の測定試料を用意し、実施例5
と同様の条件で第2反応器で反応させた。 <比較例1>酸化剤比を1.0の割合にした以外は実施
例5と同一の測定試料を用意し、実施例5と同様の条件
で第2反応器で反応させた。 <比較評価3>実施例5,6及び比較例3の燃焼物の第
2反応器内におけるアンモニア残存量を表3に示す。な
お、表3中のNDは検出限界以下を示す。Example 6 The same measurement sample as in Example 5 was prepared except that the oxidizing agent ratio was changed to 1.2.
The reaction was carried out in the second reactor under the same conditions as described above. <Comparative Example 1> The same measurement sample as in Example 5 was prepared except that the ratio of the oxidizing agent was set to 1.0, and reacted in the second reactor under the same conditions as in Example 5. <Comparative Evaluation 3> Table 3 shows the amount of ammonia remaining in the second reactor of the combustion products of Examples 5, 6 and Comparative Example 3. In addition, ND in Table 3 shows below the detection limit.
【0030】[0030]
【表3】 表3より明らかなように、酸化剤比が小さい比較例3に
比べて実施例5,6では残留するアンモニアは測定装置
の検出限界以下となっており、無害化されていることが
判る。[Table 3] As is clear from Table 3, the residual ammonia in Examples 5 and 6 is lower than the detection limit of the measuring device as compared with Comparative Example 3 in which the ratio of the oxidizing agent is small, indicating that the ammonia is detoxified.
【0031】[0031]
【発明の効果】以上述べたように、従来、分子量の大き
い廃棄物、酸化物形態にある廃棄物などの難分解性廃棄
物の処理に長時間要していたものが、本発明によれば、
エタノール等の燃料を過酸化水素等の酸化剤とともに酸
化剤比が理論必要量の25〜100%となるように水の
亜臨界或いは超臨界状態の第1反応器に供給して部分燃
焼させることにより生成した活性種と第1反応器に供給
した難分解性廃棄物を反応させることにより、速やかに
難分解性廃棄物を熱分解して安定な物質に形態変化させ
ることができる。廃棄物の分解により生成した分解生成
物が可燃性の有用成分である場合には回収して利用する
ことができる。また分解生成物に酸化剤を供給して燃焼
による完全分解処理を行うこともできる。この場合、分
解生成物は軽質化されているため、従来の燃焼処理に比
べて酸素の供給割合を低減し、かつ装置の腐食を低減す
ることができる。As described above, according to the present invention, it has conventionally been a long time to treat hard-to-decompose waste such as waste having a high molecular weight and waste in oxide form. ,
Partial combustion by supplying a fuel such as ethanol to a first reactor in a subcritical or supercritical state of water together with an oxidizing agent such as hydrogen peroxide so that the oxidizing agent ratio becomes 25 to 100% of the theoretically required amount. By reacting the active species generated by the above with the hardly decomposable waste supplied to the first reactor, the hardly decomposable waste can be quickly thermally decomposed and changed into a stable substance. When the decomposition products generated by the decomposition of waste are useful combustible components, they can be recovered and used. An oxidizing agent may be supplied to the decomposition product to perform a complete decomposition treatment by combustion. In this case, since the decomposition products are lightened, the supply ratio of oxygen can be reduced and the corrosion of the device can be reduced as compared with the conventional combustion treatment.
【図1】本発明の第1の実施の形態の処理方法を示す
図。FIG. 1 is a diagram showing a processing method according to a first embodiment of the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 25/18 C07C 25/18 (72)発明者 田中 皓 東京都文京区小石川1丁目3番25号 三菱 マテリアル株式会社システム事業センター 内 Fターム(参考) 4D050 AA13 AB12 AB15 AB17 AB18 AB19 AB37 BB01 BB09 BC01 BC02 BC10 BD06 BD08 CA13 4H006 AA05 AC13 AC26 BA02 BA28 BB31 BC10 BC34 BE30 BE32 EA22 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C07C 25/18 C07C 25/18 (72) Inventor Akira Tanaka 1-3-25 Koishikawa, Bunkyo-ku, Tokyo Mitsubishi Material Co., Ltd. System Business Center F term (reference) 4D050 AA13 AB12 AB15 AB17 AB18 AB19 AB37 BB01 BB09 BC01 BC02 BC10 BD06 BD08 CA13 4H006 AA05 AC13 AC26 BA02 BA28 BB31 BC10 BC34 BE30 BE32 EA22
Claims (7)
に燃料とともにこの燃料を部分燃焼させるだけの酸化剤
を供給して前記第1反応器内を700〜1200℃の高
温雰囲気にして前記燃料から活性種を生成する工程と、 難燃性有機廃棄物、含窒素酸化物廃棄物、含硫黄廃棄物
及び含塩素廃棄物からなる群より選ばれた1種又は2種
以上の難分解性廃棄物を前記反応器に供給して前記活性
種と前記高温雰囲気下で反応させることにより前記難分
解性廃棄物を熱分解させる工程とを含むことを特徴とす
る難分解性廃棄物の処理方法。1. A fuel is supplied to a first reactor in a subcritical or supercritical state of water together with a fuel and an oxidizing agent for partially burning the fuel to make a high temperature atmosphere of 700 to 1200 ° C. in the first reactor. Producing an active species from the fuel by the method described above; and one or more types of difficulties selected from the group consisting of flame-retardant organic waste, nitrogen-containing oxide waste, sulfur-containing waste, and chlorine-containing waste. Thermally decomposing the hard-to-decompose waste by supplying the decomposable waste to the reactor and reacting with the active species under the high-temperature atmosphere. Processing method.
の25〜100%となるように前記酸化剤を供給するこ
とにより活性種の生成を行う請求項1記載の処理方法。2. The processing method according to claim 1, wherein the oxidizing agent is supplied so that the oxidizing agent is supplied in an amount of 25 to 100% of the theoretical required amount of the oxidizing agent for fuel combustion.
含むとき、燃料及び酸化剤とともに前記難分解性廃棄物
の一部を水の亜臨界又は超臨界状態の第1反応器に供給
して前記難分解性廃棄物の一部の燃焼により活性種の生
成を行う請求項1又は2記載の処理方法。3. The first reactor in a subcritical or supercritical state in which a part of the hard-to-decompose waste together with a fuel and an oxidizing agent is water when the hard-to-decompose waste partially contains an easily decomposable substance. The method according to claim 1, wherein the activated species is generated by burning a part of the hardly decomposable waste by supplying the waste to the wastewater.
黄化合物を含むとき、前記難分解性廃棄物とともにナト
リウム、カリウム、カルシウムの水酸化物又は炭酸塩を
水の亜臨界又は超臨界状態の第1反応器に供給して分解
生成物を中和する請求項1ないし3いずれか記載の処理
方法。4. When the hard-to-decompose waste contains a halogen compound or a sulfur compound, a hydroxide or carbonate of sodium, potassium or calcium is added together with the hard-to-decompose waste in the subcritical or supercritical state of water. The treatment method according to any one of claims 1 to 3, wherein the decomposition product is neutralized by supplying the decomposition product to one reactor.
物の分解生成物を水の超臨界状態の第2反応器に酸化剤
とともに供給して前記分解生成物を完全燃焼させる請求
項1ないし4いずれか記載の処理方法。5. The decomposition product of the hardly decomposable waste discharged from the first reactor is supplied together with an oxidizing agent to a second reactor in a supercritical state of water to completely burn the decomposition product. 5. The processing method according to any one of 1 to 4.
ノール、ブタノール、ペンタノール及び炭素数が1〜5
の炭化水素からなる群より選ばれた1種又は2種以上の
炭化水素化合物である請求項1ないし5いずれか記載の
処理方法。6. A fuel comprising ethanol, methanol, propanol, butanol, pentanol and a hydrocarbon having 1 to 5 carbon atoms.
The treatment method according to any one of claims 1 to 5, which is one or more hydrocarbon compounds selected from the group consisting of hydrocarbons.
る請求項1ないし6いずれか記載の処理方法。7. The processing method according to claim 1, wherein the oxidizing agent is hydrogen peroxide, oxygen, or air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000213658A JP2002028670A (en) | 2000-07-14 | 2000-07-14 | Method for treating hardly decomposable waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000213658A JP2002028670A (en) | 2000-07-14 | 2000-07-14 | Method for treating hardly decomposable waste |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002028670A true JP2002028670A (en) | 2002-01-29 |
Family
ID=18709373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000213658A Pending JP2002028670A (en) | 2000-07-14 | 2000-07-14 | Method for treating hardly decomposable waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002028670A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7329395B2 (en) * | 2003-08-19 | 2008-02-12 | Kabushiki Kaisha Toshiba | Treatment apparatus and treatment method for organic waste |
-
2000
- 2000-07-14 JP JP2000213658A patent/JP2002028670A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7329395B2 (en) * | 2003-08-19 | 2008-02-12 | Kabushiki Kaisha Toshiba | Treatment apparatus and treatment method for organic waste |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4543190A (en) | Processing methods for the oxidation of organics in supercritical water | |
KR101295904B1 (en) | Process for the recovery of iodine | |
JPS625008A (en) | Method of decomposing noxious organic halide | |
JPH08503411A (en) | Process of oxidizing substances in water at supercritical temperature using reaction rate enhancer | |
US3778320A (en) | Non-polluting disposal of explosives and propellants | |
CA1260959A (en) | Conversion of halogenated toxic substances | |
JPH09117735A (en) | Decomposing treatment of organic hetero compound such as poison gas by hydrothermal action | |
JP2002028670A (en) | Method for treating hardly decomposable waste | |
JPH08309147A (en) | Method and apparatus for combustion-decomposition of fluorocarbon | |
KR102216893B1 (en) | Method for manufacturing environment-friendly flammable substance combustion power improver | |
KR100341551B1 (en) | Noxious Component Removal Process and Noxious Component Removal Agent Therefor | |
US6124519A (en) | Method of decomposing polychlorobiphenyls | |
EP1595580A1 (en) | Method of detoxifying polybiphenyl chloride and detoxification apparatus | |
KR100189842B1 (en) | Plasma gas furnace for burning waste and the method | |
JP3782971B2 (en) | Method for reducing the content of polychlorinated dibenzodioxins and -furans in waste gases of chemical high temperature treatment | |
JPH10235186A (en) | Dechlorination agent | |
JP4022267B2 (en) | PCB waste detoxification and product recycling | |
KR100198086B1 (en) | Method for removing sulphur oxides and carbonic acid produced in the process of oil combustion | |
JP3734963B2 (en) | Detoxification method for organochlorine compounds, etc. with mixed molten salt | |
JP3486702B2 (en) | Detoxification method of CFC | |
JPH11166187A (en) | Burning method and additive for burning | |
Georgiev et al. | Plasma chemical process for treatment of hazardous wastes | |
JPS6179908A (en) | Method of decomposing noxious waste | |
JP2006000558A (en) | Disposal method for making hazardous organic substance harmless in gas phase and disposal device therefor | |
JP2004269652A (en) | Method for thermally decomposing halogen-containing synthetic resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080319 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080408 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080729 |