JP2002025530A - Thin battery - Google Patents

Thin battery

Info

Publication number
JP2002025530A
JP2002025530A JP2000204856A JP2000204856A JP2002025530A JP 2002025530 A JP2002025530 A JP 2002025530A JP 2000204856 A JP2000204856 A JP 2000204856A JP 2000204856 A JP2000204856 A JP 2000204856A JP 2002025530 A JP2002025530 A JP 2002025530A
Authority
JP
Japan
Prior art keywords
resin layer
separator
electrode
adhesive resin
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000204856A
Other languages
Japanese (ja)
Inventor
Toru Tabuchi
田渕  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2000204856A priority Critical patent/JP2002025530A/en
Publication of JP2002025530A publication Critical patent/JP2002025530A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin battery which is superior in safety by adhering an electrode and a separator with an adhesive resin layer and by finding the optimum filler material contained in the resin layer. SOLUTION: In the thin battery that is equipped with the first and the second electrode, which respectively has active substances and one of which becomes a positive electrode and the other becomes a negative electrode, and with a separator which is between those electrodes and which retains an electrolyte, at least one of the first and the second electrode and the separator are adhered with the adhesive resin layer containing a filler composed of polypropylene.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、薄型電池、特に
安全性に優れた非水電解質薄型電池に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin battery, particularly a nonaqueous electrolyte thin battery excellent in safety.

【0002】[0002]

【従来の技術】正極及び負極とセパレータとを接着性樹
脂層で接着することにより、それら蓄電要素を剛性材料
からなる定形の容器ではなく柔軟性材料からなる袋に収
納しても一定の電極間隔と電気的接触を保った電池構造
が知られている(PCT/JP98/00152)。こ
れによって、電池を益々薄くできるようになった。上記
公報に記載の電池における接着性樹脂層は絶縁性である
ことから、それが電極間のイオン伝導を遮断することの
無いように、その中にセラミックなどからなるフィラー
を添加することにより、製造時に極板内への接着剤の浸
透することを防ぎつつ多孔性を持たせて接着強度を維持
しつつ電池特性を得ている。
2. Description of the Related Art By adhering a positive electrode, a negative electrode and a separator with an adhesive resin layer, even if these electric storage elements are stored not in a fixed container made of a rigid material but in a bag made of a flexible material, a constant electrode spacing can be obtained. (PCT / JP98 / 00152) is known. This has made it possible to make batteries even thinner. Since the adhesive resin layer in the battery described in the above publication is insulative, it is manufactured by adding a filler made of ceramic or the like into it so that it does not block ionic conduction between the electrodes. At the same time, battery characteristics are obtained while maintaining adhesive strength by providing porosity while preventing the adhesive from penetrating into the electrode plate.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記公報に記
載の電池は、接着性樹脂層の多孔度に着目しているに止
まり、薄型電池の接着性樹脂層のフィラーとして最適の
材料は示唆されていない。それ故、この発明の課題は、
上記公報とは異なり最適のフィラー材料を見出して新規
の安全機構を備えて安全性に優れた薄型電池を提供する
ことにある。
However, the battery described in the above publication focuses only on the porosity of the adhesive resin layer, and suggests an optimum material as a filler for the adhesive resin layer of a thin battery. Not. Therefore, the object of the present invention is to
It is an object of the present invention to find a suitable filler material unlike the above-mentioned publication and to provide a thin battery having a novel safety mechanism and excellent safety.

【0004】[0004]

【課題を解決するための手段】その課題を解決するため
に、この発明の薄型電池は、一方が正極、他方が負極と
なり、各々活物質を有する第一、第二の電極と、それら
電極間に介在して電解質を保持するセパレータとを備え
る薄型電池において、第一、第二の電極の少なくとも一
方とセパレータとが、ポリプロピレンからなるフィラー
を含む接着性樹脂層にて接着されていることを特徴とす
る。
In order to solve the problem, a thin battery according to the present invention comprises a first electrode and a second electrode each having a positive electrode and the other being a negative electrode, each of which has an active material, and an electrode between the electrodes. In a thin battery including a separator that holds an electrolyte interposed therebetween, at least one of the first and second electrodes and the separator are bonded by an adhesive resin layer containing a filler made of polypropylene. And

【0005】ポリプロピレンは、他の有機高分子に比べ
て低温で軟化し始める一方、軟化後の絶縁性に優れる。
そのため、内部短絡や高温環境下で電池の温度が異常に
上昇したとき、速やかに軟化して接着性樹脂層の孔を塞
いで電極間を絶縁し、温度上昇を抑制する。この点、高
温下でも軟化しないセラミックのフィラーと著しく相違
する。
[0005] Polypropylene begins to soften at a lower temperature than other organic polymers, but has excellent insulating properties after softening.
Therefore, when the temperature of the battery rises abnormally due to an internal short circuit or a high-temperature environment, the battery is quickly softened, closes the holes of the adhesive resin layer, insulates the electrodes, and suppresses the temperature rise. This point is significantly different from a ceramic filler which does not soften even at high temperatures.

【0006】上記の接着性樹脂層は、正負いずれかの電
極とセパレータとの間に存在していればよい。過充電時
では先ず電解液と負極とが反応して発熱し、その後に電
解液と正極とが反応して熱逸走に至ると考えられるの
で、電解液といずれかの電極との反応を抑制することが
できれば、接着性樹脂層が全く存在しないものよりも安
全性が向上するからである。
The above-mentioned adhesive resin layer may be present between any of the positive and negative electrodes and the separator. At the time of overcharging, it is considered that the electrolyte and the negative electrode react first to generate heat, and then the electrolyte and the positive electrode react and lead to thermal runaway, so that the reaction between the electrolyte and any of the electrodes is suppressed. This is because if it can be performed, the safety is improved as compared with the case where the adhesive resin layer is not present at all.

【0007】[0007]

【発明の実施の形態】上記の接着性樹脂層に用いる樹脂
としては通常、熱可塑性樹脂であり、例えば、乳化重合
したポリビニリデンフルオライド(PVdF)とヘキサ
フルオロプロピレンとの共重合体、PVdF単独、ポリ
エチレンオキシド(PEO)、ポリアクリロニトリル
(PAN)などが挙げられる。フィラーの平均粒径は
0.5〜5μmの範囲が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The resin used for the above-mentioned adhesive resin layer is usually a thermoplastic resin, for example, a copolymer of polyvinylidene fluoride (PVdF) emulsion-polymerized with hexafluoropropylene, PVdF alone. , Polyethylene oxide (PEO), polyacrylonitrile (PAN) and the like. The average particle size of the filler is preferably in the range of 0.5 to 5 μm.

【0008】[0008]

【実施例】−実施例1− 蓄電要素として、アルミニウム箔からなる集電体の両面
にリチウムコバルト複合酸化物LiCoO290重量%
の活物質層が形成された正極板と、銅箔からなる集電体
の両面に炭素90重量%の活物質層が形成された負極板
と、ポリエチレンシートからなる透気度(25℃)20
0秒/100ccのセパレータとを準備した。正極活物
質層及び負極活物質層の集電体片面における重量は各々
1g/100cm2、多孔度は35%であった。
EXAMPLES - as Example 1 storage element, lithium cobalt complex oxide on both sides of the current collector made of aluminum foil LiCoO 2 90 wt%
A positive electrode plate having an active material layer formed thereon, a negative electrode plate having a 90% by weight carbon active material layer formed on both surfaces of a current collector made of copper foil, and an air permeability (25 ° C.) 20 made of a polyethylene sheet.
A 0 second / 100 cc separator was prepared. The weight of each of the positive electrode active material layer and the negative electrode active material layer on one surface of the current collector was 1 g / 100 cm 2 , and the porosity was 35%.

【0009】そして、負極板の両面にPVdFと後述の
平均粒径1.5μmのフィラーとの混合物を塗布して接
着性樹脂層を形成し、セパレータを負極板のほぼ全面に
貼り付けてセパレータ/負極板/セパレータからなる積
層体を作製した。接着性樹脂層は、微視的には固形フィ
ラーの周囲にPVdFが付着していて固形フィラー同士
の間隙によって多孔性が得られると同時にPVdFによ
って接着性を有するものである。
Then, a mixture of PVdF and a filler having an average particle diameter of 1.5 μm described below is applied to both surfaces of the negative electrode plate to form an adhesive resin layer, and the separator is attached to almost the entire surface of the negative electrode plate to form a separator / separator. A laminate composed of the negative electrode plate / separator was produced. In the adhesive resin layer, PVdF is microscopically adhered to the periphery of the solid filler, and porosity is obtained by the gap between the solid fillers, and at the same time, the adhesive property is provided by the PVdF.

【0010】別途、正極板の両面にも接着性樹脂層を形
成し、待機させておき、積層体の外側に接着性樹脂層の
付いた正極板を重ね合わせて積層体とともに金属製の芯
の外周に渦状に巻き付けた。巻き終わった後、蓄電要素
から芯を軸方向に引き抜き又は押し出すことによって芯
を取り除いた。
[0010] Separately, an adhesive resin layer is formed on both sides of the positive electrode plate and kept in a standby state, and a positive electrode plate with an adhesive resin layer is laminated on the outside of the laminate to form a metal core together with the laminate. It was spirally wound around the circumference. After the winding, the core was removed by axially pulling or pushing the core from the electricity storage element.

【0011】その後、この蓄電要素を金属樹脂ラミネー
トフィルムからなる袋状の電池容器に収納し、電解液を
注入し、密閉することによって薄型電池が完成した。注
入した電解液は、エチレンカーボネート(EC)とジエ
チルカーボネート(DEC)との1:1混合溶媒に1M
濃度のLiPF6を溶解したものである。
Thereafter, the storage element was housed in a bag-shaped battery container made of a metal resin laminated film, an electrolyte was injected, and the battery was sealed to complete a thin battery. The injected electrolyte was mixed with a 1: 1 mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) at 1M.
This is a solution in which a concentration of LiPF 6 is dissolved.

【0012】この電池を1A、4.1Vの定電流定電圧
によって2時間充電し、その後放電状態で内部抵抗を測
定した。別途、接着性樹脂層に含ませるフィラーと同一
材料の厚み25μmのフィルムを示差走査熱量測定(D
SC)装置にかけて予め軟化開始温度を測定しておい
た。DSCの標準物質はポリスチレンとした。そして、
電池を軟化開始温度より20℃高い温度に保って5秒後
の内部抵抗を測定した。これらの結果を表1に示す。
This battery was charged at a constant current and a constant voltage of 1 A and 4.1 V for 2 hours, and then the internal resistance was measured in a discharged state. Separately, a 25 μm thick film of the same material as the filler contained in the adhesive resin layer was subjected to differential scanning calorimetry (D
SC) The softening start temperature was measured in advance by using an apparatus. The standard material for DSC was polystyrene. And
The battery was kept at a temperature 20 ° C. higher than the softening start temperature, and the internal resistance was measured after 5 seconds. Table 1 shows the results.

【0013】[0013]

【表1】 表1に見られるように、ポリプロピレンからなるフィラ
ーは、電池の熱逸走が生じると予想される温度より低い
温度で軟化し始める。しかも軟化後の内部抵抗を急速に
上昇させて電極間を絶縁させる。従って、このフィラー
を用いた薄型電池は安全である。
[Table 1] As can be seen in Table 1, the filler made of polypropylene begins to soften at a temperature lower than the temperature at which thermal runaway of the battery is expected to occur. Moreover, the internal resistance after softening is rapidly increased to insulate the electrodes. Therefore, a thin battery using this filler is safe.

【0014】−実施例2− 実施例1においては正極とセパレータとの間、及び負極
とセパレータとの間に種々のフィラーを含む接着性樹脂
層を介在させて各電極とセパレータを接着した。実施例
1の電池No.1に1Aで10Vまで充電する過充電試
験を行い、その後の電池の状態を観察した。
Example 2 In Example 1, each electrode was bonded to the separator with an adhesive resin layer containing various fillers interposed between the positive electrode and the separator and between the negative electrode and the separator. The battery No. of Example 1 An overcharge test of charging 1 to 1 V at 1 A was performed, and the state of the battery was observed thereafter.

【0015】負極とセパレータとの間に接着性樹脂層が
存在しない以外は電池No.1と同形同質の電池(N
o.5と称する)、正極とセパレータとの間に接着性樹
脂層が存在しない以外は電池No.1と同形同質の電池
(No.6と称する)、ポリプロピレンフィラーに代え
てアルミナフィラーを用いた以外は電池No.1と同形
同質の電池(No.7と称する)についても同様の過充
電試験を行った。観察結果を表2に示す。
Battery No. 1 except that no adhesive resin layer was present between the negative electrode and the separator. Batteries of the same type and quality as
o. Battery No. 5) except that no adhesive resin layer was present between the positive electrode and the separator. Batteries of the same shape and quality as No. 1 (referred to as No. 6), except that an alumina filler was used in place of the polypropylene filler. A similar overcharge test was performed on a battery of the same shape and the same quality as No. 1 (referred to as No. 7). Table 2 shows the observation results.

【0016】[0016]

【表2】 表2から、正負いずれかの電極とセパレータとの間に、
PPフィラーを含む接着性樹脂層を介在させることによ
り、安全性が向上することが明らかである。
[Table 2] From Table 2, between any of the positive and negative electrodes and the separator,
It is clear that the safety is improved by interposing the adhesive resin layer containing the PP filler.

【0017】[0017]

【発明の効果】以上の通り、この発明の薄型電池は、蓄
電要素が袋状の容器に収納されていても電極間隔を一定
に保つことができるばかりか、高温時の安全性に優れる
ので、携帯電話などの小型電子機器の電源に有用であ
る。
As described above, according to the thin battery of the present invention, not only can the electrode interval be kept constant even when the storage element is housed in a bag-like container, and the safety at high temperatures is excellent. It is useful as a power source for small electronic devices such as mobile phones.

フロントページの続き Fターム(参考) 5H021 AA06 BB11 EE04 5H024 AA11 BB14 CC04 DD09 DD14 EE09 5H029 AJ12 AK03 AL06 AM03 AM05 AM07 BJ04 BJ12 CJ05 DJ04 DJ06 Continued on the front page F term (reference) 5H021 AA06 BB11 EE04 5H024 AA11 BB14 CC04 DD09 DD14 EE09 5H029 AJ12 AK03 AL06 AM03 AM05 AM07 BJ04 BJ12 CJ05 DJ04 DJ06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一方が正極、他方が負極となり、各々活物
質を有する第一、第二の電極と、それら電極間に介在し
て電解質を保持するセパレータとを備える薄型電池にお
いて、第一、第二の電極の少なくとも一方とセパレータ
とが、ポリプロピレンからなるフィラーを含む接着性樹
脂層にて接着されていることを特徴とする薄型電池。
1. A thin battery comprising a positive electrode and a negative electrode, each having a first electrode and a second electrode each having an active material, and a separator interposed between the electrodes to hold an electrolyte. A thin battery, wherein at least one of the second electrodes and the separator are bonded with an adhesive resin layer containing a filler made of polypropylene.
JP2000204856A 2000-07-06 2000-07-06 Thin battery Pending JP2002025530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000204856A JP2002025530A (en) 2000-07-06 2000-07-06 Thin battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000204856A JP2002025530A (en) 2000-07-06 2000-07-06 Thin battery

Publications (1)

Publication Number Publication Date
JP2002025530A true JP2002025530A (en) 2002-01-25

Family

ID=18702048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000204856A Pending JP2002025530A (en) 2000-07-06 2000-07-06 Thin battery

Country Status (1)

Country Link
JP (1) JP2002025530A (en)

Similar Documents

Publication Publication Date Title
US5834135A (en) Multilayered gel electrolyte bonded rechargeable electrochemical cell
TW496007B (en) Method of making bonded-electrode rechargeable electrochemical cells
US9269938B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US10096811B2 (en) Separator for a non-aqueous secondary battery and non-aqueous secondary battery
JP5328034B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
US9431641B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
KR20180077190A (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
US9882189B2 (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2012195314A (en) Nonaqueous electrolyte secondary battery
KR20160114587A (en) Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
JP5005935B2 (en) Nonaqueous electrolyte secondary battery
JP2000030742A (en) Lithium-ion secondary battery element
JP4382557B2 (en) Non-aqueous secondary battery
JP2005190912A (en) Lithium secondary battery and its manufacturing method
JP2014026946A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP4142921B2 (en) Lithium ion secondary battery
JP7334693B2 (en) power storage device
JP2008059966A (en) Nonaqueous secondary battery
JPH11250873A (en) Nonaqueous electrolyte secondary battery
JP5352075B2 (en) Lithium secondary battery
KR102119050B1 (en) Non-aqueous electrolyte rechargeable battery pack
JP2002025620A (en) Nonaqueous electrolyte secondary battery
CN113851758B (en) Packaging material, electrochemical device and electronic device containing packaging material
JP2002025530A (en) Thin battery
JP4736329B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213