JP2002021927A - Base isolation device - Google Patents

Base isolation device

Info

Publication number
JP2002021927A
JP2002021927A JP2000200873A JP2000200873A JP2002021927A JP 2002021927 A JP2002021927 A JP 2002021927A JP 2000200873 A JP2000200873 A JP 2000200873A JP 2000200873 A JP2000200873 A JP 2000200873A JP 2002021927 A JP2002021927 A JP 2002021927A
Authority
JP
Japan
Prior art keywords
vibration
inner member
building
air spring
outer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000200873A
Other languages
Japanese (ja)
Inventor
Mitsuru Kageyama
満 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2000200873A priority Critical patent/JP2002021927A/en
Publication of JP2002021927A publication Critical patent/JP2002021927A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a base isolation device capable of preventing the occurrence of large local stress and a shock in a base isolation object when seating the base isolation object by exhausting sealed gas from these air springs while attaining a long period of the base isolation object by using the air springs capable of minimizing the height. SOLUTION: The air springs 13 comprise an inside member 15 arranged on the foundation side, an outside member 16 covering an upper end part of the inside member 15 at a proper interval and arranged on the building side and a rolling seal member 17 for sealing these inside member 15 and outside member 16 while allowing a relative movement of both. A seating shock absorber 30 for absorbing the shock and the stress when seating a building is arranged in vertical directional clearance between a receiving plate 22 arranged in an opening part 15b of the inside member 15 and an end plate 16a of the outside member 16. The seating shock absorber 30 comprises laminated rubber 31 arranged in an under surface central part of the end plate 16a and a sliding material 32 arranged on an upper surface of the receiving plate 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は免振装置にかかり、
とりわけ空気ばねを用いて構造物の効果的な長周期化を
可能とする免振装置に関する。
TECHNICAL FIELD The present invention relates to a vibration isolator,
In particular, the present invention relates to a vibration isolation device that enables an effective long period of a structure using an air spring.

【0002】[0002]

【従来の技術】免振装置は、地盤や床などの振動が入力
されるベースと、このベース上に設置される建物や精密
機器、その他の振動を嫌う設備や装置、物品などの免振
対象物との間に、いわゆる長周期化手段を設け、この長
周期化手段によって免振対象物側の固有周期をベースに
入力される振動の周期よりも長周期化して、ベースから
免振対象物へと入力される振動を低減するようになって
いる。
2. Description of the Related Art An anti-vibration device is a base to which vibrations of the ground and floor are input, and a vibration-damping object such as a building, precision equipment, other equipment or devices that dislike vibration, and articles installed on the base. A so-called period increasing means is provided between the base and the vibration-isolating target object. The vibration input to is reduced.

【0003】長周期化手段としては、積層ゴムやコイル
ばね、更には空気ばねなどに代表される各種の弾性体が
採用されている。特に空気ばねは空気の圧縮弾性を利用
したばねであるため、他のばねに比べて柔らかく、免振
対象物の長周期化に優れた特性を示す。このため、空気
ばねを免振装置として用いることが好ましく、該空気ば
ねの上下ばね力や水平ばね力(横剛性)を利用すること
により優れた免振装置を提供することができる。この場
合、上下ばね力を用いることにより上下免振装置が構成
され、また、上下ばね力と水平ばね力の両者を用いるこ
とにより三次元免振装置が構成される。
[0003] Various elastic bodies represented by laminated rubber, coil springs, air springs and the like are employed as the period increasing means. In particular, since the air spring is a spring that utilizes the compression elasticity of air, it is softer than other springs, and exhibits excellent characteristics in prolonging the period of the vibration-isolated object. For this reason, it is preferable to use an air spring as a vibration isolator, and an excellent vibration isolator can be provided by utilizing the vertical spring force and horizontal spring force (lateral rigidity) of the air spring. In this case, a vertical vibration isolator is configured by using the vertical spring force, and a three-dimensional vibration isolator is configured by using both the vertical spring force and the horizontal spring force.

【0004】ところで、上記空気ばねとしては一般的に
はベローズ型空気ばねが用いられ、その代表的な構造
は、山および谷が周方向に形成されて蛇腹状となった筒
状のゴムベローズと、その上下を覆う金属製の面板と、
ゴムベローズの谷部分に嵌合される中間リングとを備え
て構成される。そして、該空気ばねの上下ばねは、ゴム
ベローズ内に封入された空気が該ゴムベローズの伸縮を
伴って圧縮されるときの弾性力によって得られる一方、
水平ばねは、封入された空気圧に依存して発生する復元
力とゴムベローズの剛性的性質とによって得られる。
A bellows type air spring is generally used as the air spring. A typical structure thereof is a bellows-shaped cylindrical rubber bellows having peaks and valleys formed in the circumferential direction. , And a metal face plate that covers the top and bottom,
An intermediate ring fitted to the valley portion of the rubber bellows. The vertical spring of the air spring is obtained by the elastic force when the air sealed in the rubber bellows is compressed with the expansion and contraction of the rubber bellows,
The horizontal spring is obtained by the restoring force generated depending on the enclosed air pressure and the rigid nature of the rubber bellows.

【0005】ところで、上記ベローズ型空気ばねは大荷
重の免振対象物の支持性を高めるためゴムベローズの高
さ、つまり蛇腹の段数を少なくしたものを使用すると、
空気室の容積が小さくなるため、ベースと免振対象物と
の間の相対的な上下振幅に対して空気圧が過剰に上昇
し、ゴムベローズが許容量を超えて膨出するなどして耐
久性に問題が生ずる。そこで、空気圧の過剰な上昇を抑
えるために空気室の容積を増大しようとすると、ゴムベ
ローズの段数を増やして空気ばねを高くすることにな
る。しかし、このように空気ばねを高くするとゴムベロ
ーズは座屈を起こし易くなり、大地震を対象とした大荷
重や大振幅に対処するのが困難になってしまう。
[0005] By the way, the bellows-type air spring, which has a reduced height of rubber bellows, that is, a number of bellows steps, is used in order to enhance the supportability of the vibration-isolated object with a large load.
Since the volume of the air chamber is small, the air pressure rises excessively with respect to the relative vertical amplitude between the base and the vibration-isolated object, and the rubber bellows expand beyond the allowable amount, resulting in durability. Problems arise. Therefore, in order to increase the volume of the air chamber in order to suppress an excessive rise in the air pressure, the number of rubber bellows is increased to increase the air spring. However, when the air spring is raised in this way, the rubber bellows easily buckles, and it becomes difficult to cope with a large load and a large amplitude intended for a large earthquake.

【0006】[0006]

【発明が解決しようとする課題】そこで、上記ゴムベロ
ーズの座屈を回避する方法として、本発明者は上記ベロ
ーズ型空気ばねに代えてローリングシール型空気ばねを
用いることを提案するもので、このローリングシール型
空気ばねは、相互に適宜間隔を設けて同心配置される中
実の内側部材および中空筒体状の外側部材と、これら内
側部材の外周と外側部材の内周との水平方向隙間に垂れ
下がるように折り返されて配置される可撓性筒状のロー
リングシール部材とを備えて構成される。ローリングシ
ール部材はその中間部分を折り返し、その内周部分を内
側部材外周に沿わせてその端部を該内側部材の上端部に
気密に取り付けるとともに、外周部分を外側部材内周に
沿わせてその端部を該外側部材の上端部に気密に取り付
け、内側部材と外側部材との間に形成される空気室を密
封する。
Therefore, as a method for avoiding the buckling of the rubber bellows, the present inventor proposes to use a rolling seal type air spring instead of the bellows type air spring. The rolling seal type air spring is provided with a solid inner member and a hollow cylindrical outer member which are arranged concentrically at appropriate intervals, and a horizontal gap between the outer periphery of the inner member and the inner periphery of the outer member. And a flexible cylindrical rolling seal member that is folded back so as to hang down. The rolling seal member is folded back at its intermediate portion, its inner peripheral portion is fitted along the outer periphery of the inner member, and its end is hermetically attached to the upper end of the inner member, and its outer peripheral portion is placed along the inner periphery of the outer member. The end is hermetically attached to the upper end of the outer member to seal an air chamber formed between the inner and outer members.

【0007】そして、振動入力により内側部材と外側部
材とが上下方向に相対変位すると、ローリングシール部
材は水平方向隙間で折り返し部分が繰り上げられたり、
繰り下げられるようになっている。このとき、該空気室
に作用する圧力はローリングシール部材に作用するので
あるが、該ローリングシール部材の折り返し部分は内側
部材と外側部材との水平方向隙間を閉塞する部分であ
り、この折り返し部分で空気室内圧を受け止めることに
なる。
When the inner member and the outer member are vertically displaced relative to each other due to vibration input, the folded portion of the rolling seal member is lifted up by a horizontal gap,
It can be brought down. At this time, the pressure acting on the air chamber acts on the rolling seal member, and the folded portion of the rolling seal member is a portion that closes a horizontal gap between the inner member and the outer member, and the folded portion is It will receive the pressure in the air chamber.

【0008】ところで、このように長周期化手段として
空気ばねを用いると、補修・点検のために封入空気を排
出する必要が生じた場合などにあっては、複数の空気ば
ねからの空気の排出量を均一にして、すべての空気ばね
で内側部材に外側部材が同時に着地するように心がけら
れる。
By the way, if an air spring is used as the lengthening means as described above, when it becomes necessary to discharge the enclosed air for repair and inspection, the air is discharged from the plurality of air springs. The volume is uniform and care is taken to ensure that the outer member lands on the inner member at all air springs simultaneously.

【0009】しかしながら、実際のところ、免振対象
物、例えば構造物には施工上の寸法誤差などがあった
り、各空気ばねからの空気の排出速度などに微妙な差が
生じて全ての空気ばねで同時に免振対象物を着座させる
ことは至難であると考えられる。このように各空気ばね
間で着座タイミングにずれがあると、免振対象物には早
く着地した空気ばね部分ほど大きな局部応力が発生し、
特に緊急に着座させる場合には大きな衝撃力が免振対象
物に作用するおそれがある。また、このような空気ばね
からの空気の排出は、補修・点検の場合に限らず大地震
などの事故により空気ばねが破損した場合にも発生し、
この場合にも着座時に特に大きな衝撃力が免振対象物に
入力されることになる。
However, in practice, the vibration-isolated object, for example, a structure has a dimensional error in the construction, and a slight difference is generated in the air discharge speed from each air spring, so that all the air springs are displaced. Therefore, it is considered to be extremely difficult to simultaneously seat the vibration-isolation target. If there is a difference in seating timing between the air springs in this manner, a larger local stress is generated in the air spring portion that lands earlier on the vibration-isolated object,
In particular, when the seat is urgently seated, a large impact force may act on the vibration-isolated object. In addition, such air discharge from the air spring occurs not only during repair and inspection, but also when the air spring is damaged due to an accident such as a large earthquake.
Also in this case, a particularly large impact force is input to the vibration-isolation target when the user is seated.

【0010】そこで、本発明はかかる従来の課題に鑑み
て成されたもので、高さを低く抑えることができる空気
ばねを用いて免振対象物の長周期化を達成しつつ、この
空気ばねからの封入気体の排出により免振対象物が着座
する際に、免振対象物に大きな局部応力や衝撃が生ずる
のを低減できるようにした免振装置を提供することを目
的とする。
In view of the above, the present invention has been made in view of the above-mentioned conventional problems, and achieves a longer period of a vibration-isolated object by using an air spring whose height can be kept low. It is an object of the present invention to provide a vibration isolator capable of reducing occurrence of a large local stress or impact on a vibration-isolation target when the vibration-isolation target is seated due to discharge of a sealed gas.

【0011】[0011]

【課題を解決するための手段】かかる目的を達成するた
めに本発明の免振装置は、振動が入力されるベースと該
ベース上方の免振対象物との間に設けられ、これらベー
スまたは免振対象物の一方から他方側に向かって突出さ
れる内側部材と、上記ベースまたは上記免振対象物の他
方から一方側に向かって突出され、上下方向および水平
方向に適宜間隔を隔てて上記内側部材の外周を囲繞する
中空筒状体の外側部材と、これら外側部材の内周と内側
部材の外周との水平方向隙間に垂れ下がるように折り返
されて配置され、その内周部分を該内側部材外周に沿わ
せてその内側端部を当該内側部材に気密に取り付けると
ともに、その外周部分を該外側部材内周に沿わせてその
外側端部を当該外側部材に気密に取り付けて、上記ベー
スと上記免振対象物との上下相対変位に伴うこれら内側
部材と外側部材との上下相対変位に応じて該水平方向隙
間内で繰り上げ繰り下げ変位されるとともに、当該水平
方向隙間から該外側部材と該内側部材との間にわたって
気体封入空間を形成する可撓性筒状のローリングシール
部材とを備え、上記内側部材と上記外側部材との上下方
向隙間に、上記免振対象物をベース上に着座させる際の
着座緩衝装置を設け、この着座緩衝装置によって免振対
象物が着座する際の衝撃や応力を吸収する。
In order to achieve the above object, a vibration isolator according to the present invention is provided between a base to which vibration is input and an object to be isolated above the base. An inner member protruding from one side of the vibration target toward the other side, and an inner member protruding from the other side of the base or the vibration-isolation target toward the one side, and appropriately spaced apart in the vertical and horizontal directions. An outer member of a hollow cylindrical body surrounding the outer periphery of the member, and the outer member is folded back so as to hang down in a horizontal gap between the inner periphery of the outer member and the outer periphery of the inner member. The inner end of the base member is hermetically attached to the inner member, and the outer peripheral portion thereof is hermetically attached to the outer member along the inner periphery of the outer member. Vibration target Along with the vertical relative displacement of the inner member and the outer member with the vertical relative displacement of the inner member and the outer member, the inner member and the outer member are displaced up and down in the horizontal gap, and from the horizontal gap between the outer member and the inner member. A flexible cylindrical rolling seal member forming a gas-enclosed space, and a seat cushioning device for seating the vibration isolation target on a base in a vertical gap between the inner member and the outer member. The shock absorbing device absorbs shocks and stresses when the vibration-isolated object is seated.

【0012】また、上記着座緩衝装置は、上記内側部材
あるいは外側部材の一方に設けられる弾性部材と、他方
に設けられる滑り材とを備えて構成することが好まし
い。
Preferably, the seat cushioning device includes an elastic member provided on one of the inner member and the outer member, and a sliding member provided on the other.

【0013】[0013]

【発明の実施の形態】以下に、本発明の実施形態を添付
図面を参照して詳細に説明する。図1〜図4は本発明の
免振装置の一実施形態を示し、図1は免振装置全体の概
略構成図、図2は空気ばねの拡大断面図、図3は図2中
のA−A線断面図、図4は着座緩衝装置の拡大断面図で
ある。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. 1 to 4 show an embodiment of a vibration isolator according to the present invention. FIG. 1 is a schematic configuration diagram of the whole vibration isolator, FIG. 2 is an enlarged sectional view of an air spring, and FIG. FIG. 4 is an enlarged cross-sectional view of the seat cushioning device.

【0014】本実施形態の免振装置10は建物11を免
振対象物とした場合を例にとって示し、図1に示すよう
に該建物11とベースとしての基礎12との間に空気ば
ね13を配置して建物11の固有振動を長周期化し、か
つ、該空気ばね13内部の上下方向隙間に着座緩衝装置
30を設けて、建物11が着座する際の衝撃や応力を吸
収するようになっている。
The vibration isolator 10 of the present embodiment shows an example in which a building 11 is used as a vibration isolating object. As shown in FIG. 1, an air spring 13 is provided between the building 11 and a foundation 12 as a base. It is arranged to prolong the natural vibration of the building 11 and to provide a seat cushioning device 30 in a vertical gap inside the air spring 13 so as to absorb the shock and stress when the building 11 is seated. I have.

【0015】上記空気ばね13はローリングシール型空
気ばね(以下、単に空気ばねと称する)として構成さ
れ、この空気ばね13は図2に示すように基礎12側か
ら上方に突設される内側部材15と、建物11側から下
方に突設され、上下方向および水平方向に適宜間隔を隔
てて内側部材15の外周を囲繞する中空筒状体の外側部
材16と、これら内側部材15と外側部材16との間を
両者の相対移動を許容しつつ密封するローリングシール
部材17とを備えて構成される。
The air spring 13 is formed as a rolling seal type air spring (hereinafter, simply referred to as an air spring). As shown in FIG. 2, the air spring 13 is an inner member 15 projecting upward from the foundation 12 side. And an outer member 16 of a hollow cylindrical body projecting downward from the building 11 side and surrounding the outer periphery of the inner member 15 at appropriate intervals in the vertical and horizontal directions, and the inner member 15 and the outer member 16. And a rolling seal member 17 that seals the space between them while permitting relative movement between them.

【0016】上記内側部材15は、基礎12に固定され
る基板15a上に突設され、前記外側部材16に対向す
る上端部が開口部15bをもって開放されるとともに、
該開口部15bに連通する中空室15cが形成されて中
空円筒状に形成され、かつ該内側部材15の下端部は上
記基板15aに一体に固定されて閉塞される。
The inner member 15 protrudes from a substrate 15a fixed to the base 12, and an upper end facing the outer member 16 is opened through an opening 15b.
A hollow chamber 15c communicating with the opening 15b is formed to have a hollow cylindrical shape, and a lower end of the inner member 15 is integrally fixed to the substrate 15a and closed.

【0017】一方、上記外側部材16は内側部材15の
上端に適宜間隔を隔てて対向される端板16aと、この
端板16aの外周から環状に垂下される周壁16bとに
よって断面逆U字状に形成され、図3に示すように該周
壁16bが上記内側部材15の上端部外周を適宜間隔を
隔てて同心円状に囲繞するようになっており、かつ上記
端板16aは建物11の下面に固定される。そして、前
記内側部材15の中空室15cから開口部15bを経て
前記外側部材16の端板16aおよび上記ローリングシ
ール部材17によって閉塞される空間部が主気体封入空
間18として構成される。
On the other hand, the outer member 16 has an inverted U-shaped cross section formed by an end plate 16a opposed to the upper end of the inner member 15 at an appropriate interval and a peripheral wall 16b suspended annularly from the outer periphery of the end plate 16a. As shown in FIG. 3, the peripheral wall 16b concentrically surrounds the outer periphery of the upper end portion of the inner member 15 at appropriate intervals, and the end plate 16a is provided on the lower surface of the building 11. Fixed. A space closed by the end plate 16a of the outer member 16 and the rolling seal member 17 from the hollow chamber 15c of the inner member 15 via the opening 15b is formed as a main gas filled space 18.

【0018】上記ローリングシール部材17は、上記内
側部材15の外周と上記外側部材16の周壁16bの内
周との間の水平方向隙間に配置されるもので、前記主気
体封入空間18側から外方(図中下方)に向かって並列
に配置される第1シール部材19と第2シール部材20
とによって構成される。これら第1,第2シール部材1
9,20は繊維補強されたゴムを素材として自然状態で
円筒状を成すようにそれぞれ成形され、その中間部分を
片側が裏返されるように折り返して、その折り返し部分
が上記内側部材15と上記外側部材16とに跨って取り
付けられる。
The rolling seal member 17 is disposed in a horizontal gap between the outer periphery of the inner member 15 and the inner periphery of the peripheral wall 16b of the outer member 16, and is disposed outside the main gas filled space 18 side. Seal member 19 and second seal member 20 arranged in parallel toward
It is constituted by and. These first and second seal members 1
Reference numerals 9 and 20 are each formed of a fiber-reinforced rubber as a raw material so as to form a cylindrical shape in a natural state, and a middle portion thereof is folded back so that one side is turned over. It is attached across the member 16.

【0019】即ち、上記第1,第2シール部材19,2
0は中間部分で折り返されることにより、裏返される側
の一端部が外周部分19a,20aとなり、その反対側
の他端部が内周部分19b,20bとなる。そして、内
周部分19b,20bを上記内側部材15の上端部外周
に沿わせるとともに、外周部分19a,20aを上記外
側部材16の周壁16b内周に沿わせる。このとき、上
記内周部分19b,20bおよび外周部分19a,20
aの各端部は、それぞれが沿う内側部材15および外側
部材16に気密に固定される。この状態で上記第1,第
2シール部材19,20は、その折り返し部分19c,
20cが内側部材15の外周と外側部材16の内周との
間に垂れ下がった状態でそれら両者間を密封し、これら
内側部材15および外側部材16と第1シール部材19
とで囲まれた空間部が上記主気体封入空間18として構
成されるとともに、第1シール部材19と第2シール部
材20で囲まれた空間部が副気体封入空間21として構
成される。
That is, the first and second seal members 19, 2
When 0 is folded back at the intermediate portion, one end on the flipped side becomes outer peripheral portions 19a and 20a, and the other end on the opposite side becomes inner peripheral portions 19b and 20b. Then, the inner peripheral portions 19b and 20b are made to extend along the outer periphery of the upper end portion of the inner member 15, and the outer peripheral portions 19a and 20a are made to extend along the inner periphery of the peripheral wall 16b of the outer member 16. At this time, the inner peripheral parts 19b, 20b and the outer peripheral parts 19a, 20
Each end of a is air-tightly fixed to the inner member 15 and the outer member 16 along which each ends. In this state, the first and second seal members 19 and 20 are folded back 19c,
20c hangs down between the outer periphery of the inner member 15 and the inner periphery of the outer member 16 to seal between them, and the inner member 15, the outer member 16 and the first seal member 19 are sealed.
Are formed as the main gas filled space 18, and a space surrounded by the first seal member 19 and the second seal member 20 is formed as a sub gas filled space 21.

【0020】従って、このように構成された空気ばね1
3は、地震などの振動が入力されることにより、基礎1
2と建物11とが相対的に上下変位すると、これに伴っ
て内側部材15と外側部材16が上下方向に相対変位し
て、これら両者間に形成される主気体封入空間18内の
容積変化を伴いつつ空気圧が変化される。このように主
気体封入空間18が容積変化される際、第1,第2シー
ル部材19,20は内周部分19b,20bと外周部分
19a,20aが内側部材15外周と外側部材16内周
に交互に繰り上げ繰り下げされることになる。
Therefore, the air spring 1 constructed as described above is used.
3 is the basics 1 when vibrations such as earthquakes are input.
When the building 2 and the building 11 are relatively vertically displaced, the inner member 15 and the outer member 16 are vertically displaced relative to each other, and the change in volume in the main gas-filled space 18 formed between the two members. The air pressure is changed accordingly. When the volume of the main gas filled space 18 is changed in this manner, the first and second seal members 19 and 20 have the inner peripheral portions 19b and 20b and the outer peripheral portions 19a and 20a formed on the outer periphery of the inner member 15 and the inner periphery of the outer member 16. They will be moved up and down alternately.

【0021】また、上記第1,第2シール部材19,2
0間に構成される副気体封入空間21には、上記主気体
封入空間18の空気圧P1より低い空気圧P2を封入し
て、第1シール部材19の折り返し部分18cにそれら
の差圧(P1−P2)を作用させるとともに、第2シール
部材20の折り返し部分19cに低い空気圧P2を作用
させるようにして、これら折り返し部分19c,20c
が負担する実質的な圧力を低減するようになっている。
これによりローリングシール部材18の耐久性を向上
し、ひいては空気ばね13の支持荷重を高めることがで
きるようになっている。
The first and second seal members 19, 2
The air pressure P2 lower than the air pressure P1 of the main gas-filled space 18 is sealed in the sub-gas-filled space 21 formed between 0, and the differential pressure (P1-P2) is applied to the folded portion 18c of the first seal member 19. ) And a low air pressure P2 is applied to the folded portion 19c of the second seal member 20, so that the folded portions 19c, 20c
To reduce the substantial pressure borne by.
As a result, the durability of the rolling seal member 18 is improved, and the supporting load of the air spring 13 can be increased.

【0022】このように構成された上記空気ばね13
は、入力振動の上下振動成分により内側部材15と外側
部材16とが上下方向に相対変位されると、これに伴っ
て主気体封入空間18内が圧力変化され、このときの封
入気体の圧縮弾性により柔らかい上下ばねが得られ、こ
れによって建物11の上下方向固有周期を長周期化して
効果的に上下免振することができる。
The air spring 13 thus constructed
When the inner member 15 and the outer member 16 are relatively displaced in the vertical direction due to the vertical vibration component of the input vibration, the pressure in the main gas sealing space 18 is changed accordingly, and the compression elasticity of the sealed gas at this time is changed. Thus, a softer vertical spring can be obtained, and the natural period of the building 11 in the vertical direction can be made longer to thereby effectively perform vertical vibration isolation.

【0023】この場合、前記空気ばね13はローリング
シール型として構成されることにより、内側部材15と
外側部材16とが上下方向に相対変位すると、内側部材
15外周に沿う第1,第2シール部材19,20の内周
部分19b,20bと、外側部材16内周に沿う第1,
第2シール部材19,20の外周部分19a,20aが
交互に繰り上げ繰り下げられて、上記主気体封入空間1
8の容積変化が許容されるため、空気ばね13の高さを
低く抑制しつつ上記長周期化を達成することができる。
In this case, since the air spring 13 is formed as a rolling seal type, when the inner member 15 and the outer member 16 are relatively displaced in the vertical direction, the first and second seal members along the outer periphery of the inner member 15 are provided. The inner peripheral portions 19b and 20b of the outer member 16 and the first and
The outer peripheral portions 19a, 20a of the second seal members 19, 20 are alternately moved up and down to form the main gas-filled space 1
Since the change in the volume of the air spring 8 is allowed, the lengthening of the period can be achieved while keeping the height of the air spring 13 low.

【0024】また、入力振動の水平振動成分により内側
部材15と外側部材16とが水平方向に相対変位される
と、主気体封入空間18の封入気体圧に依存して発生す
る復元力と第1,第2シール部材19,20の剛性的性
質によって柔らかい水平ばねが得られ、これによって建
物11の水平方向固有周期を長周期化して効果的に水平
免振することができる。従って、本実施形態の免振装置
10は、上記空気ばね13による上下免振機能および水
平免振機能を有効に活用して3次元免振を達成すること
ができる。
When the inner member 15 and the outer member 16 are relatively displaced in the horizontal direction by the horizontal vibration component of the input vibration, the restoring force generated depending on the gas pressure in the main gas filling space 18 and the first force are reduced. , A soft horizontal spring is obtained by the rigid properties of the second seal members 19 and 20, whereby the natural period of the building 11 in the horizontal direction can be lengthened to effectively isolate the horizontal vibration. Therefore, the vibration isolation device 10 of the present embodiment can achieve three-dimensional vibration isolation by effectively utilizing the vertical vibration isolation function and the horizontal vibration isolation function of the air spring 13.

【0025】即ち、本実施形態のローリングシール型の
空気ばね13は、従来用いられるベローズ型に比べて水
平方向ばね特性がはるかに内圧に依存することになり、
そのばね特性は大きい振幅に対してもきれいな線形特性
を示し、ばねとしての優れた性能を期待することができ
る。つまり、ローリングシール型の空気ばね13を水平
方向にせん断変形させると、ローリングシール部材17
の折り返し部分19c,20cは圧縮側では水平方向隙
間が狭められて下方に変形し、引張り側では水平方向隙
間が広がって上方に変形する。このため、その間に水平
方向に対する圧力作用有効面積が発生し、内部の気体圧
力が作用して水平方向への復元力となり、これが水平方
向ばね特性となる。
That is, in the rolling seal type air spring 13 of the present embodiment, the horizontal spring characteristic is much dependent on the internal pressure as compared with the bellows type used conventionally.
The spring characteristic shows a clean linear characteristic even with a large amplitude, and excellent performance as a spring can be expected. In other words, when the rolling seal type air spring 13 is sheared in the horizontal direction, the rolling seal member 17 is deformed.
The folded portions 19c and 20c are deformed downward with a narrow horizontal gap on the compression side, and deformed upward with a wide horizontal gap on the tension side. For this reason, a pressure action effective area in the horizontal direction is generated during that time, and the internal gas pressure acts to create a restoring force in the horizontal direction, which becomes a horizontal spring characteristic.

【0026】ここで、上記内側部材15と上記外側部材
16との上下方向隙間、すなわち本実施形態では内側部
材15の開口部15bに設けられる受け板22と外側部
材16の端板16aとの間に、建物11が着座する際の
衝撃や応力を吸収するための着座緩衝装置30を設ける
ようになっている。このとき、上記受け板22は、内側
部材15の上端部内周を覆うように一体化されるととも
に、該受け板22の中央部下側は基板15aとの間に設
けられる支柱23によって支持される。このとき、内側
部材15の中空室15cと気体封入空間18とを連通す
る上記開口部15bは、図3に示したように上記受け板
22の周縁部に円形穴状として複数形成される。
Here, a vertical gap between the inner member 15 and the outer member 16, that is, between the receiving plate 22 provided in the opening 15b of the inner member 15 and the end plate 16a of the outer member 16 in the present embodiment. In addition, a seat cushioning device 30 for absorbing a shock or stress when the building 11 is seated is provided. At this time, the receiving plate 22 is integrated so as to cover the inner periphery of the upper end portion of the inner member 15, and the lower part of the center of the receiving plate 22 is supported by a support column 23 provided between the receiving plate 22 and the substrate 15 a. At this time, a plurality of openings 15b communicating with the hollow chamber 15c of the inner member 15 and the gas-filled space 18 are formed in the periphery of the receiving plate 22 as circular holes as shown in FIG.

【0027】上記着座緩衝装置30は図4にも示すよう
に、端板16aの下面中央部に設けられる弾性部材とし
ての積層ゴム31と、上記受け板22の上面に設けられ
る滑り材32とを備えて構成される。積層ゴム31は、
通常用いられる免振ゴムと同様にゴム31aと鋼板31
bとを交互に積層して一体化させることにより構成され
る。また、滑り材32はステンレス板やテフロン(登録
商標)処理された平坦板などの低摩擦面を備えた部材で
形成される。
As shown in FIG. 4, the seat cushioning device 30 includes a laminated rubber 31 as an elastic member provided at the center of the lower surface of the end plate 16a and a sliding member 32 provided on the upper surface of the receiving plate 22. It is configured with. The laminated rubber 31
Rubber 31a and steel plate 31 are used in the same manner as the normally used vibration isolating rubber.
b are alternately laminated and integrated. The sliding member 32 is formed of a member having a low friction surface such as a stainless plate or a flat plate treated with Teflon (registered trademark).

【0028】建物11が空気ばね13によって支持され
た通常状態で、該積層ゴム31と滑り材32との間には
内側部材15と外側部材16との上下間隔より小さな隙
間δ(図4参照)が設けられ、空気ばね13の封入気体
が排除された際に、積層ゴム31下端が滑り材32に着
座するようになっている。上記滑り材32は、積層ゴム
31の水平方向の相対移動を許容するために該積層ゴム
31の先端(下端)面積より広くして、これら両者は相
対的に滑動自在となっている。
In a normal state where the building 11 is supported by the air spring 13, a gap δ smaller than the vertical distance between the inner member 15 and the outer member 16 is provided between the laminated rubber 31 and the sliding member 32 (see FIG. 4). Is provided so that the lower end of the laminated rubber 31 is seated on the sliding member 32 when the gas filled in the air spring 13 is removed. The sliding material 32 is wider than the tip (lower end) area of the laminated rubber 31 in order to allow the relative movement of the laminated rubber 31 in the horizontal direction, and both are relatively slidable.

【0029】また、本実施形態では図4に示したように
上記積層ゴム31の下端面にも副滑り材33が設けら
れ、この副滑り材33が上記滑り材32に摺接すること
により両者間の摩擦抵抗をより低減できるようになって
いる。この場合、積層ゴム31下面と滑り材32との間
で十分な滑動機能が得られる場合は、副滑り材33は必
ずしも必要ではない。
In the present embodiment, as shown in FIG. 4, a sub-sliding material 33 is also provided on the lower end surface of the laminated rubber 31. Is further reduced. In this case, if a sufficient sliding function can be obtained between the lower surface of the laminated rubber 31 and the sliding material 32, the auxiliary sliding material 33 is not necessarily required.

【0030】以上の構成により本実施形態の免振装置1
0にあっては、ローリングシール型の空気ばね13を用
いたことにより、内側部材15と外側部材16との間に
大容量の主気体封入空間18を設けることができるた
め、該空気ばね13の高さを低く抑えつつ、柔らかい上
下ばねおよび水平ばねによって建物11の固有振動周期
を長周期化して効果的な3次元免振を達成することがで
きる。
With the above configuration, the vibration isolator 1 of this embodiment is
0, the use of the rolling seal type air spring 13 makes it possible to provide a large capacity main gas sealing space 18 between the inner member 15 and the outer member 16. While keeping the height low, the natural vibration cycle of the building 11 can be extended by the soft vertical and horizontal springs to achieve effective three-dimensional vibration isolation.

【0031】そして、このように長周期化手段として空
気ばね13を用いたことにより封入気体を排出すること
で該空気ばね13の定期点検が可能となり、この気体排
出の際、空気ばね13では、内側部材15と外側部材1
6とが上下に間隔を空けた状態で、積層ゴム31が受け
板22の滑り材32上に着座する。これにより、建物1
1を基礎12側に安定的に着座させることができる。
By using the air spring 13 as a means for lengthening the period, the sealed gas is discharged so that the air spring 13 can be periodically inspected. Inner member 15 and outer member 1
The laminated rubber 31 is seated on the sliding member 32 of the receiving plate 22 with the upper and lower members 6 spaced apart from each other. Thereby, building 1
1 can be stably seated on the base 12 side.

【0032】そしてまた本実施形態の着座緩衝装置30
にあっては、例えば各空気ばね13相互間で気体の排出
速度に差がある場合には、建物11の基礎12側への着
座タイミングが異なることになる。このとき、先に着座
した積層ゴム31から順次圧縮変形を伴いつつ、建物1
1は各空気ばね13の設置箇所で着座し、最終的には全
ての空気ばね13の着座緩衝装置30が作用して建物1
1は基礎12側に安定的に着座されることになる。
Further, the seat cushioning device 30 of the present embodiment
In the case of, for example, when there is a difference in the gas discharge speed between the respective air springs 13, the seating timing of the building 11 on the foundation 12 side is different. At this time, the building 1 is sequentially compressed and deformed from the laminated rubber 31 seated first.
1 is seated at the installation position of each air spring 13, and finally, the seat cushioning devices 30 of all the air springs 13 act to activate the building 1.
1 is stably seated on the base 12 side.

【0033】従って、空気ばね13からの気体の排出状
況が影響して建物11が僅かに傾斜した状態で下降され
る際や、建物11自体の寸法的誤差に起因して、一部の
空気ばね13の着座緩衝装置30が先行して着座した場
合でも、積層ゴム31の圧縮変形によって建物11に生
ずる局部応力や衝撃を緩和することができ、これによっ
て建物11に破損が発生することを防止することができ
る。また、このように積層ゴム31が設けられることに
より、大地震などの事故により空気ばね13が破損し、
封入気体が急激に排出されて建物11が降下した場合で
も、上記積層ゴム31によって該建物11に入力される
衝撃を緩衝吸収できるため、建物11を保護することが
できる。
Therefore, when the building 11 is lowered with a slight inclination due to the state of gas discharge from the air spring 13 or due to a dimensional error of the building 11 itself, some of the air springs Even when the seat cushioning device 30 of the thirteenth seats first, the local stress and impact generated in the building 11 due to the compression deformation of the laminated rubber 31 can be reduced, thereby preventing the building 11 from being damaged. be able to. In addition, by providing the laminated rubber 31 in this manner, the air spring 13 is damaged by an accident such as a large earthquake,
Even in the case where the filled gas is suddenly discharged and the building 11 descends, the impact inputted to the building 11 can be buffered and absorbed by the laminated rubber 31, so that the building 11 can be protected.

【0034】また、本実施形態では積層ゴム31が着座
する相手側の滑り材32は該積層ゴム31の下端面積よ
り広くなって、これら両者間の水平方向の相対移動が許
容されるため、着座緩衝装置30が着座状態にあるとき
に地震が起こった場合にもこれをある程度吸収すること
ができる。つまり、地震の上下振動成分は上記積層ゴム
31の圧縮変形により吸収されるとともに、水平振動成
分は該積層ゴム31と滑り材32との滑動により吸収さ
れ、建物11に入力される振動エネルギーを減少させて
最小限の免振作用を発揮させることができる。また、こ
のとき、積層ゴム31の下端面に副滑り材33を設けた
場合には、水平方向の相対移動がより滑らかに行われ
る。
In the present embodiment, the sliding material 32 on the mating side on which the laminated rubber 31 is seated is wider than the lower end area of the laminated rubber 31 and horizontal relative movement between these two members is allowed. Even if an earthquake occurs when the shock absorber 30 is in a seated state, this can be absorbed to some extent. In other words, the vertical vibration component of the earthquake is absorbed by the compressive deformation of the laminated rubber 31, and the horizontal vibration component is absorbed by the sliding of the laminated rubber 31 and the sliding material 32, thereby reducing the vibration energy input to the building 11. As a result, a minimum vibration isolation effect can be exhibited. In this case, when the sub-sliding material 33 is provided on the lower end surface of the laminated rubber 31, the relative movement in the horizontal direction is performed more smoothly.

【0035】ところで、本実施形態では上記着座緩衝装
置30は、積層ゴム31を外側部材16の端板16a
に、滑り材32を受け板22側に設けたが、それぞれを
逆にして積層ゴム31を受け板22に、滑り材32を端
板16aに設けることもできる。
In the present embodiment, the seat cushioning device 30 uses the laminated rubber 31 as the end plate 16a of the outer member 16.
Although the sliding member 32 is provided on the receiving plate 22 side, the sliding members 32 may be provided on the receiving plate 22 and the sliding member 32 may be provided on the end plate 16a by reversing them.

【0036】図5,図6は他の実施形態を示し、上記実
施形態と同一構成部分に同一符号を付して重複する説明
を省略して述べる。即ち、図5は空気ばねの拡大断面
図、図6は図5中のB−B線断面図で、この実施形態の
免振装置10は着座緩衝装置30を上記実施形態と同様
に積層ゴム31と滑り材32とによって構成し、それぞ
れを内側部材15の上端と外側部材16の端板16a下
面との上下方向隙間に設けるようになっている。
FIGS. 5 and 6 show another embodiment, in which the same components as those in the above embodiment are denoted by the same reference numerals, and the description thereof will be omitted. 5 is an enlarged sectional view of the air spring, and FIG. 6 is a sectional view taken along the line BB in FIG. 5. In the vibration isolator 10 of this embodiment, the seat cushioning device 30 is replaced with a laminated rubber 31 similarly to the above embodiment. And a sliding member 32, each of which is provided in a vertical gap between the upper end of the inner member 15 and the lower surface of the end plate 16 a of the outer member 16.

【0037】上記積層ゴム31は円筒状に形成された内
側部材15上端の円形端面に所定間隔をもって複数が設
けられる一方、上記滑り材32は上記端板16aの下面
に取り付けられる。該滑り材32は上記積層ゴム31の
先端(下端)径より広い幅をもってリング状に形成さ
れ、このリング状の滑り材32は内側部材15に対して
同心円状に配置される。
A plurality of the laminated rubbers 31 are provided at predetermined intervals on a circular end surface at the upper end of the inner member 15 formed in a cylindrical shape, and the sliding material 32 is attached to the lower surface of the end plate 16a. The sliding member 32 is formed in a ring shape having a width larger than the diameter of the front end (lower end) of the laminated rubber 31. The ring-shaped sliding member 32 is arranged concentrically with the inner member 15.

【0038】従って、この実施形態の免振装置10にあ
っても上記実施形態と同様に、空気ばね13からの封入
気体の排出に伴って着座緩衝装置30が着座することに
より建物11を基礎12側に安定的に支持できるととも
に、空気ばね13相互間に着座タイミングのズレがあっ
ても、積層ゴム31の圧縮変形によって建物11に生ず
る局部応力や衝撃を緩和することができるため、建物1
1に破損が生ずるのを防止することができる。また、着
座緩衝装置30が着座状態にあるときに地震が起こった
場合にも、積層ゴム31によって上下振動成分を吸収で
きるとともに、水平振動成分を積層ゴム31と滑り材3
2との滑動によって吸収することができる。
Therefore, in the vibration isolator 10 of this embodiment, similarly to the above-described embodiment, the seat cushioning device 30 is seated with the discharge of the sealed gas from the air spring 13 so that the building 11 is mounted on the foundation 12. Side, and even if there is a deviation in seating timing between the air springs 13, local stress and impact generated in the building 11 due to compression deformation of the laminated rubber 31 can be reduced.
1 can be prevented from being damaged. Also, when an earthquake occurs while the seat cushioning device 30 is in the seated state, the vertical vibration component can be absorbed by the laminated rubber 31 and the horizontal vibration component can be absorbed by the laminated rubber 31 and the sliding material 3.
2 can be absorbed by sliding.

【0039】また、この実施形態にあっても上記着座緩
衝装置30は積層ゴム31と滑り材32とを逆に配置し
て、該積層ゴム31を外側部材16の端板16aに、滑
り材32を内側部材15の円形端面に設けることもでき
るが、この場合は積層ゴム31の滑動範囲を確保するた
めに該円形端面の幅を大きくする必要がある。
Also in this embodiment, the seat cushioning device 30 is configured such that the laminated rubber 31 and the sliding material 32 are arranged in reverse, and the laminated rubber 31 is attached to the end plate 16a of the outer member 16 and the sliding material 32 May be provided on the circular end face of the inner member 15, but in this case, it is necessary to increase the width of the circular end face in order to secure the sliding range of the laminated rubber 31.

【0040】さらに、基礎12上に建物11を支持する
場合には建物11の柱位置で支持することが好ましく、
この点を考慮すると、積層ゴム31を上方の建物11側
に取り付けるようにして当該積層ゴム31の設置位置を
柱位置に一致させれば、建物11が基礎12側に着座し
た際にこれを柱位置において確実に支持することができ
て有利である。
Further, when supporting the building 11 on the foundation 12, it is preferable to support it at the pillar position of the building 11,
In consideration of this point, if the laminated rubber 31 is attached to the upper building 11 side so that the installation position of the laminated rubber 31 coincides with the column position, when the building 11 is seated on the foundation 12 side, Advantageously, it can be securely supported at the position.

【0041】他方、積層ゴム31を上方の建物11側か
ら吊り下げて取り付けると、当該積層ゴム31にはその
自重で常に下方への引張力が作用しその劣化が懸念され
るが、これに対処するには積層ゴム31を下方の基礎1
2側に取り付けるようにすればよい。また他の方法とし
て、積層ゴム31を上から吊る場合に、当該積層ゴム3
1にその自重を支えるワイヤなどを掛けておくようにし
てもよい。
On the other hand, if the laminated rubber 31 is hung from the upper building 11 side and attached, a downward pulling force always acts on the laminated rubber 31 by its own weight, and there is a concern that the laminated rubber 31 may be deteriorated. To put the laminated rubber 31 on the lower foundation 1
What is necessary is just to attach to two sides. As another method, when the laminated rubber 31 is hung from above, the laminated rubber 3
A wire or the like for supporting its own weight may be hung on 1.

【0042】ところで、上記各実施形態の免振装置10
に用いた空気ばね13は、ローリングシール部材18を
2枚の第1,第2シール部材19,20で構成したが、
勿論1枚若しくは3枚以上で構成することもできる。ま
た、内側部材15を基礎12側、外側部材16を建物1
1側に設けたが、これら内側部材15と外側部材16を
逆にして配置しても同様の機能を得ることができる。ま
た、入力振動として地震を例示して説明したが、交通振
動や日常振動であっても同様の機能を得ることができる
ことはもちろんである。
By the way, the vibration isolator 10 of each of the above embodiments is used.
In the air spring 13 used for the first embodiment, the rolling seal member 18 is composed of two first and second seal members 19 and 20,
Of course, one or three or more sheets can be used. Also, the inner member 15 is the foundation 12 side, and the outer member 16 is the building 1
Although provided on one side, a similar function can be obtained by disposing the inner member 15 and the outer member 16 in reverse. In addition, although the earthquake has been described as an example of the input vibration, it is needless to say that the same function can be obtained even in the case of traffic vibration or daily vibration.

【0043】[0043]

【発明の効果】以上説明したように本発明の免振装置
は、高さを低く抑えることができるローリングシール型
の空気ばねを用いて、免振対象物の上下方向および水平
方向の長周期化を達成できるようになっており、この場
合に空気ばねを構成する内側部材と外側部材との上下方
向隙間に、上記免振対象物をベース上に着座させる際の
着座緩衝装置を設けたので、空気ばねからの封入気体の
排出により免振対象物が下降する際に、各空気ばね間で
着地タイミングにずれがあっても、免振対象物に発生し
うる局部応力や衝撃を緩衝吸収して免振対象物を保護す
ることができる。
As described above, the anti-vibration device of the present invention uses a rolling seal type air spring whose height can be kept low, thereby increasing the vertical period and horizontal direction of the object to be isolated. In this case, in the vertical gap between the inner member and the outer member constituting the air spring, a seat cushioning device is provided when the vibration-isolation target is seated on the base. When the vibration-isolated object descends due to the discharge of the enclosed gas from the air springs, even if there is a deviation in the landing timing between the air springs, it absorbs and absorbs local stress and impact that may occur on the vibration-isolated object. The vibration isolation target can be protected.

【0044】また、上記着座緩衝装置を、上記内側部材
あるいは外側部材の一方に設けられる弾性部材と、他方
に設けられる滑り材とを備えて構成したので、該着座緩
衝装置の着座状態で地震が起こった場合にも、弾性部材
の圧縮変形によって上下振動成分を吸収させるととも
に、弾性部材と滑り材との滑動によって水平振動成分を
吸収させて、最小限の3次元免振を確保することができ
る。
Further, since the seat cushioning device is provided with an elastic member provided on one of the inner member and the outer member and a sliding member provided on the other, an earthquake occurs when the seating cushioning device is seated. Even when this occurs, the vertical vibration component is absorbed by the compressive deformation of the elastic member, and the horizontal vibration component is absorbed by the sliding of the elastic member and the sliding material, so that a minimum three-dimensional vibration isolation can be ensured. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる免振装置の一実施形態を示す全
体の概略構成図である。
FIG. 1 is an overall schematic configuration diagram showing an embodiment of a vibration isolation device according to the present invention.

【図2】本発明にかかる免振装置の一実施形態に用いら
れる空気ばねの拡大断面図である。
FIG. 2 is an enlarged sectional view of an air spring used in one embodiment of the vibration isolator according to the present invention.

【図3】本発明にかかる免振装置の一実施形態を示す図
2中のA−A線断面図である。
FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2, showing one embodiment of the vibration isolator according to the present invention.

【図4】本発明にかかる免振装置の一実施形態に用いら
れる着座緩衝装置の拡大断面図である。
FIG. 4 is an enlarged sectional view of a seat cushioning device used in one embodiment of the vibration isolator according to the present invention.

【図5】本発明にかかる免振装置の他の実施形態に用い
られる空気ばねの拡大断面図である。
FIG. 5 is an enlarged sectional view of an air spring used in another embodiment of the vibration isolator according to the present invention.

【図6】本発明にかかる免振装置の他の実施形態を示す
図5中のB−B線断面図である。
FIG. 6 is a sectional view taken along the line BB in FIG. 5, showing another embodiment of the vibration isolator according to the present invention.

【符号の説明】[Explanation of symbols]

10 免振装置 11 建物 12 基礎 13 ローリングシール型空気ばね 14 着座緩衝装置 15 内側部材 16 外側部材 17 ローリングシール部材 18 気体封入空間 19a,20a 外周部分 19b,20b 内周部分 19c,20c 折り返し部分 22 受け板 30 着座緩衝装置 31 積層ゴム 32 滑り材 DESCRIPTION OF SYMBOLS 10 Vibration isolation device 11 Building 12 Foundation 13 Rolling seal type air spring 14 Seating cushioning device 15 Inner member 16 Outer member 17 Rolling seal member 18 Gas sealing space 19a, 20a Outer peripheral portion 19b, 20b Inner peripheral portion 19c, 20c Folded portion 22 Receiving Board 30 seat cushioning device 31 laminated rubber 32 sliding material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16F 9/05 F16F 9/05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F16F 9/05 F16F 9/05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 振動が入力されるベースと該ベース上方
の免振対象物との間に設けられ、これらベースまたは免
振対象物の一方から他方側に向かって突出される内側部
材と、 上記ベースまたは上記免振対象物の他方から一方側に向
かって突出され、上下方向および水平方向に適宜間隔を
隔てて上記内側部材の外周を囲繞する中空筒状体の外側
部材と、 これら外側部材の内周と内側部材の外周との水平方向隙
間に垂れ下がるように折り返されて配置され、その内周
部分を該内側部材外周に沿わせてその内側端部を当該内
側部材に気密に取り付けるとともに、その外周部分を該
外側部材内周に沿わせてその外側端部を当該外側部材に
気密に取り付けて、上記ベースと上記免振対象物との上
下相対変位に伴うこれら内側部材と外側部材との上下相
対変位に応じて該水平方向隙間内で繰り上げ繰り下げ変
位されるとともに、当該水平方向隙間から該外側部材と
該内側部材との間にわたって気体封入空間を形成する可
撓性筒状のローリングシール部材とを備え、 上記内側部材と上記外側部材との上下方向隙間に、上記
免振対象物をベース上に着座させる際の着座緩衝装置を
設けたことを特徴とする免振装置。
An inner member provided between a base to which vibration is input and a vibration-isolation target above the base, and protruding from one of the base or the vibration-isolation target toward the other side; An outer member of a hollow cylindrical body protruding from the other of the base or the vibration-isolation target object toward one side and surrounding the outer periphery of the inner member at appropriate intervals in the vertical and horizontal directions; Folded and arranged so as to hang down in a horizontal gap between the inner periphery and the outer periphery of the inner member, the inner peripheral portion of the inner member is hermetically attached to the inner member along the outer periphery of the inner member, An outer end portion of the outer member is hermetically attached to the outer member along an inner periphery of the outer member. relative A flexible cylindrical rolling seal member that is raised and lowered in the horizontal gap in accordance with the position and forms a gas-enclosed space from the horizontal gap to the outer member and the inner member. A vibration isolator, wherein a seat cushioning device is provided in a vertical gap between the inner member and the outer member when the vibration isolating object is seated on a base.
【請求項2】 上記着座緩衝装置は、上記内側部材ある
いは外側部材の一方に設けられる弾性部材と、他方に設
けられる滑り材とを備えたことを特徴とする請求項1に
記載の免振装置。
2. The vibration isolator according to claim 1, wherein the seat cushioning device includes an elastic member provided on one of the inner member and the outer member, and a sliding member provided on the other. .
JP2000200873A 2000-07-03 2000-07-03 Base isolation device Pending JP2002021927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000200873A JP2002021927A (en) 2000-07-03 2000-07-03 Base isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000200873A JP2002021927A (en) 2000-07-03 2000-07-03 Base isolation device

Publications (1)

Publication Number Publication Date
JP2002021927A true JP2002021927A (en) 2002-01-23

Family

ID=18698669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000200873A Pending JP2002021927A (en) 2000-07-03 2000-07-03 Base isolation device

Country Status (1)

Country Link
JP (1) JP2002021927A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294073A (en) * 2002-04-03 2003-10-15 Bridgestone Corp Air spring
JP2006299524A (en) * 2005-04-15 2006-11-02 Ohbayashi Corp Base isolation device and base isolation system
US7547142B2 (en) * 2003-03-07 2009-06-16 Robinson Seismic Ip Limited Self-centering sliding bearing
WO2010147093A1 (en) * 2009-06-16 2010-12-23 株式会社都市建築事務所 Rotation seismic isolation device for buildings and rotation seismic isolation building structure
CN104455189A (en) * 2014-10-30 2015-03-25 东南大学 Three-dimensional isolation support
KR200479289Y1 (en) 2014-04-24 2016-01-22 대우조선해양 주식회사 Offshore structure having bearing protector
JP2016033390A (en) * 2014-07-31 2016-03-10 特許機器株式会社 Vibration isolation vibration damping apparatus
JP2016138581A (en) * 2015-01-27 2016-08-04 株式会社大林組 Three-dimensional seismic isolator
CN107962591A (en) * 2017-11-23 2018-04-27 哈尔滨工业大学 A kind of passive damping elastomer element for the upper energy measuring moment of flexible machine person joint
CN108071181A (en) * 2017-12-26 2018-05-25 洛阳理工学院 A kind of civil engineering anti-seismic structure and its method
CN109505445A (en) * 2018-12-04 2019-03-22 北京建筑大学 A kind of spring stopper and its application method for architectural vibration-insulation layer
CN111042325A (en) * 2019-12-30 2020-04-21 安徽一品小院建筑科技有限公司 Shock attenuation node and building steel structure thereof
CN115217880A (en) * 2022-07-18 2022-10-21 郑州天源橡胶有限公司 Combined rubber joint for improving transverse stability of air spring

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294073A (en) * 2002-04-03 2003-10-15 Bridgestone Corp Air spring
US7547142B2 (en) * 2003-03-07 2009-06-16 Robinson Seismic Ip Limited Self-centering sliding bearing
JP2006299524A (en) * 2005-04-15 2006-11-02 Ohbayashi Corp Base isolation device and base isolation system
JP4706312B2 (en) * 2005-04-15 2011-06-22 株式会社大林組 Seismic isolation device, seismic isolation system
WO2010147093A1 (en) * 2009-06-16 2010-12-23 株式会社都市建築事務所 Rotation seismic isolation device for buildings and rotation seismic isolation building structure
CN102459786A (en) * 2009-06-16 2012-05-16 株式会社都市建筑事务所 Rotation seismic isolation device for buildings and rotation seismic isolation building structure
JPWO2010147093A1 (en) * 2009-06-16 2012-12-06 株式会社都市建築事務所 Rotating seismic isolation device for buildings and rotating seismic isolation building structure
KR200479289Y1 (en) 2014-04-24 2016-01-22 대우조선해양 주식회사 Offshore structure having bearing protector
JP2016033390A (en) * 2014-07-31 2016-03-10 特許機器株式会社 Vibration isolation vibration damping apparatus
CN104455189A (en) * 2014-10-30 2015-03-25 东南大学 Three-dimensional isolation support
JP2016138581A (en) * 2015-01-27 2016-08-04 株式会社大林組 Three-dimensional seismic isolator
CN107962591A (en) * 2017-11-23 2018-04-27 哈尔滨工业大学 A kind of passive damping elastomer element for the upper energy measuring moment of flexible machine person joint
CN107962591B (en) * 2017-11-23 2021-05-07 哈尔滨工业大学 Passive vibration-damping elastic element capable of measuring torque on flexible robot joint
CN108071181A (en) * 2017-12-26 2018-05-25 洛阳理工学院 A kind of civil engineering anti-seismic structure and its method
CN108071181B (en) * 2017-12-26 2019-07-19 洛阳理工学院 A kind of civil engineering anti-seismic structure and its method
CN109505445A (en) * 2018-12-04 2019-03-22 北京建筑大学 A kind of spring stopper and its application method for architectural vibration-insulation layer
CN111042325A (en) * 2019-12-30 2020-04-21 安徽一品小院建筑科技有限公司 Shock attenuation node and building steel structure thereof
CN115217880A (en) * 2022-07-18 2022-10-21 郑州天源橡胶有限公司 Combined rubber joint for improving transverse stability of air spring

Similar Documents

Publication Publication Date Title
US9394967B2 (en) Three-dimensional shock-absorbing device
JP2002021927A (en) Base isolation device
KR100757749B1 (en) Seismic isolation apparatus for supporting a structure
ES2228406T3 (en) AIR SHOCK ABSORBER.
KR102281791B1 (en) Seismic Device for solar module structure
JP6378494B2 (en) Seismic isolation structure
JPH07173955A (en) Base isolation device
JP2002021918A (en) Vibration isolation device
JP5192731B2 (en) 3D seismic isolation system
JP5461780B2 (en) Air spring device
JP2002130370A (en) Seismic isolator
JP4192923B2 (en) Isolation device
JPH11264445A (en) Base isolation device
JP3829593B2 (en) Isolation device
US10988060B2 (en) Pneumatic seat support
JP3576281B2 (en) Seismic isolation device
JP2002021925A (en) Base isolation device
JP2013228007A (en) Support structure of dust cover
JP6420012B1 (en) Passive vibration control device for buildings
JP3758473B2 (en) Isolation device
JP2002005232A (en) Base isolating device
JP2000130506A (en) Three-dimensional base isolation device
KR100549373B1 (en) Bearing for diminishing a vibration of a perpendicular direction in a structure
KR101081439B1 (en) Bearing apparatus for structure
KR200360336Y1 (en) Bearing for high damping elastomers

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20040924

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Effective date: 20060201

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD04 Notification of resignation of power of attorney

Effective date: 20060202

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A02 Decision of refusal

Effective date: 20060620

Free format text: JAPANESE INTERMEDIATE CODE: A02