JP2002028459A - Method for controlling inter-membrane differential pressure inside membrane module and membrane module for control - Google Patents

Method for controlling inter-membrane differential pressure inside membrane module and membrane module for control

Info

Publication number
JP2002028459A
JP2002028459A JP2000215741A JP2000215741A JP2002028459A JP 2002028459 A JP2002028459 A JP 2002028459A JP 2000215741 A JP2000215741 A JP 2000215741A JP 2000215741 A JP2000215741 A JP 2000215741A JP 2002028459 A JP2002028459 A JP 2002028459A
Authority
JP
Japan
Prior art keywords
membrane
transmembrane pressure
module
membrane module
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000215741A
Other languages
Japanese (ja)
Inventor
Atsuo Watanabe
敦夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000215741A priority Critical patent/JP2002028459A/en
Publication of JP2002028459A publication Critical patent/JP2002028459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that fouling easily occurs since a pressure loss inside a membrane module is great and it is difficult to easily keep the inter- membrane differential pressure of the entire module constant in solute separation and solid-liquid separation by means of the membrane module. SOLUTION: By providing an inter-membrane differential pressure equalizing member on the permeated liquid side of the separating membrane of the membrane module, the inter-membrane differential pressure is controlled. As an inter-membrane differential pressure equalizing member, there are a spacer 2 interposed between separating membranes 1, a supporting layer for the active layer of the separating membrane and a reinforcing member for reinforcing the active layer and the supporting layer of the separating film or the like. Besides, by changing the thickness of the active layer of the separating membrane, the inter-membrane differential pressure can be controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、膜モジュールを用
いて行う分離操作において、その濾過中に生じる分離膜
の膜間差圧を制御する方法及び制御用の膜モジュールに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a transmembrane pressure difference of a separation membrane generated during filtration in a separation operation using a membrane module, and a control membrane module.

【0002】[0002]

【従来の技術】従来、分離膜利用による分離操作、一般
的には十字流濾過(クロスフロー濾過)法で行われる膜
分離操作において、膜モジュールは、該モジュール内で
の圧力損失が大きく、膜モジュール全体での膜間差圧を
一定にすることが難しい。すなわち、モジュール入口部
分では圧力が高いために膜間差圧が大きくなり、濾過を
始めた初期に透過流束は大きくなるから、膜間差圧の小
さい出口付近と比較して、入口部分に溶質および懸濁質
( 以下、溶質等という) がファウリングを起こし易い。
2. Description of the Related Art Conventionally, in a separation operation using a separation membrane, generally a membrane separation operation performed by a cross flow filtration (cross flow filtration) method, a membrane module has a large pressure loss in the module, and the It is difficult to keep the transmembrane pressure constant throughout the module. In other words, since the transmembrane pressure increases due to the high pressure at the module inlet and the permeation flux increases at the beginning of filtration, solutes are more likely to be present at the inlet compared to the vicinity of the outlet where the transmembrane pressure is low. And suspended solids
(Hereinafter referred to as solutes) easily cause fouling.

【0003】こうしたファウリングを起こすと、ナノ濾
過(NF)、限外濾過(UF)および精密濾過(MF)
においては阻止率に変化が生じるので分離膜による溶質
等の分離精度が低下することになる。したがって、膜モ
ジュール全体での膜間差圧を一定に保つようにすれば、
膜モジュール全体で透過流束を一定に保ちファウリング
を起こさず膜本来の分離性能が維持できることになる。
[0003] Such fouling causes nanofiltration (NF), ultrafiltration (UF) and microfiltration (MF).
In this case, the rejection rate changes, so that the accuracy of separation of solutes and the like by the separation membrane decreases. Therefore, if the transmembrane pressure across the membrane module is kept constant,
The permeation flux is kept constant throughout the membrane module, and the original separation performance of the membrane can be maintained without causing fouling.

【0004】そこで、膜間差圧を一定に保つため、保持
液側に生じる圧力損失分と同様の圧力損失を生じさせる
ように、透過液側に溶液を循環させる方法が行われてい
る。さらに、被処理液中で膜を回転させ膜面に十字流濾
過と同様のせん断力を働かせる方法や、浸漬膜モジュー
ルにおいて膜近傍の溶液に流動性を与える方法や、分離
膜を振動させる方法などが行われている。
Therefore, in order to keep the transmembrane pressure constant, a method of circulating the solution to the permeated liquid side is performed so as to generate the same pressure loss as the pressure loss generated in the retained liquid side. In addition, methods such as rotating the membrane in the liquid to be treated and exerting the same shearing force on the membrane surface as cross-flow filtration, giving fluidity to the solution near the membrane in the immersion membrane module, and vibrating the separation membrane, etc. Has been done.

【0005】[0005]

【発明が解決しようとする課題】しかし、これらの方法
は、透過液側に溶液を循環させるための装置費と動力費
がかかること、分離膜を回転させるための装置費がかか
ること、浸漬膜では溶液の流動が十分与え難いこと、ま
た、分離膜に十分な振動を与えられず透過流束を十分高
く設定することが出来ない等の種々の問題がある。
However, these methods require the cost of equipment and power for circulating the solution on the permeate side, the cost of equipment for rotating the separation membrane, and the immersion membrane. In this case, there are various problems such as difficulty in sufficiently providing the flow of the solution, and inability to provide sufficient vibration to the separation membrane to set a sufficiently high permeation flux.

【0006】[0006]

【課題を解決するための手段】そこで、上記の如き課題
を解決すべく鋭意研究、検討を重ねた結果、例えば、十
字流濾過を行う平膜モジュールにおいて、透過液がモジ
ュールより流出する流れにおいて、透過液側スペーサー
の形状を、保持液入口側より出口側に向かって入口付近
では圧力損失を大きく、出口に向かうにしたがい連続的
あるいは段階的に徐々に圧力損失を少なくするように設
計し、こうしたスペーサーを分離膜に具備させた膜モジ
ュールを開発することにより、上記フアウリング制御に
係る課題を一気に解決することができることを見出し本
発明を完成したものである。
Therefore, as a result of intensive studies and studies to solve the above-mentioned problems, for example, in a flat membrane module performing cross flow filtration, in a flow in which a permeate flows out of the module, The shape of the permeate-side spacer was designed to increase the pressure loss near the inlet from the retentate inlet to the outlet, and to reduce the pressure loss continuously or stepwise gradually toward the outlet. By developing a membrane module in which a spacer is provided in a separation membrane, it has been found that the problem relating to the fall control can be solved at a stretch, and the present invention has been completed.

【0007】また、上記膜モジュールにおいて、分離膜
の活性層を支持する支持層の構造を、保持液入口側から
出口側に向かって入口付近では透過液の圧力損失を大き
く、出口に向かうにしたがい透過液の圧力損失を少なく
するように設計した支持層を具備させた膜モジュールに
おいても、上記課題を解決することができる。
In the above-mentioned membrane module, the structure of the support layer for supporting the active layer of the separation membrane is such that the pressure loss of the permeate is large near the inlet from the inlet side of the retentate to the outlet side, and the structure is toward the outlet. The above problem can also be solved in a membrane module provided with a support layer designed to reduce the pressure loss of the permeated liquid.

【0008】更に、上記膜モジュールにおいて、活性層
と支持層からなる分離膜を補強する補強材を、保持液入
口側から出口側に向かって入口付近では透過液の圧力損
失を大きく、出口に向かうにしたがい透過液の圧力損失
を少なくするように設計した補強材を具備させた膜モジ
ュールでも、上記課題を解決することができる。
Further, in the above membrane module, a reinforcing material for reinforcing the separation membrane consisting of the active layer and the support layer is provided such that the pressure loss of the permeated liquid is large near the inlet from the inlet side of the retentate to the outlet side, and the outlet is toward the outlet. Accordingly, the above problem can be solved even with a membrane module provided with a reinforcing material designed to reduce the pressure loss of the permeated liquid.

【0009】更にまた、分離膜の活性層の厚みを変化さ
せることにより保持液入口側から出口側に向かって入口
付近では透過に伴う圧力損失を大きく、出口に向かうに
したがい透過に伴う圧力損失を少なくするように設計し
た分離膜を具備させた膜モジュールでも、上記課題を解
決することができる。
Furthermore, by changing the thickness of the active layer of the separation membrane, the pressure loss accompanying permeation increases near the inlet from the inlet side of the retentate to the outlet side, and the pressure loss accompanying permeation increases toward the outlet. The above-mentioned problem can be solved even with a membrane module provided with a separation membrane designed to reduce the number.

【0010】上記のように、本発明の膜間差圧の制御方
法は、膜分離操作において、透過液側にも圧力損失を生
じさせ、保持液側の圧力損失を打ち消すことのできる膜
間差圧均一化機能を有する部材及び/または活性層厚み
を調整した分離膜を使用し透過液側に圧力損失を生じさ
せることによって達成される。この方法は、通常の十字
流濾過などを行う膜モジュールのわずかな改良で、膜本
来の性能を発現させることの出来る画期的な方法であ
り、製造コストも安く実用性が高い。
As described above, the method for controlling a transmembrane pressure according to the present invention provides a transmembrane pressure that can also cause a pressure loss on the permeate side and cancel the pressure loss on the retentate side in the membrane separation operation. This is achieved by using a member having a pressure equalizing function and / or a separation membrane having an adjusted active layer thickness to cause a pressure loss on the permeate side. This method is an epoch-making method that can exhibit the original performance of the membrane with a slight improvement of a membrane module that performs ordinary cross-flow filtration and the like, and has a low production cost and high practicability.

【0011】[0011]

【発明の実施の形態】本発明は、上記のように、膜モジ
ュールの分離膜1の透過液側に膜間差圧均一化機能を有
する種々の部材を具備させたり、分離膜の活性層の厚み
を変化させたり、これらを適宜組み合わせたりすること
により膜間差圧を制御する方法であり、また、その膜間
差圧を均一化する機能を有する新規な膜モジュールであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the present invention provides various members having a function of equalizing the transmembrane pressure on the permeate side of the separation membrane 1 of the membrane module, This is a method for controlling the transmembrane pressure by changing the thickness or appropriately combining them, and is a novel membrane module having a function of making the transmembrane pressure uniform.

【0012】本発明で用いられる膜間差圧均一化機能を
有する部材としては、透過液が膜を透過しモジュール外
に排出される間に透過液に圧力損失を生じさせることに
より保持液側で生じる圧力損失を打ち消すことができる
ように設計されていて、それによって、膜間差圧を平均
化することが出来るものであればよい。具体的には、部
材の構造を膜モジュール入口側は密にし、出口側に行く
に従い徐々に粗にすることにより、透過液が透過する際
の圧力損失を生じさせるように設計し、保持液側で生じ
る圧力損失を打ち消し、膜間差圧を均一に近づけること
が出来る構造にする。
The member having a function of equalizing the pressure difference between the membranes used in the present invention includes a pressure loss in the permeated liquid while the permeated liquid permeates the membrane and is discharged out of the module. Any material may be used as long as it is designed to cancel the generated pressure loss and thereby average the transmembrane pressure. Specifically, the structure of the member is designed to be dense on the inlet side of the membrane module and gradually roughened toward the outlet side, so as to generate a pressure loss when the permeated liquid permeates. The pressure loss caused by the above is cancelled, and the structure is such that the transmembrane pressure can be made uniform.

【0013】本発明で用いられる膜間差圧均一化機能を
有する部材の一つであるスペーサー2は、例えば、プラ
スチック、ステンレス薄板、セラミック薄板などからな
る素材の網目構造あるいは多孔質構造を有するものであ
ればよい。そして、スペーサーの構造を入口3付近では
密な構造4にしたり、あるいは、スペーサーと膜の密着
性を高める構造に設計し、出口5側に行くに従い粗な構
造6、7にしたり、あるいは、スペーサーと膜の密着性
を低下させる構造に設計し、透過液の流れにおいて圧力
損失を生じさせるようにする(図1)。
The spacer 2, which is one of the members having the function of equalizing the transmembrane pressure difference used in the present invention, has a mesh structure or a porous structure made of a material such as a plastic, a stainless steel sheet, a ceramic sheet, or the like. Should be fine. Then, the structure of the spacer is designed to be a dense structure 4 near the entrance 3 or a structure that enhances the adhesion between the spacer and the film. The structure is designed to reduce the adhesiveness between the membrane and the membrane, so that a pressure loss occurs in the flow of the permeate (FIG. 1).

【0014】また、本発明で用いられる膜間差圧均一化
機能を有する部材の一つである分離膜1の活性層11を
支持する支持層12は、限外濾過膜あるいは精密濾過膜
のような構造をしており、各々の細孔径が異なるものあ
るいは開孔率の異なるものを用いることが可能である。
保持液入口から出口側に向かって透過液が膜モジュール
より流出する流れにおいて、入口付近では密な構造の支
持層13を使用して圧力損失を大きくし、出口に向かう
に従い徐々に粗な構造の支持層14、15にして圧力損
失を少なくするように設計する(図2)。
The support layer 12 for supporting the active layer 11 of the separation membrane 1, which is one of the members having a function of equalizing the pressure difference between the membranes used in the present invention, is an ultrafiltration membrane or a microfiltration membrane. It is possible to use ones having different pore diameters or different opening ratios.
In the flow where the permeate flows out of the membrane module from the retentate inlet to the outlet side, the pressure loss is increased near the inlet by using the densely structured support layer 13, and the structure gradually becomes rougher toward the outlet. The support layers 14 and 15 are designed to reduce the pressure loss (FIG. 2).

【0015】更に、本発明で用いられる膜間差圧均一化
機能を有する部材の一つである活性層11と支持層12
を含む分離膜を補強する補強材21は、多くの場合不織
布が使用されるが、使用する繊維の緻密度あるいは繊維
径を変化させること等により透過液の流路の細孔をモジ
ュール入口から出口にかけ徐々に粗な構造に設計し、圧
力損失を制御できるようにした材料を使用することがで
きる。保持液入口から出口側に向かい透過液がモジュー
ルより流出する流れにおいて、入口付近では密な構造2
2で圧力損失を大きく、出口に向かうに従い徐々に粗な
構造23、24が圧力損失を少なくする(図3)。
Further, the active layer 11 and the support layer 12, which are one of the members having a function of equalizing the transmembrane pressure difference used in the present invention.
In many cases, a non-woven fabric is used as the reinforcing material 21 for reinforcing the separation membrane containing, but the pores of the permeate flow path are changed from the module inlet to the module outlet by changing the denseness or fiber diameter of the fiber used. A material that is gradually designed to have a rough structure so that the pressure loss can be controlled can be used. In the flow in which the permeate flows out of the module from the retentate inlet to the outlet, a dense structure near the inlet 2
2, the pressure loss is large, and the rough structures 23 and 24 gradually reduce the pressure loss toward the outlet (FIG. 3).

【0016】更にまた、本発明で用いられる膜間差圧均
一化機能を有する分離膜1は活性層11の厚みを変化さ
せることにより、保持液入口側から出口側に向かって入
口付近では透過に伴う圧力損失を大きく、出口に向かう
にしたがい透過に伴う圧力損失を少なくする構造にでき
る(図4)。
Further, the separation membrane 1 having the function of equalizing the transmembrane pressure difference used in the present invention has a structure in which the thickness of the active layer 11 is changed so that the permeation near the inlet from the retentate inlet to the outlet is achieved. The pressure loss accompanying the permeation can be reduced as the pressure loss is increased toward the outlet (FIG. 4).

【0017】一般的に、膜モジュールを使用する分離操
作において、供給処理液の流路が一定であれば、保持液
側の圧力損失は処理液の粘度と供給流量により決まり、
透過液側の圧力損失は透過液の粘度と流量により決ま
る。また、一般に、透過液は水に近い粘度を持つので、
対象とする処理液の圧力損失と透過流束に対応して透過
液側の構造を設計しあるいは活性層の厚みを調整するこ
とにより、膜間差圧を均一に近い状態に保つことが出来
る。本発明は、上記透過理論に基づき初めてなされたも
のであり、透過液側の膜間差圧均一化機能を有する部材
の構造および活性層厚みの異なる分離膜を、処理液の性
状に対応して種々作成しておきそれらを使い分けること
で、膜本来の性能をモジュール内全体で発現させること
ができる。
In general, in a separation operation using a membrane module, if the flow path of the supply processing liquid is constant, the pressure loss on the retentate side is determined by the viscosity of the processing liquid and the supply flow rate.
The pressure loss on the permeate side is determined by the viscosity and flow rate of the permeate. Also, in general, the permeate has a viscosity close to that of water,
By designing the structure on the permeate side or adjusting the thickness of the active layer in accordance with the pressure loss and permeate flux of the target processing solution, the transmembrane pressure difference can be kept almost uniform. The present invention has been made for the first time based on the above-described permeation theory, and has a structure of a member having a function of equalizing the transmembrane pressure difference on the permeate side and separation membranes having different active layer thicknesses in accordance with the properties of the treatment liquid. By preparing various types and using them properly, the original performance of the film can be expressed in the entire module.

【0018】[0018]

【実施例】(実施例1)本例はスペーサー30により制
御するものであり、図5の平板膜モジュール断面図に示
すように、膜モジュール32の供給液入口側33から透
過液を3カ所に分割して系外に取り出せるように設計し
34、35、36試験に供した。すなわち、図5のモジ
ュール取り付け部に示したように支持体1部37、支持
体2部38と支持体3部39の3部分に分けて透過液を
取り出せるようにした。
(Embodiment 1) This embodiment is controlled by a spacer 30. As shown in a sectional view of a flat membrane module in FIG. 5, a permeated liquid is supplied to three places from a supply liquid inlet side 33 of a membrane module 32. It was designed so that it could be divided and taken out of the system, and subjected to 34, 35 and 36 tests. That is, as shown in the module mounting portion of FIG. 5, the permeated liquid can be taken out in three parts, namely, a support part 37, a support part 38 and a support part 39.

【0019】スペーサー30は厚み20ミクロンのポリ
エチレンフィルムを3枚重ね、1cm 当たり30個の穴
を針であけ多孔性フィルムを形成した。針を刺した側か
ら、スペーサーA,B,Cとした。スペーサーAは支持
体1部37を覆う部分を残し、支持体2部38と同3部
39を覆う部分は切り取った(フレームを覆う部分40
は残した)。スペーサーBは支持体1部37と同2部3
8を覆う部分を残し、支持体3部39を覆う部分は切り
取った(フレームを覆う部分41は残した)。スペーサ
ーCは切り取ることなく使用した。ここで、フレームを
覆う部分40、41を残したのは、0リング42、43
でシールするための高さを一定に保ちモジュールからの
液漏れを防ぐためである。
The spacer 30 is made of 20 micron thick poly.
Stack 3 ethylene films, 1cm 230 holes per
Was opened with a needle to form a porous film. On the side where the needle was stabbed
Were spacers A, B, and C. Spacer A is supported
Except for the part covering the body part 37, the support body part 38 and the same three parts
The portion covering 39 is cut off (the portion 40 covering the frame).
Was left). Spacer B consists of 1 part 37 of the support and 2 parts 3 of the same
8 and leave the part covering the support 3
(The portion 41 covering the frame was left). Spacer
-C was used without being cut off. Where the frame
The O-rings 42 and 43 leave the covering parts 40 and 41.
Keep the height constant for sealing with
This is to prevent liquid leakage.

【0020】このスペーサー30を図5に示したように
モジュール32に取り付けるが、スペーサーA、BとC
の穴の位置を僅かづつずらすことにより、スペーサーを
3枚重ねたときに形成される連通する細孔径を変化さ
せ、スペーサーとしての抵抗を変化させた。すなわち、
透過液側にかかる圧力損失をこの細孔径を調整すること
により制御した。
The spacer 30 is attached to the module 32 as shown in FIG.
By slightly shifting the positions of the holes, the diameter of communicating pores formed when three spacers were stacked was changed, and the resistance as a spacer was changed. That is,
The pressure loss on the permeate side was controlled by adjusting the pore diameter.

【0021】(試験)上記した3枚のスペーサーの上に
限外濾過膜31を置き、濾過を行った。使用した平膜モ
ジュールは、 長さ20cmのもので、1.3m/sec の流速
で30kPa の圧損がある。分離に使用した膜は、分画分
子量 50000の限外濾過膜である。また、使用した試料
は、トマトピューレーを3倍希釈したものである。
(Test) An ultrafiltration membrane 31 was placed on the above three spacers, and filtration was performed. The flat membrane module used was 20 cm long and had a pressure drop of 30 kPa at a flow rate of 1.3 m / sec. The membrane used for the separation was an ultrafiltration membrane having a molecular weight cutoff of 50,000. The sample used was a three-fold dilution of tomato puree.

【0022】(結果)加圧濾過における透過流束(L/
mh)を求めて圧力損失を測定した結果を表1に示す。
(Results) The permeation flux (L /
Table 2 shows the results of measuring the pressure loss for m 2 h).

【0023】[0023]

【表1】 [Table 1]

【0024】表1に示すように支持体1部、 同2部およ
び同3部とも、13.5〜14.2(L/mh)の平均
的な透過流束を保っている。また、膜面のファウリング
も生じていないことが目視によって確認された。
As shown in Table 1, 1 part, 2 parts and 3 parts of the support maintained an average permeation flux of 13.5 to 14.2 (L / m 2 h). Further, it was visually confirmed that no fouling occurred on the film surface.

【0025】上記スペーサーによる調整を行わず、上記
と同じ条件で濾過すると、透過流束はこれより低下し、
モジュール入り口付近にファウリングが激しく生じるこ
とが目視できた。
When filtration is performed under the same conditions as above without performing the adjustment using the spacers, the permeation flux is further reduced.
Violent fouling was observed near the module entrance.

【0026】(実施例2)図2には、分離膜の活性層1
1を支持する支持層12に圧損に対応して順次高密支持
層13、中密支持層14および低密支持層15を用い、
これら支持層12の上面にごく薄い活性層11を有する
膜を備えたモジュール1を示している。本実施例では、
高密支持層13に分画分子量5万の限外濾過膜、中密支
持層14に細孔径0.1μmの精密濾過膜、低密支持層1
5に1μmの精密濾過膜を使用した。そして、これらの
支持層12の上面に極薄い酢酸セルローズ膜11を形成
し、上記実施例1と同じ試料を濾過した。試験の結果、
透過流束は、各部ともに10〜12(L/mh)であ
り、分離膜表面でのファウリングは観察されなかった。
(Embodiment 2) FIG. 2 shows an active layer 1 of a separation membrane.
1, a high-density support layer 13, a medium-density support layer 14, and a low-density support layer 15 are sequentially used for a support layer 12 supporting
A module 1 having a membrane having a very thin active layer 11 on the upper surface of these support layers 12 is shown. In this embodiment,
An ultrafiltration membrane having a molecular weight cut-off of 50,000 on the dense support layer 13, a microfiltration membrane with a pore size of 0.1 μm on the medium support layer 14,
For 5, a 1 μm microfiltration membrane was used. Then, an extremely thin cellulose acetate film 11 was formed on the upper surface of these support layers 12, and the same sample as in Example 1 was filtered. Test results,
The permeation flux was 10 to 12 (L / m 2 h) in each part, and no fouling on the surface of the separation membrane was observed.

【0027】(実施例3)図3には、活性層11と支持
層12を含む分離膜を補強する補強材21を、圧損調整
材としてモジュールに備えたものを示している。この補
強材としては順次に7μm 、10μm および15μm の
濾紙22、23、24を使用した。そして、この補強材
の上に酢酸セルロース膜を形成し、上記実施例1と同じ
試料を濾過した。試験の結果、透過流束は、各部ともに
10〜13(L/mh)であり、本例でも分離膜表面で
のファウリングは観察されなかった。
(Embodiment 3) FIG. 3 shows a module in which a reinforcing member 21 for reinforcing a separation membrane including an active layer 11 and a support layer 12 is provided as a pressure loss adjusting material in a module. As this reinforcing material, filter papers 22, 23 and 24 of 7 μm, 10 μm and 15 μm were sequentially used. Then, a cellulose acetate film was formed on the reinforcing material, and the same sample as in Example 1 was filtered. As a result of the test, the permeation flux was 10 to 13 (L / m 2 h) in each part, and no fouling on the surface of the separation membrane was observed in this example.

【0028】(実施例4)図4に示すように、厚みの変
化した活性層11の形成は、ガラス板上に酢酸セルロー
ス膜を設け、 その表面から膜面に沿って空気を送風して
行った。この送風を行う際に、膜面を流れる風量を調節
し、 活性層11を厚く形成させる部分には風量が多く当
たるようにし、 活性層を薄く形成させる部分には余り風
があたらないようにし、混合されているアセトンの蒸発
を制御することによって活性層の厚みを制御した。こう
してアセトンの蒸発を適当に調節した後、冷水中に浸漬
し酢酸セルロース膜をゲル化して実験に供し、上記実施
例1と同じ試料を濾過した。試験の結果、透過流束は各
部とも10〜13.5(L/mh)であり、 分離膜表面
でのファウリングも観察されなかった。活性層の厚みを
調整せず、均一な酢酸セルロース膜では、 入り口付近に
ファウリングが激しく生じているのが観察された。
Example 4 As shown in FIG. 4, the active layer 11 having a changed thickness is formed by providing a cellulose acetate film on a glass plate and blowing air from the surface along the film surface. Was. When the air is blown, the amount of air flowing on the film surface is adjusted so that the portion where the active layer 11 is formed thickly is applied with a large amount of air, and the portion where the active layer 11 is formed thinly is prevented from being exposed to excessive wind. The thickness of the active layer was controlled by controlling the evaporation of the mixed acetone. After appropriately adjusting the evaporation of acetone in this manner, the cellulose acetate membrane was immersed in cold water and gelled, and subjected to an experiment. The same sample as in Example 1 was filtered. As a result of the test, the permeation flux was 10 to 13.5 (L / m 2 h) in each part, and no fouling on the surface of the separation membrane was observed. Without adjusting the thickness of the active layer, in a uniform cellulose acetate film, it was observed that fouling occurred violently near the entrance.

【0029】[0029]

【発明の効果】本発明によれば、上記したように溶質分
離、固液分離その他の分離操作において、効果的にフア
ウリングの発生を制御して膜機能の低下を防止し、溶質
等の濃度の高い溶液の処理をも最適化するに有効なフア
ウリング制御方法であり、分離操作を一層効果的に行う
ことが出来る。また、そうした制御用の膜モジュールを
経済的に提供することができる。
According to the present invention, as described above, in the solute separation, solid-liquid separation and other separation operations, the generation of fouling is effectively controlled to prevent the membrane function from deteriorating, and the concentration of solutes and the like is reduced. This is a fall control method effective for optimizing the treatment of a high solution, and the separation operation can be performed more effectively. In addition, such a control membrane module can be economically provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の膜モジュールの一部を展開し
て示す説明図である。
FIG. 1 is an explanatory diagram showing a part of a membrane module according to an embodiment of the present invention in a developed manner.

【図2】他の実施例の膜モジュールの一部を示す説明図
である。
FIG. 2 is an explanatory view showing a part of a membrane module according to another embodiment.

【図3】更に他の実施例の膜モジュールの一部を示す説
明図である。
FIG. 3 is an explanatory view showing a part of a membrane module according to still another embodiment.

【図4】他例の膜モジュールの一部を示す説明図であ
る。
FIG. 4 is an explanatory view showing a part of a membrane module of another example.

【図5】平板膜モジュールの分解端面図である。FIG. 5 is an exploded end view of the flat-plate membrane module.

【図6】図5の平板膜モジュールの底面図である。FIG. 6 is a bottom view of the flat film module of FIG. 5;

【符号の説明】[Explanation of symbols]

1 分離膜 2、30 スペ−サ− 3 入口 4 スペ−サ−の高密構造部 5 出口 6 スペ−サ−の中密構造部 7 スペ−サ−の低密構造部 11 活性層 12 支持層 13 高密支持層 14 中密支持層 15 低密支持層 21 補強材 32 膜モジュ−ル DESCRIPTION OF SYMBOLS 1 Separation membrane 2, 30 Spacer 3 Inlet 4 High density structure part of spacer 5 Exit 6 Medium density structure part of spacer 7 Low density structure part of spacer 11 Active layer 12 Support layer 13 High density support layer 14 Medium density support layer 15 Low density support layer 21 Reinforcement material 32 Membrane module

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 膜モジュールを用いて分離操作を行う際
に、膜モジュールの分離膜の透過液側に膜間差圧均一化
機能を有する部材を具備させること及び/または膜モジ
ュールの分離膜の活性層の厚みを調整することを特徴と
する膜間差圧の制御方法。
When performing a separation operation using a membrane module, a member having a function of equalizing the transmembrane pressure difference is provided on the permeate side of the separation membrane of the membrane module, and / or A method for controlling a transmembrane pressure, comprising adjusting the thickness of an active layer.
【請求項2】 上記膜間差圧均一化機能を有する部材が
分離膜間の透過液側に設置されるスペーサーである請求
項1記載の膜間差圧の制御方法。
2. The method for controlling a transmembrane pressure according to claim 1, wherein the member having the function of equalizing the transmembrane pressure is a spacer provided on the permeated liquid side between the separation membranes.
【請求項3】 上記膜間差圧均一化機能を有する部材が
分離膜の活性層の支持層である請求項1記載の膜間差圧
の制御方法。
3. The method for controlling a transmembrane pressure according to claim 1, wherein the member having the function of equalizing the transmembrane pressure is a support layer of an active layer of a separation membrane.
【請求項4】 上記膜間差圧均一化機能を有する部材が
分離膜の活性層と支持層を含む膜を補強する補強材であ
る請求項1記載の膜間差圧の制御方法。
4. The method for controlling a transmembrane pressure according to claim 1, wherein the member having the function of equalizing the transmembrane pressure is a reinforcing material for reinforcing a membrane including an active layer and a support layer of the separation membrane.
【請求項5】 膜間差圧の制御を膜間差圧均一化機能を
有する部材のスペーサー、活性層の支持層、分離膜の補
強材または分離膜の厚みの調整された活性層の複数の組
み合わせによって行う請求項1記載の膜間差圧の制御方
法。
5. The method of controlling a transmembrane pressure difference comprising a plurality of spacers of a member having a function of equalizing a transmembrane pressure, a support layer of an active layer, a reinforcing material of a separation membrane, or a plurality of active layers having a controlled thickness of the separation membrane. The method for controlling a transmembrane pressure according to claim 1, which is performed by a combination.
【請求項6】 膜モジュールの分離膜の透過液側に膜間
差圧均一化機能を有する部材を具備した及び/または厚
みの調整された分離膜の活性層を具備する膜間差圧の制
御用の膜モジュール。
6. Control of the transmembrane pressure with a member having a function of equalizing the transmembrane pressure on the permeated liquid side of the separation membrane of the membrane module and / or with an active layer of the separation membrane whose thickness is adjusted. Membrane module for
【請求項7】 分離膜の膜間差圧を制御するために分離
膜の透過液側の膜間差圧均一化機能を有する部材のスペ
ーサー、活性層の支持層、分離膜の補強材または分離膜
の厚みの調整された活性層の複数を組み合わせて具備す
る膜間差圧の制御用の膜モジュール。
7. A spacer of a member having a function of equalizing the transmembrane pressure difference on the permeated liquid side of the separation membrane to control the transmembrane pressure difference of the separation membrane, a support layer of the active layer, a reinforcing material of the separation membrane or separation. A membrane module for controlling a transmembrane pressure, comprising a combination of a plurality of active layers each having a controlled thickness.
JP2000215741A 2000-07-17 2000-07-17 Method for controlling inter-membrane differential pressure inside membrane module and membrane module for control Pending JP2002028459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000215741A JP2002028459A (en) 2000-07-17 2000-07-17 Method for controlling inter-membrane differential pressure inside membrane module and membrane module for control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000215741A JP2002028459A (en) 2000-07-17 2000-07-17 Method for controlling inter-membrane differential pressure inside membrane module and membrane module for control

Publications (1)

Publication Number Publication Date
JP2002028459A true JP2002028459A (en) 2002-01-29

Family

ID=18711114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000215741A Pending JP2002028459A (en) 2000-07-17 2000-07-17 Method for controlling inter-membrane differential pressure inside membrane module and membrane module for control

Country Status (1)

Country Link
JP (1) JP2002028459A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533443A (en) * 2004-04-23 2007-11-22 テクノロジーズ アドヴァンセ エ メンブレインズ アンデュストリーユ Supports and membranes with variable porosity for tangential flow filtration
JP2011050907A (en) * 2009-09-03 2011-03-17 Hitachi Plant Technologies Ltd Flat membrane element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533443A (en) * 2004-04-23 2007-11-22 テクノロジーズ アドヴァンセ エ メンブレインズ アンデュストリーユ Supports and membranes with variable porosity for tangential flow filtration
KR101323909B1 (en) * 2004-04-23 2013-10-30 테크놀로지 아방세 에 망브란 엥뒤스트리엘 Medium having an altered porosity and membrane for the tangential flow filtration of a fluid
JP2011050907A (en) * 2009-09-03 2011-03-17 Hitachi Plant Technologies Ltd Flat membrane element

Similar Documents

Publication Publication Date Title
US9649602B2 (en) Method of sewage treatment and sewage treatment apparatus
US9616390B2 (en) Separation membrane, separation membrane element, and method for producing separation membrane
JP6136269B2 (en) Separation membrane element for water treatment
US4824568A (en) Composite ultrafiltration membranes
EP2614881A1 (en) Separation membrane, separation membrane element, and method for producing separation membrane
EP1853375A1 (en) Permeate spacer module
GB1600314A (en) Coated membranes
JPS6369503A (en) High flow flux density and low staining tendency permeable membrane
JP2013071098A (en) Separation membrane element
JP2002028459A (en) Method for controlling inter-membrane differential pressure inside membrane module and membrane module for control
US11123691B2 (en) Separation membrane element
WO2017150531A1 (en) Flat-sheet separation membrane element, element unit, flat-sheet separation membrane module, and operation method for flat-sheet separation membrane module
JPH09313905A (en) Polysulfone porous separating membrane
JPH09117643A (en) Hollow fiber membrane module
US20060191837A1 (en) Permeate spacer module
JP4451039B2 (en) Virus removal device and membrane
JP3151817B2 (en) Composite porous membrane
JPH11262640A (en) Hollow fiber membrane module
JPS5814904A (en) Support sheet for liquid separation membrane and continuous preparation thereof
WO2023048052A1 (en) Separation membrane element
CN114025866B (en) Separation membrane element, method for using same, and water treatment device
KR102228747B1 (en) Separartion membrane leaf, spiral wound module comprising same, and device
WO2024095643A1 (en) Separation membrane element
US11452973B2 (en) Reverse osmosis membrane and method for producing reverse osmosis membrane
JP2023033785A (en) Separation membrane element