JP2002020532A - Cross-linked foamed material of continuously foaming polyolefin-based resin and carrier material for propagating microorganism - Google Patents

Cross-linked foamed material of continuously foaming polyolefin-based resin and carrier material for propagating microorganism

Info

Publication number
JP2002020532A
JP2002020532A JP2000206933A JP2000206933A JP2002020532A JP 2002020532 A JP2002020532 A JP 2002020532A JP 2000206933 A JP2000206933 A JP 2000206933A JP 2000206933 A JP2000206933 A JP 2000206933A JP 2002020532 A JP2002020532 A JP 2002020532A
Authority
JP
Japan
Prior art keywords
open
cross
foam
based resin
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000206933A
Other languages
Japanese (ja)
Other versions
JP3609696B2 (en
Inventor
Shinichiro Ito
紳一郎 伊藤
Shunji Takeda
俊二 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2000206933A priority Critical patent/JP3609696B2/en
Publication of JP2002020532A publication Critical patent/JP2002020532A/en
Application granted granted Critical
Publication of JP3609696B2 publication Critical patent/JP3609696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices

Landscapes

  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a crosslinked foamed material of a continuously foaming polyolefin-based resin, excellent in air-ventilating property and water-absorbing property, and also in fluidityin floating and sinking in water and abrasion resistance, and especially capable of being suitably used as a carrier material for propagating microorganisms. SOLUTION: This crosslinked foamed material of a continuously foaming polyolefin-based resin is characterized by exhibiting <=10 sec time for penetrating 50 cm3 air on applying 5.56 N air pressure through a part having 314 mm2 area and 10 mm thickness in thickness direction, and having 6-50 average number of air bubbles on 25 mm straight line length and also 20-80% ratio of average broken membrane area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微生物繁殖用の担
持体として好適に使用できる連続気泡性ポリオレフィン
系樹脂架橋発泡体及び該連続気泡性ポリオレフィン系樹
脂架橋発泡体からなる微生物繁殖用担持体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crosslinked foam of an open-celled polyolefin resin which can be suitably used as a support for propagation of microorganisms, and a support for propagation of microorganisms comprising the crosslinked foam of an open-celled polyolefin resin. .

【0002】[0002]

【従来の技術】従来、連続気泡性ポリオレフィン系樹脂
架橋発泡体は、緩衝材等として多くの分野で使用されて
いる。連続気泡性ポリオレフィン系樹脂架橋発泡体の製
造方法としては、例えば、特開昭56−121739号
公報に、ポリオレフィン系樹脂を架橋発泡させた後に機
械的変形を加えて気泡を連通する方法が記載されてい
る。しかしながら、該製造方法は、気泡膜に微細な連通
孔が部分的に形成され、気泡が連通化するものであり、
得られる連続気泡性架橋発泡体は、連続気泡率が高いも
のであっても、通気性、吸水性等が要求される用途には
通気性及び吸水性が不足し、不適であった。
2. Description of the Related Art Conventionally, open-celled polyolefin resin crosslinked foams have been used in many fields as cushioning materials and the like. As a method for producing an open-celled polyolefin-based resin crosslinked foam, for example, Japanese Patent Application Laid-Open No. 56-121739 describes a method in which a polyolefin-based resin is crosslinked and foamed, followed by mechanical deformation to open cells. ing. However, in the manufacturing method, fine communication holes are partially formed in the bubble film, and the bubbles are communicated.
Even if the obtained open-celled crosslinked foam has a high open-cell ratio, it is not suitable for applications requiring air permeability, water absorption, etc., since the air permeability and water absorption are insufficient, and thus are not suitable.

【0003】一方、生活・産業排水の下水処理槽、合併
浄化槽、生ごみディスポーザ、生物脱臭装置等の処理に
おいて、従来から活性汚泥法が一般的に行われている
が、大きな設備を必要とする他、赤潮の原因となる窒
素、リン等の削減が不十分であるといった問題があり、
近年では、設備をできる限り小型化し、さらに処理能力
を向上させる為に微生物を効果的に利用する処理方法が
検討されている。
On the other hand, the activated sludge method has been generally used in the treatment of sewage treatment tanks for domestic and industrial effluents, combined septic tanks, garbage disposers, biological deodorizers, and the like, but requires large equipment. In addition, there are problems such as insufficient reduction of nitrogen and phosphorus that cause red tide,
In recent years, treatment methods that effectively utilize microorganisms have been studied in order to make equipment as small as possible and further improve the treatment capacity.

【0004】上記微生物を利用した処理方法では、微生
物を繁殖させる為の担持体を使用するのが有効である。
微生物繁殖用担持体としては、例えば、ポリエチレング
リコール、ポリビニルアルコール、ポリウレタンなどか
らなる粒状ゲルや繊維を凝集、融合させた繊維体が挙げ
られる。しかしながら、粒状ゲルは体積あたりの水接触
面積及び微生物繁殖面積が少なく、効率的でないといっ
た問題があり、繊維体は、流動回転する水中で長期間使
用した場合、解繊し易く、また、繊維間が狭い為、微生
物付着時に内部が目詰まりし易く、内部の微生物繁殖効
果が持続し難いといった問題があった。上記問題を解決
する方法として、ポリウレタン系樹脂、セルロール等か
らなる連続気泡性多孔体が提案されているが、処理槽内
での水中での耐久性、耐摩耗性などが不十分であり、長
期使用に耐え難いといった問題があった。
In the above-mentioned treatment method using microorganisms, it is effective to use a carrier for propagation of microorganisms.
Examples of the carrier for propagation of microorganisms include, for example, a particulate gel or fiber made of polyethylene glycol, polyvinyl alcohol, polyurethane, or the like, which is aggregated and fused. However, the granular gel has a problem that the water contact area per volume and the microbial breeding area per volume are small and inefficient, and the fibrous body is easily defibrated when used in flowing rotating water for a long period of time. Due to the small size, there is a problem that the inside is liable to be clogged when the microorganisms adhere, and the effect of propagation of the microorganisms inside is difficult to maintain. As a method of solving the above problem, an open-cell porous body made of a polyurethane resin, cellulose, etc. has been proposed, but durability in water in a treatment tank, abrasion resistance, etc. are insufficient, and There was a problem that it was unbearable for use.

【0005】上記問題を解決する方法として、耐摩耗性
に優れたポリオレフィン系樹脂からなる連続気泡性架橋
発泡体を使用する方法が挙げられるが、上記の通り、一
般的な従来の製造方法で得られた連続気泡性ポリオレフ
ィン系樹脂架橋発泡体は、微生物繁殖用担持体に使用す
るには通気性、吸水性等が不十分であるといった問題が
あった。また、例えば、特開平5−96288号公報に
は、ポリエチレン連通気泡体を特定の汚水浄化槽の微生
物繁殖用担持体として使用することが記載されており、
特開平10−193425号公報には、貫通気泡及び半
貫通気泡と独立気泡とを有する押出発泡体からなる微生
物繁殖用担持体が記載されているが、未だ、通気性、吸
水性等は十分でないことが多く、微生物繁殖用担持体内
部にまで水が浸透し難く、又は、微生物繁殖用担持体内
部の水が移動変換し難く、微生物繁殖効果が効率的でな
いといった問題があった。
As a method for solving the above problem, there is a method using an open-celled cross-linked foam made of a polyolefin resin having excellent abrasion resistance. The obtained open-celled polyolefin-based resin cross-linked foam has a problem that the air permeability and water absorption are insufficient for use as a carrier for propagation of microorganisms. In addition, for example, Japanese Patent Application Laid-Open No. 5-96288 discloses that a polyethylene communicating foam is used as a carrier for breeding microorganisms in a specific sewage treatment tank,
Japanese Patent Application Laid-Open No. Hei 10-193425 describes a carrier for propagation of microorganisms composed of an extruded foam having penetrating cells, semi-permeating cells and closed cells, but still has insufficient air permeability, water absorption and the like. In many cases, there is a problem that water hardly penetrates into the inside of the carrier for propagation of microorganisms, or water inside the carrier for propagation of microorganisms is hard to move and convert, and the effect of propagation of microorganisms is not efficient.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、通気
性及び吸水性に優れるとともに、水中浮沈流動性及び耐
摩耗性に優れ、特に、微生物繁殖用の担持体として好適
に使用できる連続気泡性ポリオレフィン系樹脂架橋発泡
体を提供することにある。また、本発明の他の目的は、
上記連続気泡性ポリオレフィン系樹脂架橋発泡体からな
り、その表面に微生物が付着・繁殖し易い微生物繁殖用
担持体を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an open cell which is excellent in air permeability and water absorbency, excellent in floating and sinking fluid in water and abrasion resistance, and particularly suitable for use as a carrier for propagation of microorganisms. It is an object of the present invention to provide a crosslinked polyolefin resin foam. Another object of the present invention is to
An object of the present invention is to provide a carrier for propagation of microorganisms, which is made of the above-mentioned cross-linked foam of open-celled polyolefin resin and in which microorganisms easily adhere and propagate on the surface.

【0007】[0007]

【課題を解決するための手段】本発明の連続気泡性ポリ
オレフィン系樹脂架橋発泡体(以下、「連続気泡性架橋
発泡体」と記す)は、面積314mm2、厚さ10mm
の部分を、5.56Nの空気圧を厚さ方向にかけた際に
50cm3の空気が透過する時間が10秒以下であり、
かつ、断面における、長さ25mmの直線上にかかる平
均気泡数が6〜50個であるとともに、断面での平均破
膜面積割合が、20〜80%であることを特徴とする。
The crosslinked foam of the open-celled polyolefin resin of the present invention (hereinafter referred to as "open-celled crosslinked foam") has an area of 314 mm 2 and a thickness of 10 mm.
When the air pressure of 5.56 N is applied in the thickness direction, the time for air of 50 cm 3 to permeate is 10 seconds or less,
In addition, the average number of bubbles on a straight line having a length of 25 mm in the cross section is 6 to 50, and the average rupture area ratio in the cross section is 20 to 80%.

【0008】本発明の連続気泡性架橋発泡体を構成する
ポリオレフィン系樹脂としては、例えば、低密度ポリエ
チレン、中密度ポリエチレン、高密度ポリエチレン、直
鎖状低密度ポリエチレン、エチレンを主成分とするエチ
レン−α−オレフィン共重合体、エチレンを主成分とす
るエチレン−酢酸ビニル共重合体、エチレンを主成分と
するエチレン−エチルアクリレート共重合体、ポリプロ
ピレン、プロピレンを主成分とするプロピレン−α−オ
レフィン共重合体、プロピレンを主成分とするエチレン
−プロピレン−ブテン三元共重合体、ポリブテン等が挙
げられ、これらは単独で使用しても2種以上併用しても
よい。上記エチレン−α−オレフィン共重合体を構成す
るα−オレフィンとしては、例えば、プロピレン、1−
ブテン、1−ペンテン、4−メチル−1−ペンテン、1
−ヘキセン、1−ヘプテン、1−オクテン等が挙げら
れ、上記プロピレン−α−オレフィン共重合体を構成す
るα−オレフィンとしては、例えば、エチレン、1−ブ
テン、1−ペンテン、4−メチル−1−ペンテン、1−
ヘキセン、1−ヘプテン、1−オクテン等が挙げられ
る。
The polyolefin resin constituting the open-cell crosslinked foam of the present invention includes, for example, low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, and ethylene-based ethylene. α-olefin copolymer, ethylene-vinyl acetate copolymer containing ethylene as a main component, ethylene-ethyl acrylate copolymer containing ethylene as a main component, polypropylene, propylene-α-olefin copolymer containing propylene as a main component Coalesce, propylene-based ethylene-propylene-butene terpolymer, polybutene, and the like, and these may be used alone or in combination of two or more. As the α-olefin constituting the ethylene-α-olefin copolymer, for example, propylene, 1-
Butene, 1-pentene, 4-methyl-1-pentene, 1
-Hexene, 1-heptene, 1-octene, and the like. Examples of the α-olefin constituting the propylene-α-olefin copolymer include ethylene, 1-butene, 1-pentene, and 4-methyl-1. -Pentene, 1-
Hexene, 1-heptene, 1-octene and the like can be mentioned.

【0009】上記ポリオレフィン系樹脂の比重は水より
も小さい場合が多く、該ポリオレフィン系樹脂から得ら
れる連続気泡性架橋発泡体を微生物繁殖用担持体として
使用した際、その内部に水が完全に浸透しても曝気条件
によっては浮いてしまうことがあり、初期の水中浮沈流
動性が低下するので、無機充填剤を添加するのが好まし
い。
In many cases, the specific gravity of the polyolefin resin is smaller than that of water. When the open-celled crosslinked foam obtained from the polyolefin resin is used as a carrier for propagation of microorganisms, water completely penetrates into the inside thereof. However, depending on the aeration conditions, the material may float, and the initial fluidity of floating in water is reduced. Therefore, it is preferable to add an inorganic filler.

【0010】上記無機充填剤としては、例えば、炭酸カ
ルシウム、タルク、硫酸バリウム、水酸化アルミニウ
ム、ゼオライト等が挙げられ、これらは単独で使用して
も2種以上併用してもよい。無機充填剤の添加量は、少
なくなると効果が得られず、多くなると水よりも比重が
大きくなり過ぎ、水中浮沈流動性が低下し、また、発泡
段階で発泡し難くなるので、上記ポリオレフィン系樹脂
100重量部に対し、10〜80重量部が好ましく、よ
り好ましくは20〜60重量部であり、無機充填剤添加
後のポリオレフィン系樹脂の比重が水と同等又は水より
も若干大きくなるように調整するのが好ましい。
Examples of the inorganic filler include calcium carbonate, talc, barium sulfate, aluminum hydroxide, zeolite and the like. These may be used alone or in combination of two or more. When the amount of the inorganic filler is small, the effect cannot be obtained when the amount is small, and when the amount is large, the specific gravity is too large than that of water, the fluidity in water is lowered, and it is difficult to foam at the foaming stage. The amount is preferably from 10 to 80 parts by weight, more preferably from 20 to 60 parts by weight, based on 100 parts by weight, adjusted so that the specific gravity of the polyolefin-based resin after the addition of the inorganic filler is equal to or slightly larger than water. Is preferred.

【0011】本発明の連続気泡性架橋発泡体は、上記ポ
リオレフィン系樹脂と必要に応じて添加される上記無機
充填剤からなり、その面積314mm2、厚さ10mm
の部分を、5.56Nの空気圧を厚さ方向にかけた際に
50cm3の空気が透過する時間(以下、「透気度」と
記す)が、長くなると、連続気泡性架橋発泡体の通気性
及び吸水性が低下し、微生物繁殖用担持体に使用した
際、水中で内部の空気が抜け難く、また、内部に曝気の
空気泡を保持し易く、いずれの場合も水中浮沈流動性が
低下し、また、微生物繁殖用担持体内部で水が自由に移
動でき難くなり、微生物繁殖用担持体内部の水が移動変
換し難く、微生物繁殖効率が低下するので、10秒以下
に限定され、好ましくは5秒以下である。
The open-cell crosslinked foam of the present invention comprises the above-mentioned polyolefin-based resin and the above-mentioned inorganic filler optionally added, and has an area of 314 mm 2 and a thickness of 10 mm.
When the time required for 50 cm 3 of air to pass through when the air pressure of 5.56 N is applied in the thickness direction (hereinafter referred to as “air permeability”) becomes longer, the air permeability of the open-cell cross-linked foam increases. And when used as a carrier for propagation of microorganisms, it is difficult for air inside to escape from water, and it is easy to hold air bubbles of aeration inside, and in any case, the fluidity of floating and sinking in water is reduced. In addition, it is difficult to freely move water inside the carrier for propagation of microorganisms, it is difficult to convert water inside the carrier for propagation of microorganisms, and the efficiency of propagation of microorganisms is reduced. 5 seconds or less.

【0012】上記透気度は、B型ガーレ式デンソメータ
ー(東洋精機製作所製)を用いて測定した値である。具
体的には、連続気泡性架橋発泡体の任意部分から厚さ1
0mmの試料を採取し、該試料を314mm2の円孔を
有する2つの締付板の間に、連続気泡性架橋発泡体の厚
さ方向を締め付けるようにして挟み、B型ガーレ式デン
ソメーターにセットする。デンソメーターにセットした
試料の一方は開放されており、他方は閉鎖された気密空
間となっている。次に、試料に接触しないように、気密
空間側から5.56Nの空気圧を試料厚さ方向にかけ、
その際、50cm3の空気が試料を通過するのに要した
時間(透気度)を測定する。尚、連続気泡性架橋発泡体
の厚さが10mmに満たない場合には積層して測定す
る。
The above air permeability is a value measured using a B-type Gurley type densometer (manufactured by Toyo Seiki Seisaku-sho, Ltd.). Specifically, a thickness of 1 mm from an arbitrary portion of the open-celled crosslinked foam.
A sample of 0 mm is collected, and the sample is sandwiched between two clamping plates having a circular hole of 314 mm 2 in such a manner that the thickness direction of the open-cell crosslinked foam is clamped, and set on a B-type Gurley densometer. . One of the samples set in the densometer is open, and the other is a closed airtight space. Next, an air pressure of 5.56 N is applied in the sample thickness direction from the airtight space side so as not to contact the sample,
At this time, the time (air permeability) required for 50 cm 3 of air to pass through the sample is measured. When the thickness of the open-celled crosslinked foam is less than 10 mm, the measurement is performed by laminating.

【0013】上記連続気泡性架橋発泡体の平均気泡径
は、小さくなると、連続気泡性架橋発泡体の通気性及び
吸水性が低下し、微生物繁殖用担持体として使用した
際、水中で内部の空気が抜け難く、また、内部に曝気の
空気泡を保持し易く、いずれの場合も水中浮沈流動性が
低下し、さらに、微生物が付着し、繁殖した場合でも、
目詰まりして微生物繁殖用担持体内部で水が自由に移動
でき難くなり、酸素を含む水が連続気泡性架橋発泡体内
部にまで到達せずに微生物が死滅してしまい易く、大き
くなると、連続気泡性架橋発泡体を微生物繁殖用担持体
として使用した際、体積あたりの連続気泡性架橋発泡体
と水との接触面積が少なくなり、それにより微生物が付
着する領域が減り、微生物繁殖効率が低下するので、連
続気泡性架橋発泡体の断面における長さ25mmの直線
上にかかる平均気泡数が6〜50個に限定され、好まし
くは12〜30個であり、より好ましくは15〜25個
である。
When the average cell diameter of the above-mentioned open-celled crosslinked foam becomes small, the air permeability and water absorption of the open-celled cross-linked foam decrease, and when the cell is used as a carrier for propagation of microorganisms, the internal air in the water is reduced. It is difficult to remove, and it is easy to hold aerated air bubbles inside, and in both cases, the fluidity of floating in water is reduced, and even if microorganisms adhere and propagate,
Clogging makes it difficult for water to move freely inside the microorganism propagation carrier, and water containing oxygen does not reach the inside of the open-celled cross-linked foam, and the microorganisms are easily killed. When the foamed cross-linked foam is used as a carrier for microbial propagation, the contact area between the open-cell cross-linked foam and water per volume decreases, thereby reducing the area where microorganisms adhere and reducing the microbial propagation efficiency. Therefore, the average number of cells on a straight line having a length of 25 mm in the cross section of the open-cell crosslinked foam is limited to 6 to 50, preferably 12 to 30, and more preferably 15 to 25. .

【0014】上記連続気泡性架橋発泡体の断面における
平均気泡数は、以下の方法により測定した値である。ま
ず、連続気泡性架橋発泡体を任意の部分で厚さ方向に切
断し、さらに、前記切断面をxy面とした場合、yz面
及びzx面が断面となる方向に切断し、その各断面と2
5mmの寸法目盛りとを、同一画面上に電子顕微鏡によ
り写真撮影し、約10倍に拡大された写真を得る。得ら
れた写真の任意部分に、写真内の25mmの寸法目盛り
と同一長さの直線を引き、該直線にかかる気泡の個数を
数え、各断面での気泡の個数を平均したものが連続気泡
性架橋発泡体の断面における平均気泡数である。尚、本
発明でいう気泡とは、気泡膜の連通の有無は問わず、写
真撮影断面にある気泡膜(写真撮影断面の奥にみえる気
泡膜は考慮しない)で囲まれている部分を1つの気泡と
する。また、上記写真撮影の際、連続気泡性架橋発泡体
の断面を、マジックインキ(登録商標)などの着色剤で
着色した後に写真撮影を行うのが、気泡の判別がし易く
なるので好ましい。
The average number of cells in the cross section of the open-cell crosslinked foam is a value measured by the following method. First, the open-cell cross-linked foam is cut at an arbitrary portion in the thickness direction, and when the cut surface is an xy surface, the yz surface and the zx surface are cut in a direction in which the cross section is formed. 2
A 5 mm dimensional scale is photographed on the same screen by an electron microscope to obtain a photograph magnified about 10 times. A straight line having the same length as the 25 mm dimensional scale in the photograph was drawn on an arbitrary part of the obtained photograph, the number of bubbles on the straight line was counted, and the number of bubbles on each cross section was averaged to obtain the open cell property. The average number of cells in the cross section of the crosslinked foam. In the present invention, the term “bubble” refers to a portion surrounded by a bubble film in a photographing section (does not consider the bubble film seen in the back of the photographing section), regardless of the presence or absence of communication of the bubble film. Bubble. In the photographing, it is preferable that the photographing is performed after the cross section of the open-celled crosslinked foam is colored with a coloring agent such as Magic Ink (registered trademark) because bubbles can be easily identified.

【0015】上記連続気泡性架橋発泡体の平均破膜面積
割合は、小さくなると、連続気泡性架橋発泡体の通気性
及び吸水性が低下し、微生物繁殖用担持体として使用し
た際、水中で内部の空気が抜け難く、また、内部に曝気
の空気泡を保持し易く、いずれの場合も水中浮沈流動性
が低下し、大きくなると、全体の気泡膜が少なくなるの
で、連続気泡性架橋発泡体を微生物繁殖用担持体として
使用した際、体積あたりの連続気泡性架橋発泡体と水と
の接触面積が少なくなり、それにより微生物が付着する
領域が減り、微生物繁殖効率が低下するので、20〜8
0%に限定され、好ましくは30〜60%である。
When the average rupture area ratio of the open-celled crosslinked foam becomes small, the permeability and water absorption of the open-celled crosslinked foam decrease, and when the foam is used as a carrier for propagation of microorganisms, it has an internal It is difficult for air to escape, and it is easy to retain aerated air bubbles inside.In each case, the fluidity of floating in water is reduced. When used as a carrier for propagation of microorganisms, the contact area between the open-celled cross-linked foam and water per volume is reduced, thereby reducing the area where microorganisms adhere and decreasing the efficiency of microorganism reproduction.
It is limited to 0%, preferably 30 to 60%.

【0016】上記平均破膜面積割合は、以下の方法によ
り測定した値である。まず、連続気泡性架橋発泡体を任
意の部分で厚さ方向に切断し、さらに、前記切断面をx
y面とした場合、yz面及びzx面が断面となる方向に
切断し、電子顕微鏡により約25倍に拡大して写真撮影
する。得られた各断面の写真において、近接集合した気
泡5個分の全面積に対する、該気泡5個のうちの気泡膜
が破れて黒い空洞になっている部分の面積割合を算出
し、各断面写真の面積割合を平均した値が平均破膜面積
割合である。具体的には、写真撮影断面にある近接集合
した気泡5個分を透明なグラフ用紙に写し、さらに、該
気泡5個において、気泡膜が破れ、写真撮影断面の奥に
みえる黒い空洞になっている部分を同様の透明なグラフ
用紙に写し取る。写し取ったグラフ用紙から、気泡5個
分を切り取りその重量W1(mg)を測定する。次に、
該気泡5個のうち、気泡膜が破れて黒い空洞になってい
る部分をグラフ用紙から切り取り、その重量W2(m
g)を測定する。得られた測定値から、破膜面積割合を
以下の式により算出する。 破膜面積割合(%)=(W2/W1)×100 各断面の写真について、各々任意部分5箇所について上
記破膜面積割合を算出した後、全ての値を平均し、平均
破膜面積割合(%)を算出する。尚、上記写真撮影の
際、連続気泡性架橋発泡体の断面に金を蒸着した後に写
真撮影を行うのが、気泡膜及び気泡膜が破れている部分
の像が鮮明になり、判別し易くなるので好ましい。
The average area ratio of the ruptured membrane is a value measured by the following method. First, the open-cell crosslinked foam is cut at an arbitrary portion in the thickness direction.
In the case of the y-plane, the film is cut in a direction in which the yz-plane and the zx-plane are cross-sections, and photographed with an electron microscope at about 25 times magnification. In the photographs of the obtained cross sections, the area ratio of the portion where the bubble film of the five bubbles is broken to become a black cavity with respect to the total area of the five closely assembled bubbles is calculated. The value obtained by averaging the area ratio is the average rupture area ratio. More specifically, five closely assembled bubbles in the photographing cross section are copied on a transparent graph paper, and the bubble film is broken in the five bubbles to form a black cavity seen in the back of the photographing cross section. Copy the part on the same transparent graph paper. Five bubbles are cut out from the copied graph paper, and the weight W 1 (mg) is measured. next,
Of the five air bubbles, a portion where the air bubble film was broken and became a black cavity was cut out from the graph paper, and its weight W 2 (m
g) is measured. From the obtained measured values, the rupture area ratio is calculated by the following equation. Breakage area ratio (%) = (W 2 / W 1 ) × 100 After calculating the above-mentioned breakage area ratios at five arbitrary portions for each photograph of the cross section, all values are averaged, and the average breakage area is calculated. Calculate the ratio (%). In the above photographing, photographing after vapor deposition of gold on the cross section of the open-celled cross-linked foamed body makes the image of the bubble film and the portion where the bubble film is broken clear and easy to distinguish. It is preferred.

【0017】上記連続気泡性架橋発泡体のゲル分率は、
小さくなると、強度及び耐久性が低下し、大きくなる
と、透気度及び平均破膜面積割合が上記範囲になり難
く、通気性及び吸水性が低下し、微生物繁殖用担持体と
して使用した際、水中で内部の空気が抜け難く、また、
内部に曝気の空気泡を保持し易く、いずれの場合も水中
浮沈流動性が低下するので、30〜70重量%が好まし
い。
The gel fraction of the open-celled crosslinked foam is as follows:
When it is smaller, the strength and durability are reduced, and when it is larger, the air permeability and the average rupture area ratio are difficult to be in the above ranges, the air permeability and the water absorption are reduced, and when used as a microorganism propagation support, It is difficult for air inside to escape,
The content is preferably 30 to 70% by weight because air bubbles for aeration are easily retained inside and the floating and sinking fluidity in water is reduced in any case.

【0018】上記ゲル分率は、以下の方法により算出し
た値である。まず、連続気泡性架橋発泡体を約100m
g採取して試料とし、該試料の乾燥重量W3(mg)を
測定する。次に、試料の気泡を潰し、120℃のキシレ
ン50ml中に入れて24時間放置した後、200メッ
シュの金網を透過させ、金網上の残存物の乾燥重量W4
(mg)を測定し、以下の式によりゲル分率を算出す
る。 ゲル分率(重量%)=(W4/W3)×100
The above gel fraction is a value calculated by the following method. First, the open-cell cross-linked foam is about 100 m
g of the sample is taken as a sample, and the dry weight W 3 (mg) of the sample is measured. Next, the air bubbles of the sample were crushed, placed in 50 ml of xylene at 120 ° C., and allowed to stand for 24 hours, passed through a 200-mesh wire net, and the dry weight W 4 of the residue on the wire net was removed.
(Mg), and calculate the gel fraction by the following formula. Gel fraction (% by weight) = (W 4 / W 3 ) × 100

【0019】上記連続気泡性架橋発泡体の見掛け密度
は、小さくなると、へたり易くなり、大きくなると、連
続気泡率が低くなり易く、また、気泡膜が厚くなるた
め、透気度及び平均破膜面積割合が上記範囲になり難
く、通気性及び吸水性が低下し、微生物繁殖用担持体と
して使用した際、水中で内部の空気が抜け難く、また、
内部に曝気の空気泡を保持し易く、いずれの場合も水中
浮沈流動性が低下するので、0.01〜0.1g/cm
3が好ましく、より好ましくは0.02〜0.05g/
cm3である。上記見掛け密度は、連続気泡性架橋発泡
体の重量W5(g)及び体積D(cm3)を測定し、以下
の式により算出した値である。 見掛け密度=W5/D
As the apparent density of the open-cell crosslinked foam becomes smaller, it becomes easier to set, and as it becomes larger, the open cell ratio tends to become lower and the cell membrane becomes thicker. The area ratio is unlikely to be in the above range, the air permeability and water absorption are reduced, and when used as a carrier for propagation of microorganisms, it is difficult for the internal air to escape in water, and
It is easy to hold the air bubbles of aeration inside, and in any case, the fluidity of floating and sinking in water is reduced, so that 0.01 to 0.1 g / cm
3 , more preferably 0.02 to 0.05 g /
cm 3 . The apparent density is a value obtained by measuring the weight W 5 (g) and the volume D (cm 3 ) of the open-cell crosslinked foam and calculating the value by the following equation. Apparent density = W 5 / D

【0020】また、上記連続気泡性架橋発泡体は、その
製造段階において、一般に連通していないスキン層を有
するので、微生物繁殖用担持体などの用途に使用される
場合は、スキン層は除去されているのが好ましい。スキ
ン層を除去する方法としては、特には限定されず、例え
ば、表面をスライスして取り除く方法等の従来公知の任
意の方法が採用されてよい。
In addition, the open-celled crosslinked foam has a skin layer which is not generally communicated at the stage of its production. Therefore, when the foam is used for a carrier for propagation of microorganisms, the skin layer is removed. Is preferred. The method for removing the skin layer is not particularly limited. For example, any conventionally known method such as a method for slicing and removing the surface may be adopted.

【0021】上記連続気泡性架橋発泡体の製造方法とし
ては、例えば、必要に応じて上記無機充填剤が添加され
た上記ポリオレフィン系樹脂に、熱分解型発泡剤の他、
必要に応じて架橋剤、発泡助剤等を添加し、熱分解型発
泡剤が実質的に分解しない温度で溶融混練し、所定形状
に成形した後、加熱して架橋発泡させ、得られた架橋発
泡体に機械的変形を加えて気泡を連通させ、その後、さ
らに連通孔を拡大させる方法が挙げられる。
As a method for producing the open-celled crosslinked foam, for example, in addition to the above-mentioned polyolefin resin to which the above-mentioned inorganic filler is added, if necessary, in addition to a pyrolytic foaming agent,
If necessary, a crosslinking agent, a foaming aid, etc. are added, and the mixture is melt-kneaded at a temperature at which the thermal decomposition type foaming agent is not substantially decomposed, molded into a predetermined shape, and then heated and crosslinked and foamed. There is a method in which bubbles are communicated by applying mechanical deformation to the foam, and then the communication holes are further enlarged.

【0022】上記熱分解型発泡剤としては、特には限定
されず、従来公知の任意のものが使用されてよく、例え
ば、アゾジカルボンアミド、アゾビスイソブチロニトリ
ル、p−トルエンスルホニルヒドラジド、ジニトロソペ
ンタメチレンテトラミン、4,4’−オキシビスベンゼ
ンスルホニルヒドラジド等が挙げられ、これらは単独で
使用しても2種以上併用してもよい。中でも、アゾジカ
ルボンアミドが、発生ガス量、取り扱いの安全性等に優
れているので好ましい。熱分解型発泡剤の添加量は、得
られる連続気泡性架橋発泡体の所望の見掛け密度に応じ
て適宜調整されるが、一般には、上記ポリオレフィン系
樹脂100重量部に対し、5〜30重量部が好ましい。
The pyrolytic foaming agent is not particularly limited, and any conventionally known one may be used. Examples thereof include azodicarbonamide, azobisisobutyronitrile, p-toluenesulfonylhydrazide, Examples thereof include nitrosopentamethylenetetramine and 4,4′-oxybisbenzenesulfonylhydrazide, which may be used alone or in combination of two or more. Among them, azodicarbonamide is preferable because it is excellent in the amount of generated gas, safety in handling, and the like. The amount of the pyrolytic foaming agent to be added is appropriately adjusted according to the desired apparent density of the obtained open-cell crosslinked foam, but is generally 5 to 30 parts by weight based on 100 parts by weight of the polyolefin resin. Is preferred.

【0023】上記架橋剤としては、特には限定されず、
従来公知の任意のものが使用されてよく、例えば、ジク
ミルパーオキサイド、1,1−ビス(t−ブチルパーオ
キシ)3,3,5−トリメチルシクロヘキサン、ジ−t
−ブチルパーオキサイド、2,5−ジメチル−2,5−
ジ(t−ブチルパーオキシ)ヘキセン−3等の有機過酸
化物が挙げられ、これらは単独で使用しても2種以上併
用してもよい。架橋剤の添加量は、所望のゲル分率に応
じて適宜調整されるが、一般には、上記ポリオレフィン
系樹脂100重量部に対し、0.2〜1.5重量部が好
ましい。
The crosslinking agent is not particularly limited.
Any conventionally known one may be used, for example, dicumyl peroxide, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, di-t
-Butyl peroxide, 2,5-dimethyl-2,5-
Organic peroxides such as di (t-butylperoxy) hexene-3 may be used, and these may be used alone or in combination of two or more. The amount of the cross-linking agent to be added is appropriately adjusted according to the desired gel fraction, but is generally preferably 0.2 to 1.5 parts by weight based on 100 parts by weight of the polyolefin resin.

【0024】また、上記架橋剤を添加せず、上記ポリオ
レフィン系樹脂にシラン化合物をグラフトし、ポリオレ
フィン系樹脂を予め架橋性のものにしておいてもよい。
シラン化合物としては、特には限定されず、従来公知の
任意のものが使用されてよく、例えば、ビニルトリメト
キシシラン、ビニルトリエトキシシラン、ビニルジメト
キシシラン、ビニルジエトキシシラン、3−メタクリロ
キシプロピルトリエトキシシラン等が挙げられる。
Further, a silane compound may be grafted onto the polyolefin resin without adding the crosslinking agent, so that the polyolefin resin is previously crosslinkable.
The silane compound is not particularly limited, and any conventionally known one may be used. For example, vinyltrimethoxysilane, vinyltriethoxysilane, vinyldimethoxysilane, vinyldiethoxysilane, 3-methacryloxypropyltrisilane Ethoxysilane and the like can be mentioned.

【0025】さらに、電離性放射線照射により架橋を施
してもよい。電離性放射線としては、例えば、電子線、
α線、β線、γ線等が挙げられ、その照射量は適宜調整
してよい。
Further, crosslinking may be performed by irradiation with ionizing radiation. Examples of ionizing radiation include electron beams,
α-rays, β-rays, γ-rays and the like can be mentioned, and the irradiation amount may be appropriately adjusted.

【0026】上記発泡助剤としては、特には限定され
ず、従来公知の任意のものが使用されてよく、例えば、
酸化亜鉛、尿素又はその誘導体、ステアリン酸マグネシ
ウム、ステアリン酸亜鉛等が挙げられ、これらは単独で
使用しても2種以上併用してもよい。発泡助剤は上記熱
分解型発泡剤の分解温度、分解速度等を調整するもので
あり、その添加量は、製造条件や発泡剤量又は得られる
連続気泡性架橋発泡体の気泡の大きさ等に応じて適宜調
整される。上記ポリオレフィン系樹脂、架橋剤配合等が
同一であり、また、発泡条件等が同一である場合には、
発泡助剤で架橋反応に対する発泡の相対速度を変化させ
ることにより、得られる連続気泡性架橋発泡体の気泡の
大きさ等を調整するのが好ましい。
The foaming auxiliary is not particularly limited, and any conventionally known one may be used.
Examples thereof include zinc oxide, urea or a derivative thereof, magnesium stearate, and zinc stearate. These may be used alone or in combination of two or more. The foaming aid adjusts the decomposition temperature, decomposition rate, and the like of the pyrolytic foaming agent. The amount of the foaming aid depends on the production conditions, the amount of the foaming agent, the size of the cells of the obtained open-cell crosslinked foam, and the like. It is adjusted appropriately according to. When the polyolefin-based resin, the cross-linking agent compounding and the like are the same, and the foaming conditions and the like are the same,
It is preferable to adjust the size and the like of the cells of the obtained open-celled crosslinked foam by changing the relative speed of the foaming with respect to the crosslinking reaction with a foaming aid.

【0027】また、上記ポリオレフィン系樹脂には、滑
剤、顔料等の従来公知の任意の添加剤を、必要に応じて
適宜添加してもよい。
In the above-mentioned polyolefin-based resin, conventionally known optional additives such as a lubricant and a pigment may be appropriately added as required.

【0028】上記種々の添加剤が添加されたポリオレフ
ィン系樹脂(以下、「樹脂組成物」と記す)を溶融混練
し、所定形状に成形した後、加熱して架橋発泡させる方
法としては、特には限定されず、従来公知の任意の方法
が採用されてよく、例えば、樹脂組成物を、バンバリー
ミキサー、ロール等の従来公知の方法により溶融混練し
た後に、所定形状の凹型又はプレス型に流し込み、数分
間〜数十分間保持することにより成形し、その後さらに
加熱して、架橋及び発泡を略同時進行的に施す方法が挙
げられる。尚、成形の際は、架橋剤の一部が分解する程
度の温度に保持するのが好ましい。
The method of melt-kneading a polyolefin resin to which the above-mentioned various additives are added (hereinafter referred to as “resin composition”), forming the resin into a predetermined shape, and then heating and cross-linking and foaming the resin, particularly includes: There is no limitation, and any conventionally known method may be employed.For example, after the resin composition is melt-kneaded by a conventionally known method such as a Banbury mixer or a roll, it is poured into a concave or press mold having a predetermined shape, and For example, there is a method in which molding is performed by holding for a period of from one minute to several tens of minutes, and thereafter, further heating is performed to substantially simultaneously perform crosslinking and foaming. In the molding, it is preferable to maintain the temperature at such a level that a part of the crosslinking agent is decomposed.

【0029】上記架橋発泡体に機械的変形を加えて気泡
を連通させる方法としては、例えば、架橋発泡体よりも
クリアランスの狭い1対のロール間を通過させる方法が
挙げられる。ロール間のクリアランス、ロールの速比、
架橋発泡体をロールに通す回数等は適宜調整してよい。
尚、上記機械的変形により架橋発泡体の気泡を連通させ
ても、その連通孔は微細であることが多く、透気度及び
平均破膜面積割合が上記範囲内にならないので、後述す
る方法により気泡の連通孔を拡大させる。
As a method of applying mechanical deformation to the crosslinked foam to allow the bubbles to communicate, for example, a method of passing between a pair of rolls having a smaller clearance than that of the crosslinked foam may be mentioned. Clearance between rolls, roll speed ratio,
The number of times the crosslinked foam is passed through the roll may be adjusted as appropriate.
In addition, even if the cells of the cross-linked foam are communicated by the mechanical deformation, the communication holes are often fine, and the air permeability and the average rupture area ratio do not fall within the above ranges. Enlarge the communication holes for bubbles.

【0030】上記気泡の連通孔を拡大させる方法として
は、架橋発泡体を密閉容器に充填、密閉容器内を十分に
脱気した後、密閉容器内に酸素ガス及び可燃ガスを注入
して、酸素ガス及び可燃ガスに点火する方法が挙げられ
る。
As a method of expanding the communication holes for the bubbles, a closed container is filled with a cross-linked foam, and the inside of the closed container is sufficiently degassed. There is a method of igniting gas and combustible gas.

【0031】上記密閉容器としては、架橋発泡体を充填
可能であり、内部を真空の状態にし得るものであれば特
には限定されず、その形状、大きさ等は適宜決定してよ
い。尚、充填する架橋発泡体と密閉容器の内壁との間隙
が大き過ぎると、可燃ガスの燃焼の際、間隙付近の架橋
発泡体がへたり易くなるので、密閉容器は架橋発泡体と
略同一容積、同一形状にするのが好ましい。また、架橋
発泡体を密閉容器と同一容積、同一形状にするために、
架橋発泡体を切断したり、積層したりしてもよい。
The above-mentioned closed container is not particularly limited as long as it can be filled with a cross-linked foam and can make the inside of the container into a vacuum state, and the shape, size and the like may be appropriately determined. If the gap between the cross-linked foam to be filled and the inner wall of the closed container is too large, the cross-linked foam in the vicinity of the gap is easily set when the combustible gas is burned. It is preferable to make them the same shape. Also, in order to make the cross-linked foam the same volume and shape as the closed container,
The crosslinked foam may be cut or laminated.

【0032】上記密閉容器を脱気する方法としては、例
えば、密閉容器に真空ポンプを取り付け、真空ポンプに
より密閉容器内部の空気をひく方法が挙げられる。脱気
が不十分であると、連通孔の拡大が不十分になるので、
架橋発泡体の気泡内が真空になるまで十分に行う。
As a method for degassing the closed container, for example, a method in which a vacuum pump is attached to the closed container and air in the closed container is evacuated by the vacuum pump can be used. If the degassing is insufficient, the expansion of the communication hole will be insufficient,
This is performed sufficiently until the inside of the cells of the crosslinked foam becomes a vacuum.

【0033】上記密閉容器に上記酸素ガス及び可燃ガス
を注入する方法としては、特には限定されず、例えば、
酸素ガス及び可燃ガスを充填した高圧ボンベから、減圧
弁で所望の混合比に見合う分圧に調整して、ガス混合ミ
キサーを通して密閉容器に注入する方法、酸素ガス及び
可燃ガスを充填した高圧ボンベから、減圧弁で所望の混
合比に見合う分圧に調整して、各々別の注入口から注入
する方法等が挙げられる。尚、ガス注入直後は、密閉容
器内のガス分散状態が不均一なので、注入後に数分間放
置しておくのが好ましい。
The method for injecting the oxygen gas and the flammable gas into the closed container is not particularly limited.
From a high-pressure cylinder filled with oxygen gas and flammable gas, adjust the partial pressure to match the desired mixing ratio with a pressure reducing valve and inject it into a closed container through a gas mixing mixer.From a high-pressure cylinder filled with oxygen gas and flammable gas A method in which the pressure is adjusted to a partial pressure suitable for a desired mixing ratio by a pressure reducing valve, and the mixture is injected from different injection ports. Immediately after gas injection, the gas dispersion state in the closed container is not uniform, so it is preferable that the gas is left for several minutes after injection.

【0034】上記可燃ガスとしては、酸素ガスの存在下
で燃焼可能なものであれば特には限定されず、例えば、
水素ガス、メタンガス、プロパンガス等が挙げられる。
The combustible gas is not particularly limited as long as it can burn in the presence of oxygen gas.
Examples include hydrogen gas, methane gas, and propane gas.

【0035】上記酸素ガス及び可燃ガスの混合比は、点
火した際、燃焼可能な範囲であれば特には限定されない
が、完全燃焼比前後であるのが好ましい。例えば、可燃
ガスとして水素ガスを使用する場合では、酸素ガス:水
素ガスが、体積比(圧力比)で1:2前後が好ましい。
The mixing ratio of the above-mentioned oxygen gas and combustible gas is not particularly limited as long as it is in a combustible range when ignited. For example, when hydrogen gas is used as the combustible gas, the ratio of oxygen gas to hydrogen gas is preferably about 1: 2 by volume ratio (pressure ratio).

【0036】上記酸素ガス及び可燃ガスの圧力は、低く
なると、点火した際、気泡の連通孔の拡大が不十分にな
り、得られる連続気泡性架橋発泡体の透気度及び平均破
膜面積割合が上記範囲外になり易く、通気性及び吸水性
が低下し、微生物繁殖用担持体として使用した際、水中
で内部の空気が抜け難く、また、内部に曝気の空気泡を
保持し易く、いずれの場合も水中浮沈流動性が低下し、
高くなると、点火した際、架橋発泡体がへたり易くなる
ので、0.05〜0.3MPaが好ましく、より好まし
くは0.08〜0.15MPaである。
When the pressures of the oxygen gas and the combustible gas are low, when ignited, the expansion of the communication holes of the bubbles becomes insufficient, and the air permeability and the average rupture area ratio of the obtained open-cell cross-linked foam are reduced. Is easily out of the above range, air permeability and water absorption are reduced, when used as a carrier for propagation of microorganisms, it is difficult for air inside to escape in water, and also easy to hold aerated air bubbles inside, In the case of, the floatability in water also decreases,
When the temperature is increased, the crosslinked foam is easily sagged when ignited. Therefore, the pressure is preferably 0.05 to 0.3 MPa, more preferably 0.08 to 0.15 MPa.

【0037】尚、上記酸素ガス及び可燃ガスの圧力が上
記範囲内にあれば、その他の不活性ガスが混在していて
もよい。不活性ガスとしては、例えば、窒素ガス、ヘリ
ウムガス、アルゴンガス、炭酸ガス等が挙げられ、これ
らは単独で使用しても2種以上併用してもよい。
If the pressures of the oxygen gas and the combustible gas are within the above ranges, other inert gases may be mixed. Examples of the inert gas include a nitrogen gas, a helium gas, an argon gas, a carbon dioxide gas and the like, and these may be used alone or in combination of two or more.

【0038】上記酸素ガス及び可燃ガスを密閉容器に注
入した後、点火する方法としては、例えば、予め密閉容
器内にスパークスイッチを設置しておき、スパークさせ
る方法等が挙げられる。
As a method of igniting after injecting the oxygen gas and the combustible gas into the closed container, for example, a method in which a spark switch is previously installed in the closed container and sparking is performed.

【0039】本発明の連続気泡性架橋発泡体は、微生物
繁殖用担持体として好適に使用される。微生物繁殖用担
持体に使用する際、その大きさは、小さくなると、処理
水を排出する際に流出し易くなり、大きくなると、微生
物繁殖用担持体内部で水が移動し難くなり、微生物繁殖
効果が低下するので、1辺が0.5〜2cmの略立方体
状又は略直方体状が好ましい。尚、水中での流動を必要
としない脱臭用の微生物繁殖用担持体においては、この
限りではない。
The open-cell crosslinked foam of the present invention is suitably used as a carrier for propagation of microorganisms. When used as a carrier for propagation of microorganisms, the smaller the size, the easier it is to drain the treated water when discharged, and the larger the size, the more difficult it is for water to move inside the carrier for propagation of microorganisms. Is preferably a substantially cubic shape or a substantially rectangular shape having a side of 0.5 to 2 cm. In the case of a carrier for propagation of microorganisms for deodorization which does not need to flow in water, this is not always the case.

【0040】[0040]

【発明の実施の形態】以下に実施例を掲げて本発明の態
様を更に詳しく説明するが、本発明はこれら実施例のみ
に限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0041】(実施例1〜6、比較例1〜6)表1に示
した所定量の低密度ポリエチレン(密度0.921g/
cm3、メルトインデックス2g/10分)、エチレン
−酢酸ビニル共重合体(酢酸ビニル含量9重量%、密度
0.940g/cm3)、硫酸バリウム、アゾジカルボ
ンアミド、ジクミルパーオキサイド及びステアリン酸亜
鉛を、バンバリーミキサーにより約125℃で溶融混練
した後、縦160mm×横100mm×深さ25mmの
凹部を有する凹型金型に充填して、約140℃で30分
間保持し、所定形状に成形して成形体を得た。成形の
際、ジクミルパーオキサイドの一部は分解したが、アゾ
ジカルボンアミドは分解しなかった。その後、成形体
を、約170℃に加熱された縦500mm×横500m
m×深さ80mmの凹部を有する凹型金型に移し、密閉
してから架橋発泡させ、該凹部と同形状の架橋発泡体を
得た。
(Examples 1 to 6, Comparative Examples 1 to 6) A predetermined amount of low-density polyethylene shown in Table 1 (density 0.921 g /
cm 3 , melt index 2 g / 10 min), ethylene-vinyl acetate copolymer (vinyl acetate content 9% by weight, density 0.940 g / cm 3 ), barium sulfate, azodicarbonamide, dicumyl peroxide and zinc stearate Is melt-kneaded at about 125 ° C. with a Banbury mixer, filled in a concave mold having a recess of 160 mm × 100 mm × 25 mm in depth, held at about 140 ° C. for 30 minutes, and molded into a predetermined shape. A molded article was obtained. During molding, part of dicumyl peroxide was decomposed, but azodicarbonamide was not decomposed. Thereafter, the molded body was heated to about 170 ° C. and was 500 mm long × 500 m wide.
The resultant was transferred to a concave mold having a concave portion having a dimension of mx 80 mm in depth, sealed, and then subjected to crosslinking and foaming to obtain a crosslinked foam having the same shape as the concave portion.

【0042】得られた架橋発泡体を、冷却後にクリアラ
ンスが6mmの2本のロール間に数回通して圧縮し、気
泡を連通させた後、その表面のスキン層を除去し、1辺
が450mmの立方体状の密閉容器に入れて密閉充填し
た後、該密閉容器内を真空ポンプを用いて、架橋発泡体
の気泡内が真空になるまで十分に脱気した。その後、酸
素ガス及び水素ガスが体積比1:2で混合された混合ガ
スを、その圧力が表1に示した所定圧になるまで注入し
て3分間放置した。さらに、該充填容器内でスパークス
イッチを用いてスパークさせて点火し、混合ガスを燃焼
させた後、密閉容器を開放し、連続気泡性架橋発泡体を
得た。得られた連続気泡性架橋発泡体の透気度、断面に
おける平均気泡数、平均破膜面積割合、見掛け密度は表
1に示した通りであり、ゲル分率はいずれも50〜56
%であった。尚、比較例6については、発泡段階で発泡
せず、架橋発泡体は得られなかった。
After cooling, the obtained cross-linked foam was passed through two rolls having a clearance of 6 mm several times to be compressed, and after allowing the bubbles to communicate, the skin layer on the surface was removed. After sealing and filling in a cubic closed container, the inside of the closed container was sufficiently degassed using a vacuum pump until the inside of the cells of the crosslinked foam became a vacuum. Thereafter, a mixed gas in which oxygen gas and hydrogen gas were mixed at a volume ratio of 1: 2 was injected until the pressure reached a predetermined pressure shown in Table 1, and the mixture was allowed to stand for 3 minutes. Further, sparks were ignited by using a spark switch in the filling container, and after burning the mixed gas, the closed container was opened to obtain an open-cell crosslinked foam. The air permeability, the average number of cells in the cross section, the average membrane rupture area ratio, and the apparent density of the obtained open-cell crosslinked foam were as shown in Table 1, and the gel fraction was 50 to 56 in all cases.
%Met. In addition, about the comparative example 6, it did not foam at the foaming stage, and the crosslinked foam was not obtained.

【0043】実施例1〜6及び比較例1〜5で得られた
連続気泡性架橋発泡体と、微生物繁殖用担持体として市
販されている連続気泡性ポリウレタン系樹脂発泡体(比
較例7)について、以下の評価を行い、その結果を表1
に示した。
About the open-celled crosslinked foams obtained in Examples 1 to 6 and Comparative Examples 1 to 5, and the open-celled polyurethane resin foam (comparative example 7) which is commercially available as a carrier for propagation of microorganisms The following evaluation was performed, and the results are shown in Table 1.
It was shown to.

【0044】(耐摩耗性)連続気泡性架橋発泡体及び連
続気泡性ポリウレタン系樹脂発泡体を切断し、一辺が約
1cmの立方体状の試料を10個作成し、10個の試料
の合計乾燥重量W 6(mg)を測定した。次に、縦20
cm×横20cm×深さ30cmのコンクリートスラブ
製の水槽を、水温約20℃の水で略満水にし、その中に
試料10個を投入した。その後、攪拌機で300回転/
分で攪拌し続け、60日経過後に試料を取り出し、その
合計乾燥重量W7(mg)を測定した。得られた測定値
から、以下の式により重量減量率を算出した。 重量減量率(重量%)={(W6−W7)/W6}×100
(Abrasion resistance) Open-cell crosslinked foam and open cell
Cut the open cell polyurethane resin foam, and cut one side
Create 10 1cm cubic specimens and 10 specimens
Dry weight W of 6(Mg) was measured. Next, vertical 20
cm × 20cm × 30cm depth concrete slab
The water tank made of water is almost completely filled with water at a water temperature of about 20 ° C.
Ten samples were charged. After that, 300 rotations /
Minutes, the sample was taken out after 60 days, and
Total dry weight W7(Mg) was measured. Obtained measurements
The weight loss rate was calculated from the following equation. Weight loss rate (% by weight) = {(W6-W7) / W6} × 100

【0045】(水中浮沈流動性)連続気泡性架橋発泡体
及び連続気泡性ポリウレタン系樹脂発泡体を切断し、一
辺が約1cmの立方体状の試料を400個作成した。次
に、縦20cm×横20cm×深さ30cmのコンクリ
ートスラブ製の水槽を、水温約20℃のグルコース水溶
液(グルコース濃度約1mg/cm3)で略満水にし、
その中に試料400個及び少量の微生物(活性汚泥)を
投入した。その後、水槽底面より1500cm3/分で
曝気し続け、3日経過後に、試料の水中浮沈流動状況調
査として水面を目視で観察し、以下の通り評価した。 ◎;水面に浮いている試料は全くなかった(浮上率0
%) ○;水面に浮いている試料が1〜40個であった(浮上
率10%以下) △;水面に浮いている試料が41〜100個であった
(浮上率10超〜25%以下) ×;水面に浮いている試料が101個以上あった(浮上
率25%超)
(Floating and sinking and flowing in water) The open-celled crosslinked foam and the open-celled polyurethane resin foam were cut to prepare 400 cubic samples each having a side of about 1 cm. Next, a concrete slab water tank having a length of 20 cm, a width of 20 cm, and a depth of 30 cm is almost completely filled with a glucose aqueous solution (glucose concentration of about 1 mg / cm 3 ) at a water temperature of about 20 ° C.
400 samples and a small amount of microorganisms (activated sludge) were put therein. Thereafter, aeration at 1500 cm 3 / min was continued from the bottom of the water tank, and after 3 days, the water surface was visually observed as an investigation of the state of floating and sinking and flowing of the sample in water, and evaluated as follows. A: There was no sample floating on the water surface (flying rate 0
%) ○: 1 to 40 samples floating on the water surface (floating rate 10% or less) Δ: 41 to 100 samples floating on the water surface (floating rate 10 to 25% or less) ×: There were 101 or more samples floating on the water surface (floating rate was more than 25%)

【0046】(微生物付着性)連続気泡性架橋発泡体及
び連続気泡性ポリウレタン系樹脂発泡体を、各々一辺が
約1cmの立方体状に切断して10個の試料を作成した
後、該試料10個を網状袋に入れ、一般の曝気・好気型
の生活排水処理槽に浸漬し、14日経過後に網状袋を取
り出した。次に、網状袋から10個の試料を取り出し、
取り出した10個の試料を蒸留水80cm3中に入れ、
ピンセットで試料を数回絞り、試料に付着した微生物を
剥離した。さらに、別の蒸留水80cm3中に入れ、前
記と同様にして試料を絞り、試料に付着した微生物を剥
離した。その後、さらに別の蒸留水80cm3中に入
れ、前記と同様にして試料を絞り、試料に付着した微生
物を剥離した後、超音波振動を与え、微生物を試料から
略完全に剥離した。微生物が剥離分散した蒸留水(80
cm3×3)を一つにまとめ(以下、「分散液」と記
す)、該分散液の濃度を光線透過により測定し、予め検
量しておいた濁度と微生物分散濃度との関係から、分散
液の微生物濃度を求め、分散液中の微生物量(試料10
個に付着していた微生物量)を算出し、さらに、以下の
式により微生物付着割合を算出し、表1に示した。 微生物付着割合(mg/cm3)=分散液中の微生物量
(mg)/試料10個の体積(cm3
(Microbial Adhesion) The open-celled cross-linked foam and the open-celled polyurethane resin foam were cut into cubes each having a side of about 1 cm to form 10 samples. Was put in a mesh bag, immersed in a general aeration / aerobic household wastewater treatment tank, and the mesh bag was taken out after 14 days. Next, take out ten samples from the mesh bag,
Put the 10 samples taken out into 80 cm 3 of distilled water,
The sample was squeezed several times with tweezers to remove the microorganisms attached to the sample. Further, the sample was placed in another 80 cm 3 of distilled water, the sample was squeezed in the same manner as described above, and the microorganisms attached to the sample were separated. Thereafter, the sample was further placed in another 80 cm 3 of distilled water, the sample was squeezed in the same manner as described above, and the microorganisms attached to the sample were peeled off. Then, ultrasonic vibration was applied to substantially completely remove the microorganisms from the sample. Distilled water (80
cm 3 × 3) (hereinafter referred to as “dispersion liquid”), the concentration of the dispersion liquid was measured by light transmission, and from the relationship between the previously measured turbidity and the microorganism dispersion concentration, The concentration of microorganisms in the dispersion was determined, and the amount of microorganisms in the dispersion (sample 10
The amount of microorganisms adhering to the individual) was calculated, and the ratio of adhered microorganisms was further calculated by the following equation. Microorganism attachment ratio (mg / cm 3 ) = microorganism amount (mg) in dispersion / volume of 10 samples (cm 3 )

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【発明の効果】本発明の連続気泡性ポリオレフィン系樹
脂架橋発泡体は、ポリオレフィン系樹脂由来の優れた耐
摩耗性を有しており、また、連続気泡率が高いだけでな
く、通気性及び吸水性に優れ、水中に投入した際に内部
の空気が抜け易いとともに、曝気などの空気泡を内部に
長期間保持することがなく、水中浮沈流動性に優れてお
り、さらに、目詰まりし難く、内部の水が移動変換し易
く、常に酸素を含んだ水を内部に供給することが可能な
ので、微生物が付着、繁殖し易く、特に微生物繁殖用担
持体として好適に使用することができる。また、微生物
繁殖用担持体以外にも、通気性及び吸水性が要求される
用途、例えば、各種フィルター、マット類等にも好適に
使用することができる。
The open-celled polyolefin-based resin crosslinked foam of the present invention has excellent abrasion resistance derived from the polyolefin-based resin, and has not only a high open-cell rate but also air permeability and water absorption. It is easy to escape air when put into water, and does not hold air bubbles such as aeration inside for a long time, it is excellent in floating and sinking in water, and it is hard to clog, Since the water inside is easily transferred and converted, and water containing oxygen can always be supplied to the inside, it is easy for microorganisms to adhere and propagate, and it can be suitably used particularly as a carrier for propagation of microorganisms. In addition to the carrier for propagation of microorganisms, it can be suitably used for applications requiring air permeability and water absorption, such as various filters and mats.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4B029 AA21 BB01 CC02 CC10 4D003 AA12 EA01 EA19 EA30 EA38 4F074 AA16 AA17 AA18 AA19 AA20 AA21 AA22 AA23 AA24 AA25 AA26 AC20 AC26 AC30 AC32 AC36 AD08 AG01 BA13 BA14 BA16 BA17 BA18 BA19 BB02 BB22 BB25 CA23 CC04Y CC06Y CD01 DA10 DA13 DA59  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4B029 AA21 BB01 CC02 CC10 4D003 AA12 EA01 EA19 EA30 EA38 4F074 AA16 AA17 AA18 AA19 AA20 AA21 AA22 AA23 AA24 AA25 AA26 AC20 AC26 AC30 AC32 AC36 BA18 BA18 BA13 BA18 BB25 CA23 CC04Y CC06Y CD01 DA10 DA13 DA59

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 面積314mm2、厚さ10mmの部分
を、5.56Nの空気圧を厚さ方向にかけた際に50c
3の空気が透過する時間が10秒以下であり、かつ、
断面における、長さ25mmの直線上にかかる平均気泡
数が6〜50個であるとともに、断面での平均破膜面積
割合が20〜80%であることを特徴とする、連続気泡
性ポリオレフィン系樹脂架橋発泡体。
1. A part having an area of 314 mm 2 and a thickness of 10 mm is cut by 50 c when an air pressure of 5.56 N is applied in the thickness direction.
m 3 air permeation time is 10 seconds or less, and
The open-cell polyolefin-based resin characterized in that the average number of cells on a straight line having a length of 25 mm in the cross section is 6 to 50, and the average film-breaking area ratio in the cross section is 20 to 80%. Crosslinked foam.
【請求項2】 連続気泡性ポリオレフィン系樹脂架橋発
泡体が、ポリオレフィン系樹脂100重量部及び無機充
填剤10〜80重量部からなることを特徴とする、請求
項1に記載の連続気泡性ポリオレフィン系樹脂架橋発泡
体。
2. The open-celled polyolefin-based resin according to claim 1, wherein the open-celled polyolefin-based resin cross-linked foam comprises 100 parts by weight of a polyolefin-based resin and 10 to 80 parts by weight of an inorganic filler. Crosslinked resin foam.
【請求項3】 連続気泡性ポリオレフィン系樹脂架橋発
泡体の断面における、長さ25mmの直線上にかかる平
均気泡数が15〜25個であり、かつ、断面での平均破
膜面積割合が30〜60%であることを特徴とする、請
求項1又は2に記載の連続気泡性ポリオレフィン系樹脂
架橋発泡体。
3. The cross-section of the open-celled polyolefin-based resin cross-linked foam has an average number of cells on a straight line having a length of 25 mm of 15 to 25, and an average film rupture area ratio of 30 to 40 on the cross section. The open-celled crosslinked polyolefin-based resin foam according to claim 1 or 2, wherein the crosslinked foam is 60%.
【請求項4】 請求項1〜3のいずれか1項に記載の連
続気泡性ポリオレフィン系樹脂架橋発泡体からなること
を特徴とする、微生物繁殖用担持体。
4. A carrier for propagation of microorganisms, comprising a cross-linked foam of the open-celled polyolefin-based resin according to any one of claims 1 to 3.
JP2000206933A 2000-07-07 2000-07-07 Open cell polyolefin resin cross-linked foam and carrier for microbial propagation Expired - Fee Related JP3609696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000206933A JP3609696B2 (en) 2000-07-07 2000-07-07 Open cell polyolefin resin cross-linked foam and carrier for microbial propagation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000206933A JP3609696B2 (en) 2000-07-07 2000-07-07 Open cell polyolefin resin cross-linked foam and carrier for microbial propagation

Publications (2)

Publication Number Publication Date
JP2002020532A true JP2002020532A (en) 2002-01-23
JP3609696B2 JP3609696B2 (en) 2005-01-12

Family

ID=18703774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206933A Expired - Fee Related JP3609696B2 (en) 2000-07-07 2000-07-07 Open cell polyolefin resin cross-linked foam and carrier for microbial propagation

Country Status (1)

Country Link
JP (1) JP3609696B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239995A (en) * 2003-03-25 2005-09-08 Sekisui Chem Co Ltd Thermoplastic resin foam sheet and method for producing thermoplastic resin foam sheet
JP2006219541A (en) * 2005-02-08 2006-08-24 Daicel Novafoam Ltd Resin composition for foam and foam using the same
JP2006263489A (en) * 2005-03-22 2006-10-05 Inoac Corp Microorganism carrier for water treatment
JP2011074127A (en) * 2009-09-29 2011-04-14 Sekisui Plastics Co Ltd Polypropylene resin foam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239995A (en) * 2003-03-25 2005-09-08 Sekisui Chem Co Ltd Thermoplastic resin foam sheet and method for producing thermoplastic resin foam sheet
JP2006219541A (en) * 2005-02-08 2006-08-24 Daicel Novafoam Ltd Resin composition for foam and foam using the same
JP2006263489A (en) * 2005-03-22 2006-10-05 Inoac Corp Microorganism carrier for water treatment
JP4722518B2 (en) * 2005-03-22 2011-07-13 株式会社イノアックコーポレーション Microbial carrier for water treatment and production method thereof
JP2011074127A (en) * 2009-09-29 2011-04-14 Sekisui Plastics Co Ltd Polypropylene resin foam

Also Published As

Publication number Publication date
JP3609696B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
JP4696074B2 (en) Method for producing polyolefin resin cross-linked foam sheet and polyolefin resin cross-linked foam sheet
TR200003492T2 (en) Polypropylene foam sheet that can be thermoformed.
JPH10257885A (en) Microorganism immobilized carrier for fluidized bed
JP2002020532A (en) Cross-linked foamed material of continuously foaming polyolefin-based resin and carrier material for propagating microorganism
JP4722518B2 (en) Microbial carrier for water treatment and production method thereof
CN113166459A (en) Porous sound-absorbing material, method for producing same, and sound-absorbing method
JP5005173B2 (en) Resin composition for foam and foam using the same
JP2005350571A (en) Thermoplastic resin foam sheet and method for producing thermoplastic resin foam sheet
JP4283453B2 (en) Microorganism propagation carrier
JP4024706B2 (en) Hydrophilic polyolefin resin foam
JP2005239995A (en) Thermoplastic resin foam sheet and method for producing thermoplastic resin foam sheet
JP2000007817A (en) Open-cell foam of polyolefin-based resin
JP2001096289A (en) Carrier for microorganism immobilization and process and equipment for purifying sewage
US6429234B2 (en) Foam, an interior material made of the foam, a molded article destined for an interior vehicular material, and production methods thereof
JP2012110843A (en) Method and apparatus for anaerobic treatment
JP3594840B2 (en) Microporous soundproofing material
JP2002223751A (en) Microorganism-immobilized carrier
JPH09111899A (en) Shaped seal member, and manufacture thereof
JP2002030169A (en) Porous film
CN116864903B (en) Battery pack and semi-open type polyolefin resin foam sheet
JP2001172422A (en) Method for producing polyolefin-based resin crosslinking foam having open cell
JP2004121940A (en) Phosphorus adsorbing filter
JPH10118679A (en) Filling filtration material and contaminated water cleaning method using the same
CN115678155A (en) Polyolefin elastomer microcellular foam material and preparation method thereof
JP2002079288A (en) Open-cell cellular microorganism carrier

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041014

R151 Written notification of patent or utility model registration

Ref document number: 3609696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees