JP2002025717A - Coaxial power injecting and extracting device - Google Patents

Coaxial power injecting and extracting device

Info

Publication number
JP2002025717A
JP2002025717A JP2000203170A JP2000203170A JP2002025717A JP 2002025717 A JP2002025717 A JP 2002025717A JP 2000203170 A JP2000203170 A JP 2000203170A JP 2000203170 A JP2000203170 A JP 2000203170A JP 2002025717 A JP2002025717 A JP 2002025717A
Authority
JP
Japan
Prior art keywords
coaxial
power
coaxial line
line
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000203170A
Other languages
Japanese (ja)
Inventor
Akio Kusui
昭男 楠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000203170A priority Critical patent/JP2002025717A/en
Publication of JP2002025717A publication Critical patent/JP2002025717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Suspension Of Electric Lines Or Cables (AREA)
  • Cable Accessories (AREA)
  • Radio Relay Systems (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate limitations of parts selection and current-carrying capacity, due to frequency rise and self resonant frequency of an inductor in an antenna facility or the like for mobile radio communication, adopting a power superimposing method using internal and external conductors of a coaxial cable performing radio signal transmission for power supply to a radio apparatus installed in a top part of a construction, such as a steel tower and a method using serial inductance and a bypass capacitor for power injection and extraction circuits. SOLUTION: A power-superimposing function to main coaxial lines is realized by connecting a center contact 612 of a power terminal 607 with the outer wall of a shorting plate 611 of an inner side coaxial line, forming a quarter- wavelength shorting coaxial circuit for triple coaxial lines 603 and 604 which are divergently provided in the main coaxial lines 601 and 602, and is realized not by a method of blocking an outflow of a high frequency signal to a power terminal side using a lumped inductor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は移動体無線通信等
の各種無線通信分野で使用される同軸給電線の内部導体
と外部導体を利用して、鉄塔頂部等に設けられた受信用
あるいは中継用電子機器に電源供給あるいは電源抽出す
る際に使用する同軸型電源注入・抽出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a receiving or relaying device provided at the top of a steel tower or the like by utilizing an inner conductor and an outer conductor of a coaxial feed line used in various radio communication fields such as mobile radio communication. The present invention relates to a coaxial power injection / extraction device used when supplying or extracting power to an electronic device.

【0002】[0002]

【従来の技術】移動体無線通信或いは固定無線通信中継
基地局等の受信用機器あるいは中継送・受信装置内部あ
るいは装置・部品等に内蔵された直列インダクタンスと
バイパス・コンデンサによる伝統的な電源注入回路によ
って給電線路に電源供給されている。
2. Description of the Related Art A conventional power injection circuit using a series inductance and a bypass capacitor built into a receiving device such as a mobile radio communication or fixed radio communication relay base station or a relay transmission / reception device or a device / component. The power is supplied to the feed line by the power supply.

【0003】その原理的な回路構成は図2によって説明
する。この図は内部導体1およびこれを取り囲む外部導
体2によって構成された同軸線路の内部導体1と電源注
入・抽出端子6の中心コンタクト61をインダクタ(イ
ンダクタンス素子)を経由接続することによって、高周
波信号成分の電源側への回りこみを防止すると共に、同
軸線路の電圧定在波比VSWRの増大やロスの増加を防
いでいで電源供給あるいは電源抽出を行う。インダクタ
の電源端子側と電源注入・抽出端子外部導体間にはバイ
パス・コンデンサ4を接続して、高周波信号成分の電源
端子6側への漏洩を防いでいる(通常コンデンサ4は貫
通型用いられている)。
The principle circuit configuration will be described with reference to FIG. This figure shows that the internal conductor 1 of the coaxial line constituted by the internal conductor 1 and the external conductor 2 surrounding the internal conductor 1 and the center contact 61 of the power injection / extraction terminal 6 are connected via an inductor (inductance element). To the power supply side, and power supply or power supply extraction while preventing an increase in the voltage standing wave ratio VSWR and loss of the coaxial line. A bypass capacitor 4 is connected between the power supply terminal side of the inductor and the power injection / extraction terminal outer conductor to prevent the leakage of the high-frequency signal component to the power supply terminal 6 side. Is).

【0004】[0004]

【発明が解決しようとする課題】電源重畳用注入・抽出
回路の大きな課題は、同軸給電線の伝送周波数の上昇に
伴って直列インダクタンスの自己共振周波数やコイルを
囲む金属遮蔽体間の分布静電容量よる使用周波数制限
や、チップインダクタを使用するケースでは素線やフェ
ライト素子の電流容量による制限を受ける。特に移動無
線通信システムの変革により小ゾーン方式が主流となっ
てきている。そのため、鉄塔やビル建造物の頂部に受信
装置や中継装置が設置される場合が多く、設置機器の台
数も増大しており、通信方式の変革によって送信電力の
増大傾向も見られる。そのため電源重畳方式での供給電
流容量の増大に対する要求が高り、これに対応出来る同
軸部品の開発が望まれている。
The main problems of the injection / extraction circuit for power supply superimposition are the self-resonance frequency of the series inductance and the distribution of static electricity between the metal shields surrounding the coil as the transmission frequency of the coaxial feed line increases. The frequency of use is limited by the capacity, and in the case of using a chip inductor, the current capacity of the element wire or the ferrite element is limited. In particular, the small zone system has become mainstream due to the reform of mobile radio communication systems. For this reason, a receiving device or a relay device is often installed on the top of a tower or a building, and the number of installed devices is also increasing. For this reason, there is a growing demand for an increase in the supply current capacity in the power supply superimposition method, and the development of a coaxial component capable of coping with this is desired.

【0005】海外製品を含めた入手可能なインダクタ
(コイルインダクタおよびチップインダクタ)のインダ
クタンス値と自己共振周波数および直流電流容量の調査
結果を取り纏めたものを、表1に示す。
[0005] Table 1 summarizes the results of investigations on the inductance value, self-resonance frequency, and DC current capacity of available inductors (coil inductors and chip inductors) including overseas products.

【0006】[0006]

【表1】 [Table 1]

【0007】現用移動体通信の900MHz帯で使用す
るインダクタとしては100nH程度、近くサービス開
始される予定の2GHz帯用としては47nH程度、そ
れぞれ主同軸線路のVSWR特性の悪化を防ぐ目的で必
要になる。表1のようにいずれも直流電流容量は1A以
下で、1Aを超えるものは自己共振周波数が700MH
z以下となっている。
[0007] An inductor used in the 900 MHz band of the current mobile communication is about 100 nH, and an inductor used in the 2 GHz band, which is expected to start service soon, is about 47 nH. . As shown in Table 1, the DC current capacity is 1 A or less, and those exceeding 1 A have a self-resonant frequency of 700 MHz.
z or less.

【0008】[0008]

【課題を解決するための手段】今回考案せる解決手段は
インダクタを用いて高周波信号の電源端子側への流出を
阻止する方法ではなく、図3のように主同軸線路60
1,602に分岐的に設けた603,604,605で
形成される三重同軸線路の内側同軸線路603,604
(1/4波長短絡同軸回路を形成する)の短絡板611
の外壁と電源端子607の中心コンタクト612を接続
することによって、主同軸線路への電源重畳機能を実現
する。本案によれば内部導体601のT字形分岐点60
8から電源端子側を見た入力インピーダンスは、603
と604で構成される1/4波長短絡同軸線路固有の高
インピーダンス特性によって極めて大きいために、高周
波信号の電源端子側への流出は完全に阻止出来る訳であ
る。この場合短絡同軸線路の外部導体604と、これを
囲む外部導体605の間は絶縁分離されているが、1/
4波長短絡同軸線路の入力端部609と主同軸線路外部
導体の分岐点610間から電源端子側を見た入力インピ
ーダンスは1/4波長開放線路特有の低インピーダンス
特性と、さらに604と605によって構成される同軸
線路の特性インピーダンスを数Ω以下に設計することに
よって入力インピーダンスをより低くして、高周波的に
609と610は短絡していると見なせる状態を構築し
ている。このようにして1/4波長短絡同軸回路を直流
的に絶縁分離することによって電源重畳が可能となる。
本案によれば集中インダクタンス素子(インダクタ)を
主同軸線路の内部導体に接続する図2の汎用方式と異な
り分布定数線路を用いるため、原理的に周波数上昇の制
約を受けない(同軸線路の遮断周波数制限を除く)。原
理的に電源側への高周波成分の漏洩は少ないが、バイパ
ス・コンデンサ606は使用周波数帯域外信号成分阻止
の目的で挿入するもので、貫通型コンデンサもしくは内
部の部品設計によってコンデンサ成分を付加する。
The solution proposed in the present invention is not a method of using a inductor to prevent a high-frequency signal from flowing out to the power supply terminal side.
1, 602, the inner coaxial lines 603, 604 of the triple coaxial line formed by 603, 604, 605 divergently provided.
(To form a 1/4 wavelength short circuit coaxial circuit) short plate 611
By connecting the center wall 612 of the power supply terminal 607 to the outer wall of the power supply terminal 607, a function of superimposing the power supply on the main coaxial line is realized. According to the present invention, the T-shaped branch point 60 of the inner conductor 601 is provided.
The input impedance when looking at the power supply terminal side from 8 is 603
And 604, which are extremely large due to the high impedance characteristic inherent in the 1/4 wavelength short-circuited coaxial line, so that the outflow of the high-frequency signal to the power supply terminal side can be completely prevented. In this case, the outer conductor 604 of the short-circuited coaxial line and the outer conductor 605 surrounding the outer conductor 604 are insulated and separated.
The input impedance as viewed from the power supply terminal side between the input end 609 of the four-wavelength short-circuited coaxial line and the branch point 610 of the outer conductor of the main coaxial line is constituted by the low impedance characteristic peculiar to the quarter-wavelength open line, and 604 and 605. By designing the characteristic impedance of the coaxial line to be several ohms or less, the input impedance is further reduced, and a state where 609 and 610 can be regarded as being short-circuited at high frequencies is established. In this way, the power supply can be superimposed by isolating the quarter-wave short-circuit coaxial circuit in a DC manner.
According to the present invention, unlike the general-purpose system of FIG. 2 in which a lumped inductance element (inductor) is connected to the inner conductor of the main coaxial line, a distributed constant line is used, so that there is no restriction on the frequency rise in principle (the cutoff frequency of the coaxial line). Excluding restrictions). Although the leakage of high-frequency components to the power supply side is small in principle, the bypass capacitor 606 is inserted for the purpose of blocking signal components outside the operating frequency band, and a capacitor component is added by a through-type capacitor or internal component design.

【0009】[0009]

【発明実施の形態】以下、本発明の一実施例を図面参照
して詳細に説明する。図1は本発明の一実施例である同
軸型電源注入・抽出変換器の構造例を示す一部切欠側面
図である、この変換器は両端部がフランジ構造を示して
おり、インシュレータ(絶縁物支持板)102によって
保持された内部導体101のほぼ中央部に主同軸線路の
内部導体と1/4波長短絡同軸回路の内部導体400を
直接々接続する。1/4波長短絡同軸回路の外部導体4
03とこれを取り囲む外部導体504は1/4波長終端
短短絡同軸線路の外部導体403との高周波的な結合に
よって、1/4波長開放線路を構成する。従って主同軸
線路の外部導体分岐部104と外部導体403の先端部
間のインピーダンスは1/4波長開放線路特有の低イン
ピーダンス特性によって、高周波的には短絡状態と等価
な作用を示す。 従って、1/4波長短絡同軸回路は主
同軸線路と、直流的には絶縁されていても、高周波的に
は通常の1/4波長短絡同軸線路と同様な高いインピー
ダンス特性を示す。外部導体403の外壁406から電
源端子内部コンタクト502を貫通コンデンサ503で
接続している。インシュレータ404、405は外部導
体403と504を正しく同軸に保持する役割を果たし
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a partially cutaway side view showing an example of the structure of a coaxial power injection / extraction converter according to one embodiment of the present invention. This converter has a flange structure at both ends, and an insulator (insulator). The inner conductor of the main coaxial line and the inner conductor 400 of the 1/4 wavelength short-circuited coaxial circuit are directly connected to substantially the center of the inner conductor 101 held by the support plate 102. External conductor 4 of 1/4 wavelength short circuit coaxial circuit
03 and the outer conductor 504 surrounding it form a 1/4 wavelength open line by high-frequency coupling with the outer conductor 403 of the 1/4 wavelength terminated short-circuit coaxial line. Therefore, the impedance between the outer conductor branch portion 104 of the main coaxial line and the distal end of the outer conductor 403 exhibits an operation equivalent to a short-circuited state at high frequencies due to the low impedance characteristic peculiar to the 1/4 wavelength open line. Therefore, the quarter-wavelength short-circuited coaxial circuit exhibits the same high impedance characteristics as a normal quarter-wavelength short-circuited coaxial line in terms of high frequency even though it is insulated from the main coaxial line in DC. A power terminal internal contact 502 is connected to an outer wall 406 of the outer conductor 403 by a through capacitor 503. Insulators 404 and 405 serve to properly hold outer conductors 403 and 504 coaxially.

【0010】<他の実施形態>なお、本発明は上記実施
形態に限定されたものではなく、その他種々の実施形態
を包含するものである。すなわち、上記実施形態では短
絡同軸線路の内部導体400と内側外部導体403を、
それぞれ独立した部品によって短絡同軸回路を形成して
いるが、使用周波数の上昇と共に1/4波長短絡同軸線
路の長さも短くなってくるので、絶縁板401を省略し
て400、403を統合して一体加工構造としてもよ
い。
<Other Embodiments> The present invention is not limited to the above embodiments, but includes various other embodiments. That is, in the above embodiment, the inner conductor 400 and the inner outer conductor 403 of the short-circuited coaxial line are
Although the short-circuit coaxial circuit is formed by independent components, the length of the 1/4 wavelength short-circuit coaxial line becomes shorter as the operating frequency increases. Therefore, the insulating plate 401 is omitted and the 400 and 403 are integrated. It may be an integrated processing structure.

【0011】さらに、上記実施形態では短絡同軸線路お
よび開放線路を空気絶縁構造としているが、誘電体損失
の少ないポリエチレン、ポリスチレン、ポリ弗化エチレ
ン、セラミックス等による充実絶縁や、空気層を入れた
複合絶縁構造としてもよい。これらの構造によれば、短
絡同軸線路の物理的な長さを短くする利点がある。
Further, in the above embodiment, the short-circuited coaxial line and the open line have an air insulation structure. However, solid insulation using polyethylene, polystyrene, polyfluoroethylene, ceramics or the like having a small dielectric loss, or a composite including an air layer is provided. An insulating structure may be used. According to these structures, there is an advantage that the physical length of the short-circuited coaxial line is shortened.

【0012】さらに、上記実施形態では短絡同軸線路お
よび開放同軸線路をリジド構造としているが、これをセ
ミリジド同軸ケーブルやフレキシブル同軸ケーブルによ
って短絡同軸回路、開放同軸線路を構成して、本発明の
電源注入・抽出器を製作してもよい。とくに前者のセミ
リジド同軸ケーブルの場合においては小型で簡易な電源
注入・抽出器を製作する際に有効な手段となる。 後者
のフレキシブル同軸ケーブルによる場合は、比較的低い
使用周波数用の電源注入・抽出器を製作する際の実用的
な構造となり得る。また、同軸線路の断面形状は円形に
限らず方形同軸線路にも当然適用可能である。
Further, in the above embodiment, the short-circuit coaxial line and the open coaxial line have a rigid structure. -An extractor may be manufactured. In particular, the former semi-rigid coaxial cable is an effective means for producing a small and simple power injection / extractor. In the case of the latter flexible coaxial cable, it can be a practical structure for producing a power injection / extractor for a relatively low operating frequency. Further, the cross-sectional shape of the coaxial line is not limited to a circular shape, but is also applicable to a rectangular coaxial line.

【0013】[0013]

【VSWR特性の計算例1】本発明の原理的な有効性を
説明するため、主同軸線路の特性インピーダンスを50
Ω、短絡同軸線路の特性インピーダンスを72Ω、三重
同軸線路の特性インピーダンスを6オームとしたときの
810〜970MHz帯での計算結果を表1に示す。
[Calculation Example 1 of VSWR Characteristics] In order to explain the principle effectiveness of the present invention, the characteristic impedance of the main coaxial line is set to 50.
Table 1 shows the calculation results in the 810 to 970 MHz band when Ω, the characteristic impedance of the short-circuited coaxial line is 72Ω, and the characteristic impedance of the triple coaxial line is 6 ohms.

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【VSWR特性の計算例2】同上計算例1と同様の条件
で、使用周波数帯域を1.9〜2.1GHzとして計算
した結果を表3に示す。
[Calculation Example 2 of VSWR Characteristics] Table 3 shows the calculation results under the same conditions as in Calculation Example 1 above, with the operating frequency band being 1.9 to 2.1 GHz.

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【発明の効果】以上説明したように、請求項1記載の発
明になる電源注入・抽出器によれば電源注入・抽出個所
が高周波的に電位の無い1/4波長短絡同軸線路の外面
になるために電源端子の設計上の制約も少なく、インダ
クタの選定上の自己共振周波数や電流容量などの数々の
制約もなく、将来予測される2GHz帯以上の周波数に
も適応可能である。また、高周波信号に対する電圧定在
波比VSWRや挿入損失は1/4波長短絡型避雷器とほ
ぼ同様の低VSWR、低損失な高周波特性を得ることが
出来る。
As described above, according to the power injection / extraction device according to the first aspect of the present invention, the power injection / extraction point is the outer surface of the 1/4 wavelength short-circuit coaxial line having no high-frequency potential. Therefore, there are few restrictions on the design of the power supply terminal, and there are no many restrictions such as a self-resonant frequency and a current capacity in selecting an inductor, and the present invention can be applied to a frequency of 2 GHz band or more expected in the future. In addition, the voltage standing wave ratio VSWR and the insertion loss with respect to the high-frequency signal can have the same low VSWR and low-loss high-frequency characteristics as those of the 1/4 wavelength short-circuit arrester.

【0018】[0018]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態による同軸型電源注入・抽出
器の一例を示す半断面図である。
FIG. 1 is a half sectional view showing an example of a coaxial power injection / extraction device according to an embodiment of the present invention.

【図2】従来例の電源注入方式の原理図である。FIG. 2 is a diagram illustrating the principle of a conventional power injection method.

【図3】本発明の電源注入・抽出方式の原理説明図であ
る。
FIG. 3 is a diagram illustrating the principle of a power injection / extraction system according to the present invention.

【図4】本発明の実施形態による片端フランジ、片端N
型接栓タイプの一例を示す外観図である。
FIG. 4 shows a one-end flange, one-end N according to an embodiment of the present invention.
It is an external view which shows an example of a mold plug type.

【図5】本発明の実施形態によるL形タイプ同軸型電源
注入・抽出器の一例を示す半断面図である。
FIG. 5 is a half sectional view showing an example of an L-type coaxial power injection / extraction device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

301 接続金物 302 丸フランジ 303 ボデイ 304 ガスケット 401 インシュレータ 407 ナット 500 ボデイ 501 インシュレータ 505 ガスケット 301 Connection hardware 302 Round flange 303 Body 304 Gasket 401 Insulator 407 Nut 500 Body 501 Insulator 505 Gasket

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 主同軸線路の途中に分岐的に設けた三重
同軸線路の1/4波長の奇数倍電気長を持つ短絡同軸線
路を形成する内側同軸線路の外部導体端部外面と三重同
軸線路を形成する外部導体に設けた電源注入・抽出用同
軸コネクタの内部導体を接続する接続子を以って、主同
軸線路の内部導体・外部導体間に電源供給する同軸型電
源注入・抽出装置。
1. An outer surface of an outer conductor end of an inner coaxial line which forms a short-circuited coaxial line having an odd-numbered electrical length of a quarter wavelength of a triaxial line provided in the middle of a main coaxial line and a triaxial line. A coaxial power injection / extraction device for supplying power between an inner conductor and an outer conductor of a main coaxial line by using a connector for connecting an inner conductor of a power injection / extraction coaxial connector provided on an outer conductor forming the above.
JP2000203170A 2000-07-05 2000-07-05 Coaxial power injecting and extracting device Pending JP2002025717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000203170A JP2002025717A (en) 2000-07-05 2000-07-05 Coaxial power injecting and extracting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000203170A JP2002025717A (en) 2000-07-05 2000-07-05 Coaxial power injecting and extracting device

Publications (1)

Publication Number Publication Date
JP2002025717A true JP2002025717A (en) 2002-01-25

Family

ID=18700607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000203170A Pending JP2002025717A (en) 2000-07-05 2000-07-05 Coaxial power injecting and extracting device

Country Status (1)

Country Link
JP (1) JP2002025717A (en)

Similar Documents

Publication Publication Date Title
CN102017301B (en) Broadband antenna
US6407647B1 (en) Integrated broadside coupled transmission line element
KR20050055763A (en) Arrangement of a data coupler for power line communications
US8599528B2 (en) DC and RF pass broadband surge suppressor
CN108292798A (en) low profile antenna device
US20050243493A1 (en) Interference filter and lightning conductor device
WO1999026311A1 (en) Compact antenna feed circuits
US6642902B2 (en) Low loss loading, compact antenna and antenna loading method
JPH11505387A (en) Antenna assembly
US10804863B2 (en) System and method for amplifying and combining radiofrequency power
WO2004097978A1 (en) Ferrite loaded meander line loaded antenna
JP2002025717A (en) Coaxial power injecting and extracting device
US6577155B2 (en) Apparatus and method for impedance control
US10290928B2 (en) Antenna
US4439772A (en) Inductor type half wave antenna
US4156173A (en) Input impedance matching of a bipolar transistor employing a coaxial transformer
JPH02250405A (en) On-vehicle common antenna system
JP2005534218A (en) Multi tap coil
EP3972048A1 (en) Bias tee apparatus and method of use thereof
CN115882790B (en) Amplifier chip output circuit, power supply method, chip and electronic equipment
US11228079B1 (en) Balun
JP2002025745A (en) Gaseous discharge type coaxial lightning arrester
CN210296591U (en) High-power short-wave broadband antenna balun
RU192509U1 (en) RF resonant transformer for powering Paul trap electrodes
JP2004266526A (en) Antenna assembly, portable wireless unit, and portable television