JP2002022686A - Method for evaluating damage and stain of high temperature heat transfer part - Google Patents

Method for evaluating damage and stain of high temperature heat transfer part

Info

Publication number
JP2002022686A
JP2002022686A JP2000206723A JP2000206723A JP2002022686A JP 2002022686 A JP2002022686 A JP 2002022686A JP 2000206723 A JP2000206723 A JP 2000206723A JP 2000206723 A JP2000206723 A JP 2000206723A JP 2002022686 A JP2002022686 A JP 2002022686A
Authority
JP
Japan
Prior art keywords
temperature
heat transfer
damage
dirt
transfer section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000206723A
Other languages
Japanese (ja)
Inventor
Takeshi Takahashi
高橋  毅
Masahiko Morinaga
雅彦 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2000206723A priority Critical patent/JP2002022686A/en
Publication of JP2002022686A publication Critical patent/JP2002022686A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide various data necessary for the stable operation of machinery by monitoring the material damage or stain state of a heat transfer part held under a heat flux condition and a high temperature condition one-line. SOLUTION: One or more temperature sensor 1 is attached to the heat transfer part 6, and the output of one or more temperature sensor attached to the heat transfer part 6 and the quantities of state necessary for the thermal analysis and material analysis of the machinery, for example, pressure, a flow rate, the temperatures of an operation fluid at the inlet and outlet of the machinery or the like are continuously measured at the same time and these data are taken in an arithmetic memory device to be processed. In this case, the temperature of the heat transfer part 6 damaged by the fluctuation of temperature generated by a heat flux change and receiving material dynamical damage under a high temperature condition is measured under a temperature condition including a high temperature condition and the heat transfer analysis of the heat transfer part 6 is performed from the temperature measured value and the temporally changing heat flux condition of the heat transfer part 6 and material dynamical damage such as fatique, creep or the like or a stain is calculated from the analyzed temperature behavior.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボイラや熱交換器
のように、特に時間的に変化する熱流束を受け、かつ高
温状態にあり、特別なセンサー設置が難しい高温伝熱部
の劣化診断、汚れ診断に用いて好適な材料交換、汚れ除
去の定量的判断指針を与える高温伝熱部損傷・汚れ評価
方法に関する。さらに詳述すると、本発明は運転に伴っ
て変化する熱流束条件の下で損傷・汚れ状態をオンライ
ンで定量的に評価し、予測し、表示する方法の改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diagnosis of deterioration of a high-temperature heat transfer section such as a boiler or a heat exchanger, which receives a heat flux which changes with time and which is in a high temperature state and in which it is difficult to install a special sensor. The present invention relates to a high-temperature heat transfer portion damage / dirt evaluation method which provides a quantitative judgment guide for material exchange and dirt removal suitable for use in dirt diagnosis. More specifically, the present invention relates to an improved method for quantitatively evaluating, predicting, and displaying damage / dirt conditions online under heat flux conditions that change with operation.

【0002】[0002]

【従来の技術】産業において数多く用いられる熱交換器
では、高温熱源と低温熱源との間の熱の授受に用いられ
る伝熱部に大きな温度差が生じることから、例えば、高
温伝熱部でのクリープ損傷や、温度変化が繰り返される
伝熱部での疲労損傷といった材料力学的な損傷が生じる
ことがある。また、このような伝熱部では、作動流体中
の不純物が伝熱部に堆積、析出し伝熱阻害を起こしたり
流動阻害を発生させたりするケースもある。
2. Description of the Related Art In a heat exchanger used in a large number of industries, a large temperature difference occurs in a heat transfer portion used for transferring heat between a high-temperature heat source and a low-temperature heat source. Material mechanical damage such as creep damage and fatigue damage in a heat transfer portion where temperature changes are repeated may occur. Further, in such a heat transfer section, there is a case where impurities in the working fluid are deposited and deposited on the heat transfer section to cause heat transfer inhibition or flow inhibition.

【0003】例えば、火力発電所の過熱器やボイラは、
高温の燃焼ガスや火炎からの熱(熱流束)を受け、それ
自体が高温になるため上述の材料力学的損傷は激しく、
また、伝熱部に付着する僅かな汚れも材料温度を大きく
上昇させる。
For example, superheaters and boilers in thermal power plants are:
Due to the heat (heat flux) from the high-temperature combustion gas and flame, the material itself becomes high temperature, and the above-mentioned material mechanical damage is severe,
Also, slight dirt adhering to the heat transfer section greatly raises the material temperature.

【0004】このような材料力学的損傷や汚れ損傷を計
測・評価する技術に関しては、例えば特開平9−324
900号公報に記載されているようなプラント配管にお
ける疲労やクリープ測定に関する技術や、特開平9−1
12294号公報に記載されているような熱交換器の汚
れ評価技術などが提示されている。
A technique for measuring and evaluating such mechanical damage and dirt damage is described in, for example, Japanese Patent Application Laid-Open No. 9-324.
Japanese Patent Application Laid-Open No. 9-1900 discloses a technique for measuring fatigue and creep in a plant piping.
No. 12294 discloses a heat exchanger contamination evaluation technique and the like.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、火力発
電所の過熱器やボイラなどは強い熱流束条件を受け、高
温条件にあることから、従来、プラント運転中に直接損
傷や汚れを計測または評価しようとすると、大きく温度
が乱れたり、測定部が熱のため複雑な変形をするなど、
リアルタイムでの計測・評価が困難であった。
However, since superheaters and boilers of a thermal power plant are subjected to high heat flux conditions and high temperature conditions, conventionally, it is necessary to directly measure or evaluate damage and dirt during plant operation. Then, the temperature is greatly disturbed, and the measurement part is complicatedly deformed due to heat.
It was difficult to measure and evaluate in real time.

【0006】このため、このような高温伝熱部の損傷あ
るいは汚れに関しては、一般に、機器あるいはプラント
停止時に対象機器を開放し、肉眼検査、材料の抜き取り
検査などを行い、さらに材料試験、顕微鏡観察などによ
り材料損傷程度の把握や汚れ状態の確認を行っているの
が通常である。
[0006] Therefore, regarding such damage or dirt on the high-temperature heat transfer section, generally, when the equipment or the plant is stopped, the target equipment is opened, a visual inspection, a sampling inspection of the material, and the like are performed. Usually, the degree of material damage is grasped and the state of contamination is checked by such means.

【0007】したがって、プラントの運転期間が長期た
とえば1年ないし2年に及ぶとその長期運転中は内部状
態の評価が不可能となってしまう問題がある。すなわ
ち、停止時に行われた各種検査結果から材料損傷程度を
把握したり汚れ状態を確認することは可能であるが、運
転中の損傷や汚れ状態を評価する手法はなく、様々な運
用形態が想定される将来の機器健全性評価に、このよう
な間隔を置いた各種検査結果が活用できない課題があっ
た。
[0007] Therefore, when the operation period of the plant is long, for example, one year to two years, there is a problem that it is impossible to evaluate the internal state during the long operation. In other words, although it is possible to grasp the degree of material damage and check the contamination state from the results of various inspections performed at the time of stoppage, there is no method for evaluating the damage or contamination state during operation, and various operation modes are assumed. There is a problem that various inspection results at such intervals cannot be used for the evaluation of future device integrity.

【0008】また、上述した公報記載の技術でも、必要
な情報収集はいずれも非加熱部で行うようにしている。
すなわち、特開平9−324900号公報のように損傷
計測のため複雑なセンサの取付けが必須な技術は、高温
部へ適用した場合きわめて短時間で焼損・劣化すること
があり、熱流束を受ける状態への適用は出来ない。ま
た、特開平9−112294号公報のような技術では伝
熱部の直接計測が出来ないため、やはり非加熱部の温度
変化から加熱部の汚れ状態を間接的に計測するようにし
ている。つまり、もっとも損傷評価や汚れ評価が必要な
高温伝熱部のその場計測・評価技術は実現していないの
が実状である。
[0008] In the technology described in the above-mentioned publication, all necessary information collection is performed in the non-heating unit.
In other words, a technique that requires the installation of a complicated sensor for damage measurement, such as that disclosed in Japanese Patent Application Laid-Open No. 9-324900, may be burned or deteriorated in a very short time when applied to a high-temperature part, and may suffer from heat flux. It cannot be applied to Further, since the technique of Japanese Patent Application Laid-Open No. 9-112294 cannot directly measure the heat transfer section, the state of contamination of the heating section is also indirectly measured from the temperature change of the non-heating section. In other words, in-situ measurement / evaluation techniques for high-temperature heat transfer sections that require the most damage and dirt evaluations have not been realized.

【0009】加えて、運転状況に応じてリアルタイムに
機器の損傷、汚れ状態が把握できないことは、材料力学
的な観点の寿命後期、あるいは一般に機器運用基準とし
て定める汚れ許容値到達期においては、早めの材料交換
や伝熱部汚れの洗浄作業を余儀なくされるなど、多くの
コスト増加を引き起こす要因となっている。
[0009] In addition, the fact that the damage and dirt condition of the equipment cannot be grasped in real time in accordance with the operating condition is due to the fact that the end of the life from the viewpoint of material mechanics or the dirt tolerance value generally defined as the equipment operation standard is early. This causes many cost increases, such as the necessity of exchanging materials and cleaning the heat transfer portion.

【0010】そこで、本発明は、熱流束条件下にある高
温伝熱部の材料損傷や汚れ状態をオンラインで監視し、
同時に過去の損傷状態・汚れ予測や将来の損傷進展状態
・汚れ状態を予測し、機器の安定運転に必要な各種情報
を提供できる高温伝熱部損傷・汚れ評価方法を提供する
ことを目的とする。
In view of the above, the present invention monitors on-line the material damage and dirt condition of the high-temperature heat transfer section under the heat flux condition,
At the same time, the purpose of the present invention is to provide a high-temperature heat transfer part damage / fouling evaluation method capable of predicting a past damage state / fouling prediction and a future damage progressing state / fouling state and providing various information necessary for stable operation of the equipment. .

【0011】[0011]

【課題を解決するための手段】かかる目的を達成するた
め、本発明の高温伝熱部損傷・汚れ評価方法では、伝熱
部に取り付けられている1つ以上の温度センサあるいは
伝熱部に取り付けた1つ以上の温度センサの出力と機器
の熱的な解析および材料的な解析に必要な状態量、例え
ば圧力、流量、機器入口出口作動流体温度などを同時
に、連続的に測定し、これらデータを演算記憶装置に取
り込み、処理するようにしている。
In order to achieve the above object, according to the method for evaluating damage / dirt of a high-temperature heat transfer section according to the present invention, the heat transfer section is attached to one or more temperature sensors or heat transfer sections attached to the heat transfer section. The output of one or more temperature sensors and the state quantities required for thermal and material analysis of the equipment, such as pressure, flow rate, working fluid temperature at the equipment inlet and outlet, are measured simultaneously and continuously. Is loaded into an arithmetic storage device and processed.

【0012】そして、かかる技術に基づき、請求項1の
発明は、熱流束変化により生じる温度変動によって損傷
を受ける伝熱部の損傷・汚れを評価し監視する高温伝熱
部の損傷・汚れ評価方法であって、温度センサにより伝
熱部を高温度条件を含む条件下で温度測定した際の測定
値と、伝熱部の時間的に変化する温度・プラントデータ
とから伝熱部の熱流束解析と伝熱解析を行い、解析した
温度挙動から疲労・クリープなどの材料力学的損傷ある
いは汚れを求め、その損傷量あるいは汚れ度合いをオン
ラインで表示するようにしたものである。
[0012] Based on this technology, a first aspect of the present invention is a method for evaluating damage / dirt of a high-temperature heat transfer section, which evaluates and monitors damage / dirt of a heat transfer section which is damaged by temperature fluctuation caused by a change in heat flux. The heat flux analysis of the heat transfer section is performed based on the measured values obtained when the temperature of the heat transfer section is measured by the temperature sensor under conditions including high temperature conditions, and the time-varying temperature and plant data of the heat transfer section. And heat transfer analysis to determine material mechanical damage such as fatigue and creep or dirt from the analyzed temperature behavior, and display the damage amount or degree of dirt online.

【0013】これにより、従来は間欠的にしか評価でき
なかった伝熱部の損傷・汚れが運転状況に応じてリアル
タイムに評価する事が可能となり、同時に様々な想定さ
れる条件の下での損傷状態、汚れ状態の予測から、機器
の長期保守計画が可能になる。
[0013] This makes it possible to evaluate the damage and dirt of the heat transfer section in real time according to the operating conditions, which can be evaluated only intermittently in the past, and at the same time damages under various assumed conditions. From the prediction of the state and the contamination state, a long-term maintenance plan of the equipment becomes possible.

【0014】従って、運転者、保守管理者は、次の機器
停止時の各種検査とその分析結果を待たずに、運転状況
の変化とともに変化する高温伝熱部のその場損傷評価が
可能となり事前の材料交換の必要性などが即座に判断で
きることとなる。また、運転者、保守管理者は、次の機
器停止時の各種検査とその分析結果を待たずに、従来監
視出来なかった高温伝熱部の汚れ評価が可能となり、プ
ラント全体への監視対象機器の影響評価、事前の汚れ洗
浄の必要性などが即座に判断できることとなる。
Therefore, the operator and the maintenance manager can evaluate the in-situ damage of the high-temperature heat transfer section which changes with the change of the operating condition without waiting for the various inspections at the time of the next equipment stop and the analysis results. The necessity of material replacement can be immediately determined. In addition, the operator and maintenance manager can evaluate the contamination of the high-temperature heat transfer section, which could not be monitored conventionally, without waiting for the various inspections and the analysis results at the time of the next equipment stoppage. It is possible to immediately judge the influence evaluation, the necessity of cleaning dirt in advance, and the like.

【0015】請求項2記載の発明は、過去の運転状態か
ら過去に受けた損傷・汚れ状態を予測し表示する機能、
今後の運転予測状態から今後の損傷・汚れ状態を予測し
表示する機能またはいくつか準備された運用パターンを
基に今後の最適な保守指針を表示する機能のうち少なく
ともいずれかの機能を備え、伝熱部の伝熱解析を行い解
析した温度挙動から求めた材料力学的損傷または汚れを
基にこの伝熱部汚れの洗浄時期または材料の交換時期を
オンラインで判定するものである。
The invention according to claim 2 is a function of predicting and displaying a damage / dirt state received in the past from a past operation state,
Equipped with at least one of the function of predicting and displaying the future damage / dirt condition from the predicted operation status and the function of displaying the optimal maintenance guideline based on some prepared operation patterns. The heat transfer analysis of the heat part is performed, and the cleaning time of the heat transfer part dirt or the material replacement time is determined online based on the material mechanical damage or dirt obtained from the analyzed temperature behavior.

【0016】これによると、運転者、保守管理者は、過
去の高温伝熱部の損傷、汚れ状態の定量的予測が可能と
なり、また、将来の様々な運用形態での損傷・汚れ状態
が定量的に予測出来ることから、運用計画作成、保守計
画作成などを機器寿命の観点から定量的に評価できるこ
ととなる。
According to this, the operator and the maintenance manager can quantitatively predict the damage and dirt condition of the high-temperature heat transfer section in the past, and quantitatively determine the damage and dirt condition in various future operation modes. Since it is possible to predict the operation plan, it is possible to quantitatively evaluate the operation plan creation and the maintenance plan creation from the viewpoint of the equipment life.

【0017】[0017]

【発明の実施の形態】以下、本発明の構成を図面に示す
実施の形態の一例に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below in detail based on an example of an embodiment shown in the drawings.

【0018】図1〜図9に、本発明の一実施形態を示
す。本発明の高温伝熱部損傷・汚れ評価方法は、損傷・
汚れセンサとして高温伝熱部6に取り付けられた温度セ
ンサ(温度測定センサ)1あるいは他の目的ですでに取
り付けられている温度センサ1と、センサ信号を演算処
理装置に取り込むためデジタル信号に変換するA/Dコ
ンバータ2と、温度測定値の記憶と温度測定値を基に損
傷・汚れ状態を演算し同時に損傷・汚れ状態を予測する
演算記憶装置3と、演算結果の出力あるいは演算記憶装
置3を操作する入出力部4とを備える。なお、機器運転
制御装置(システム)5は機器運転のためにすでに取り
付けられている装置であって、損傷・汚れ評価に必要な
機器状態量データは、この機器運転制御装置5から採取
される。
1 to 9 show one embodiment of the present invention. The damage / dirt evaluation method of the high-temperature heat transfer part of the present invention
A temperature sensor (temperature measurement sensor) 1 attached to the high-temperature heat transfer section 6 as a dirt sensor or a temperature sensor 1 already attached for another purpose, and converting the sensor signal into a digital signal for input to an arithmetic processing unit. An A / D converter 2, a storage device for calculating a damage / dirt state based on storage of a temperature measurement value and a temperature measurement value and simultaneously predicting a damage / dirt state, and an output of a calculation result or a calculation storage device 3 And an input / output unit 4 for operating. The device operation control device (system) 5 is a device already installed for device operation, and device state quantity data necessary for damage / dirt evaluation is collected from the device operation control device 5.

【0019】温度センサ1は、熱電対、サーミスタ、放
射温度計などの公知の温度検出器、検出手法が用いられ
る。この場合、高温伝熱部6では図2に示すような各種
の温度計測法が望ましい。また、A/Dコンバータ2は
12ビットあるいは16ビットなどの公知の変換器が用
いられる。演算記憶装置3は、一般に記憶装置、中央演
算装置を含む公知のコンピュータが使用される。入出力
部4は、キーボード、CRT、プロッターなどの公知の
入出力装置が用いられる。
As the temperature sensor 1, a known temperature detector or detection method such as a thermocouple, a thermistor, or a radiation thermometer is used. In this case, in the high-temperature heat transfer section 6, various temperature measuring methods as shown in FIG. The A / D converter 2 is a known converter of 12 bits or 16 bits. As the arithmetic storage device 3, a known computer including a storage device and a central processing unit is generally used. As the input / output unit 4, a well-known input / output device such as a keyboard, a CRT, and a plotter is used.

【0020】まず、瞬間の機器状態データおよび温度セ
ンサデータがA/Dコンバータ2を介し演算記憶装置3
に取り込まれ記録される。その後、損傷・汚れ状態評価
・予測プログラムが中央演算装置上で機器状態データお
よび温度センサデータを処理し、現在の損傷状態、汚れ
状態を解析し、表示あるいは出力装置に出力する。さら
に、入出力部4からのデータ入力があれば、損傷・汚れ
状態の予測値を表示あるいは出力装置に出力する。
First, the instantaneous equipment state data and temperature sensor data are transferred via the A / D converter 2 to the arithmetic storage device 3.
Is captured and recorded. Then, the damage / dirt state evaluation / prediction program processes the device state data and the temperature sensor data on the central processing unit, analyzes the current damage state / dirt state, and outputs it to a display or output device. Further, if there is a data input from the input / output unit 4, a predicted value of the damage / dirt state is displayed or output to an output device.

【0021】次に、図3に示す損傷・汚れ評価処理方法
の損傷汚れ評価・予測プログラムのフローチャートを用
い、データ処理内容を説明する。
Next, data processing contents will be described with reference to a flowchart of a damage / dirt evaluation / prediction program of the damage / dirt evaluation processing method shown in FIG.

【0022】まず、温度データおよび機器状態データを
読み込み(ステップ1)、これらデータを瞬間条件での
伝熱状態評価に供し(ステップ2)、高温伝熱部6の詳
細な温度解析を行う。
First, the temperature data and the equipment state data are read (step 1), and these data are subjected to a heat transfer state evaluation under an instantaneous condition (step 2), and a detailed temperature analysis of the high-temperature heat transfer section 6 is performed.

【0023】例えば、火力発電所ボイラ蒸発管を対象に
説明すると、測定された温度計測値から、以下のように
熱流束Qと各部温度Tが求められる。
For example, in the case of a boiler evaporator of a thermal power plant, the heat flux Q and the temperature T of each part are obtained from the measured temperature values as follows.

【数1】 (Equation 1)

【数2】 (Equation 2)

【数3】 求められた伝熱状態解析データは、このシステムが過去
にサンプルしたデータとともに経時変化データの一部と
して保存される(ステップ4)。また、温度データおよ
び機器状態データは温度・機器状態用のデータベースに
保存される(ステップ2)。
(Equation 3) The obtained heat transfer state analysis data is stored as a part of the time-varying data together with the data sampled by the system in the past (step 4). Further, the temperature data and the device state data are stored in a temperature / device state database (step 2).

【0024】次に、伝熱部6の温度解析結果から、瞬間
での材料のクリープ損傷と、過去(数秒から数分前)の
経時的な温度変化から疲労損傷を求める(ステップ
5)。ここで、クリープ損傷は、実測した温度データを
基に熱流束、管内面、管壁平均、管外面温度を求め、同
時に測定する運転データとから図3に示す手法により求
める。また、クリープ疲労損傷評価に一般的に用いられ
るラーソンミラーパラメータなどのクリープ損傷評価指
数を用い、
Next, based on the result of the temperature analysis of the heat transfer section 6, the instantaneous creep damage of the material and the fatigue damage are determined from the past (several seconds to several minutes before) time-dependent temperature change (step 5). Here, the creep damage is obtained by the method shown in FIG. 3 from the heat flux, the inner surface of the tube, the average of the wall of the tube, and the temperature of the outer surface of the tube based on the actually measured temperature data and the operating data measured simultaneously. In addition, using a creep damage evaluation index such as Larson Miller parameter generally used for creep fatigue damage evaluation,

【数4】 (Equation 4)

【数5】 (Equation 5)

【数6】 として、クリープ損傷量dcが求められる。この手法
は、公知の手法である。
(Equation 6) Is obtained as the creep damage amount dc. This technique is a known technique.

【0025】損傷解析は、上述の伝熱状態解析データを
もとに、あらかじめ、有限要素法などを用いた損傷評価
解析を図12のように実施し、温度変化量と損傷の関係
を求めておく。さらに、図4に示すような歪みと伝熱部
6の温度変化量との関係を別途求めておき、図13に示
す計算手法を用い、式7,8に示す関係から例えば図5
に示すように材料の歪み−破断関係式をもとに損傷量d
fが求められる。
In the damage analysis, a damage evaluation analysis using a finite element method or the like is performed in advance as shown in FIG. 12 based on the above-described heat transfer state analysis data, and the relationship between the temperature change amount and the damage is obtained. deep. Further, the relationship between the strain as shown in FIG. 4 and the amount of temperature change of the heat transfer section 6 is separately obtained, and the calculation method shown in FIG.
As shown in the following, the amount of damage d
f is required.

【数7】 (Equation 7)

【数8】 これらは、損傷解析データとしてデータベース化される
(ステップ6)。また、数時間から数年過去のクリー
プ、疲労損傷損傷解析結果と現在の値を比較することに
より、損傷状態変化を解析する。さらに汚れ変化状態の
解析をし(ステップ7)データベース化する(ステップ
8)。
(Equation 8) These are made into a database as damage analysis data (step 6). In addition, we analyze the changes in damage state by comparing the results of creep and fatigue damage analysis in the past several hours to several years with the current values. Further, the dirt change state is analyzed (step 7), and a database is created (step 8).

【0026】次に、過去の機器状態データおよび温度セ
ンサデータと伝熱部6の温度解析結果、現在の機器状態
データおよび温度データと伝熱部温度解析結果とを比較
することにより、伝熱部温度変化状態を解析する(ステ
ップ9)。図6は、伝熱部温度変化状態の解析結果の一
例であるが、先に示した伝熱解析結果から得られる熱流
束データと温度解析結果から汚れ変化を温度変化量とし
て定量化する。
Next, by comparing the past equipment state data and temperature sensor data with the temperature analysis result of the heat transfer section 6, and comparing the current equipment state data and temperature data with the heat transfer section temperature analysis result, The temperature change state is analyzed (step 9). FIG. 6 shows an example of the analysis result of the temperature change state of the heat transfer section. The change in contamination is quantified as the temperature change amount from the heat flux data obtained from the heat transfer analysis result and the temperature analysis result described above.

【0027】次に、過去の機器状態データから、汚れ状
態の初期値、損傷状態の初期値を予測し、この初期値を
基に、現在の損傷状態、汚れ状態を定量値として演算
し、出力する(ステップ10)。図7に損傷状態評価結
果の一例を、図8に汚れ状態評価結果の一例をそれぞれ
示す。
Next, the initial value of the dirty state and the initial value of the damaged state are predicted from the past device state data, and based on the initial values, the current damaged state and the dirty state are calculated as quantitative values and output. (Step 10). FIG. 7 shows an example of the damage state evaluation result, and FIG. 8 shows an example of the contamination state evaluation result.

【0028】さらに、過去のクリープ損傷・疲労損傷解
析をした上で(ステップ11)、予測条件の入力があれ
ば(ステップ12)、将来の損傷状態、汚れ状態を予測
し出力する(ステップ13,14)。損傷状態予測結果
の一例を示すと図9に示すようになる。
Further, after the past creep damage / fatigue damage analysis (step 11), if the prediction conditions are input (step 12), the future damage state and dirt state are predicted and output (step 13, step 13). 14). FIG. 9 shows an example of the damage state prediction result.

【0029】ここで、具体的な予測(過去ならびに将
来)は、図22のように実施する。先ず現在の損傷量を
求める基礎となる温度分布(Td=f(p、L、t))を
負荷、検討対象位置、経過時間の下で関数化する。次
に、図23から求められる伝熱面汚れの成長による温度
上昇量(dT)を求める。この温度上昇から、初期状態
すなわち汚れ0の時を想定し、そのときの温度分布を求
め、その値を初期値とする。過去の損傷量予測は、その
初期値から、現在までの温度変化を求めると同時に損傷
計算を進め、損傷積分量を求めることによって得ること
ができる。将来の損傷量予測は、同じ手続きにより損傷
積分を将来に対して実施すればよいこととなる。
Here, specific predictions (past and future) are performed as shown in FIG. First, a temperature distribution (Td = f (p, L, t)) as a basis for obtaining the current damage amount is formed into a function under a load, a position to be examined, and an elapsed time. Next, an amount of temperature rise (dT) due to the growth of the heat transfer surface contamination obtained from FIG. 23 is obtained. From this temperature rise, an initial state, that is, a time of zero contamination, is assumed, a temperature distribution at that time is obtained, and the value is set as an initial value. The prediction of the past damage amount can be obtained by calculating the temperature change from the initial value to the present and simultaneously with the damage calculation, and calculating the damage integral amount. To predict the future damage amount, damage integration may be performed for the future by the same procedure.

【0030】したがって、本実施形態の評価方法は、過
去の運転状態から過去に受けた損傷・汚れ状態を予測し
表示する機能、今後の運転予測状態から今後の損傷・汚
れ状態を予測し表示する機能またはいくつか準備された
運用パターンを基に今後の最適な保守指針を表示する機
能のいずれの機能も発揮できる。これにより、伝熱部6
の伝熱解析を行い解析した温度挙動から求めた材料力学
的損傷または汚れを基にこの伝熱部汚れの洗浄時期また
は材料の交換時期をオンラインで判定することが可能と
なる。
Therefore, the evaluation method of the present embodiment predicts and displays the damage / dirt state received in the past from the past operation state, and predicts and displays the future damage / dirt state from the predicted operation state. Any function of displaying the optimum maintenance guideline based on the function or some prepared operation patterns can be exhibited. Thereby, the heat transfer section 6
It is possible to determine the cleaning time of the heat transfer portion dirt or the material replacement time on-line based on the material mechanical damage or dirt obtained from the analyzed temperature behavior.

【0031】以上説明したように、本実施形態の高温伝
熱部損傷・汚れ評価方法によると、従来不可能だった高
温伝熱部6のオンラインでの損傷評価と汚れ評価、さら
に損傷予測、汚れ予測が可能となるし、同時に複数の温
度センサ1を用いることにより機器の部位により異なる
損傷・汚れ状態が事前に予測できる。このため、運転
者、保守管理者は、次の機器停止時の各種検査とその分
析結果を待たずに、運転状況の変化とともに変化する高
温伝熱部6のその場損傷評価が可能となり、事前の材料
交換の必要性などが即座に判断できる。また、運転者、
保守管理者は、次の機器停止時の各種検査とその分析結
果を待たずに、従来監視出来なかった高温伝熱部6の汚
れ評価が可能となり、プラント全体への監視対象機器の
影響評価、事前の汚れ洗浄の必要性などが即座に判断で
きることとなる。
As described above, according to the high-temperature heat transfer section damage / dirt evaluation method of this embodiment, online damage evaluation and dirt evaluation of the high-temperature heat transfer section 6 which were not possible in the past, further damage prediction, Prediction is possible, and by using a plurality of temperature sensors 1 at the same time, it is possible to predict in advance damage / dirt states depending on parts of the device. For this reason, the driver and the maintenance manager can perform in-situ damage evaluation of the high-temperature heat transfer section 6 that changes with a change in the operation status without waiting for various inspections and analysis results at the time of the next equipment stoppage. The need for material replacement can be determined immediately. The driver,
The maintenance manager can evaluate the contamination of the high-temperature heat transfer section 6, which could not be monitored conventionally, without waiting for the various inspections at the time of the next equipment stop and the analysis results, and can evaluate the influence of the monitoring target equipment on the entire plant, The necessity of prior dirt cleaning can be immediately determined.

【0032】なお、上述の実施形態は本発明の好適な実
施の一例ではあるがこれに限定されるものではなく本発
明の要旨を逸脱しない範囲において種々変形実施可能で
ある。
The above embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited thereto, and various modifications can be made without departing from the gist of the present invention.

【0033】[0033]

【実施例】上述の高温伝熱部損傷・汚れ評価方法は、例
えばプラントの累積クリープ損傷評価を化学洗浄間隔の
指針にするのに有用である。つまり、火力発電所ボイラ
蒸発管に施される化学洗浄は、ボイラ蒸発管内面に付着
する成長するスケールによる蒸発管の過熱現象を未然に
防止する目的で実施されており、多くの費用を必要とす
るところ、設備信頼性維持の観点から化学洗浄の間隔を
延伸できればコスト低減効果は大きい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The above-described method for evaluating the damage and contamination of a high-temperature heat transfer section is useful for, for example, evaluating cumulative creep damage of a plant as a guide for chemical cleaning intervals. In other words, the chemical cleaning applied to the boiler evaporator tubes of a thermal power plant is carried out in order to prevent the overheating phenomenon of the evaporator tubes due to the growing scale adhering to the inner surface of the boiler evaporator tubes, and requires a lot of cost. However, if the interval of chemical cleaning can be extended from the viewpoint of maintaining equipment reliability, the cost reduction effect will be great.

【0034】そこで、本実施例では、まずボイラメタル
温度計データを連続的に収集し、管最高温度、平均温度
を計算した後それぞれのクリープ損傷を求め、累積し、
さらに、スケール生成速度データから、数年先の温度上
昇量、累積クリープ損傷量を予測し、最適な化学洗浄間
隔を求めることとした。この場合、低温域での少ないク
リープ損傷を積極的に評価し、時間に組み入れることに
より化学洗浄間隔の延伸を図ることが可能となる。
Therefore, in this embodiment, first, the boiler metal thermometer data is continuously collected, the maximum pipe temperature and the average temperature are calculated, and then the respective creep damages are obtained and accumulated.
Furthermore, from the scale generation rate data, the amount of temperature rise and the amount of cumulative creep damage several years ahead were predicted, and the optimal chemical cleaning interval was determined. In this case, it is possible to prolong the chemical cleaning interval by positively evaluating the small creep damage in the low temperature range and incorporating it into the time.

【0035】そこで、以上のようなシステム構築の可能
性確認を目的に実験と検討を行った。この実験では、石
炭による通常燃焼状態での蒸発管メタルの温度挙動を調
べた。この結果、メタル温度は絶えず高い温度を示して
いるのではなく、バーナの点消火、灰の付着脱落等によ
りさまざまな温度帯に分散していることが判った。
Therefore, an experiment and a study were conducted for the purpose of confirming the possibility of constructing the system as described above. In this experiment, the temperature behavior of the metal of the evaporator tube in the normal combustion state with coal was investigated. As a result, it was found that the metal temperature did not always show a high temperature, but was dispersed in various temperature zones due to the fire extinguishing of the burner, the attachment and detachment of ash, and the like.

【0036】ここで、従来の化学洗浄時期判定法を用い
た場合に、短い化学洗浄間隔を示した側壁のメタル温度
の温度帯ごとの発現ヒストグラムは図10に示すように
なる。図から明らかなように、短い化学洗浄間隔を示し
た温度が発現するのは、すべてのメタル温度の中で5%
以下の頻度である。これに対し、100%負荷条件での
同側壁におけるメタル温度計の温度帯ごとの発現ヒスト
グラムは図11に示すようになった。短い化学洗浄間隔
となる温度は545℃以上であるが、545℃以上の温
度は発現割合20%程度であり、平均的には525℃の
温度になっていることが判る。
Here, when the conventional chemical cleaning timing determination method is used, an expression histogram for each temperature zone of the metal temperature of the side wall showing a short chemical cleaning interval is as shown in FIG. As can be seen from the figure, the temperature at which a short chemical cleaning interval occurs appears at 5% of all metal temperatures.
The frequency is as follows. On the other hand, the expression histogram for each temperature zone of the metal thermometer on the same side wall under the 100% load condition is as shown in FIG. The temperature at which the chemical cleaning interval is short is 545 ° C. or higher, but the temperature at 545 ° C. or higher has an expression ratio of about 20%, which means that the temperature is 525 ° C. on average.

【0037】以上のように、現在の化学洗浄時期判定法
で用いられるメタル温度は、相当の裕度を持って判定さ
れていると判断でき、蒸発管が示すすべての温度をより
合理的に評価できれば化学洗浄間隔の延伸は可能とな
る。
As described above, the metal temperature used in the current chemical cleaning timing determination method can be determined to have been determined with a considerable margin, and all the temperatures indicated by the evaporation tubes can be more reasonably evaluated. If possible, the chemical cleaning interval can be extended.

【0038】次に、蒸発管損傷に関する検討を行った。
以下に、熱疲労に関する検討例を示す。
Next, a study on damage to the evaporating tube was conducted.
The following is an example of study on thermal fatigue.

【0039】図12に示すフローに基づき熱疲労に関す
る材料力学的な検討として、実機メタル温度データをも
とに、有限要素法による非定常熱伝導解析、熱応力解析
を行い、実機運転条件での水冷壁管熱疲労損傷評価を行
った。
As a material mechanics study on thermal fatigue based on the flow shown in FIG. 12, an unsteady heat conduction analysis and a thermal stress analysis by the finite element method are performed based on the metal temperature data of the actual machine. Water-cooled wall tube thermal fatigue damage was evaluated.

【0040】a)水冷壁管温度データの分析 解析条件を求めるため、連続測定を実施した蒸発管メタ
ル温度データを、主に温度急変状態の定量評価の観点か
ら整理した。図14に発生回数ヒストグラムを、図15
に急変現象挙動検討結果を示す。検討は、2ヶ月の集計
を元に行った。急変温度50℃以下は検討から除外して
いる。100℃以上の急変温度が10%程度あること、
急変速度の観点からは、連続測定サンプリング間隔が3
分の制限を受けてはいるが、急変する温度差が大きいも
のほど変化速度が速いことなどが明らかとなった。
A) Analysis of Temperature Data of Water-Cooled Wall Tube In order to determine the analysis conditions, the metal temperature data of the vaporized tube subjected to continuous measurement were arranged mainly from the viewpoint of quantitative evaluation of a sudden change in temperature. FIG. 14 shows an occurrence count histogram, and FIG.
Figure 10 shows the results of the study on the behavior of the sudden change phenomenon. The study was based on a two-month tally. A sudden change temperature of 50 ° C or less is excluded from the study. A sudden change temperature of 100 ° C or more is about 10%,
From the viewpoint of sudden change speed, the continuous measurement sampling interval is 3
Despite the restrictions of the minute, it became clear that the larger the temperature difference that suddenly changes, the faster the change speed.

【0041】b)有限要素法による解析 有限要素法解析は、図16に示す局所的な熱流束変化を
表現できる三次元形状モデルを用い、まず水冷壁管各部
温度分布算出、次に温度解析結果に基づき弾塑性変形を
考慮した熱応力解析の順に行った。図17に解析条件を
示す。非定常熱伝導解析結果、熱応力解析結果の一例を
図18に示す。有限要素解析結果を取りまとめ、熱疲労
解析条件を求めたものを図19に示す。火炉側クラウン
トップ部は熱流束の増加に伴い、約3.3℃/万kca
l/mh(約0.79℃/万kJ/mh)の温度上
昇となること、管表面の温度が約100degC上昇し
たところで、塑性変形が始まることなどが判る。なお、
炉外側では熱流束増加に伴う温度上昇はない。
B) Analysis by the Finite Element Method The finite element method analysis uses a three-dimensional model capable of expressing a local heat flux change shown in FIG. Based on the above, thermal stress analysis was performed in the order of elasto-plastic deformation. FIG. 17 shows the analysis conditions. FIG. 18 shows an example of the results of the transient heat conduction analysis and the results of the thermal stress analysis. FIG. 19 shows the results of the finite element analysis and the determination of the thermal fatigue analysis conditions. The furnace-side crown top section was increased to about 3.3 ° C / 10,000 kca with the increase of heat flux.
It can be seen that the temperature increases by 1 / m 2 h (approximately 0.79 ° C./10,000 kJ / m 2 h), and that the plastic deformation starts when the temperature of the tube surface increases by approximately 100 degC. In addition,
Outside the furnace, there is no temperature rise associated with the increase in heat flux.

【0042】また、図4はメタル温度と解析した塑性変
形による相当歪みとの関係を示したものである。塑性相
当歪みは温度上昇度と直線相関があることが判る。
FIG. 4 shows the relationship between the metal temperature and the equivalent strain due to the analyzed plastic deformation. It can be seen that the plastic equivalent strain has a linear correlation with the temperature rise.

【0043】これらのことから、490℃以上の領域の
温度上昇度を求めることにより相当歪みを算出すること
ができ、この相当歪みの積算評価により材料の疲労寿命
推定が可能なことが明らかとなった。
From these facts, it is clear that the equivalent strain can be calculated by calculating the temperature rise in the region of 490 ° C. or higher, and that the fatigue life of the material can be estimated by the integrated evaluation of the equivalent strain. Was.

【0044】c)熱疲労損傷評価結果 熱疲労損傷算定に必要なSTBA24に関する塑性歪み範囲と
破損繰り返し数の関係を図5に示す。累積損傷量算出に
あたっては、図中の塑性歪み範囲と破損繰り返し数との
関係式を用いた。
C) Thermal Fatigue Damage Evaluation Results FIG. 5 shows the relationship between the plastic strain range and the number of repetitions of failure for STBA 24 necessary for calculating thermal fatigue damage. In calculating the cumulative damage amount, a relational expression between the plastic strain range and the number of repeated failures in the figure was used.

【0045】図20に、先に求めた実機メタル温度急変
頻度分析結果をもとに求めた水冷壁管各部の疲労損傷評
価結果を示す。図には、熱応力的に厳しい数点を示した
が、もっとも大きな疲労損傷量を示したのは右側壁中央
の0.0185であった。図21に、今回実施した熱疲
労損傷評価手順を示す。これらに示した手順を用いるこ
とにより、メタル温度データからオンラインで累積損傷
評価が可能となる。
FIG. 20 shows the results of the fatigue damage evaluation of each part of the water-cooled wall pipe obtained based on the result of the frequency analysis of the sudden change in the metal temperature of the actual machine. The figure shows several points that are severe in terms of thermal stress, but the largest fatigue damage amount was 0.0185 at the center of the right side wall. FIG. 21 shows the thermal fatigue damage evaluation procedure performed this time. By using the procedures described above, cumulative damage evaluation can be performed online from metal temperature data.

【0046】[0046]

【発明の効果】以上の説明より明らかなように、請求項
1記載の高温伝熱部損傷・汚れ評価方法によると、高温
伝熱部のオンラインでの損傷評価と汚れ評価、さらに損
傷予測、汚れ予測が可能となる。また、同時に複数の温
度センサを用いることにより機器の部位により異なる損
傷・汚れ状態が事前に予測できるため、停止時検査箇所
の適切な選択が事前に可能となる。これらにより、機器
の信頼性が向上するだけでなく、損傷・汚れの厳しい部
位が特定できることから検査期間の短縮、検査検体数の
削減が可能となりコスト低減に反映できる。特に、損傷
が激しく、常時監視の難しい高温伝熱部では益々有効で
ある。
As is clear from the above description, according to the method for evaluating the damage and dirt on the high-temperature heat transfer section according to the first aspect, the damage evaluation and the dirt evaluation of the high-temperature heat transfer section online, the damage prediction, and the contamination Prediction becomes possible. In addition, by using a plurality of temperature sensors at the same time, different damage / dirt states can be predicted in advance depending on the parts of the device, so that it is possible to select an inspection point to be stopped properly beforehand. As a result, not only the reliability of the device is improved, but also a severely damaged or stained portion can be specified, so that the test period can be shortened and the number of test samples can be reduced, which can be reflected in cost reduction. In particular, it is more and more effective in a high-temperature heat transfer section that is severely damaged and difficult to constantly monitor.

【0047】また、請求項2記載の高温伝熱部損傷・汚
れ評価方法によると、運転者、保守管理者は、過去の高
温伝熱部の損傷、汚れ状態の定量的予測が可能となり、
また、将来の様々な運用形態での損傷・汚れ状態が定量
的に予測出来ることから、運用計画作成、保守計画作成
などを機器寿命の観点から定量的に評価できる。
According to the method for evaluating the damage and dirt on the high-temperature heat transfer section according to the second aspect, the driver and the maintenance manager can quantitatively predict the damage and dirt condition of the high-temperature heat transfer section in the past.
In addition, since damage / dirt states in various future operation modes can be quantitatively predicted, it is possible to quantitatively evaluate operation plan creation, maintenance plan creation, and the like from the viewpoint of equipment life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高温伝熱部損傷・汚れ評価方法の一構
成例を示した図である。
FIG. 1 is a diagram showing one configuration example of a method for evaluating damage / dirt of a high-temperature heat transfer section of the present invention.

【図2】伝熱部の温度測定の各実施例を示した図であ
り、(A)コーダル式温度計、(B)溝切り式温度形、
(C)放射温度計式を用いた場合をそれぞれ表す。
FIGS. 2A and 2B are diagrams showing examples of temperature measurement of a heat transfer section, wherein FIG. 2A shows a cordal thermometer, FIG.
(C) The case where the radiation thermometer formula is used is shown.

【図3】損傷状態、汚れ状態を評価、予測するための処
理プログラムフローチャートである。
FIG. 3 is a processing program flowchart for evaluating and predicting a damaged state and a dirt state.

【図4】歪みと伝熱部温度変化(水冷壁管メタル温度)
との関係の一例を示した図である。
FIG. 4 Strain and temperature change of heat transfer section (water temperature of metal wall pipe)
FIG. 4 is a diagram showing an example of the relationship with the following.

【図5】歪みと破断関係式との関係の一例を示した図で
ある。
FIG. 5 is a diagram illustrating an example of a relationship between a strain and a fracture relational expression.

【図6】伝熱面温度変化状態解析結果の一例を示した図
である。
FIG. 6 is a diagram showing an example of a heat transfer surface temperature change state analysis result.

【図7】本方法を用いた損傷状態評価例を示した図であ
る。
FIG. 7 is a diagram showing an example of damage state evaluation using the present method.

【図8】本方法を用いた汚れ状態評価例を示した図であ
る。
FIG. 8 is a diagram showing an example of a dirt condition evaluation using the present method.

【図9】本方法を用いた損傷状態予測例を示した図であ
る。
FIG. 9 is a diagram showing an example of a damage state prediction using the present method.

【図10】メタル温度ヒストグラムを示した図である。FIG. 10 is a diagram showing a metal temperature histogram.

【図11】500MW時の温度ヒストグラムを示した図
である。
FIG. 11 is a diagram showing a temperature histogram at 500 MW.

【図12】熱疲労損傷評価の考え方を示したフローであ
る。
FIG. 12 is a flowchart showing the concept of thermal fatigue damage evaluation.

【図13】疲労損傷計算のフローチャートである。FIG. 13 is a flowchart of a fatigue damage calculation.

【図14】メタル温度変化幅毎の発生回数ヒストグラム
を示した図である。
FIG. 14 is a diagram showing an occurrence count histogram for each metal temperature change width.

【図15】メタル温度・熱流束変化挙動を示した図で、
(a)到達温度と急変温度差、(b)熱流束と急変温度
差、(c)急変温度と温度変化速度、(d)変化前後の
熱流束をそれぞれ示す。
FIG. 15 is a diagram showing a metal temperature / heat flux change behavior.
(A) Achieved temperature and sudden change temperature difference, (b) Heat flux and sudden change temperature difference, (c) Rapid change temperature and temperature change speed, (d) Heat flux before and after change are shown, respectively.

【図16】熱応力解析モデルを示した図である。FIG. 16 is a diagram showing a thermal stress analysis model.

【図17】熱応力解析条件一覧を示した表である。FIG. 17 is a table showing a list of thermal stress analysis conditions.

【図18】熱応力解析結果の一例を示した図である。FIG. 18 is a diagram showing an example of a thermal stress analysis result.

【図19】熱応力解析結果一覧を示した表である。FIG. 19 is a table showing a list of thermal stress analysis results.

【図20】水冷壁管熱疲労損傷評価結果を示した表であ
る。
FIG. 20 is a table showing evaluation results of thermal fatigue damage of a water-cooled wall tube.

【図21】熱疲労損傷評価手順を示した図である。FIG. 21 is a diagram showing a procedure for evaluating thermal fatigue damage.

【図22】クリープ損傷予測の考え方を示した模式図で
ある。
FIG. 22 is a schematic diagram showing the concept of creep damage prediction.

【図23】選択処理後のメタル温度変化と諸現象との対
応を示した図で、(A)は100%負荷条件の場合、
(B)は50%負荷条件の場合である。
FIG. 23 is a diagram showing a correspondence between a metal temperature change after selection processing and various phenomena, where (A) shows a case of 100% load condition;
(B) is a case of a 50% load condition.

【符号の説明】[Explanation of symbols]

1 温度センサ 2 A/Dコンバータ 3 演算記憶装置 4 入出力部 5 機器運転制御装置 6 伝熱部 Reference Signs List 1 temperature sensor 2 A / D converter 3 operation storage device 4 input / output unit 5 equipment operation control device 6 heat transfer unit

フロントページの続き Fターム(参考) 2F056 CA08 CA15 CA18 EM05 2G040 AA05 AA08 AB08 AB10 BA08 BA15 BA28 CA02 CA10 CA12 CA23 CB02 DA03 DA05 DA06 DA13 DA15 EA08 GA05 GA07 GA08 HA02 HA16 ZA05 Continued on front page F term (reference) 2F056 CA08 CA15 CA18 EM05 2G040 AA05 AA08 AB08 AB10 BA08 BA15 BA28 CA02 CA10 CA12 CA23 CB02 DA03 DA05 DA06 DA13 DA15 EA08 GA05 GA07 GA08 HA02 HA16 ZA05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱流束変化により生じる温度変動によっ
て損傷を受ける伝熱部の損傷・汚れを評価し監視する高
温伝熱部の損傷・汚れ評価方法であって、温度センサに
より前記伝熱部を高温度条件を含む条件下で温度測定し
た際の測定値と、前記伝熱部の時間的に変化する温度・
プラントデータとから前記伝熱部の熱流束解析と伝熱解
析を行い、解析した温度挙動から疲労・クリープなどの
材料力学的損傷あるいは汚れを求め、その損傷量あるい
は汚れ度合いをオンラインで表示することを特徴とする
高温伝熱部損傷・汚れ評価方法。
1. A method for evaluating damage and dirt on a high-temperature heat transfer section for evaluating and monitoring damage and dirt on a heat transfer section damaged by temperature fluctuations caused by a change in heat flux, wherein the heat transfer section is controlled by a temperature sensor. The measured value when measuring the temperature under conditions including high temperature conditions, and the time-varying temperature of the heat transfer section
Perform heat flux analysis and heat transfer analysis of the heat transfer section from plant data, find material mechanical damage or dirt such as fatigue and creep from the analyzed temperature behavior, and display the damage amount or degree of dirt online. A method for evaluating damage and dirt on a high-temperature heat transfer section characterized by the following.
【請求項2】 過去の運転状態から過去に受けた損傷・
汚れ状態を予測し表示する機能、今後の運転予測状態か
ら今後の損傷・汚れ状態を予測し表示する機能またはい
くつか準備された運用パターンを基に今後の最適な保守
指針を表示する機能のうち少なくともいずれかの機能を
備え、前記伝熱部の伝熱解析を行い解析した温度挙動か
ら求めた材料力学的損傷または汚れを基にこの伝熱部汚
れの洗浄時期または材料の交換時期をオンラインで判定
することを特徴とする請求項1記載の高温伝熱部損傷・
汚れ評価方法。
2. Damage received in the past from past operating conditions
Among the functions to predict and display the dirt condition, the function to predict and display the future damage and dirt condition from the predicted operation status in the future, and the function to display the optimal maintenance guideline based on some prepared operation patterns Equipped with at least one of the functions, the heat transfer analysis of the heat transfer section is performed, and based on the material mechanical damage or dirt determined from the analyzed temperature behavior, the cleaning time of the heat transfer section dirt or the material replacement time is determined online. The high-temperature heat-transfer part damage according to claim 1, which is determined.
Dirt evaluation method.
JP2000206723A 2000-07-07 2000-07-07 Method for evaluating damage and stain of high temperature heat transfer part Pending JP2002022686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000206723A JP2002022686A (en) 2000-07-07 2000-07-07 Method for evaluating damage and stain of high temperature heat transfer part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000206723A JP2002022686A (en) 2000-07-07 2000-07-07 Method for evaluating damage and stain of high temperature heat transfer part

Publications (1)

Publication Number Publication Date
JP2002022686A true JP2002022686A (en) 2002-01-23

Family

ID=18703604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206723A Pending JP2002022686A (en) 2000-07-07 2000-07-07 Method for evaluating damage and stain of high temperature heat transfer part

Country Status (1)

Country Link
JP (1) JP2002022686A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197150A (en) * 2009-02-24 2010-09-09 Ihi Corp Device and method for evaluating damage
JP2011137635A (en) * 2009-12-25 2011-07-14 Shinko Inspection & Service Co Ltd Heat flux leading method, damaged part detection method including the same, and damaged part detector using the detection method
KR101135168B1 (en) * 2009-08-07 2012-04-16 한국전력공사 Method and system for inspecting creep and thinned damage in heat exchanger steam tube
JP2013083666A (en) * 2007-06-28 2013-05-09 Jfe Steel Corp Method of diagnosing clogging of piping
JPWO2015098179A1 (en) * 2013-12-27 2017-03-23 川崎重工業株式会社 Heat transfer tube life estimation system
JP2018072027A (en) * 2016-10-25 2018-05-10 一般財団法人電力中央研究所 Method, apparatus and program for determining timing of performing chemical cleaning of boiler water-cooled wall pipe material
JP2019100696A (en) * 2017-11-28 2019-06-24 アー・カー・ゲー テアモテヒニク インターナショナル ゲー・エム・ベー・ハー ウント コー. カー・ゲーAKG Thermotechnik International GmbH & Co. KG State monitoring method for heat exchanger and heat exchanger
US20210341402A1 (en) * 2018-09-13 2021-11-04 Linde Gmbh Method for calculating the strength and the service life of a process apparatus through which fluid flows

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083666A (en) * 2007-06-28 2013-05-09 Jfe Steel Corp Method of diagnosing clogging of piping
JP2010197150A (en) * 2009-02-24 2010-09-09 Ihi Corp Device and method for evaluating damage
KR101135168B1 (en) * 2009-08-07 2012-04-16 한국전력공사 Method and system for inspecting creep and thinned damage in heat exchanger steam tube
JP2011137635A (en) * 2009-12-25 2011-07-14 Shinko Inspection & Service Co Ltd Heat flux leading method, damaged part detection method including the same, and damaged part detector using the detection method
JPWO2015098179A1 (en) * 2013-12-27 2017-03-23 川崎重工業株式会社 Heat transfer tube life estimation system
EP3098508A4 (en) * 2013-12-27 2017-12-06 Kawasaki Jukogyo Kabushiki Kaisha Heat transfer tube life estimating system
AU2014371824B2 (en) * 2013-12-27 2018-02-15 Kawasaki Jukogyo Kabushiki Kaisha Heat transfer tube life estimating system
JP2018072027A (en) * 2016-10-25 2018-05-10 一般財団法人電力中央研究所 Method, apparatus and program for determining timing of performing chemical cleaning of boiler water-cooled wall pipe material
JP2019100696A (en) * 2017-11-28 2019-06-24 アー・カー・ゲー テアモテヒニク インターナショナル ゲー・エム・ベー・ハー ウント コー. カー・ゲーAKG Thermotechnik International GmbH & Co. KG State monitoring method for heat exchanger and heat exchanger
US20210341402A1 (en) * 2018-09-13 2021-11-04 Linde Gmbh Method for calculating the strength and the service life of a process apparatus through which fluid flows

Similar Documents

Publication Publication Date Title
KR101135168B1 (en) Method and system for inspecting creep and thinned damage in heat exchanger steam tube
JP6037954B2 (en) Boiler tube leak detection device, boiler tube leak detection method, data monitoring center using these, information providing service, and boiler plant.
EP2064626B1 (en) Kernel-based method for detecting boiler tube leaks
CA2604118C (en) A system and method for real-time prognostics analysis and residual life assessment of machine components
US20080101683A1 (en) System and method of evaluating uncoated turbine engine components
CN110991692B (en) Heat exchanger group operation condition monitoring, cleaning and early warning method based on dynamic envelope curve method
JP2002022686A (en) Method for evaluating damage and stain of high temperature heat transfer part
BR112021013249A2 (en) ANALYSIS SYSTEM AND ANALYSIS METHOD
US8613883B2 (en) Diagnostic system and method for metallurgical reactor cooling elements
JP3832142B2 (en) Pipe thickness reduction management system
JP6840026B2 (en) Heat exchanger abnormality diagnosis method, abnormality diagnosis system, and its control device
JP4367408B2 (en) Pipe thickness reduction management system
JP2010276339A (en) Method and device for diagnosis sensor
KR101656672B1 (en) Evaluating method for degree of risk using creep and wall thinning of heat exchanger steam tube
JP5355710B2 (en) Process signal extraction system and method
Salman et al. Determination of correlation functions of the oxide scale growth and the temperature increase
JPH10207534A (en) Method and device for piping abnormality detection of high-temperature gas piping
WO2011148431A1 (en) Plant diagnostic device and diagnostic method using same
JP2001108669A (en) Remaining life evaluating apparatus for heat transfer tube
JPH0875107A (en) Method for estimating life time of high temperature pressure resistant part
JPS58211625A (en) Method for estimating life of high temperature fluid container
KR20050041229A (en) The device for detecting slagging factor of a boiler of electric power generator
KR100544237B1 (en) Apparatus for measuring fouling of boiler for power station
KAWABE et al. Advanced Operation and Maintenance Service for Thermal Power Station by ICT
Zagorodnii EXPERT DIAGNOSTICS OF SLAGGING OF COAL-FIRED BOILERS HEATING SURFACES

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060105