JP2002024754A - Optical information reader - Google Patents

Optical information reader

Info

Publication number
JP2002024754A
JP2002024754A JP2000245294A JP2000245294A JP2002024754A JP 2002024754 A JP2002024754 A JP 2002024754A JP 2000245294 A JP2000245294 A JP 2000245294A JP 2000245294 A JP2000245294 A JP 2000245294A JP 2002024754 A JP2002024754 A JP 2002024754A
Authority
JP
Japan
Prior art keywords
linear
light receiving
area
reflection
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000245294A
Other languages
Japanese (ja)
Other versions
JP4191883B2 (en
JP2002024754A5 (en
Inventor
Yasumi Kato
保美 加藤
Haruhiko Ishima
春彦 猪島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoelectronics Co Ltd
Original Assignee
Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoelectronics Co Ltd filed Critical Optoelectronics Co Ltd
Priority to JP2000245294A priority Critical patent/JP4191883B2/en
Publication of JP2002024754A publication Critical patent/JP2002024754A/en
Publication of JP2002024754A5 publication Critical patent/JP2002024754A5/ja
Application granted granted Critical
Publication of JP4191883B2 publication Critical patent/JP4191883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical information reader capable of reading an optical pattern having a long horizontal width in the direction of reading column singly. SOLUTION: This optical information reader includes a light illumination means, a converging optical system 5, a two-dimensional electronic scanning type reading sensor 8, a signal binarization means, and a signal overlapping part cancelling means. The two-dimensional electronic scanning type reading sensor 8 includes, for example, a first light receive region 81 and a second light receive region 82, and the converging optical system 5 includes, for example, a first image formation lens 51 and a second image formation lens 52. When the optical pattern 3 is put across the maximum reading distance in the front so as to be long horizontally, reflected light fluxes originated in a first reflection region 3c1 and a second reflection region 3c2 in a linear reflection region 3c are photoelectrically converted in the first and second linear light receive regions 81 and 82, respectively. A signal overlapping part originated in overlapping parts in the first and second reflection regions 3c1 and 3c2 is cancelled by the signal overlapping part cancellation means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、桁数が多
大で横幅の長大なバーコード等の光学的情報を読取るこ
とが出来る、光学的情報読取装置に関する。特に、バー
コード読取口幅を超える長大な横幅と多大な桁数を有す
るバーコード等の光学的情報を読取ることが出来る、電
子走査形の光学的情報読取装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information reading apparatus capable of reading optical information such as a bar code having a large number of digits and a large width. In particular, the present invention relates to an electronic scanning type optical information reading apparatus capable of reading optical information such as a bar code having a large width exceeding a bar code reading opening width and a large number of digits.

【0002】[0002]

【従来の技術】従来の技術について説明する。従来の光
学的情報読取装置は、タッチ式スキャナ、ペン式スキャ
ナ及びレーザスキャナの三つに大別される。従来のタッ
チ式スキャナは、光学的記録媒体(被読取部材)に記録
された光学的パターンを照明手段で照明し、上記光学的
パターンからの散乱反射によって成る光像を、一次元電
子走査形読取センサ(例えばCCD)上に結像させ、こ
れを当該一次元電子走査形読取センサの光電変換機能に
よって、時間軸上の電気的アナログ信号に変換し、この
信号を電気的に処理して、当該光学的パターンを読取る
ものである。そして、この光学的パターンとしては、主
としてバーコードシンボル類が使用されて来た。又、光
学的記録媒体(被読取部材)としては、おおむね、表面
が硬く且つ平坦な部材が使用されて来た。
2. Description of the Related Art A conventional technique will be described. Conventional optical information reading devices are roughly classified into three types: touch-type scanners, pen-type scanners, and laser scanners. 2. Description of the Related Art A conventional touch-type scanner illuminates an optical pattern recorded on an optical recording medium (a member to be read) by an illuminating unit, and reads a light image formed by scattering and reflection from the optical pattern in a one-dimensional electronic scanning type. An image is formed on a sensor (for example, a CCD), which is converted into an electric analog signal on a time axis by the photoelectric conversion function of the one-dimensional electronic scanning reading sensor, and this signal is processed electrically to obtain the analog signal. This is for reading an optical pattern. As the optical pattern, bar code symbols have been mainly used. In addition, as an optical recording medium (member to be read), a member having a generally hard and flat surface has been used.

【0003】しかるところ、物品情報の登録処理や情報
管理等を行う分野が、小売り、FA(Factory
Autmation)、流通、サービス業、OA(Of
fice Autmation)、等々と拡がるにつれ
て、取り扱う物品や情報の種類が多岐に上り、且つ、情
報量が益々増大した。その結果、幾つかの注目すべき変
化が生じた。第一に、かかる情報量の増大に伴って、バ
ーコードシンボル類の最大構成桁数が益々長大化した。
そして、被読取部材(例えばラベル)の読取桁方向の長
さが15cmから20cmに及ぶものも出現した。
[0003] However, the fields of performing registration processing and information management of article information are retail, FA (Factory).
Automation, distribution, service industry, OA (Of
As a result, the types of articles and information to be handled have been diversified, and the amount of information has further increased. The result has been some notable changes. First, as the amount of information has increased, the maximum number of constituent digits of barcode symbols has been increasing.
Some of the members to be read (eg, labels) have a length in the reading digit range of 15 cm to 20 cm.

【0004】第二に、光学的記録媒体(被読取部材)と
しては、表面が硬く且つ曲面状の部材や、表面が柔らか
く且つ不定形な部材も、使用されるようになった。例え
ば、バーコードシンボルが印刷されたラベルを袋物や缶
物の表面に貼付したり、或はバーコードシンボル自体を
袋や缶の表面に直接印刷したり、するようにもなった。
Second, as the optical recording medium (member to be read), a member having a hard surface and a curved surface, and a member having a soft surface and an irregular shape have come to be used. For example, a label on which a barcode symbol is printed is attached to the surface of a bag or can, or the barcode symbol itself is directly printed on the surface of a bag or can.

【0005】第三に、バーコードシステムの進展と相ま
って、小売り、FA、OA、物流の用途において、袋物
のように表面の柔らかな部材に付されたJAN、EA
N、UPCのようなバーコードシンボルと、Code3
9、Code128、NW7、ITFのような構成桁数
が不定長のバーコードシンボルとが、混在するようにも
なった。
[0005] Third, in conjunction with the development of barcode systems, JAN, EA attached to members having a soft surface such as bags in retail, FA, OA, and logistics applications.
N, barcode symbols such as UPC, Code3
Barcode symbols having an indefinite length such as 9, Code128, NW7, and ITF are mixed.

【0006】[0006]

【従来技術の問題点】第一に、読取桁方向に長大な光学
的パターンを上記従来のタッチ式スキャナで読取可能に
しようとすると、その読取口幅を長大にしなければなら
ない。しかしながら、読取口幅が長大化したタッチ式ス
キャナは、当然ながら、操作性が低下して仕舞う。
First, in order to make it possible to read a long optical pattern in the reading digit direction by the above-mentioned conventional touch-type scanner, the width of the reading opening must be made large. However, the touch-type scanner having a longer reading opening width naturally has a reduced operability.

【0007】第二に、読取口幅を長大化させた従来形式
のタッチ式スキャナでは、一次元電子走査形読取センサ
の横幅が自ら限られているため、焦点距離が短く且つ広
角の結像しンズが必要となる。しかしながら、焦点距離
が短く且つ広角の結像しンズを使用するときは、広角レ
ンズに特有のゆがみ収差(歪曲収差)が発生するため、
一次元電子走査形読取センサ上の光像(結像)は、原像
である光学的パターンとの相似性が損なわれて仕舞う
(岩波「理化学辞典 第4版」(1989年12月15
日発行)第473頁「ザイデルの5収差」の欄参照)。
Secondly, in a conventional touch-type scanner having a large reading opening, the width of a one-dimensional electronic scanning reading sensor is limited by itself, so that a focal length is short and a wide-angle image is formed. Required. However, when a wide-angle imaging lens having a short focal length and a wide-angle lens is used, a distortion (distortion) specific to a wide-angle lens is generated.
The optical image (imaging) on the one-dimensional electronic scanning reading sensor is lost due to the loss of similarity to the optical pattern as the original image (Iwanami, “Physical and Chemical Dictionary 4th Edition” (December 15, 1989)
(See the column “Seidel's Five Aberrations” on page 473).

【0008】第三に、読取口幅を長大化させた従来形式
のタッチ式スキャナにおいて焦点距離が短く且つ広角の
結像しンズを使用するときは、一次元電子走査形読取セ
ンサ上のピクセル(画素)数が自ら限られているため、
分解能と読取精度が低下して仕舞う。
Third, in a conventional touch-type scanner having a long reading port width, when a short focal length and wide-angle imaging lens is used, a pixel (1) on a one-dimensional electronic scanning reading sensor is used. Pixels) is limited by itself,
The resolution and reading accuracy are reduced and the operation ends.

【0009】第四に、表面が柔らかく且つ不定形を成す
被読取部材や、表面が硬く且つ曲面状を成す被読取部材
のバーコードシンボルに対して、ベン式スキャナの先端
部を接触させながら、しかも一定の速度で走査すること
は、多くのオペレータにとって、決して容易ではなかっ
た。バーコードシンボルが長大化すれば尚更である。そ
のため、バーコード情報の誤読が多く、従って読取り作
業が非効率的となって仕舞う。
Fourth, the tip of the Ben-type scanner is brought into contact with a member to be read whose surface is soft and irregular and a bar code symbol of a member to be read whose surface is hard and curved. Moreover, scanning at a constant speed has never been easy for many operators. This is all the more necessary if the barcode symbol lengthens. For this reason, the bar code information is frequently misread, and the reading operation is inefficient, and the bar code information is inefficient.

【0010】第五に、構成桁数が不定長のバーコードシ
ンボルを読取るために、予めペン式スキャナとタッチ式
スキャナとを用意しておき、被読取部材上のバーコード
シンボルの長さに応じて、両者を使い分ける方法もある
が、当該方法には、常時2種類のスキャナを取り揃えて
おくための、従って又、ホストコンピュータに対する接
続換えを常時可能にするための、イニシアルコスト及び
ランニングコストが増加するという問題がある。しか
も、両者の使い分けの仕方は、多くのオペレータにとっ
て、甚だ煩雑であった。第六に、以上の諸問題の存在の
故に、更なるシステムスケールアップに、大きなネック
が生じていた。
Fifthly, a pen-type scanner and a touch-type scanner are prepared in advance to read a barcode symbol having an indefinite number of constituent digits, and the length of the barcode symbol on the member to be read is determined. There is also a method of selectively using the two, but this method increases initial costs and running costs to always keep two types of scanners available, and also to always allow connection to the host computer to be changed. There is a problem of doing. In addition, the method of using the two is very complicated for many operators. Sixth, the existence of the above problems has caused a major bottleneck in further system scale-up.

【0011】[0011]

【発明の目的】それ故、この出願の発明の第1の目的
は、任意の読取桁方向の長さを持つ各種の光学的パター
ンを、単独で読取ることが出来る、光学的情報読取装置
を提供することにある。この出願の発明の第2の目的
は、読取桁方向に長大な光学的パターンを、1個同一の
広角結像レンズを使用したものに比べて、歪み(ゆが
み)が少なく、高分解能で読取ることが出来ると共に、
操作性の良好な、光学的情報読取装置を提供することに
ある。この出願の発明の第3の目的は、読取桁方向に長
大な一段バーコードや多段バーコード、文字、記号等の
光学的パターンを、正確に且つ高速で読取ることが出来
る、光学的情報読取装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, a first object of the present invention is to provide an optical information reading apparatus capable of independently reading various optical patterns having an arbitrary length in a reading digit direction. Is to do. A second object of the invention of this application is to read a long optical pattern in the reading digit direction at a high resolution with less distortion (distortion) as compared with one using the same wide-angle imaging lens. Can be done,
An object of the present invention is to provide an optical information reading device with good operability. A third object of the invention of the present application is to provide an optical information reading apparatus capable of reading an optical pattern such as a single-stage barcode, a multi-stage barcode, characters, symbols, etc., which is long in a reading digit direction, accurately and at high speed. Is to provide.

【0012】[0012]

【目的を達成するための手段】前記の諸問題を解決し、
前記の諸目的を達成するために、この出願の発明の第1
の形態の光学的情報読取装置は、光照射手段と、集光光
学系5と、二次元電子走査形読取センサ8と、信号2値
化手段と、信号重複部解消手段とを含有し、二次元電子
走査形読取センサ8は、n個の線状受光領域(但しnは
2以上の整数)、即ち第1の線状受光領域8、第iの
線状受光領域8(但しi=2,3,…,n−1)、第
nの線状受光領域8が垂直面内において互いに平行且
つ水平に配置され、各線状受光領域8〜8には無数
のピクセルが水平方向に密に配列されておって、全体と
して横長状に配設され、集光光学系5は、n個の結像レ
ンズ、即ち第1の結像レンズ5、第iの結像レンズ5
(但しi=2,3,…,n−1)、及び第nの結像レ
ンズ5を含有しておって、二次元電子走査形読取セン
サ8の前方に配置され、横幅が最大読取幅に達する光学
的パターン3が、集光光学系5の前方に、略最大読取距
離を隔てて横長状に置かれ、光学的パターン3上に線状
反射領域3cが想定され、線状反射領域3c上に、n個
の反射区域、即ち線状反射領域3cの一端を含む第1の
反射区域3c、第i−1の反射区域3ci−1(但し
i=2,3,…,n−1)に対して一端の近傍が重複す
る第iの反射区域3c、及び第n−1の反射区域3c
n−1に対して一端の近傍が重複すると共に線状反射領
域3cの他端を含む第nの反射区域3cが想定されて
いるとき、第1の結像レンズ5の光軸は、線状反射領
域3cと第1の線状受光領域8とを含む第1の平面内
であって、しかも、第1の反射区域3cの中心点から
第1の線状受光領域8の中心点に到る反射光の光路内
に配置され、第iの結像レンズ5(但しi=2,3,
…,n−1)の光軸は、線状反射領域3cと第iの線状
受光領域8とを含む第iの平面内であって、しかも、
第iの反射区域3cの中心点から第iの線状受光領域
の中心点に到る反射光の光路内に配置され、第nの
結像レンズ5の光軸は、線状反射領域3cと第nの線
状受光領域8とを含む第nの平面内であって、しか
も、第nの反射区域3cの中心点から第nの線状受光
領域8の中心点に到る反射光の光路内に配置され、以
って、光照射手段が光学的パターン3の全体を照射した
とき、第1の反射区域3c〜第nの反射区域3c
よってそれぞれ反射されて成る第1の光像〜第nの光像
がそれぞれ、第1の結像レンズ5〜第nの結像レンズ
によって、第1の線状受光領域8〜第nの線状受
光領域8上に結像せしめられ、次いで、第1の線状受
光領域8〜第nの線状受光領域8上の各ピクセルに
おける光の強弱信号がそれぞれ信号電荷に光電変換さ
れ、当該信号電荷が蓄積され、当該各ピクセルに対して
ラスタ走査式の電子的走査がなされることによって、全
ての信号電荷が時間軸上の一連の電気的アナログ信号に
変換され、上記一連の電気的アナログ信号が、信号2値
化手段によって、一連の2値信号に変換され、上記一連
の2値信号が、信号重複部解消手段によって、重複信号
の一方を削除され、且つ縮合されることによって、光学
的パターン3に対応する真正2値信号に変換される、も
のである。
[Means for achieving the object]
To achieve the above objects, the first invention of the present application
The optical information reading apparatus according to the first aspect includes a light irradiating unit, a condensing optical system 5, a two-dimensional electronic scanning reading sensor 8, a signal binarizing unit, and a signal overlapping unit eliminating unit. The two-dimensional electronic scanning reading sensor 8 has n linear light receiving areas (where n is an integer of 2 or more), that is, a first linear light receiving area 8 1 and an i- th linear light receiving area 8 i (where i = 2, 3,..., N-1), the n-th linear light receiving area 8 n is arranged parallel and horizontal to each other in a vertical plane, and in each of the linear light receiving areas 8 1 to 8 n , an infinite number of pixels are arranged in the horizontal direction. owed are densely arranged, are arranged in a horizontally long shape as a whole, the converging optical system 5, n pieces of the imaging lens, that is, the first imaging lens 5 1, imaging of the i-th lens 5
i (where i = 2, 3,..., n−1) and the n-th imaging lens 5 n are disposed in front of the two-dimensional electronic scanning reading sensor 8 and have a maximum width. An optical pattern 3 reaching the width is placed in front of the condensing optical system 5 in a horizontally elongated shape with a substantially maximum reading distance therebetween, and a linear reflection area 3c is assumed on the optical pattern 3, and a linear reflection area is assumed. on 3c, n-number of reflective areas, namely a first reflecting zone 3c 1 including an end of the linear reflection region 3c, the reflective zone 3c i-1 of the i-1 (where i = 2,3, ..., n −1), the i-th reflection area 3c i and the (n−1) -th reflection area 3c in which the vicinity of one end overlaps
When the reflection area 3c n of the n are contemplated, including the other of the linear reflection region 3c together near one end overlaps against n-1, the optical axis of the first imaging lens 5 1, a first plane including a linear reflective region 3c and 1 first linear light receiving region 8, moreover, the first reflective area 3c 1 from the center point first linear light receiving region 81 of the It is arranged in the optical path of the reflected light reaching the center point, and the i-th imaging lens 5 i (where i = 2, 3,
..., the optical axis of the n-1) is a plane of the i including the linear light receiving region 8 i of the linear reflection region 3c and the i, moreover,
The optical axis of the n- th imaging lens 5 n is arranged in the optical path of the reflected light from the center point of the i- th reflection area 3 c i to the center point of the i-th linear light receiving area 8 i. a reflective region 3c and the plane of the n including the linear light receiving region 8 n of the n, moreover, the center point of the linear light receiving region 8 n of the n from the center point of the reflection area 3c n of the n disposed in the optical path of the leading reflected light, I following, when the light irradiation means irradiates the entire optical pattern 3, are respectively reflected by the reflection area 3c n of the first reflecting section 3c 1 ~ n th the first light image of the optical image to the n respectively comprising Te, by the imaging lens 5 n of the first imaging lens 51 to the n, a first linear light receiving regions 8 1 ~ linear first n in light-receiving regions 8 n on being brought imaged, then the first linear light receiving region 8 i ~ linear light receiving regions 8 each pixel on the n of the n Signal is photoelectrically converted into signal charges, the signal charges are accumulated, and a raster scan electronic scan is performed on each pixel, so that all signal charges are converted into a series of electric signals on a time axis. The series of electrical analog signals are converted to a series of binary signals by signal binarizing means, and the series of binary signals are converted to a series of binary signals by the signal overlapping section eliminating means. One is deleted and condensed to be converted into a true binary signal corresponding to the optical pattern 3.

【0013】この出願の発明の第2の形態の光学的情報
読取装置は、前記第1の形態の光学的情報読取装置にお
いて、一の筐体を含有し、上記筐体は、その内部に、前
記集光光学系5、前記二次元電子走査形読取センサ8、
前記信号2値化手段、及び前記信号重複部解消手段の全
部又は主要部が収納される、ものである。
According to a second aspect of the present invention, there is provided an optical information reading apparatus according to the first aspect, wherein the optical information reading apparatus includes one housing, and the housing includes: The condensing optical system 5, the two-dimensional electronic scanning reading sensor 8,
All or main parts of the signal binarizing means and the signal overlapping part eliminating means are accommodated.

【0014】この出願の発明の第3の形態の光学的情報
読取装置は、筐体1と、光照射手段2と、反射ミラー4
と、集光光学系5と、二次元電子走査形読取センサ8
と、信号2値化手段と、信号重複部解消手段とを含有
し、筐体1は、後部から中間部が水平筒形を成し、前部
が末広がり形を成すと共に、途中の湾曲点迄は水平部、
同湾曲点から先は下降部を成し、且つ、先端部に光出入
口、内部に空洞が形成され、光照射手段2は、1又は複
数個の光源からなり、且つ、それらの光源は、光出入口
の前方に最大読取可能距離を隔てて横長状に置かれた光
学的パターン3の全体を照射可能にするために、同光出
入口の内側近傍に点状、線分状、コの字状又はループ状
に配列され、反射ミラー4は、斜め下前方から到来する
反射光を略水平方向に偏向させるために、湾曲点近傍の
空洞内に、斜め下後ろ向きに配置され、二次元電子走査
形読取センサ8は、n個の線状受光領域(但しnは2以
上の整数)、即ち第1の線状受光領域8、第iの線状
受光領域8(但しi=2,3,…,n−1)、及び第
nの線状受光領域8nが垂直面内において互いに平行且
つ水平に配置され、各線状受光領域8〜8には無数
のピクセルが水平方向に密に配列されておって、筐体1
の後部の空洞内に配置され、集光光学系5は、n個の結
像レンズ、即ち第1の結像レンズ5、第iの結像レン
ズ5(但しi=2,3,…,n−1)、及び第nの結
像レンズ5、を含有し、横幅が最大読取幅に達する光
学的パターン3が、集光光学系5の前方に、略最大読取
距離を隔てて横長状に置かれ、光学的パターン3上に線
状反射領域3cが想定され、線状反射領域3c上に、n
個の反射区域、即ち線状反射領域3cの一端を含む第1
の反射区域3c、第i−1の反射区域3ci−1(但
しi=2,3,…,n−1)に対して一端の近傍が重複
する第iの反射区域3c、及び第n−1の反射区域3
n−1に対して一端の近傍が重複すると共に線状反射
領域3cの他端を含む第nの反射区域3cが想定され
ているとき、第1の結像レンズ5の光軸は、線状反射
領域3cから到来し、反射ミラー4で略水平方向に偏向
され、二次元電子走査形読取センサ8上の第1の線状受
光領域8で受光される、略水平な反射光光束によって
規定される、第1の平面内であって、しかも、第1の反
射区域3cの中心点から、反射ミラー4を介して、第
1の線状受光領域8の中心点に到る反射光の光路内に
配置され、第iの結像レンズ5(但しi=2,3,
…,n−1)の光軸は、線状反射領域3cから到来し、
反射ミラー4で略水平方向に偏向され、二次元電子走査
形読取センサ8上の第iの線状受光領域8で受光され
る、略水平な反射光光束によって規定される、第iの平
面内であって、しかも、第iの反射区域3cの中心点
から、反射ミラー4を介して、第iの線状受光領域8
の中心 に到る反射光の光路内に配置され、第nの結像
レンズ5の光軸は、線状反射領域3cから到来し、反
射ミラー4で略水平方向に偏向され、二次元電子走査形
読取センサ8上の第nの線状受光領域8で受光され
る、略水平な反射光光束によって規定される、第nの平
面内であって、しかも、第nの反射区域3cの中心点
から、反射ミラー4を介して、第nの線状受光領域8
の中心点に到る反射光の光路内に配置され、上記信号2
値化手段は、上記空洞内のその余の部位に配置され、以
って、光照射手段2が光学的パターン3の全体を照射し
たとき、第1の反射区域3c〜第nの反射区域3c
によってそれぞれ反射されて成る第1の光像〜第nの光
像がそれぞれ、第1の結像レンズ5〜第nの結像レン
ズ5によって、第1の線状受光領域8〜第nの線状
受光領域8上に結像せしめられ、次いで、第1の線状
受光領域8〜第nの線状受光領域8上の各ピクセル
における光の強弱信号がそれぞれ信号電荷に光電変換さ
れ、当該信号電荷が蓄積され、当該各ピクセルに対して
ラスタ走査式の電子的走査がなされることによって、全
ての信号電荷が時間軸上の一連の電気的アナログ信号に
変換され、上記一連の電気的アナログ信号が、上記信号
2値化手段によって、一連の2値信号に変換され、上記
一連の2値信号が、信号重複部解消手段によって、重複
信号の一方を削除され、且つ縮合されることによって、
光学的パターン3に対応する真正2値信号に変換され
る、ものである。
An optical information reading apparatus according to a third embodiment of the present invention comprises a housing 1, light irradiating means 2, and a reflecting mirror 4.
, Condensing optical system 5 and two-dimensional electronic scanning reading sensor 8
, Signal binarizing means, and signal overlapping part eliminating means, and the casing 1 has a horizontal cylindrical shape from the rear part to the middle part, a front part having a divergent shape, and a curved point in the middle. Is the horizontal part,
From the bending point, a downward part is formed, and a light entrance and exit and a cavity are formed in the tip part. The light irradiation means 2 is composed of one or a plurality of light sources. In order to be able to irradiate the entirety of the optical pattern 3 which is horizontally elongated at a maximum readable distance in front of the entrance, a point-like, line-like, U-shaped or The reflection mirrors 4 are arranged in a loop, and are disposed obliquely downward and rearward in a cavity near the bending point to deflect reflected light arriving from obliquely lower front in a substantially horizontal direction. sensor 8, n pieces of the linear light receiving regions (where n is an integer of 2 or more), i.e., the first linear light receiving area 81, the linear light receiving region 8 i of the i (where i = 2,3, ... , N-1) and the n-th linear light receiving area 8n are arranged parallel to each other and horizontally in a vertical plane. Is, innumerable pixels in each linear light receiving region 8 1 to 8 n is owed are densely arranged in the horizontal direction, the housing 1
Of being placed in the rear of the cavity, the converging optical system 5, n pieces of the imaging lens, that is, the first imaging lens 5 1, the i-th imaging lens 5 i (where i = 2,3, ... , N−1), and an n-th imaging lens 5 n , and the optical pattern 3 whose lateral width reaches the maximum reading width is horizontally elongated in front of the condensing optical system 5 with a substantially maximum reading distance therebetween. The linear reflection area 3c is assumed on the optical pattern 3, and n is placed on the linear reflection area 3c.
First reflection areas including one end of the linear reflection area 3c.
Reflection area 3c 1 of the (i-1) of the reflective zone 3c i-1 (where i = 2,3, ..., n- 1) reflecting zone 3c i i-th near one end overlap relative, and the n-1 reflection area 3
When the vicinity of one end with respect to c n-1 is reflected zone 3c n of the n containing the other end of the linear reflection region 3c with overlap is assumed, the first imaging lens 5 first optical axis , Substantially horizontal reflected light arriving from the linear reflection area 3 c, deflected in a substantially horizontal direction by the reflection mirror 4, and received by the first linear light reception area 81 on the two-dimensional electronic scanning reading sensor 8. is defined by the light beam, a first plane, moreover, from a first center point of the reflecting zone 3c 1, via the reflecting mirror 4, arrives to a first center point of the linear light receiving region 8 1 The i-th imaging lens 5 i (where i = 2, 3,
, N-1) come from the linear reflection area 3c,
An i-th plane defined by a substantially horizontal reflected light beam that is deflected in a substantially horizontal direction by the reflection mirror 4 and received by the i-th linear light receiving area 8 i on the two-dimensional electronic scanning reading sensor 8. And the i-th linear light receiving area 8 i from the center point of the i- th reflection area 3c i via the reflection mirror 4.
The optical axis of the n- th imaging lens 5n comes from the linear reflection area 3c, is deflected in the substantially horizontal direction by the reflection mirror 4, and is Within the n-th plane, defined by the substantially horizontal reflected light beam received by the n-th linear light-receiving region 8n on the scanning type reading sensor 8, and furthermore, the n-th reflection area 3c n From the center point through the reflection mirror 4 to the n-th linear light receiving area 8 n
Are arranged in the optical path of the reflected light reaching the center point of
Binarizing means is disposed in the remaining sites within the cavity, I hereinafter, when the light irradiation unit 2 irradiates the entire optical pattern 3, the first reflecting section 3c 1 ~ reflection area of the n 3c n
Light image of the first light image to the n comprising respectively reflected respectively by the imaging lens 5 n of the first imaging lens 51 to the n, a first linear light receiving region 81, second An image is formed on the n linear light receiving areas 8 n , and then, the intensity signal of light at each pixel on the first linear light receiving area 81 to the n-th linear light receiving area 8 n is converted into a signal charge. The photoelectric conversion is performed, the signal charges are accumulated, and a raster scanning electronic scan is performed on each of the pixels, whereby all the signal charges are converted into a series of electric analog signals on a time axis. A series of electrical analog signals are converted into a series of binary signals by the signal binarizing unit, and the series of binary signals are deleted by the signal duplication eliminating unit, and one of the overlapping signals is deleted and condensed. By being done
This is converted into a true binary signal corresponding to the optical pattern 3.

【0015】この出願の発明の第4の形態の光学的情報
読取装置は、筐体1の光出入口の横幅を超える長大な横
幅を有する光学的パターン3が同光出入口の前方に最大
読取可能距離を隔てて横長状に置かれたとき、同光学的
パターン3における光出入口の横幅を超える部分の照度
を特に大とするために、前記光照射手段2における光源
の配設密度が、前記光出入口の左端部又は右端部に近付
くに連れて大とされる、ものである。
In an optical information reading apparatus according to a fourth embodiment of the present invention, the optical pattern 3 having a large width exceeding the width of the light entrance of the housing 1 has a maximum readable distance in front of the light entrance. In order to particularly increase the illuminance of a portion of the optical pattern 3 that exceeds the lateral width of the light entrance and exit, the arrangement density of the light source in the light irradiating means 2 is limited by the light entrance and exit. Are increased as approaching the left end or right end of the.

【0016】[0016]

【発明の実施の形態】〔第1の実施の形態〕この出願の
発明の光学的情報読取装置の第1の実施の形態について
説明する。同第1の実施の形態は、種々なる長さを有す
る光学的パターンを読取るためのものである。 (構成要素の簡単な説明)図1は同第1の実施の形態の
斜視図、図2はその平面図、図3はその側面図、図4は
被読取部材(例えばラベル)の平面図、そして、図5は
被読取部材L上の線状反射領域3cの細部の説明図であ
る。図1〜3において、Lは被読取部材(例えばラベ
ル)、5は集光光学系、5は第1の結像レンズ、5
は第2の結像レンズ、8は二次元電子走査形読取センサ
である。(3、3c、3cについては、後述す
る)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] A first embodiment of the optical information reading apparatus of the present invention will be described. The first embodiment is for reading optical patterns having various lengths. FIG. 1 is a perspective view of the first embodiment, FIG. 2 is a plan view thereof, FIG. 3 is a side view thereof, FIG. 4 is a plan view of a member to be read (for example, a label), FIG. 5 is an explanatory diagram of details of the linear reflection area 3c on the member to be read L. In Figure 1 to 3, L is to be read member (e.g. labels), 5 converging optical system, 5 1 a first imaging lens, 5 2
Denotes a second imaging lens, and 8 denotes a two-dimensional electronic scanning reading sensor. (3, 3c 1 and 3c 2 will be described later).

【0017】図4において、Lは被読取部材(例えばラ
ベル)、3は被読取部材L上に記録された光学的パター
ン(例えばバーコードシンボル)、3cは光学的パター
ン3上に想定された線状反射領域である。図5におい
て、3cは線条反射領域3c上に想定された第1の反
射区域、3cは同じく第2の反射区域、そして、dは
第1の反射区域3cと第2の反射区域3cとが重複
している区域重複部である。図1に戻って再説するに、
被読取部材Lの表面(図1では裏面は見えるが表面は見
えない。)上に想定された線状反射領域3c、並びに、
該線状反射領域3c上に想定された第1及び第2の反射
区域3c及び3cが、破線によって、表されてい
る。
In FIG. 4, L is a member to be read (for example, a label), 3 is an optical pattern (for example, a bar code symbol) recorded on the member to be read L, and 3c is a line assumed on the optical pattern 3. It is a reflection area. In FIG. 5, 3c 1 the first reflecting area, 3c 2 is also a second reflecting zone and,, d the first reflecting section 3c 1 and second reflecting areas is envisaged on striatal reflection region 3c 3c 1 is an area overlapping portion overlapping. Returning to Fig. 1,
A linear reflection area 3c assumed on the surface of the member to be read L (the back surface is visible but the front surface is not visible in FIG. 1), and
First and second reflective areas 3c 1 and 3c 2, which is assumed on the linear reflection region 3c, by broken lines, are represented.

【0018】この実施の形態では、以上の諸要素の外
に、増幅手段や信号2値化手段、メモリ手段、信号重複
部解消手段、信号解読手段(デコード手段)が使用され
る(何れも無図示)。二次元電子走査形読取センサ8の
後段には、上記増幅手段が接続され、上記増幅手段の後
段には、信号2値化手段が接続される。上記のメモリ手
段や、信号重複部解消手段、信号解読手段は、1個のマ
イクロコンピュータで構成することも出来る。
In this embodiment, amplifying means, signal binarizing means, memory means, signal duplication eliminating means, and signal decoding means (decoding means) are used in addition to the above-mentioned elements. Illustrated). The amplifying means is connected to the subsequent stage of the two-dimensional electronic scanning read sensor 8, and the signal binarizing means is connected to the subsequent stage of the amplifying means. The above memory means, signal duplication eliminating means, and signal decoding means can be constituted by a single microcomputer.

【0019】(要素の構成及び要素間関係の詳細な説
明)二次元電子走査形読取センサ8は、図1では、2個
の線状受光領域、即ち第1の線状受光領域8及び第2
の線状受光領域8が、垂直面内において、互いに平行
且つ水平に配置され、各線状受光領域8〜8には、
無数のピクセル(画素)が水平方向に密に配列されてい
る(無図示)。この二次元電子走査形読取センサ8は、
図2の如く、横長状に配設される。集光光学系5は、図
1〜3では、第1の結像レンズ5及び第2の結像レン
ズ5を含有する。そして、二次元電子走査形読取セン
サ8の前方に配置されている。
(Detailed Description of Element Configuration and Relationship Between Elements) In FIG. 1, the two-dimensional electronic scanning type reading sensor 8 has two linear light receiving areas, that is, a first linear light receiving area 81 and a first linear light receiving area 81. 2
Linear light receiving region 82 of, in the vertical plane, are disposed parallel and horizontally to each other, in each linear light receiving region 8 1-8 2
Innumerable pixels (pixels) are densely arranged in the horizontal direction (not shown). This two-dimensional electronic scanning reading sensor 8
As shown in FIG. 2, they are arranged horizontally. Converging optical system 5 in FIG. 1-3, containing a first imaging lens 5 first and second imaging lenses 5 2. And it is arranged in front of the two-dimensional electronic scanning reading sensor 8.

【0020】以下においては、説明を簡単にするため、
横幅が最大読取幅に達する光学的パターン3が、集光光
学系5の前方に、略最大読取距離を隔てて、図1〜3の
如く、横長状に置かれているものと仮定する。(このよ
うな仮定を置いても、この出願の発明の一般性が失われ
る虞(おそれ)はない。)
In the following, for simplicity of explanation,
It is assumed that the optical pattern 3 whose lateral width reaches the maximum reading width is disposed in front of the light-collecting optical system 5 in a horizontally long state as shown in FIGS. (Even if such an assumption is made, there is no possibility that the generality of the invention of this application is lost.)

【0021】第1の結像レンズ5の光軸は、かかる光
学的パターン3上の線状反射領域3c(図1及び図4参
照)と二次元電子走査形読取センサ8内の第1の線状受
光領域8とを含む第1の平面内であって、しかも、第
1の反射区域3cの中心点から第1の線状受光領域8
の中心点に到る反射光の光路内に配置される。
The optical axis of the first imaging lens 5 1, such optical pattern 3 on the linear reflection region 3c (see FIGS. 1 and 4) and the first two-dimensional electronic scanning type reading sensor within 8 a first plane including a linear light receiving region 81, moreover, the first first from the center point of the reflection area 3c 1 of the linear light receiving region 8
1 in the optical path of the reflected light reaching the center point.

【0021】第2の結像レンズ5の光軸は、上記線状
反射領域3cと二次元電子走査形読取センサ8上の第2
の線状受光領域8とを含む第2の平面内であって、し
かも上記第2の反射区域3cの中心点から上記第2の
線状受光領域8の中心点に到る反射光の光路内に配置
される。かくの如くにして配列された第1及び第2の結
像レンズ5及び5は、相互に接触又は衝突する虞無
しとしない。そのような場合は、第1及び第2の結像レ
ンズ5及び5を前後方向にずらすことによって、接
触や衝突を簡単に回避することが出来る。
The optical axis of the second imaging lens 52 is aligned with the linear reflection area 3c and the second
It is in the second plane containing the linear light receiving region 82, moreover reflected light extending from the second center point of the reflection area 3c 2 to the second linear light receiving region 82 of the center point Is arranged in the optical path. The first and second imaging lenses 5 1 and 5 2 are arranged in the as nuclei do not fear without having to contact or collide with each other. In such a case, by shifting the first and second imaging lenses 5 1 and 5 2 in the longitudinal direction, it is possible to easily avoid the contact or collision.

【0022】(動作の説明)光照射手段が光学的パター
ン3の全体を照射したとき、第1の反射区域3c及び
第2の反射区域3cによってそれぞれ反射されて成る
第1の光像及び第2の光像がそれぞれ、第1の結像レン
ズ5及び第2の結像レンズ5によって、第1の線状
受光領域8及び第2の線状受光領域8上に結像せし
められる。
[0022] When the (Operation explanation) light irradiating means irradiates the entire optical pattern 3, the first optical image formed by reflected respectively by the first reflecting section 3c 1 and second reflecting sections 3c 2 and second optical images, respectively, by a first imaging lens 5 first and second imaging lenses 5 2, focused on the first linear light receiving region 81 and the second upper linear light receiving region 8 2 I'm sullen.

【0023】第1の線状受光領域8及び第2の線状受
光領域8の各ピクセル(画素)に光信号が入射する
と、当該各ピクセルにおける光の強弱信号がそれぞれ信
号電荷に光電変換され、当該信号電荷が蓄積され、当該
各ピクセルに対してラスタ走査式の電子的走査がなされ
ることによって、全ての信号電荷が時間軸上の一連の電
気的アナログ信号に変換される。上記一連の電気的アナ
ログ信号は、信号2値化手段によって、一連の2値信号
に変換される。上記一連の2値信号は、好ましくは、メ
モリ手段に一旦記憶せしめられる。
[0023] The first linear light receiving region 81 and the second linear light receiving region 8 2 optical signals to each pixel (pixel) of incident photoelectric conversion to the respective signal charges light intensity signal at each pixel Then, the signal charges are accumulated, and all the signal charges are converted into a series of electrical analog signals on the time axis by performing raster scanning electronic scanning on each pixel. The series of electrical analog signals is converted into a series of binary signals by signal binarization means. The series of binary signals is preferably temporarily stored in a memory means.

【0024】第1の反射区域3c由来の2値信号と第
2の反射区域3c由来の2値信号とは、両者の重複部
分(共通部分)が、上記信号重複部解消手段によって検
出され、その一方が削除され、両信号が縮合されること
によって、光学的パターン3に対応する真正2値信号に
変換される。いま、第1の反射区域3c由来の2値信
号列をB、その長さをM、第2の反射区域3c由来の
2値信号列をC、その長さをN、両信号列の重複部の長
さをKとすれば、両信号列は、下記の如く、表される。 B=(B,…,BM−K+1,…,B)・・・・・・・・・・・(1) C= …,….… (C,…,C,…,C) ・・・・・・(2) 而して、重複部の両2値信号間には、下記K個の一致式
が成り立つ。 BM−K+1=C1・・・・・・・・・・・・・・・・・・・・(3−1) BM−K+i=C(但しi=2,3,…,K−1)・・・・・(3−2) B =C・・・・・・・・・・・・・・・・・・・・(3−3) 式(3−1)〜(3−3)によれば、少なくともK個の
一致回路と、K−1個のアンド回路を用意すれば、長さ
K個の信号重複部分を検出出来ることが明らかである。
上記真正2値信号は、信号解読手段(デコード手段)に
よって解読され、それによって元の情報、即ち光学的パ
ターン3に担持された情報が復元される。
[0024] The first reflecting zone 3c 1 2 value signal and the second reflecting section 3c 2 2 value signal derived from, both overlap (intersection) is detected by the signal overlap eliminating means , One of which is deleted and the two signals are condensed to be converted into a true binary signal corresponding to the optical pattern 3. Now, a binary signal string of the first from the reflective zone 3c 1 B, the length M, a binary signal string of the second from the reflective zone 3c 2 C, its length N, both signal sequence Assuming that the length of the overlapping portion is K, both signal trains are represented as follows. B = (B 1 ,..., B M−K + 1 ,..., B M ) (1) C =. .. (C 1 ,..., CK ,..., C N ) (2) Thus, the following K matching expressions hold between the two binary signals of the overlapping portion. B M−K + 1 = C1 (3-1) B M−K + i = C i (where i = 2, 3,..., K− 1)... (3-2) B M = C K (3-3) Equations (3-1) to (3) According to 3-3), it is clear that if at least K matching circuits and K-1 AND circuits are prepared, a signal overlapping portion having a length of K can be detected.
The true binary signal is decoded by signal decoding means (decoding means), whereby the original information, that is, the information carried on the optical pattern 3, is restored.

【0025】(図1〜5の拡張)図1の二次元電子走査
形読取センサ8における、線状受光領域の個数2は、n
個に拡張することが出来る。即ち、拡張された二次元電
子走査形読取センサ8は、n個の線条受光領域(但しn
は2以上の整数)、即ち第1の線状受光領域8、第i
の線状受光領域8(但しi=2,3,…,n−1)、
及び第nの線状受光領域8(無図示)が、図1と同様
に、垂直面内において互いに平行且つ水平に配置され、
各線状受光領域8〜8には、無数のピクセル(画
素)が水平方向に密に配列される(無図示)こととな
る。
(Extension of FIGS. 1 to 5) In the two-dimensional electronic scanning reading sensor 8 of FIG. 1, the number 2 of linear light receiving areas is n
Can be extended to individual. In other words, the extended two-dimensional electronic scanning reading sensor 8 has n linear light receiving areas (where n
Is an integer of 2 or more), that is, the first linear light receiving region 8 1 , i-th light receiving region
Linear light receiving area 8 i (where i = 2, 3,..., N−1),
And n-th linear light receiving regions 8 n (not shown) are arranged parallel and horizontally to each other in a vertical plane, as in FIG.
The respective linear light receiving region 8 1 to 8 n, and thus numerous pixels (pixels) are densely arranged in the horizontal direction (no shown).

【0026】図1〜3の集光光学系5における結像レン
ズの個数2は、二次元電子走査形読取センサ8における
線状受光領域の個数2と同様に、n個に拡張することが
出来る。拡張された集光光学系5は、n個の結像レン
ズ、即ち第1の結像レンズ5、第iの結像レンズ5
(但しi=2,3,…,n−1)、及び第nの結像レン
ズ5を含有する(無図示)こととなる。
The number 2 of imaging lenses in the condensing optical system 5 shown in FIGS. 1 to 3 can be expanded to n in the same manner as the number 2 of linear light receiving areas in the two-dimensional electronic scanning read sensor 8. . The expanded condensing optical system 5 includes n imaging lenses, that is, a first imaging lens 5 1 and an i-th imaging lens 5 i.
(Where i = 2, 3,..., N−1) and the n-th imaging lens 5 n (not shown).

【0027】拡張された線状反射領域3c上には、n個
の反射区域が想定される。第1の反射区域3cは、そ
の一端(例えば右端)が線状反射領域3cの一端(例え
ば右端)を含むと共に、その他端(例えば左端)の近傍
が第2の反射区域3cの一端(例えば右端)の近傍と
重複する。第iの反射区域3c(但しi=2,3,
…,n−1)は、その一端(例えば右端)の近傍が第i
−1の反射区域3ci−1の他端(例えば左端)の近傍
と重複すると共に、その他端(例えば左端)の近傍が第
i+1の反射区域3ci+1の一端(例えば右端)の近
傍と重複する。第nの反射区域3cは、第n−1の反
射区域3cn−1に対して一端の近傍が重複すると共
に、線状反射領域3cの他端を含む。
On the extended linear reflection area 3c, n reflection areas are assumed. The first reflecting zone 3c 1, together with one end (for example, right end) comprises one end of the linear reflection region 3c (e.g. right end), near one end of the second reflecting section 3c 2 of the other end (e.g., the left end) ( (For example, the right end). I-th reflection area 3c i (where i = 2, 3,
.., N-1) are near the one end (for example, the right end) at the i-th position.
The vicinity of the other end (for example, the left end) of the -1 reflection area 3c i-1 overlaps with the vicinity of the other end (for example, the left end), and the vicinity of one end (for example, the right end) of the ( i + 1 ) th reflection area 3c i + 1. . Reflection area 3c n of the n, together with the vicinity of one end overlapping the reflection area 3c n-1 of the n-1, including the other end of the linear reflection region 3c.

【0028】拡張された集光光学系5における第iの結
像レンズ5(i=2,3,…,n−1)の光軸は、線
状反射領域3cと第iの線状受光領域8とを含む第i
の平面内であって、しかも、第iの反射区域3cの中
心点から、反射ミラー4を介して、第iの線状受光領域
の中心点に到る反射光の光路内に配置される(無図
示)こととなる。
The optical axis of the i-th imaging lens 5 i (i = 2, 3,..., N−1) in the expanded condensing optical system 5 is defined by the linear reflection area 3c and the i-th linear light receiving element. the i-th including the area 8 i
A plane, moreover, arranged from the center point of the reflection area 3c i of the i, via the reflecting mirror 4, the linear light receiving region 8 i optical path of the reflected light reaching the center point of the i (Not shown).

【0029】拡張された集光光学系5における第nの結
像レンズ5の光軸は、線状反射領域3cと第nの線状
受光領域8とを含む第nの平面内であって、しかも、
第nの反射区域3cの中心点から、反射ミラー4を介
して、第nの線状受光領域8の中心点に到る反射光の
光路内に配置される(無図示)こととなる。その余の構
成については、図1〜3と同様である。
The optical axis of the imaging lens 5 n of the n in expanded converging optical system 5, there in the plane of the n including the linear light receiving region 8 n of the linear reflection region 3c and the n And
From the center point of the reflection area 3c n of the n, via a reflecting mirror 4, and thus they are arranged in a linear light receiving region 8 n optical path of the reflected light reaching the center point of the first n (no shown) . Other configurations are the same as those in FIGS.

【0030】(拡張された動作)光照射手段が光学的パ
ターン3の全体を照射したとき、第1の反射区域3c
〜第nの反射区域3cによってそれぞれ反射されて成
る第1の光像〜第nの光像がそれぞれ、第1の結像レン
ズ5〜第nの結像レンズ5によって、第1の線状受
光領域8〜第nの線状受光領域8上に結像せしめら
れる。
(Expanded Operation) When the light irradiating means irradiates the entire optical pattern 3, the first reflection area 3c 1
The n light image of the first light image to the n-th made are reflected respectively each by the reflection area 3c n of ~, by the imaging lens 5 n of the first imaging lens 51 to the n, a first It is caused to imaged on the linear light-receiving regions 8 1 ~ linear light receiving region on 8 n of the n.

【0031】その時、第1の線状受光領域8〜第nの
線状受光領域8上の各ピクセルにおける光の強弱信号
がそれぞれ信号電荷に光電変換され、当該各信号電荷が
各ピクセルに蓄積され、当該各ピクセルに対してラスタ
走査式の電子的走査がなされることによって、全ての信
号電荷が時間軸上の一連の電気的アナログ信号に変換さ
れる。
[0031] At that time, the intensity of light signals at each pixel on the linear light receiving region 8 n of the first linear light receiving region 81, second n is photoelectrically converted into each signal charge, the signal charges within each pixel All the signal charges are converted into a series of electrical analog signals on the time axis by being stored and subjected to raster scanning electronic scanning for each pixel.

【0032】ここでは、第1の反射区域3c〜第nの
反射区域3c中の任意の反射区域は、第iの反射区域
3c(一般項)で代表される。その際、iには、順
次、整数1,2,…,nが代入される。第iの反射区域
3c由来の2値信号(但しi=1,2,…,n−1)
と第i+1の反射区域3ci+1由来の2値信号とは、
それらの重複部分(共通部分)が、信号重複部解消手段
によって検出され、その一方が削除され、両信号が縮合
されることによって、光学的パターン3に対応する真正
2値信号に変換される。上記信号重複部解消手段は、前
述の如く、少なくともK個の一致回路と、K−1個のア
ンド回路とを含有するが、それらの回路は、反復して少
なくともn−1回使用されることとなる。その余の動作
については、図1〜3の動作と同様である。
[0032] Here, any reflection area in the reflection area 3c n of the first reflecting section 3c 1 ~ n th is represented by the reflection area 3c i of the i (the general term). At this time, integers 1, 2,..., N are sequentially assigned to i. A binary signal derived from the i- th reflection area 3ci (where i = 1, 2,..., N-1)
And the binary signal derived from the (i + 1) th reflection area 3c i + 1
Those overlapping portions (common portions) are detected by the signal overlapping portion eliminating means, one of them is deleted, and the two signals are condensed to be converted into a true binary signal corresponding to the optical pattern 3. As described above, the signal overlapping portion eliminating means includes at least K matching circuits and K-1 AND circuits, and these circuits are used repeatedly at least n-1 times. Becomes The other operations are the same as the operations in FIGS.

【0033】〔第2の実施の形態〕この出願の発明の光
学的情報読取装置の第2の実施の形態について説明す
る。同第2の実施の形態の光学的情報読取装置は、前記
第1の実施の形態の光学的情報読取装置において、一の
筐体を含有したものである。上記筐体は、その内部に、
前記集光光学系5、前記二次元電子走査形読取センサ
8、前記信号2値化手段、及び前記信号重複部解消手段
の全部又は主要部が収納される。第2の実施の形態で
は、光照射手段は、上記筐体の内部又は外部に配置する
ことが出来る。第2の実施の形態のその余の事項は、第
1の実施の形態と同様である。
[Second Embodiment] An optical information reading apparatus according to a second embodiment of the present invention will be described. The optical information reading apparatus according to the second embodiment includes the housing of the optical information reading apparatus according to the first embodiment. The above-mentioned housing, inside,
All or a main part of the condensing optical system 5, the two-dimensional electronic scanning reading sensor 8, the signal binarizing means, and the signal overlapping part eliminating means are housed. In the second embodiment, the light irradiation means can be arranged inside or outside the housing. Other items of the second embodiment are the same as those of the first embodiment.

【0034】〔第3の実施の形態〕この出願の発明の光
学的情報読取装置の第3の実施の形態について説明す
る。同第3の実施の形態は、水平方向に読取口幅よりも
長大な寸法を有する光学的パターンを読取るためのもの
である。 (構成要素の簡単な説明)図6は、同第3の実施の形態
の説明図であって、同図(a)は、筐体上部を除去して
示す平面図、同図(b)は縦断面図である。図6におい
て、1は筐体、2は光照射手段、Lは被読取部材(例え
ばラベル)、3は被読取部材L上の光学的パターン、4
は反射ミラー、5は集光光学系、5及び5は結像レ
ンズ、8は二次元電子走査形読取センサである。
[Third Embodiment] A description will be given of a third embodiment of the optical information reading apparatus according to the present invention. The third embodiment is for reading an optical pattern having a dimension longer than the width of the reading port in the horizontal direction. (Simplified Description of Components) FIG. 6 is an explanatory view of the third embodiment. FIG. 6 (a) is a plan view showing an upper portion of a housing removed, and FIG. It is a longitudinal cross-sectional view. In FIG. 6, reference numeral 1 denotes a housing, 2 denotes light irradiation means, L denotes a member to be read (for example, a label), 3 denotes an optical pattern on the member to be read L,
The reflecting mirror, 5 a condenser optical system, the 5 1 and 5 2 imaging lens 8 is a sensor reading two-dimensional electronic scanning type.

【0035】この実施の形態では、以上の諸要素の外
に、増幅手段や信号2値化手段、メモリ手段、信号重複
部解消手段、信号解読手段(デコード手段)が使用され
る(何れも無図示)。二次元電子走査形読取センサ8の
後段には、上記増幅手段が接続され、上記増幅手段の後
段には、信号2値化手段が接続される。上記のメモリ手
段や、信号重複部解消手段、信号解読手段は、1個のマ
イクロコンピュータで構成することも出来る。
In this embodiment, amplifying means, signal binarizing means, memory means, signal duplication eliminating means, and signal decoding means (decoding means) are used in addition to the above-mentioned elements. Illustrated). The amplifying means is connected to the subsequent stage of the two-dimensional electronic scanning read sensor 8, and the signal binarizing means is connected to the subsequent stage of the amplifying means. The above memory means, signal duplication eliminating means, and signal decoding means can be constituted by a single microcomputer.

【0036】(要素の構成及び要素間関係の詳細な説
明)以下においては、説明の便のため、オペレータから
見て、前後方向を縦方向、左右方向を横方向という。筐
体1は、縦方向(図6の紙面では左右方向)に即して、
後部、中間部及び前部から成る。図6では、後部から中
間部が水平部、前部が下降部(傾斜部)を成し、両部の
境界近傍が湾曲部を成す。筐体1の先端部には光出入
口、内部には空洞が形成される。上記水平部は、断面が
長方形の角筒から成り、略水平に置かれている。上記前
部は、図示の如く、断面が長方形を成すと共に、より前
方の横幅程大と成る、末広がり形(逆台形又は扇形)を
成す。上記水平部の形状は、断面が六角形の角筒形や、
断面が円形の円筒形とすることも出来る。一般に、断面
が任意の形状の筒形とすることが出来る。
(Detailed Description of Configuration of Elements and Relationship between Elements) In the following, for convenience of explanation, the front-back direction is referred to as a vertical direction and the left-right direction is referred to as a horizontal direction as viewed from an operator. The housing 1 is oriented in the vertical direction (the left-right direction in the plane of FIG. 6).
It consists of a rear part, a middle part and a front part. In FIG. 6, the middle portion from the rear portion forms a horizontal portion, the front portion forms a descending portion (inclined portion), and the vicinity of the boundary between both portions forms a curved portion. A light entrance and exit are formed at the tip of the housing 1 and a cavity is formed inside. The horizontal portion is formed of a rectangular tube having a rectangular cross section, and is placed substantially horizontally. The front portion has a divergent shape (inverted trapezoid or fan shape) having a rectangular cross section and a larger width as it goes forward, as shown in the figure. The shape of the horizontal part is a rectangular cylinder with a hexagonal cross section,
The cross section may be a circular cylinder. In general, the cross-section can be cylindrical with any shape.

【0037】光照射手段2は、光出入口の前方に最大読
取可能距離を隔てて横長状に置かれた光学的パターン3
の全体を、照射するためのものである。図6では、4個
の光源が、光出入口の内側近傍の一の線分の上に、等間
隔を成して配列されている。光照射手段2の光源の個数
は、1〜3個とすることも出来るし、5個以上とするこ
とも出来る。即ち、1〜複数個とすることが出来る。光
源の個数が複数個の場合は、その配列形状を、コの字状
又はループ状とすることが出来る。
The light irradiating means 2 is provided with an optical pattern 3 disposed in a horizontally elongated shape in front of the light entrance with a maximum readable distance therebetween.
Is for irradiating the whole. In FIG. 6, four light sources are arranged at equal intervals on one line segment near the inside of the light entrance. The number of light sources of the light irradiation means 2 can be 1 to 3 or 5 or more. That is, the number can be one or more. When the number of light sources is plural, the arrangement shape can be a U-shape or a loop.

【0038】反射ミラー4は、斜め下前方から到来する
反射光を、略水平方向後ろ向きに偏向させるために、図
6(b)の如く、湾曲点近傍の空洞内に、斜め下後ろ向
きに配置される。ここに、反射ミラーの向きは、鏡面に
立てた法線の向きによって表されるものとする。そし
て、図6(a)の如く、横長状に配置される。
As shown in FIG. 6B, the reflection mirror 4 is disposed obliquely downward and rearward in the cavity near the bending point to deflect the reflected light arriving from the obliquely lower front substantially rearward in the horizontal direction. You. Here, the direction of the reflection mirror is represented by the direction of a normal line standing on the mirror surface. Then, as shown in FIG. 6A, they are arranged in a horizontally long shape.

【0039】二次元電子走査形読取センサ8は、n個の
線状受光領域(但しnは2以上の整数)、即ち第1の線
状受光領域8、第iの線状受光領域8(但しi=
2,3,…,n−1)、及び第nの線状受光領域8
垂直面内において互いに平行且つ水平に配置され、各線
状受光領域8〜8には無数のピクセルが水平方向に
密に配列されている。二次元電子走査形読取センサ8の
配設位置は、筐体1の後部における空洞の内部とされ
る。集光光学系5は、n個の結像レンズ(nは2以上の
整数)、即ち、第1の結像レンズ5、第iの結像レン
ズ5(但しi=2,3,…,n−1)及び第nの結像
レンズ5を含有する。
The two-dimensional electronic scanning reading sensor 8 has n linear light receiving areas (where n is an integer of 2 or more), that is, a first linear light receiving area 8 1 and an i-th linear light receiving area 8 i. (However, i =
2,3, ..., n-1), and linear light receiving region 8 n of the n is parallel and horizontal to each other in a vertical plane, the respective linear light receiving region 8 1 to 8 n innumerable pixels horizontal It is densely arranged in the direction. The disposition position of the two-dimensional electronic scanning type reading sensor 8 is set inside the cavity in the rear part of the housing 1. The condensing optical system 5 includes n imaging lenses (n is an integer of 2 or more), that is, a first imaging lens 5 1 , an i-th imaging lens 5 i (where i = 2, 3,...) contains n-1) and the imaging lens 5 n of the n.

【0040】以下においては、説明を簡単にするため、
横幅が最大読取幅に達する光学的パターン3が、前記光
出入口の前方に、略最大読取可能距離Δを隔てて横長状
に置かれているものと仮定する。ここに、最大読取可能
距離Δとは、集光光学系5から見た前記最大読取距離を
D、集光光学系5と前記光出入口との距離をDとすれ
ば、 Δ=D−D によって与えられる。
In the following, in order to simplify the explanation,
It is assumed that the optical pattern 3 whose lateral width reaches the maximum reading width is disposed in front of the light entrance and exit with a substantially maximum readable distance Δ and is horizontally long. Here, the maximum readable distance Δ is D = D−D, where D is the maximum reading distance viewed from the condensing optical system 5 and D 0 is the distance between the condensing optical system 5 and the light entrance / exit. Given by 0 .

【0041】光学的パターン3上に線状反射領域3cが
想定される。線状反射領域3c上には、n個の反射区
域、即ち、第1の反射区域3c〜第nの反射区域3c
が想定される。第1の反射区域3cは、その一端
(例えば右端)が線状反射領域3cの一端(例えば右
端)を含むと共に、その他端(例えば左端)の近傍が第
2の反射区域3cの一端(例えば右端)の近傍と重複
する。
A linear reflection area 3c is assumed on the optical pattern 3. On linear reflective region 3c, n-number of reflective areas, i.e., a first reflecting zone 3c 1 ~ reflection area 3c of the n
n is assumed. The first reflecting zone 3c 1, together with one end (for example, right end) comprises one end of the linear reflection region 3c (e.g. right end), near one end of the second reflecting section 3c 2 of the other end (e.g., the left end) ( (For example, the right end).

【0042】第2の反射区域3cから第n−1の反射
区域3cn−1までを、「第iの反射区域3c(i=
2,3,…,n−1)」で代表させたとき、第iの反射
区域3c(i=2,3,…,n−1)は、その一端
(例えば右端)の近傍が第i−1の反射区域3ci−1
の他端(例えば左端)の近傍と重複する共に、その他端
(例えば左端)の近傍が第i+1の反射区域3ci+1
の一端(例えば右端)の近傍と重複する。第nの反射区
域3cは、その一端(例えば右端)の近傍が第n−1
の反射区域3cn−1の他端(例えば左端)の近傍と重
複する共に、その他端(例えば左端)が線状反射領域3
cの他端を含む。
[0042] The second reflective section 3c 2 to the reflective zone 3c n-1 of the n-1, "i-th reflective zone 3c i (i =
2,3,..., N−1) ”, the i-th reflection area 3c i (i = 2, 3,. -1 reflection area 3c i-1
Overlaps with the vicinity of the other end (for example, the left end), and the vicinity of the other end (for example, the left end) is the (i + 1) th reflection area 3c i + 1
(For example, the right end). The vicinity of one end (for example, the right end) of the n- th reflection area 3cn is n-1.
And the other end (for example, the left end) overlaps with the vicinity of the other end (for example, the left end) of the reflection area 3c n-1 of the linear reflection region 3
c includes the other end.

【0043】線状反射領域3cから到来し、反射ミラー
4で略水平方向に偏向され、二次元電子走査形読取セン
サ8上の第1の線状受光領域8で受光される、略水平
な反射光光束によって、第1の平面が規定される。第1
の結像レンズ5の光軸は、上記第1の平面内であっ
て、しかも、第1の反射区域の中心点から、反射ミラー
4を介して、第1の線状受光領域8の中心点に到る反
射光の光路内に配置される。
The light coming from the linear reflection area 3 c is deflected in the substantially horizontal direction by the reflection mirror 4, and is received by the first linear light reception area 81 on the two-dimensional electronic scanning read sensor 8. The first plane is defined by the reflected light beam. First
The optical axis of the imaging lens 5 first, a within the first plane, moreover, from the center point of the first reflecting zone, via the reflecting mirror 4, the first linear light receiving region 81 of the It is arranged in the optical path of the reflected light reaching the center point.

【0044】第2の結像レンズ5〜第n−1の結像レ
ンズ5n−1を、「第iの結像レンズ5(i=2,
3,…,n−1)」で代表させたとき、線状反射領域3
cから到来し、反射ミラー4で略水平方向に偏向され、
二次元電子走査形読取センサ8上の第iの線状受光領域
8iで受光される、略水平な反射光光束によって、第i
の平面が規定される。第iの結像レンズ5i(i=2,
3,…,n−1)の光軸は、上記第iの平面内であっ
て、しかも、第iの反射区域の中心点から、反射ミラー
4を介して、第iの線状受光領域8の中心点に到る反
射光の光路内に配置される。
[0044] The second imaging lens 5 n-1 of the imaging lens 5 2, second n-1, "the imaging lens of the i 5 i (i = 2,
,..., N−1) ”.
c, and is substantially horizontally deflected by the reflection mirror 4,
The substantially horizontal reflected light beam received by the i-th linear light receiving area 8i on the two-dimensional electronic scanning reading sensor 8 generates the i-th linear light receiving area 8i.
Are defined. The i-th imaging lens 5i (i = 2,
The optical axes of (3,..., N-1) are within the i-th plane and from the center point of the i-th reflection area via the reflection mirror 4 to the i-th linear light receiving area 8. It is arranged in the optical path of the reflected light reaching the center point of i .

【0045】線状反射領域3cから到来し、反射ミラー
4で略水平方向に偏向され、二次元電子走査形読取セン
サ8上の第nの線状受光領域8で受光される、略水平
な反射光光束によって、第nの平面が規定される。第n
の結像レンズ5の光軸は、上記第nの平面内であっ
て、しかも、第nの反射区域3cの中心点から、反射
ミラー4を介して、第nの線状受光領域8の中心点に
到る反射光の光路内に配置される。前記信号2値化手段
は、前記空洞内のその余の部位、即ち光照射手段2、反
射ミラー4、集光光学系5及び二次元電子走査形読取セ
ンサ8の配設部位並びに照射光及び反射光の通過空間以
外の部位に配置される。前記信号重複部解消手段は、前
記第1の実施の形態の信号重複部解消手段をn−1個含
有して成るものであっても良いし、前記信号重複部解消
手段の1個を、反復してn−1回適用するようにしたも
のであっても良い。第3の実施の形態のその余の構成
は、第1の実施の形態のそれと同様である。
A substantially horizontal light arriving from the linear reflection area 3c is deflected in a substantially horizontal direction by the reflection mirror 4, and is received by the n-th linear light reception area 8n on the two-dimensional electronic scanning read sensor 8. The n-th plane is defined by the reflected light beam. Nth
The optical axis of the imaging lens 5 n of a plane of the first n, moreover, from the center point of the reflection area 3c n of the n, the reflection mirror 4 through the linear light receiving region 8 of the n It is arranged in the optical path of the reflected light reaching the center point of n . The signal binarizing means includes the remaining portions in the cavity, that is, the light irradiating means 2, the reflecting mirror 4, the condensing optical system 5, and the two-dimensional electronic scanning reading sensor 8, and the irradiating light and the reflecting light. It is arranged in a part other than the light passage space. The signal duplication eliminating means may include n-1 signal duplication eliminating means of the first embodiment, or one of the signal duplication eliminating means may be repeated. Then, n-1 times may be applied. The remaining configuration of the third embodiment is the same as that of the first embodiment.

【0046】(動作の説明)光照射手段2が光学的パタ
ーン3の全体を照射したとき、第1の反射区域3c
第nの反射区域3cによってそれぞれ反射されて成る
第1の光像〜第nの光像はそれぞれ、第1の結像レンズ
〜第nの結像レンズ5によって、第1の線状受光
領域8〜第nの線状受光領域8上に結像せしめられ
る。次いで、第1の線状受光領域8〜第nの線状受光
領域8上の各ピクセルにおける光の強弱信号がそれぞ
れ信号電荷に光電変換され、当該各信号電荷が当該各ピ
クセルに蓄積され、当該各ピクセルに対してラスタ走査
式の電子的走査がなされることによって、全ての信号電
荷が時間軸上の一連の電気的アナログ信号に変換され
る。
(Explanation of Operation) When the light irradiating means 2 irradiates the entire optical pattern 3, the first reflection area 3c 1 .
The first respective light image of the optical image to the n is an imaging lens 5 n of the first imaging lens 51 to the n comprising respectively reflected by the reflection area 3c n of the n, the first line is caused to imaged Jo receiving regions 8 1 ~ linear light receiving region on 8 n of the n. Then, the intensity of light signals at each pixel on the first linear light receiving region 81 to the n-th linear light receiving region 8 n of is photoelectrically converted into each signal charge, the signal charges are accumulated in the respective pixels By performing raster scanning electronic scanning on each pixel, all signal charges are converted into a series of electrical analog signals on the time axis.

【0047】上記一連の電気的アナログ信号は、上記信
号2値化手段によって、一連の2値信号に変換される。
上記一連の2値信号は、上記信号重複部解消手段によっ
て、重複信号の一方を削除され、且つ縮合されることに
よって、光学的パターン3に対応する真正2値信号に変
換される。第3の実施の形態のその余の動作は、第1の
実施の形態のそれと同様である。
The series of electric analog signals are converted into a series of binary signals by the signal binarizing means.
The series of binary signals is converted into a true binary signal corresponding to the optical pattern 3 by deleting and condensing one of the overlapping signals by the signal overlapping portion eliminating means. Other operations of the third embodiment are the same as those of the first embodiment.

【0048】〔第4の実施の形態〕この出願の発明の光
学的情報読取装置の第4の実施の形態について説明す
る。同第4の実施の形態の光学的情報読取装置は、前記
第3の実施の形態の光照射手段2の光源の個数が複数個
である場合において、光源の配設密度が、前記光出入口
の左端部又は右端部に近付くに連れて大とされて成るも
のである。上記光源のこのような配設密度によれば、筐
体1の光出入口の横幅を超える長大な横幅を有する光学
的パターン3が同光出入口の前方に最大読取可能距離を
隔てて横長状に置かれたような場合であっても、同光学
的パターン3における光出入口の横幅を超える部分の照
度を特に大とすることが出来る。これによって、上記光
出入口の横幅の外方に位置する線状反射領域からの反射
光の強度を、当該線状反射領域の中央部からの反射光の
強度と同程度に成る様、増大させることが出来る。
[Fourth Embodiment] A fourth embodiment of the optical information reading apparatus according to the present invention will be described. The optical information reading apparatus of the fourth embodiment has a configuration in which, when the number of light sources of the light irradiation means 2 of the third embodiment is plural, the arrangement density of the light sources is It becomes larger as approaching the left end or the right end. According to such an arrangement density of the light sources, the optical pattern 3 having a large lateral width exceeding the lateral width of the light entrance of the housing 1 is disposed in a horizontally long shape with a maximum readable distance in front of the light entrance. Even in such a case, the illuminance at a portion of the optical pattern 3 that exceeds the lateral width of the light entrance can be particularly increased. Thereby, the intensity of the reflected light from the linear reflection region located outside the lateral width of the light entrance is increased so as to be substantially the same as the intensity of the reflected light from the central portion of the linear reflection region. Can be done.

【0049】[0049]

【発明の効果】この出願の発明は、以上のように構成し
たから、下記(a)〜(f)の通り、顕著な効果を奏す
ることが出来る。 (a)読取桁方向に種々なる長さを持つ各種の光学的パ
ターンを、単独で読取ることが出来る。 (b)読取桁方向に方向に長大な長さを有する光学的パ
ターンを、光出入口の幅が狭くて、小型の筐体で読み取
ることが出来る。 (c)読取桁方向に長大な長さを有する光学的パターン
を、1個同一の広角結像レンズを使用したものに比べ
て、歪み(ゆがみ)が少なく、高分解能で読取ることが
出来る。そして、操作性も良好である。 (d)読取桁方向に長大な長さを有する一段バーコード
や多段バーコード、文字、記号等の光学的パターンを、
正確に且つ高速で読取ることが出来る。 (e)表面が柔らかく且つ不定形を成す被読取部材や、
表面が硬く且つ曲面状を成す被読取部材のバーコードシ
ンボルについても誤読の虞が無く、従って読取り作業が
効率的となる。 (f)従って、バーコードリーダを入力手段として使用
する大型システムの構築が容易に成る。
Since the invention of this application is configured as described above, remarkable effects can be obtained as shown in the following (a) to (f). (A) Various optical patterns having various lengths in the reading digit direction can be read alone. (B) An optical pattern having a large length in the direction of the reading digit can be read by a small housing with a narrow light entrance. (C) An optical pattern having a large length in the reading digit direction can be read with less distortion (higher resolution) and higher resolution than one using the same wide-angle imaging lens. And operability is also good. (D) Optical patterns such as single-stage barcodes, multistage barcodes, characters, and symbols having a long length in the reading digit direction are
It can be read accurately and at high speed. (E) a member to be read whose surface is soft and of irregular shape;
There is no risk of erroneous reading of a bar code symbol of a member to be read having a hard surface and a curved surface, so that the reading operation becomes efficient. (F) Therefore, it is easy to construct a large system using a barcode reader as input means.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この出願の発明の光学的情報読取装置の第1の
実施の形態の要部の斜視図である。
FIG. 1 is a perspective view of a main part of a first embodiment of an optical information reading apparatus according to the present invention.

【図2】同第1の実施の形態の要部の平面図である。FIG. 2 is a plan view of a main part of the first embodiment.

【図3】同第1の実施の形態の要部の側面図である。FIG. 3 is a side view of a main part of the first embodiment.

【図4】被読取部材(例えばラベル)の平面図である。FIG. 4 is a plan view of a member to be read (eg, a label).

【図5】被読取部材上の線状反射領域3cの細部の説明
図である。
FIG. 5 is an explanatory diagram of details of a linear reflection area 3c on a member to be read;

【図6】この出願の発明の光学的情報読取装置の第3の
実施の形態の説明図である。
FIG. 6 is an explanatory diagram of a third embodiment of the optical information reading apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 筐体 2 光照射手段 3 光学的パターン 3c 線状反射領域 3c 第1の反射区域 3c 第2の反射区域 4 反射ミラー 5 集光光学系 5 第1の結像レンズ 5 第2の結像レンズ 8 二次元電子走査形読取センサ 8 第1の線状受光領域 8 第2の線状受光領域 d 区域重複部 L 被読取部材(ラベル)DESCRIPTION OF SYMBOLS 1 Case 2 Light irradiation means 3 Optical pattern 3c Linear reflection area 3c 1 First reflection area 3c 2 Second reflection area 4 Reflection mirror 5 Condensing optical system 5 1 First imaging lens 5 2 Second Imaging lens 8 two-dimensional electronic scanning reading sensor 8 1 first linear light receiving area 8 2 second linear light receiving area d area overlapping part L member to be read (label)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 種々なる長さを有する光学的パターンを
読取ることが出来る光学的情報読取装置であって、 光照射手段と、集光光学系(5)と、二次元電子走査形
読取センサ(8)と、信号2値化手段と、信号重複部解
消手段とを含有し、 上記二次元電子走査形読取センサ(8)は、n個の線状
受光領域(但しnは2以上の整数)、即ち第1の線状受
光領域(8)、第iの線状受光領域(8)(但しi
=2,3,…,n−1)、及び第nの線状受光領域(8
n)が垂直面内において互いに平行且つ水平に配置さ
れ、該各線状受光領域(8〜8)には無数のピクセ
ルが水平方向に密に配列されておって、全体として横長
状に配設され、 上記集光光学系(5)は、n個の結像レンズ、即ち第1
の結像レンズ(5)、第iの結像レンズ(5)(但
しi=2,3,…,n−1)及び第nの結像レンズ(5
)を含有しておって、上記二次元電子走査形読取セン
サ(8)の前方に配置され、 横幅が最大読取幅に達する光学的パターン(3)が、上
記集光光学系(5)の前方に、略最大読取距離を隔てて
横長状に置かれ、 該光学的パターン(3)上に線状反射領域(3c)が想
定され、 該線状反射領域(3c)上に、n個の反射区域、即ち該
線状反射領域(3c)の一端を含む第1の反射区域(3
)、第i−1の反射区域(3ci−1)(但しi=
2,3,…,n−1)に対して一端の近傍が重複する第
iの反射区域(3c)、及び第n−1の反射区域(3
n−1)に対して一端の近傍が重複すると共に上記線
状反射領域(3c)の他端を含む第nの反射区域(3c
)が想定されているとき、 上記第1の結像レンズ(5)の光軸は、上記線状反射
領域(3c)と上記第1の線状受光領域(8)とを含
む第1の平面内であって、しかも、上記第1の反射区域
(3c)の中心点から上記第1の線状受光領域
(8)の中心点に到る反射光の光路内に配置され、 上記第iの結像レンズ(5)(但しi=2,3,…,
n−1)の光軸は、上記線状反射領域(3c)と上記第
iの線状受光領域(8)とを含む第iの平面内であっ
て、しかも、上記第iの反射区域(3c)の中心点か
ら上記第iの線状受光領域(8)の中心点に到る反射
光の光路内に配置され、 上記第nの結像レンズ(5)の光軸は、上記線状反射
領域(3c)と上記第nの線状受光領域(8)とを含
む第nの平面内であって、しかも、上記第nの反射区域
(3c)の中心点から上記第nの線状受光領域
(8)の中心点に到る反射光の光路内に配置され、 以って、上記光照射手段が上記光学的パターン(3)の
全体を照射したとき、上記第1の反射区域(3c)〜
第nの反射区域(3c)によってそれぞれ反射されて
成る第1の光像〜第nの光像がそれぞれ、上記第1の結
像レンズ(5)〜第nの結像レンズ(5)によっ
て、上記第1の線状受光領域(8)〜第nの線状受光
領域(8)上に結像せしめられ、 次いで、上記第1の線状受光領域(8)〜第nの線状
受光領域(8)上の各ピクセルにおける光の強弱信号
がそれぞれ信号電荷に光電変換され、当該信号電荷が蓄
積され、当該各ピクセルに対してラスタ走査式の電子的
走査がなされることによって、上記全ての信号電荷が時
間軸上の一連の電気的アナログ信号に変換され、 上記一連の電気的アナログ信号が、上記信号2値化手段
によって、一連の2値信号に変換され、 上記一連の2値信号が、上記信号重複部解消手段によっ
て、重複信号の一方を削除され、且つ縮合されることに
よって、上記光学的パターン(3)に対応する真正2値
信号に変換される、 光学的情報読取装置。
An optical information reading apparatus capable of reading optical patterns having various lengths, comprising: a light irradiating unit; a condensing optical system (5); and a two-dimensional electronic scanning type reading sensor ( 8), a signal binarizing means, and a signal overlapping part eliminating means, wherein the two-dimensional electronic scanning reading sensor (8) has n linear light receiving areas (where n is an integer of 2 or more). That is, the first linear light receiving area (8 1 ), the i-th linear light receiving area (8 i ) (where i
= 2,3, ..., n-1) and the n-th linear light receiving area (8
n) are arranged in parallel and horizontally to each other in the vertical plane, the respective linear light receiving area (8 1 to 8 n) and Oh countless pixels are densely arranged in the horizontal direction, distribution in Horizontal shape as a whole The focusing optical system (5) is provided with n imaging lenses,
Of the imaging lens (5 1), the i of the imaging lens (5 i) (where i = 2,3, ..., n-1) and the n-th of the imaging lens (5
n ), and an optical pattern (3) arranged in front of the two-dimensional electronic scanning reading sensor (8) and having a width reaching the maximum reading width is formed by the optical pattern (5) of the condensing optical system (5). A linear reflection area (3c) is assumed in front of the optical pattern (3) in a horizontally long state with a substantially maximum reading distance therebetween, and n linear reflection areas (3c) are assumed on the linear reflection area (3c). A reflection area, that is, a first reflection area (3) including one end of the linear reflection area (3c).
c 1 ), the ( i−1 ) -th reflection area (3c i−1 ) (where i =
, N−1), the i-th reflection area (3c i ) where the vicinity of one end overlaps, and the (n−1) -th reflection area (3
c n−1 ), and the n-th reflection area (3c) overlapping the vicinity of one end and including the other end of the linear reflection area (3c).
n ) is assumed, the optical axis of the first imaging lens (5 1 ) includes the linear reflection area (3c) and the first linear light receiving area (8 1 ). 1 and in the optical path of the reflected light from the center point of the first reflection area (3c 1 ) to the center point of the first linear light receiving area (8 1 ). , The i-th imaging lens (5 i ) (where i = 2, 3,...,
The optical axis of (n-1) is in the i-th plane including the linear reflection area (3c) and the i-th linear light receiving area (8 i ), and furthermore, the i-th reflection area The optical axis of the n-th imaging lens (5 n ) is disposed in the optical path of the reflected light from the center point of (3c i ) to the center point of the i-th linear light receiving area (8 i ). , Within the n-th plane including the linear reflection area (3c) and the n-th linear light receiving area (8 n ), and from the center point of the n-th reflection area (3c n ). It is arranged in the optical path of the reflected light reaching the center point of the n-th linear light receiving area (8 n ), so that when the light irradiating means irradiates the entire optical pattern (3), the first reflecting zone (3c 1) ~
First light image each of the light image, second n, the first imaging lens (5 1) to the imaging lens (5 n of the n comprising respectively reflected by the reflection area of the n (3c n) ), An image is formed on the first linear light receiving area (8 1 ) to the n-th linear light receiving area (8 n ), and then, the first linear light receiving area (8 1 ) to the first linear light receiving area (8 1 ) The intensity signal of light at each pixel on the n linear light receiving regions (8 n ) is photoelectrically converted into signal charges, the signal charges are accumulated, and a raster scanning electronic scan is performed on each pixel. Thus, all the signal charges are converted into a series of electrical analog signals on a time axis, and the series of electrical analog signals are converted into a series of binary signals by the signal binarizing unit. The series of binary signals are used as the signal overlapping portion eliminating means. Thus, it deleted one of the overlapping signals, and by being condensed, and converted into authentic binary signal corresponding to the optical pattern (3), an optical information reading apparatus.
【請求項2】 請求項1の光学的情報読取装置であっ
て、 一の筐体を含有し、 上記筐体は、その内部に、前記集光光学系(5)、前記
二次元電子走査形読取センサ(8)、前記信号2値化手
段、及び前記信号重複部解消手段の全部又は主要部が収
納される、 光学的情報読取装置。
2. The optical information reading device according to claim 1, further comprising a housing, wherein the housing has the condensing optical system (5) therein and the two-dimensional electronic scanning type. An optical information reading device, in which all or a main part of a reading sensor (8), said signal binarizing means, and said signal overlapping part eliminating means are housed.
【請求項3】 水平方向に長大な寸法を有する光学的パ
ターンを読取ることが出来る、光学的情報読取装置であ
って、 筐体(1)と、光照射手段(2)と、反射ミラー(4)
と、集光光学系(5)と、二次元電子走査形読取センサ
(8)と、信号2値化手段と、信号重複部解消手段とを
含有し、 上記筐体(1)は、後部から中間部が水平筒形を成し、
前部が末広がり形を成すと共に、途中の湾曲点迄は水平
部、同湾曲点から先は下降部を成し、且つ、先端部に光
出入口、内部に空洞が形成され、 上記光照射手段(2)は、1又は複数個の光源からな
り、且つ、それらの光源は、上記光出入口の前方に最大
読取可能距離を隔てて横長状に置かれた光学的パターン
(3)の全体を照射可能にするために、同光出入口の内
側近傍に点状、線分状、コの字状又はループ状に配列さ
れ、 上記反射ミラー(4)は、斜め下前方から到来する反射
光を略水平方向に偏向させるために、上記湾曲点近傍の
空洞内に、斜め下後ろ向きに配置され、 上記二次元電子走査形読取センサ(8)は、n個の線状
受光領域(但しnは2以上の整数)、即ち第1の線状受
光領域(8)、第iの線状受光領域(8)(但しi
=2,3,…,n−1)、及び第nの線状受光領域(8
)が垂直面内において互いに平行且つ水平に配置さ
れ、該各線状受光領域(8〜8)には無数のピクセ
ルが水平方向に密に配列されたものであって、上記筐体
(1)の後部の空洞内に配置され、 上記集光光学系(5)は、n個の結像レンズ、即ち第1
の結像レンズ(5)、第iの結像レンズ(5)(但
しi=2,3,…,n−1)及び第nの結像レンズ(5
)を含有し、 横幅が最大読取幅に達する光学的パターン(3)が、上
記集光光学系(5)の前方に、略最大読取距離を隔てて
横長状に置かれ、 該光学的パターン(3)上に線状反射領域(3c)が想
定され、 該線状反射領域(3c)上に、n個の反射区域、即ち該
線状反射領域(3c)の一端を含む第1の反射区域(3
)、第i−1の反射区域(3ci−1)(但しi=
2,3,…,n−1)に対して一端の近傍が重複する第
iの反射区域(3c)、及び第n−1の反射区域(3
n−1)に対して一端の近傍が重複すると共に上記線
状反射領域(3c)の他端を含む第nの反射区域(3c
)が想定されているとき、 上記第1の結像レンズ(5)の光軸は、上記線状反射
領域(3c)から到来し、上記反射ミラー(4)で略水
平方向に偏向され、上記二次元電子走査形読取センサ
(8)上の第1の線状受光領域(8)で受光される、
略水平な反射光光束によって規定される、第1の平面内
であって、しかも、上記第1の反射区域(3c)の中
心点から、上記反射ミラー(4)を介して、上記第1の
線状受光領域(8)の中心点に到る反射光の光路内に
配置され、 上記第iの結像レンズ(5)(但しi=2,3,…,
n−1)の光軸は、上記線状反射領域(3c)から到来
し、上記反射ミラー(4)で略水平方向に偏向され、上
記二次元電子走査形読取センサ(8)上の第iの線状受
光領域(8)で受光される、略水平な反射光光束によ
って規定される、第iの平面内であって、しかも、上記
第iの反射区域(3c)の中心点から、上記反射ミラ
ー(4)を介して、上記第iの線状受光領域(8)の
中心点に到る反射光の光路内に配置され、 上記第nの結像レンズ(5)の光軸は、上記線状反射
領域(3c)から到来し、上記反射ミラー(4)で略水
平方向に偏向され、上記二次元電子走査形読取センサ
(8)上の第nの線状受光領域(8)で受光される、
略水平な反射光光束によって規定される、第nの平面内
であって、しかも、上記第nの反射区域(3c)の中
心点から、上記反射ミラー(4)を介して、上記第nの
線状受光領域(8)の中心点に到る反射光の光路内に
配置され、 上記信号2値化手段は、上記空洞内のその余の部位に配
置され、 以って、上記光照射手段(2)が上記光学的パターン
(3)の全体を照射したとき、上記第1の反射区域(3
)〜第nの反射区域(3c)によってそれぞれ反
射されて成る第1の光像〜第nの光像がそれぞれ、上記
第1の結像レンズ(5)〜第nの結像レンズ(5
によって、上記第1の線状受光領域(8)〜第nの線
状受光領域(8)上に結像せしめられ、 次いで、上記第1の線状受光領域(8)〜第nの線状
受光領域(8)上の各ピクセルにおける光の強弱信号
がそれぞれ信号電荷に光電変換され、当該信号電荷が蓄
積され、当該各ピクセルに対してラスタ走査式の電子的
走査がなされることによって、上記全ての信号電荷が時
間軸上の一連の電気的アナログ信号に変換され、 上記一連の電気的アナログ信号が、上記信号2値化手段
によって、一連の2値信号に変換され、 上記一連の2値信号が、上記信号重複部解消手段によっ
て、重複信号の一方を削除され、且つ縮合されることに
よって、上記光学的パターン(3)に対応する真正2値
信号に変換される、 光学的情報読取装置。
3. An optical information reading apparatus capable of reading an optical pattern having a large dimension in a horizontal direction, comprising: a housing (1); a light irradiating means (2); and a reflecting mirror (4). )
And a condensing optical system (5), a two-dimensional electronic scanning reading sensor (8), a signal binarizing means, and a signal overlapping part eliminating means. The middle part forms a horizontal cylinder,
The front part has a divergent shape, a horizontal part is formed up to a middle bending point, a descending part is formed from the bending point, and a light entrance and exit are formed at a front end part, and a cavity is formed inside. 2) is composed of one or a plurality of light sources, and these light sources can illuminate the entirety of the optical pattern (3) which is disposed horizontally in front of the light entrance and with a maximum readable distance apart. In order to make the reflected light, the reflective mirror (4) is arranged in a substantially horizontal direction in the vicinity of the inside of the light entrance, in the form of a point, a line, a U-shape or a loop. The two-dimensional electronic scanning read sensor (8) is disposed obliquely downward and backward in the cavity near the bending point to deflect the light into n linear light receiving areas (where n is an integer of 2 or more). ), That is, the first linear light receiving region (8 1 ), the i-th linear light receiving region (8 i ) ( Where i
= 2,3, ..., n-1) and the n-th linear light receiving area (8
n) are arranged in parallel and horizontally to each other in the vertical plane, the respective linear light receiving area (8 1 to 8 n) be those innumerable pixels are densely arranged in the horizontal direction, the housing ( 1) disposed in a rear cavity, wherein the condenser optical system (5) includes n imaging lenses,
Of the imaging lens (5 1), the i of the imaging lens (5 i) (where i = 2,3, ..., n-1) and the n-th of the imaging lens (5
An optical pattern (3) containing n ) and having a horizontal width reaching the maximum reading width is disposed in front of the light-collecting optical system (5) in a horizontally elongated shape with a substantially maximum reading distance therebetween. (3) A linear reflection area (3c) is assumed above, and a first reflection including n reflection areas, that is, one end of the linear reflection area (3c), on the linear reflection area (3c). Area (3
c 1 ), the ( i−1 ) -th reflection area (3c i−1 ) (where i =
, N−1), the i-th reflection area (3c i ) where the vicinity of one end overlaps, and the (n−1) -th reflection area (3
c n−1 ), and the n-th reflection area (3c) overlapping the vicinity of one end and including the other end of the linear reflection area (3c).
n ) is assumed, the optical axis of the first imaging lens (5 1 ) comes from the linear reflection area (3c) and is deflected in a substantially horizontal direction by the reflection mirror (4). Received by the first linear light receiving area (8 1 ) on the two-dimensional electronic scanning reading sensor (8);
Within the first plane defined by the substantially horizontal reflected light beam, and from the center point of the first reflection area (3c 1 ) via the reflection mirror (4), Are arranged in the optical path of the reflected light reaching the center point of the linear light receiving area (8 1 ), and the i-th imaging lens (5 i ) (where i = 2, 3,...,
The optical axis of (n-1) comes from the linear reflection area (3c), is deflected in a substantially horizontal direction by the reflection mirror (4), and is ith on the two-dimensional electronic scanning reading sensor (8). In the i-th plane, defined by the substantially horizontal reflected light beam received by the linear light receiving area (8 i ), and from the center point of the i-th reflection area (3c 1 ) Disposed in the optical path of the reflected light reaching the center point of the i-th linear light receiving area (8 i ) via the reflection mirror (4), and the n-th imaging lens (5 n ) The optical axis arrives from the linear reflection area (3c), is deflected in a substantially horizontal direction by the reflection mirror (4), and is n-th linear light receiving area on the two-dimensional electronic scanning reading sensor (8). Received at (8 n )
The n-th plane is defined by the substantially horizontal reflected light beam, and is located within the n-th plane and from the center of the n-th reflection area (3c n ) via the reflection mirror (4). Are arranged in the optical path of the reflected light reaching the center point of the linear light receiving region (8 n ), and the signal binarization means is arranged in the remaining portion in the cavity, whereby the light When the irradiation means (2) irradiates the entire optical pattern (3), the first reflection area (3)
c 1) - the first light image each of the light image, second n, the first imaging lens comprising respectively reflected by the reflection area of the n (3c n) (5 1 ) ~ imaging of the n Lens ( 5n )
Thus, an image is formed on the first linear light receiving area (8 1 ) to the n-th linear light receiving area (8 n ), and then, the first linear light receiving area (8 1 ) to the n-th linear light receiving area The intensity signal of light at each pixel on the linear light receiving area (8 n ) is photoelectrically converted into a signal charge, the signal charge is accumulated, and raster scanning electronic scanning is performed on each pixel. Thereby, all the signal charges are converted into a series of electric analog signals on a time axis, and the series of electric analog signals are converted into a series of binary signals by the signal binarization unit. A series of binary signals are converted into a true binary signal corresponding to the optical pattern (3) by deleting and condensing one of the overlapping signals by the signal overlapping portion eliminating means. Information reader.
【請求項4】 請求項3の光学的情報読取装置であっ
て、 前記筐体(1)の光出入口の横幅を超える長大な横幅を
有する光学的パターン(3)が同光出入口の前方に最大
読取可能距離を隔てて横長状に置かれたとき、同光学的
パターン(3)における上記光出入口の横幅を超える部
分の照度を特に大とするために、前記光照射手段(2)
における光源の配設密度が前記光出入口の左端部又は右
端部に近付くに連れて大とされて成る、光学的情報読取
装置。
4. The optical information reading device according to claim 3, wherein an optical pattern having a large lateral width exceeding a lateral width of the light entrance of the housing is maximum in front of the light entrance. The light irradiating means (2) is arranged so as to particularly increase the illuminance of a portion of the optical pattern (3) which exceeds the lateral width of the light entrance when placed horizontally in a readable distance.
An optical information reading device, wherein the arrangement density of light sources in (1) is increased as approaching a left end or a right end of the light entrance.
JP2000245294A 2000-07-07 2000-07-07 Optical information reader Expired - Fee Related JP4191883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000245294A JP4191883B2 (en) 2000-07-07 2000-07-07 Optical information reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000245294A JP4191883B2 (en) 2000-07-07 2000-07-07 Optical information reader

Publications (3)

Publication Number Publication Date
JP2002024754A true JP2002024754A (en) 2002-01-25
JP2002024754A5 JP2002024754A5 (en) 2007-06-07
JP4191883B2 JP4191883B2 (en) 2008-12-03

Family

ID=18735845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000245294A Expired - Fee Related JP4191883B2 (en) 2000-07-07 2000-07-07 Optical information reader

Country Status (1)

Country Link
JP (1) JP4191883B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7206849B1 (en) 1998-10-05 2007-04-17 Symbol Technologies, Inc. Communication in a wireless communications network when a mobile computer terminal may be unreachable
JP2008282069A (en) * 2007-05-08 2008-11-20 Denso Wave Inc Optical information reading device
US7621454B2 (en) 2005-10-13 2009-11-24 Denso Wave Incorporated Imaging device with a two-dimensional photodetector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7206849B1 (en) 1998-10-05 2007-04-17 Symbol Technologies, Inc. Communication in a wireless communications network when a mobile computer terminal may be unreachable
US7621454B2 (en) 2005-10-13 2009-11-24 Denso Wave Incorporated Imaging device with a two-dimensional photodetector
JP2008282069A (en) * 2007-05-08 2008-11-20 Denso Wave Inc Optical information reading device

Also Published As

Publication number Publication date
JP4191883B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
EP0980537B1 (en) Optical scanner and image reader for reading images and decoding optical information including one and two dimensional symbologies at variable depth of field
JP2788152B2 (en) Barcode reader
EP2368211B1 (en) Illumination apparatus for an imaging-based bar code system
US5361158A (en) Multiple source optical scanner
US6783068B2 (en) Large depth of field line scan camera
US5942762A (en) CCD scanner having improved specular reflection discrimination
US6296187B1 (en) CCD-based bar code scanner
US7490770B2 (en) System and method of optical reading with enhanced depth of field collection
JP3230612B2 (en) 2D barcode reader
US5136145A (en) Symbol reader
US7487916B2 (en) Imaging-based bar code reader with enhanced decoding capability
JP2002024754A (en) Optical information reader
US5747823A (en) Two-dimensional code mark detecting method and apparatus therefor
EP2449504B1 (en) Method and apparatus for defining illumination field of view of barcode reader
JPS62162181A (en) Optical reader
WO2001080164A2 (en) Multi-channel scanning system with common decoder
US6945463B2 (en) Multi-channel scanning system with common decoder
EP1916557B1 (en) Optical scanner and image reader for reading images and decoding optical information including one and two dimensional symbologies at variable depth of field
JPH0431436B2 (en)
EP0837415A1 (en) Scanning system with radially directed, multiple-reading scanning units
TW297889B (en)
EP1178665A2 (en) Optical scanner and image reader including one and two dimensional symbologies at variable depth of field
WO2010068199A1 (en) Method and apparatus for scanning optical code
CA2577235A1 (en) Optical scanner and image reader for reading images and decoding optical information including one and two dimensional symbologies at variable depth of field
JPH0927005A (en) Data symbol reader

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070413

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees