JP2002020150A - Production process for antibacterial concrete and cement composition therefor - Google Patents

Production process for antibacterial concrete and cement composition therefor

Info

Publication number
JP2002020150A
JP2002020150A JP2000195214A JP2000195214A JP2002020150A JP 2002020150 A JP2002020150 A JP 2002020150A JP 2000195214 A JP2000195214 A JP 2000195214A JP 2000195214 A JP2000195214 A JP 2000195214A JP 2002020150 A JP2002020150 A JP 2002020150A
Authority
JP
Japan
Prior art keywords
antibacterial
component
waste containing
cement
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000195214A
Other languages
Japanese (ja)
Inventor
Akio Henmi
見 彰 男 逸
Etsuro Sakagami
上 越 朗 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000195214A priority Critical patent/JP2002020150A/en
Publication of JP2002020150A publication Critical patent/JP2002020150A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/023Chemical treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/67Biocides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide a concrete structure having antibacterial activity by preparing an antibacterial agent for inhibiting the growth of sulfur-oxidizing bacteria and/or sulfuric acid-producing bacteria, both of which bacteria are liable to cause deterioration of the concrete structure, while utilizing waste containing a silicic acid component and an aluminum component, as an effective resource, and mixing the prepared antibacterial agent with cement. SOLUTION: This antibacterial concrete production process comprises: mixing waste containing both a silicic acid component and an aluminum component or waste containing any one of such a silicic acid component and an aluminum component with waste containing at least one of such a silicic acid component and an aluminum component, to obtain a waste mixture having a desired Si/Al atomic ratio (or SiO2/Al2O3 molar ratio); further mixing the waste mixture with an alkali aqueous medium; reacting them with each other in a pressure reaction vessel while heating the mixture and/or applying a pressure to the mixture, to obtain a reaction product; depositing an antibacterial cation and/or an antibacterial organic compound on the reaction product; and mixing the resulting material with cement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、珪酸成分およびア
ルミニウム成分に富む一般ゴミの焼却灰、石炭焼却灰、
活性汚泥焼却灰等の産業廃棄物、アルミニウム成分を含
有する産業廃液、珪酸成分を含有する火山噴出物、禾本
科植物の籾殻や植物体等の自然廃棄物を利用し、アルカ
リ条件下で加熱又は加圧して得られた反応生成物に、抗
菌性物質を担持させ、更に、セメントに配合することに
より抗菌性に優れたコンクリートを製造する方法および
そのセメント組成物に関するものである。
TECHNICAL FIELD The present invention relates to an incineration ash for general garbage and a coal incineration ash rich in a silicate component and an aluminum component.
Utilize industrial waste such as activated sludge incineration ash, industrial waste liquid containing aluminum component, volcanic eruption product containing silicic acid component, and natural waste such as rice husks and plants of grasses under alkaline conditions. The present invention relates to a method for producing concrete having excellent antibacterial properties by allowing an antibacterial substance to be supported on a reaction product obtained by pressurization and further blending it with cement, and a cement composition thereof.

【0002】[0002]

【従来の技術】従来より、コンクリート構築物に抗菌性
を持たせる方法としては、コンクリートの塗装剤に抗菌
物質を配合し、コンクリート表面に塗膜するすることに
より、コンクリート外壁を抗菌化する方法が取られてき
たが、特開平10−139609には、現在使用してい
るシリカ、酸化物セラミック、非酸化物セラミック、ゼ
オライト、ケイ素、フェライトに抗菌金属を再加熱処理
により表面に付着させたものを抗菌剤としてセメント、
コンクリートに混入し抗菌セメント、抗菌コンクリート
とする方法が開示されている。
2. Description of the Related Art Conventionally, as a method of imparting antibacterial properties to a concrete structure, a method has been used in which an antibacterial substance is added to a concrete coating agent and applied to the concrete surface to form an antibacterial property on the concrete outer wall. Japanese Unexamined Patent Publication No. Hei 10-139609 discloses that a currently used silica, oxide ceramic, non-oxide ceramic, zeolite, silicon, ferrite and an antibacterial metal adhered to the surface by a reheating treatment are used for antibacterial treatment. Cement,
There is disclosed a method of mixing antibacterial cement and antibacterial concrete into concrete.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の抗菌性
物質を含む塗膜でコンクリート構築物の表面を抗菌化す
る方法では、コンクリート構築物の内部で繁殖しコンク
リート組成を破壊する硫黄酸化菌や硫酸生成菌等のコン
クリート組成を破壊する菌の生育を抑制することが出来
ず、また、上記のセラミックに抗菌金属を800℃前後
で再加熱処理し、表面に抗菌金属を付着させたものを抗
菌剤としてセメント、コンクリートに混入して抗菌セメ
ント、抗菌コンクリートとする場合には、抗菌金属イオ
ンの溶出力が安定化しなかった。
However, in the conventional method of making the surface of a concrete structure antibacterial with a coating film containing an antibacterial substance, sulfur oxidizing bacteria or sulfuric acid which grows inside the concrete structure and destroys the concrete composition are produced. The growth of bacteria that destroy the concrete composition such as bacteria cannot be suppressed, and the above ceramics are reheated with an antibacterial metal at about 800 ° C and the antibacterial metal is attached to the surface as an antibacterial agent. When antibacterial cement and antibacterial concrete were mixed into cement and concrete, the dissolution power of antibacterial metal ions was not stabilized.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する請求
項1の発明は、珪酸成分とアルミニウム成分とを含有す
る廃棄物と、珪酸成分又はアルミニウム成分の少なくと
も一方を含有する廃棄物を所望の珪礬比で混合したもの
を、アルカリ水性媒質と混合し、耐圧反応容器内で超音
波発振の付加をしながら加熱又は加圧して反応させ、得
られた反応生成物に、抗菌性陽イオン又は抗菌性有機物
の一方あるいは両方を担持させたものをセメントに配合
し、コンクリートを抗菌化する。
According to the first aspect of the present invention, a waste containing a silicate component and an aluminum component and a waste containing at least one of a silicate component and an aluminum component are provided. The mixture obtained by mixing with the alumina ratio was mixed with an alkaline aqueous medium, and reacted by heating or pressurizing while adding ultrasonic oscillation in a pressure-resistant reaction vessel.The resulting reaction product was treated with an antibacterial cation or A material carrying one or both of the antibacterial organic substances is mixed with cement to make the concrete antibacterial.

【0005】請求項2の発明は、珪酸成分又はアルミニ
ウム成分のうちのどちらか1方を含む廃棄物と、珪酸成
分又はアルミニウム成分の1方あるいは両方を含有する
廃棄物を所望の珪礬比で混合したものを、アルカリ水性
媒質と混合し、耐圧反応容器内で超音波発振の付加をし
ながら加熱又は加圧して反応させ、得られた反応生成物
に抗菌性陽イオン又は抗菌性有機物の一方あるいは両方
を担持させたものをセメントに配合し、コンクリートを
抗菌化する。
[0005] A second aspect of the present invention is to provide a method in which a waste containing either one of a silicate component and an aluminum component and a waste containing one or both of a silicate component and an aluminum component are mixed at a desired silicate ratio. The mixture is mixed with an alkaline aqueous medium, and reacted by heating or pressurizing while adding ultrasonic oscillation in a pressure-resistant reaction vessel, and one of an antibacterial cation and an antibacterial organic substance is added to the obtained reaction product. Alternatively, a material carrying both of them is mixed with cement to make the concrete antibacterial.

【0006】請求項3の発明は、珪酸成分又はアルミニ
ウム成分のうちのどちらか1方を含む廃棄物と、又は珪
酸成分とアルミニウム成分とを含有する廃棄物と、珪酸
成分又はアルミニウム成分の1方あるいは両方を含有す
る廃棄物を所望の珪礬比で混合したものを、アルカリ水
性媒質と混合し、耐圧反応容器内で超音波発振の付加を
しながら加熱又は加圧して反応させ、得られた反応生成
物に、抗菌性陽イオン又は抗菌性有機物の一方あるいは
両方を担持させたものをセメントに配合した抗菌性のセ
メント組成物。
The invention according to claim 3 provides a waste containing either a silicate component or an aluminum component, a waste containing a silicate component and an aluminum component, and a waste containing a silicate component or an aluminum component. Alternatively, a mixture of wastes containing both at a desired silicate ratio, mixed with an alkaline aqueous medium, and reacted by heating or pressurizing while adding ultrasonic oscillation in a pressure-resistant reaction vessel, was obtained. An antibacterial cement composition in which a reaction product carrying one or both of an antibacterial cation and an antibacterial organic substance is added to a cement.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0008】本発明に述べる珪酸成分とアルミニウム成
分とを含有する廃棄物とは、珪酸およびアルミニウムを
非結晶性の珪酸アルミニウム塩として含む自然廃棄物ま
たは産業廃棄物の焼却灰、可燃性廃棄物の焼却灰ことを
いう。前記の自然廃棄物とは、降下火山噴出物のことで
あり、火山の活動により噴出した後、降下してきた物質
であって、軽石、火山灰などをさすが、本発明の実施に
あたっては、溶融状態の溶岩が空気中で急冷したため
に、結晶化が進む前に固結してできた粒子の小さな非結
晶状態の火山ガラスを用いるのが好ましい。前記の産業
廃棄物の焼却灰としては、石炭焼却灰、製紙スラッジ焼
却灰、活性汚泥廃棄物焼却灰、禾本科植物焼却灰等を例
示することができる。
The waste containing a silicic acid component and an aluminum component as described in the present invention includes natural and industrial waste incinerated ash containing silicate and aluminum as amorphous aluminum silicate salt, and combustible waste. It means incineration ash. The above-mentioned natural waste refers to a volcanic eruption product, which is a substance that has descended after being erupted by volcanic activity, and refers to pumice, volcanic ash, etc. Since the lava is rapidly cooled in the air, it is preferable to use a non-crystalline volcanic glass having small particles formed before the crystallization proceeds. Examples of the incineration ash of the industrial waste include coal incineration ash, paper sludge incineration ash, activated sludge waste incineration ash, and grass incineration ash.

【0009】前記の可燃性廃棄物の焼却灰とは、人間の
各種活動によって生じた廃棄物のうち、可燃性のものを
いい、ゴミ固形化燃料焼却灰、都市ゴミの焼却灰、ゴミ
固形化燃料を熱源として燃焼させた場合の焼却灰および
石炭灰などを例示することができる。産業廃棄物として
は、土木・建築工事などにともなって生ずる木材、紙な
どの可燃性の廃棄物などを例示することができる。
The above-mentioned incinerated ash of combustible waste refers to combustible ash among wastes generated by various human activities, such as solid fuel incineration ash, incineration ash of city garbage, solidification of garbage. Examples include incinerated ash and coal ash when the fuel is burned as a heat source. Examples of the industrial waste include flammable waste such as wood and paper generated during civil engineering and construction work.

【0010】本発明にのべる珪酸成分を含有する廃棄物
とは、ケイ酸塩ガラスやソーダガラスのカレット、珪藻
土、禾本科植物のアルカリ抽出液等の珪酸成分を高含有
する廃棄物のことをいう。
The waste containing a silicate component according to the present invention is a waste containing a high content of a silicate component such as cullet of silicate glass or soda glass, diatomaceous earth, or an alkaline extract of a botanical plant. .

【0011】前記珪酸塩ガラスのカレットとしては、ケ
イ酸ガラス、ソーダ石灰ガラス、カリ石灰ガラス、鉛ガ
ラス、バリウムガラス、ホウケイ酸ガラスなどのカレッ
トを例示することができる。また、ソーダ石灰ガラスと
しては、板ガラス、ビンガラス、クラウンガラスなどを
例示することができる。従って、本発明では板ガラス、
ビンガラス、食卓用品ガラス、家庭用品ガラス、電気用
ガラス、照明用ガラス、理化学用ガラス、医療用ガラ
ス、光学ガラス、などを使用したあとの廃棄物であるカ
レットを使用することが可能である。本発明を実施する
ためには、粒子の小さい粉末状のガラスが好ましい。
Examples of the cullet of the silicate glass include cullets such as silicate glass, soda-lime glass, potassium lime glass, lead glass, barium glass, and borosilicate glass. Examples of soda-lime glass include plate glass, bottle glass, and crown glass. Therefore, in the present invention, sheet glass,
It is possible to use cullet, which is waste after using bottle glass, tableware glass, household glass, electric glass, lighting glass, physics and chemistry glass, medical glass, optical glass, and the like. In order to carry out the present invention, powdery glass having small particles is preferable.

【0012】前記の珪藻土は、そのほとんどが単細胞藻
類である珪藻の遺骸、すなわち珪藻殻からできている珪
質の堆積物で、粘土、火山灰、有機物などが混じってい
るのが普通であって、その本質は含水非晶質二酸化珪素
である。珪藻土の用途は広く、吸着材、ろ過助材、保温
材、保冷材、充填材、研磨材などに利用されており、用
途によっては、珪藻土原土を粉砕し、目的の用途に適す
るように精製するのが、一般的である。しかし、本発明
にあっては、各種用途に使用されている珪藻土を始めと
し、使用した後の廃珪藻土をも使用することができる。
[0012] The diatomaceous earth is a diatom remains, most of which are unicellular algae, that is, siliceous sediments made of diatom shells, which are usually mixed with clay, volcanic ash, and organic matter. Its essence is hydrous amorphous silicon dioxide. Diatomaceous earth is used for a wide range of applications, such as adsorbents, filter aids, heat insulators, cold insulators, fillers, abrasives, etc.Depending on the application, diatomaceous earth is crushed and refined to suit the intended use It is common to do. However, in the present invention, diatomaceous earth used for various purposes and waste diatomaceous earth after use can be used.

【0013】前記禾本科植物のアルカリ抽出液とは、イ
ネ,麦,トウモロコシ,粟,稗,ススキ,チガヤ等の禾
本科植物の種子殻又は植物体を粉砕したものを、0.5
〜4Nの強アルカリ水溶液と混合し、大気圧下で50〜
100℃に加熱することにより、前記種子殻又は植物体
より、非晶質シリカを水溶性珪酸塩として溶出させたも
のである。
[0013] The alkaline extract of the above-mentioned hominaceous plants is a crushed seed shell or plant of a honeygrass plant such as rice, wheat, corn, millet, hirsut, pampas grass, and scotch.
~ 4N mixed with strong alkaline aqueous solution, 50 ~
By heating to 100 ° C., amorphous silica is eluted as a water-soluble silicate from the seed shell or plant.

【0014】本発明にのべるアルミニウム成分を含有す
る廃棄物とは、アルミニウム製品製造業にて、アルミニ
ウム製品製造型枠に付着しているアルミニウム成分をア
ルカリ水溶液で溶解洗浄した廃液やアルマイト製造時の
工程で生じる酸性廃液のことをいう。また、空き缶や廃
アルミニウム等の一般家庭から排出されるアルミニウム
含有廃棄物、アルミニウムを溶かす工程で廃棄物として
出てきたアルミドロスを利用してアルミニウム原料とす
ることもできる。
The waste containing an aluminum component according to the present invention refers to a waste liquid obtained by dissolving and washing an aluminum component adhered to an aluminum product forming frame with an aqueous alkali solution in an aluminum product manufacturing industry or a process for producing alumite. Refers to the acidic waste liquid produced in In addition, aluminum-containing waste such as empty cans and waste aluminum discharged from ordinary households, and aluminum dross that has come out as waste in the process of melting aluminum can be used as an aluminum raw material.

【0015】本発明にのべる反応生成物は、シリカアル
ミノ珪酸塩や反応中間体及び不純物からなる様々な種類
の化合物の混合体であり、選択する出発物質の未燃焼炭
素含有量の相違により、未燃焼炭素由来の活性炭類似物
質を含有する灰色の陽イオン交換物質混合体である場合
と炭素分を含有しない純白色の陽イオン交換物質混合体
である場合が存在する。
The reaction product according to the present invention is a mixture of various kinds of compounds consisting of silica aluminosilicates, reaction intermediates and impurities, which are not mixed due to the difference in unburned carbon content of selected starting materials. There are cases where the mixture is a gray cation exchange material mixture containing activated carbon analogs derived from combustion carbon, and cases where it is a pure white cation exchange material mixture containing no carbon content.

【0016】また、前記の反応生成物は、珪礬比(ニ酸
化ケイ素とアルミナのモル比またはケイ素とアルミニウ
ムの原子比)によって生成する陽イオン交換物質の組成
が異なり、未燃焼炭素の含有量によって多少の違いはあ
るが、珪礬比が約1.0の場合にはヒドロキシソーダラ
イトを多く含む陽イオン交換物質混合体となり、珪礬比
が1.5〜2.0になるとフィリップサイトを多く含む
陽イオン交換物質混合体となる。
The reaction product has a composition of a cation exchange substance which varies depending on an alum ratio (a molar ratio of silicon dioxide to alumina or an atomic ratio of silicon to aluminum). Although there are some differences depending on the cation exchange material mixture containing a large amount of hydroxysodalite when the silicate ratio is about 1.0, and when the silicate ratio is 1.5 to 2.0, the philipsite is removed. It becomes a cation exchange material mixture containing much.

【0017】さらに珪礬比が2.0を越えると、ホージ
ャサイトを多く含む陽イオン交換物質混合体となる。ま
た、珪礬比が3くらいではゼオライトXを多く含む陽イ
オン交換物質混合体を、更に珪礬比が4.0くらいにな
るとゼオライトYを多く含む陽イオン交換物質混合体を
それぞれ生成する。
Further, when the sulphate ratio exceeds 2.0, a cation exchange substance mixture containing a large amount of faujasite is obtained. A cation exchange substance mixture containing a large amount of zeolite X is produced when the uranium ratio is about 3, and a cation exchange substance mixture containing a large amount of zeolite Y is produced when the uranium ratio is about 4.0.

【0018】本発明にのべるアルカリ水性媒質とは、ア
ルカリ金属の水酸化物であって水に溶解する物質、例え
ば水酸化ナトリウム、水酸化カリウム、水酸化カルシウ
ム、水酸化バリウム、水酸化リチウムなどの水溶液をい
い、本発明においては、水酸化ナトリウム水溶液または
水酸化カリウム水溶液を用いるのが特に好ましい。
The alkaline aqueous medium according to the present invention is a hydroxide of an alkali metal which is soluble in water, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, lithium hydroxide and the like. It refers to an aqueous solution, and in the present invention, it is particularly preferable to use an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide.

【0019】陽イオン交換物質混合体を生成するに際し
ては、反応時のアルカリ濃度を0.5乃至4.5Nの範
囲で行うことが可能である。
In producing the cation exchange material mixture, it is possible to carry out the reaction at an alkali concentration in the range of 0.5 to 4.5 N.

【0020】反応時の加熱条件としては80℃以上であ
れば本発明を実施する上で差し支えないが、反応時間を
短縮するために耐圧反応容器を使用して80〜230℃
に加熱するか、飽和蒸気圧を用いて加圧し発熱させるも
ので、この時、耐圧反応容器内の圧力を2〜30kg/
cm、すなわち120〜230℃に保つのが反応を円
滑に行う上で好ましく、陽イオン交換物質混合体を得る
反応が迅速に行われる。
As long as the heating conditions during the reaction are 80 ° C. or more, there is no problem in carrying out the present invention. However, in order to shorten the reaction time, a pressure-resistant reaction vessel is used at 80 to 230 ° C.
Or pressurized using a saturated vapor pressure to generate heat. At this time, the pressure in the pressure-resistant reaction vessel is 2 to 30 kg /
cm 2 , that is, 120 to 230 ° C. is preferable for smooth reaction, and the reaction for obtaining the cation exchange material mixture is rapidly performed.

【0021】また、耐圧容器を使用して陽イオン交換物
質混合体を得る反応を行う際には、耐圧容器に18乃至
500kHzの超音波振動の負荷を行うと反応が促進さ
れ、また、陽イオン交換物質混合体の粒度が細かく、均
質のものがえられ、かつ粒子の内部まで陽イオン交換物
質が生成するので本願発明ではこの方法を採用してい
る。 使用機器:1L容の攪拌き付きオートクレーブ(東洋高圧
株式会社製) :超音波発振機(株式会社日本精機製作所製MODEL US−
600T)
When a reaction for obtaining a cation exchange substance mixture is performed using a pressure-resistant container, the reaction is accelerated by applying an ultrasonic vibration of 18 to 500 kHz to the pressure-resistant container. This method is employed in the present invention because the exchange substance mixture has a fine particle size and is homogeneous, and a cation exchange substance is generated inside the particles. Equipment used: 1 L autoclave with stirring (manufactured by Toyo Koatsu Co., Ltd.): Ultrasonic oscillator (MODEL US- manufactured by Nippon Seiki Seisakusho Co.
600T)

【0022】本発明にのべる抗菌性陽イオンとは、銀、
銅、亜鉛のイオンことをいう。抗菌性金属にはこの他に
もスズ、カドミウム、ニッケル等の抗菌性を有する金属
が存在するが、安全性の点から使用しないほうが好まし
い。また抗菌性有機物としては、ヒバオイル、カンゾウ
エキスなどの植物抽出物、脂肪族第4級アンモニウム
塩、塩化ベンザルコニウム等が挙げられる。本願発明に
おいては、塩化ベンザルコニウムを使用したが、他の抗
菌性有機物を使用することも可能である。
Antibacterial cations according to the present invention include silver,
Refers to copper and zinc ions. Antibacterial metals include other metals having antibacterial properties such as tin, cadmium and nickel, but it is preferable not to use them from the viewpoint of safety. Examples of the antibacterial organic substances include plant extracts such as Hiba oil and licorice extract, aliphatic quaternary ammonium salts, and benzalkonium chloride. In the present invention, benzalkonium chloride is used, but other antibacterial organic substances can be used.

【0023】前記陽イオン交換物質混合体に抗菌金属イ
オン又は抗菌性有機物を担持させる際には、抗菌性金属
イオンのみを担持させても良いが、抗菌性の異なる有機
物と併用して陽イオン交換物質混合体に担持すると、抗
菌スペクトルの広い抗菌性を備えた資材を得ることがで
きる。また、異種の抗菌金属を組み合わせて担持するこ
とも可能であり、更に、これに抗菌性有機物を担持させ
ることも可能である。
When the antibacterial metal ion or the antibacterial organic substance is supported on the cation exchange substance mixture, only the antibacterial metal ion may be supported. When loaded on a substance mixture, a material having an antibacterial property having a broad antibacterial spectrum can be obtained. It is also possible to carry a combination of different kinds of antibacterial metals, and further to carry an antibacterial organic substance.

【0024】前記陽イオン交換物質混合体に抗菌金属イ
オンを担持させる調製法は、陽イオン交換物質混合体に
濃度0.2Nの硫酸銅や硝酸銀水溶液あるいは塩化亜鉛
水溶液を加え、往復震とう器でシェイクし銅イオン、銀
イオン、亜鉛イオンで充分に飽和処理した後、過剰の無
機塩を水洗除去し、105℃で乾燥させて粉末を得た。
また、抗菌金属を担持したものに更に抗菌性有機物を担
持させる例として、銅を担持させたものに、抗菌性有機
物をさらに担持させたものを別途に準備した。
The preparation method for supporting antibacterial metal ions on the cation exchange substance mixture is as follows: a 0.2 N aqueous solution of copper sulfate, silver nitrate or zinc chloride is added to the cation exchange substance mixture, and the mixture is shaken with a reciprocal shaker. After being shaken and sufficiently saturated with copper ions, silver ions and zinc ions, excess inorganic salts were washed away with water and dried at 105 ° C. to obtain a powder.
In addition, as an example in which an antibacterial organic substance is further supported on a support of an antibacterial metal, a support which further supports an antibacterial organic substance on a support of copper was separately prepared.

【0025】抗菌性物質を担持させた陽イオン交換物質
混合体を配合させるセメントに関しては、特に限定する
ものではないが、本願発明において生成する陽イオン交
換物質混合体には、未燃焼炭素を含有する灰色のもの
と、未燃焼炭素を含有しない純白色のものがあり、特
に、前記純白色の陽イオン交換物質混合体は、白色ポル
トランドセメントに配合させるとセメントの白色が維持
されるので好ましい。
There is no particular limitation on the cement in which the cation exchange material mixture carrying the antibacterial substance is blended, but the cation exchange material mixture produced in the present invention contains unburned carbon. There are two types, a gray one and a pure white one which does not contain unburned carbon. In particular, the pure white cation exchange material mixture is preferable when blended in white Portland cement because the white color of the cement is maintained.

【0026】本願発明の、抗菌性物質を担持させた陽イ
オン交換物質混合体をセメント中に配合する時の割合
は、出発物質の違いにより生成する陽イオン交換物質混
合体に差異があり、また、コンクリート組成によって異
なるので、限定はしない。
The proportion of the cation-exchange substance mixture carrying the antibacterial substance of the present invention when incorporated into the cement differs depending on the starting material and the cation-exchange substance mixture produced differs. However, there is no limitation as it depends on the concrete composition.

【0027】本発明は以上のような構成にてなるもので
あり、実施例を次に示す。
The present invention is configured as described above, and an embodiment will be described below.

【実施例】先ず、本発明の概要を説明する。本願発明
は、珪酸成分とアルミニウム成分とを含有する廃棄物あ
るいは、珪酸成分又はアルミニウム成分のうちのどちら
か1方を含む廃棄物と、珪酸を含む廃棄物又はアルミニ
ウムを含む廃棄物の1方あるいは両方を混合したもの
を、水酸化ナトリウム、水酸化カリウムなどのアルカリ
水性媒質と混合し、耐圧反応容器内で超音波発信の付加
をかけながら加熱または加圧して反応させ、得られた反
応生成物に、抗菌性陽イオン又は抗菌性有機物の一方あ
るいは両方を担持させたものをセメントに配合して抗菌
性コンクリートを製造する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an outline of the present invention will be described. The present invention relates to a waste containing a silicic acid component and an aluminum component, a waste containing either a silicic acid component or an aluminum component, and a waste containing silicic acid or a waste containing aluminum. The mixture of the two is mixed with an alkaline aqueous medium such as sodium hydroxide or potassium hydroxide, and heated or pressurized while applying ultrasonic transmission in a pressure-resistant reaction vessel to cause a reaction. Then, a material carrying one or both of an antibacterial cation and an antibacterial organic substance is mixed with cement to produce an antibacterial concrete.

【0028】前記の抗菌性陽イオン又は抗菌性有機物の
一方あるいは両方を反応生成物に担持させたものをセメ
ントに配合する時の割合は、セメント重量に対して0
%、5%,10%,20%,50%とし、この中に骨材
として砂を入れ(セメントと骨材の比、1対2)、塩分
や異物を含まない清浄な淡水を水セメント比で50%と
して混合し練って固め、直径1cm、高さ5cmの円筒
状コンクリートブロックを作成した。
When one or both of the above-mentioned antibacterial cations and / or antibacterial organic substances are supported on the reaction product, the ratio of the compound to the cement is 0 to the cement weight.
%, 5%, 10%, 20%, and 50%, and put sand as an aggregate in this (ratio of cement to aggregate, 1: 2). And the mixture was kneaded and solidified to prepare a cylindrical concrete block having a diameter of 1 cm and a height of 5 cm.

【0029】コンクリートの抗菌性は、前記コンクリー
トブロックを1ヶ月間養生させたものより切片(半径
0.5cm、厚さ0.5cmのペレット状)を取り、寒
天培地に埋め込み、硫黄酸化菌や硫酸生成菌を接種して
インキュベーターの中で培養し(培養時の温度36℃、
培養期間5日間)、生育阻止帯の大きさを計測すること
によって確認する。
[0029] The antibacterial property of concrete is determined by cutting a piece (pellet having a radius of 0.5 cm and a thickness of 0.5 cm) from the concrete block cured for one month, embedding it in an agar medium, and adding sulfur-oxidizing bacteria or sulfuric acid. The resulting bacteria are inoculated and cultured in an incubator (culture temperature 36 ° C,
It is confirmed by measuring the size of the growth inhibition zone during the culture period of 5 days.

【0030】(実施例1)1リットル容の攪拌機付オー
トクレーブ(東洋高圧株式会社製)に超音波発信機(株
式会社日本精機製作所製、MODEL US−600
T)を設置し、この反応容器に非結晶性の珪酸アルミニ
ウムの含有量が95%であり、珪礬比約2.5のフライ
アッシュ(電源開発株式会社松浦発電所製、フライアッ
シュ協会より入手)20gおよびガラスのカレット粉末
(西日本環境開発協同組合製)5gを混合し、耐圧反応
容器に入れ、その上から4N水酸化ナトリウム水溶液2
00mlを入れ、蓋を閉めた後、600Wで25kHz
の超音波を発振させながら、飽和蒸気により加圧し、内
部の温度が120℃に達するまで加熱した。
Example 1 A 1-liter autoclave with a stirrer (manufactured by Toyo Koatsu Co., Ltd.) was placed in an ultrasonic transmitter (Model US-600 manufactured by Nippon Seiki Seisaku-sho, Ltd.).
T), and fly ash having a non-crystalline aluminum silicate content of 95% in this reaction vessel and an aluminium ratio of about 2.5 (obtained from the Fly Ash Association, manufactured by Matsuura Power Station, Electric Power Development Co., Ltd.) ) 20 g and 5 g of glass cullet powder (manufactured by West Japan Environmental Development Cooperative Association) were mixed and placed in a pressure-resistant reaction vessel.
After putting 00ml and closing the lid, 25kHz at 600W
While oscillating the ultrasonic wave, pressure was applied with saturated steam, and heating was performed until the internal temperature reached 120 ° C.

【0031】この状態を1時間保った後、蒸気を抜いて
大気圧に戻し、内部の反応生成物を取り出した。この反
応生成物を水洗して風乾後、銅イオン,銀イオン,亜鉛
イオン,銅イオンと塩化ベンザルコニウムとの組み合わ
せでそれぞれ担持させ、抗菌剤を調製した。
After maintaining this state for 1 hour, the steam was released and the pressure was returned to atmospheric pressure, and the internal reaction product was taken out. This reaction product was washed with water and air-dried, and then supported with copper ion, silver ion, zinc ion, and a combination of copper ion and benzalkonium chloride to prepare an antibacterial agent.

【0032】前記抗菌剤をセメントに配合する時の割合
は、セメント重量に対して0%、5%,10%,20
%,50%とし、この中に骨材として砂を入れ(セメン
トと骨材の比、1対2)、塩分や異物を含まない清浄な
淡水を水セメント比で50%として混合し練って固め、
直径が1cm、高さ5cmのコンクリートブロックを作
成し、1ヶ月間養生させた。
The ratio of the antibacterial agent to the cement is 0%, 5%, 10%, 20% based on the weight of the cement.
%, 50%, sand as an aggregate (ratio of cement to aggregate, 1: 2), clean fresh water containing no salt or foreign matter at 50% water cement ratio, knead and knead. ,
A concrete block having a diameter of 1 cm and a height of 5 cm was prepared and cured for one month.

【0033】(実施例2)ゴミ固形化燃料の焼却灰(東
京都町田市清掃局焼却場より入手)50gにガラス粉末
(西日本環境開発協同組合製)50gを混合して、実施
例1の耐圧反応容器に入れ、これに3.5N水酸化ナト
リウム水溶液240mlを加え、蓋を閉めた後、600
Wで25kHzの超音波を発振させながら、飽和蒸気に
より内部の温度が90〜95℃に達するまで加熱した。
この状態を5時間保ち、反応生成物の過剰の水酸化ナト
リウムを水で洗浄して風乾し、粉末状の反応生成物を得
た。この反応生成物に銅イオン,銀イオン,亜鉛イオ
ン,銅イオンと塩化ベンザルコニウムとの組み合わせで
それぞれ担持させ、抗菌剤を調製した。該抗菌剤をセメ
ントに配合する時の割合、及びコンクリートブロックを
作成する時の条件は、実施例1と同様に行った。
(Example 2) 50 g of glass powder (manufactured by West Japan Environmental Development Cooperative Association) was mixed with 50 g of incineration ash (obtained from the Municipal Cleaning Bureau, Machida City, Tokyo) of solidified fuel, and the pressure resistance of Example 1 was mixed. The reaction mixture was placed in a reaction vessel, and 240 ml of a 3.5N aqueous sodium hydroxide solution was added thereto.
While oscillating a 25 kHz ultrasonic wave at W, heating was performed with saturated steam until the internal temperature reached 90 to 95 ° C.
This state was maintained for 5 hours, and the excess sodium hydroxide of the reaction product was washed with water and air-dried to obtain a powdery reaction product. The reaction product was supported by a combination of copper ion, silver ion, zinc ion, copper ion and benzalkonium chloride to prepare an antibacterial agent. The proportion when the antibacterial agent was added to the cement and the conditions when preparing the concrete block were the same as in Example 1.

【0034】(実施例3)非結晶性シリカの含有量が9
3%であり、アルミナの含有量が0.1%のミヤンマー
のクンヤンゴン火力発電所(燃料として籾殻使用)より
入手した籾殻の焼却灰20gおよびアルミドロス(社団
法人軽金属協会より入手)30gをよく混合して実施例
1の反応容器にいれ、その珪礬比を約2とし、その上か
ら0.5Nの水酸化ナトリウム水溶液300mlを入
れ、蓋を閉めた後、600Wで25kHzの超音波を発
信させながら飽和蒸気圧で加圧し、内部の温度が120
℃に達するまで加熱した。
(Example 3) The content of amorphous silica was 9
20 g of rice husk incineration ash and 30 g of aluminum dross (obtained from the Japan Light Metal Association) obtained from the Kyun Yangon Thermal Power Station (using rice hulls as fuel) in Myanmar with 3% and 0.1% alumina content After mixing, the mixture was placed in the reaction vessel of Example 1, the balun ratio was set to about 2, 300 ml of a 0.5N sodium hydroxide aqueous solution was added from above, the lid was closed, and then 25 kHz ultrasonic waves were transmitted at 600 W. Pressurized with saturated vapor pressure while the internal temperature is 120
Heat until it reaches ° C.

【0035】この状態を1時間保った後、蒸気を抜い
て、大気圧にもどし、内部の反応生成物を取りだした。
この反応生成物を水洗し風乾して得た粉末状の反応生成
物に銅イオン,銀イオン,亜鉛イオン,銅イオンと塩化
ベンザルコニウムとの組み合わせでそれぞれ担持させ、
抗菌剤を調製した。該抗菌剤をセメントに配合する時の
割合、及びコンクリートブロックを作成する時の条件
は、実施例1と同様に行った。
After maintaining this state for one hour, the steam was released and the pressure was returned to the atmospheric pressure, and the internal reaction products were taken out.
This reaction product is washed with water and air-dried, and the resulting powdery reaction product is supported on a combination of copper ion, silver ion, zinc ion, copper ion and benzalkonium chloride, respectively.
An antimicrobial agent was prepared. The proportion when the antibacterial agent was added to the cement and the conditions when preparing the concrete block were the same as in Example 1.

【0036】(実施例4)鹿児島産の珪礬比が約3.2
の火山ガラスを自動乳鉢で粉砕し、その20gおよびア
ルミニウムドロス(社団法人軽金属協会より入手)5g
を実施例1で用いた反応容器に入れ、その上から2N水
酸化ナトリウム水溶液200mlを入れ、蓋を閉めた
後、600Wで25kHzの超音波を発振させながら、
飽和蒸気により内部の温度が200℃に達するまで加熱
した。
(Example 4) The ratio of silicate from Kagoshima was about 3.2.
Crushed volcanic glass in an automatic mortar, 20 g of it, and 5 g of aluminum dross (obtained from Japan Light Metal Association)
Was placed in the reaction vessel used in Example 1, 200 ml of a 2N aqueous solution of sodium hydroxide was placed thereon, and after closing the lid, while oscillating 25 kHz ultrasonic waves at 600 W,
It was heated with saturated steam until the internal temperature reached 200 ° C.

【0037】この状態を5時間保った後、内部の生成物
を取り出し、この反応生成物を水洗し、風乾して得られ
た反応生成物に銅イオン,銀イオン,亜鉛イオン,銅イ
オンと塩化ベンザルコニウムとの組み合わせでそれぞれ
担持させ、抗菌剤を調製した。該抗菌剤をセメントに配
合する時の割合、及びコンクリートブロックを作成する
時の条件は、実施例1と同様に行った。
After maintaining this state for 5 hours, the internal product was taken out, the reaction product was washed with water, and air-dried. The reaction product obtained was mixed with copper ion, silver ion, zinc ion, copper ion and chloride. An antibacterial agent was prepared by carrying each in combination with benzalkonium. The proportion when the antibacterial agent was added to the cement and the conditions when preparing the concrete block were the same as in Example 1.

【0038】(実施例5)非結晶性の珪酸アルミニウム
の含有量が80%であり、珪礬比約2.0の都市ゴミの
焼却灰(東京都町田市清掃局焼却場製)20gおよびガ
ラス粉末(西日本環境開発協同組合製)5gを実施例1
で用いた反応容器に入れ、その上から4N水酸化ナトリ
ウム水溶液200mlを入れ、蓋を閉めた後、600W
で25kHzの超音波を発振させながら、飽和蒸気圧に
より内部の温度が120℃に達するまで加熱した。
(Example 5) 20 g of incinerated ash (manufactured by the Machida City Cleaning Bureau Incineration Plant, Tokyo) having an amorphous aluminum silicate content of 80% and an alum ratio of about 2.0 was manufactured. Example 1 5 g of powder (made by West Japan Environmental Development Cooperative Association)
Into the reaction vessel used above, 200 ml of a 4N aqueous sodium hydroxide solution was placed from above, and the lid was closed.
While oscillating an ultrasonic wave of 25 kHz at, heating was performed by saturated vapor pressure until the internal temperature reached 120 ° C.

【0039】この状態を5時間保った後、蒸気を抜いて
大気圧に戻し、内部の反応生成物を取り出した。この反
応生成物を水洗し、風乾して得られた反応生成物に銅イ
オン,銀イオン,亜鉛イオン,銅イオンと塩化ベンザル
コニウムとの組み合わせでそれぞれ担持させ、抗菌剤を
調製した。該抗菌剤をセメントに配合する時の割合、及
びコンクリートブロックを作成する時の条件は、実施例
1と同様に行った。
After maintaining this state for 5 hours, the steam was released and the pressure was returned to the atmospheric pressure, and the internal reaction product was taken out. The reaction product was washed with water and air-dried, and the resulting reaction product was loaded with copper ion, silver ion, zinc ion, and a combination of copper ion and benzalkonium chloride to prepare an antibacterial agent. The proportion when the antibacterial agent was added to the cement and the conditions when preparing the concrete block were the same as in Example 1.

【0040】(実施例6)1リットル容の攪拌機付オー
トクレーブ(東洋高圧株式会社製)に超音波発信機(株
式会社日本精機製作所製、MODEL US−600
T)を設置した。次ぎに、稲の植物体を粉砕したもの1
0kgと約4N水酸化ナトリウム水溶液20リットルを
混合し、撹拌しながら加熱し、珪酸塩成分含有の溶出液
を得た。この珪酸塩成分を含有する溶出液を噴霧乾燥し
て得たケイ素含有粉末(シリカ含有率95重量%)の2
0gとアルミニウム濃度10000ppmを有するアル
ミニウム型枠の水酸化ナトリウム水溶液(約3N)によ
る洗浄廃液300mlとを実施例1の反応容器に入れ
(珪礬比を約3とし、)蓋を閉めた後、600Wで25
kHzの超音波を発信させながら加熱し、内部の温度が
80〜90℃に達するまで加熱した。この状態を3時間
保った後、放冷し、水洗後に風乾して得た白色粉末状の
反応生成物に銅イオン,銀イオン,亜鉛イオン,銅イオ
ンと塩化ベンザルコニウムとの組み合わせでそれぞれ担
持させ、抗菌剤を調製した。該抗菌剤をセメントに配合
する時の割合、及びコンクリートブロックを作成する時
の条件は、実施例1と同様に行った。
Example 6 A 1-liter autoclave with a stirrer (manufactured by Toyo Koatsu Co., Ltd.) was placed in an ultrasonic transmitter (Model Nippon Seiki Seisakusho, Model US-600).
T) was installed. Next, crushed rice plant 1
0 kg and 20 liters of about 4N sodium hydroxide aqueous solution were mixed and heated with stirring to obtain an eluate containing a silicate component. The silicon-containing powder (silica content 95% by weight) obtained by spray drying the eluate containing the silicate component
0 g and 300 ml of a washing waste liquid of an aluminum mold having an aluminum concentration of 10,000 ppm with an aqueous sodium hydroxide solution (about 3 N) are put into the reaction vessel of Example 1 (at a balun ratio of about 3), and the lid is closed. At 25
Heating was performed while transmitting a kHz ultrasonic wave, and heating was performed until the internal temperature reached 80 to 90 ° C. After maintaining this state for 3 hours, the mixture was allowed to cool, washed with water and air-dried, and then supported on a white powdery reaction product in the form of a combination of copper ion, silver ion, zinc ion, copper ion and benzalkonium chloride. Then, an antibacterial agent was prepared. The proportion when the antibacterial agent was added to the cement and the conditions when preparing the concrete block were the same as in Example 1.

【0041】[0041]

【抗菌性についての試験例】コンクリートの抗菌性につ
いては、前記抗菌剤を割合を変えて配合したコンクリー
トブロックを1ヶ月間養生させたものから切片(1cm
×1cm×0.5cm)を切り取り、寒天培地に埋め込
み、硫黄酸化菌、硫酸生成菌をそれぞれ前記の培地に接
種し、インキュベーターの中で培養し(培養時の温度3
6℃、培養日数5日)、生育阻止帯の大きさを計測し
た。その結果、抗菌剤をセメント重量に対して10%以
上配合したものについては、寒天培地上に生育阻止帯が
認められ、コンクリートの抗菌性が確認された。
[Test Example of Antibacterial Property] The antibacterial property of concrete was determined by cutting a concrete block (1 cm) prepared by curing a concrete block containing the above antibacterial agent in different proportions for one month.
× 1 cm × 0.5 cm), embedded in an agar medium, inoculated with sulfur oxidizing bacteria and sulfuric acid producing bacteria respectively in the above-mentioned medium, and cultured in an incubator (at a culture temperature of 3).
(6 ° C., culturing days 5 days), and the size of the growth inhibition zone was measured. As a result, in the case where the antibacterial agent was blended by 10% or more based on the weight of cement, a growth inhibition zone was recognized on the agar medium, and the antibacterial property of the concrete was confirmed.

【0042】[0042]

【発明の効果】以上のごとく、本発明によれば、珪酸成
分とアルミニウム成分とを含有する廃棄物あるいは、珪
酸成分又はアルミニウム成分のうちのどちらか1方を含
む廃棄物と、珪酸成分又はアルミニウム成分の少なくと
も一方を含有する廃棄物を混合したものを、アルカリ水
性媒質と混合し、耐圧反応容器内で加熱または加圧して
反応させ、得られた反応生成物に、抗菌性陽イオン又は
抗菌性有機物の一方あるいは両方を担持させたものをセ
メントに配合することにより、コンクリート構築物を劣
化させる原因となる硫黄酸化菌や硫酸生成菌の増殖を抑
えることができ、土管等のコンクリート構築物の耐用年
数をのばすことができる。更には、廃棄物の有効利用に
新たな技術を提供することにもなる。
As described above, according to the present invention, a waste containing a silicate component and an aluminum component, or a waste containing either a silicate component or an aluminum component, A mixture of waste containing at least one of the components is mixed with an alkaline aqueous medium, and reacted by heating or pressurizing in a pressure-resistant reaction vessel. By compounding one or both of the organic substances in the cement, it is possible to suppress the growth of sulfur oxidizing bacteria and sulfuric acid producing bacteria that cause deterioration of the concrete structure, and to reduce the useful life of concrete structures such as clay pipes. Can be extended. Furthermore, it will provide a new technology for effective use of waste.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 14:04 C04B 14:04 C 18:12 18:12 22:08 22:08 18:14) 18:14) G ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme court ゛ (Reference) C04B 14:04 C04B 14:04 C 18:12 18:12 22:08 22:08 18:14) 18: 14) G

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 珪酸成分とアルミニウム成分とを含有す
る廃棄物と、珪酸成分又はアルミニウム成分の少なくと
も一方を含有する廃棄物とを所望の珪礬比で混合したも
のを、アルカリ水性媒質と混合し、耐圧反応容器内で超
音波発振の付加をしながら加熱又は加圧して反応させ、
得られた反応生成物に、抗菌性陽イオン又は抗菌性有機
物の一方あるいは両方を担持させたものをセメントに配
合することを特徴とする抗菌性コンクリートの製造方
法。
1. A mixture of a waste containing a silicic acid component and an aluminum component and a waste containing at least one of a silicic acid component and an aluminum component at a desired silicate ratio, mixed with an alkaline aqueous medium. , Heating or pressurizing and reacting while adding ultrasonic oscillation in a pressure-resistant reaction vessel,
A method for producing an antibacterial concrete, comprising mixing the obtained reaction product with one or both of an antibacterial cation and an antibacterial organic substance in a cement.
【請求項2】 珪酸成分又はアルミニウム成分の少なく
とも一方を含む廃棄物と、珪酸成分又はアルミニウム成
分のどちらか一方或いは両方を含有する廃棄物とを所望
の珪礬比で混合したものを、アルカリ水性媒質と混合
し、耐圧反応容器内で超音波発振の付加をしながら加熱
又は加圧して反応させ、得られた反応生成物に抗菌性陽
イオン又は抗菌性有機物の一方あるいは両方を担持させ
たものをセメントに配合することを特徴とする抗菌性コ
ンクリートの製造方法。
2. A mixture of a waste containing at least one of a silicic acid component and an aluminum component and a waste containing one or both of a silicic acid component and an aluminum component at a desired silicate ratio is treated with an alkaline aqueous solution. Mixed with a medium and heated or pressurized while applying ultrasonic oscillation in a pressure-resistant reaction vessel, and the resulting reaction product carries one or both of an antibacterial cation or an antibacterial organic substance A method for producing an antibacterial concrete, characterized by blending with a cement.
【請求項3】 珪酸成分とアルミニウム成分とを含有す
る廃棄物あるいは、珪酸成分又はアルミニウム成分のう
ちのどちらか1方を含む廃棄物と、珪酸成分又はアルミ
ニウム成分の少なくとも一方を含有する廃棄物とを所望
の珪礬比で混合したものを、アルカリ水性媒質と混合
し、耐圧反応容器内で超音波発振の付加をしながら加熱
または加圧して反応させ、得られた反応生成物に、抗菌
性陽イオン又は抗菌性有機物の一方あるいは両方を担持
させたものをセメントに配合したことを特徴とする抗菌
性コンクリートのセメント組成物。
3. A waste containing a silicate component and an aluminum component, a waste containing either a silicate component or an aluminum component, and a waste containing at least one of a silicate component and an aluminum component. Is mixed with an alkaline aqueous medium, and heated or pressurized while adding ultrasonic oscillation in a pressure-resistant reaction vessel, and the resulting reaction product is subjected to antibacterial activity. What is claimed is: 1. A cement composition for an antibacterial concrete, comprising a cement loaded with one or both of a cation and an antibacterial organic substance.
JP2000195214A 2000-06-28 2000-06-28 Production process for antibacterial concrete and cement composition therefor Pending JP2002020150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195214A JP2002020150A (en) 2000-06-28 2000-06-28 Production process for antibacterial concrete and cement composition therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195214A JP2002020150A (en) 2000-06-28 2000-06-28 Production process for antibacterial concrete and cement composition therefor

Publications (1)

Publication Number Publication Date
JP2002020150A true JP2002020150A (en) 2002-01-23

Family

ID=18693906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195214A Pending JP2002020150A (en) 2000-06-28 2000-06-28 Production process for antibacterial concrete and cement composition therefor

Country Status (1)

Country Link
JP (1) JP2002020150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624709A (en) * 2021-01-15 2021-04-09 福州大学 Antibacterial cement concrete and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624709A (en) * 2021-01-15 2021-04-09 福州大学 Antibacterial cement concrete and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2658251C (en) Ceramic filter
NO152043B (en) GLASS-foam and foamable glass mixture.
CN1964929A (en) Hydraulic binder
KR20080077002A (en) Multi-function composition for settable composite materials and methods of making the composition
WO2005019130A1 (en) Geopolymers and methods for their production
KR102020730B1 (en) A water-based natural purification type ecological block using kaolin and high effective media encapsulating complex useful microorganisms for purification, restoration and maintenance of water according to a nonpoint pollution source
KR20120044010A (en) Geopolymer composition containing fly ash and blast furnace slag
Simão et al. Zeolites‐containing geopolymers obtained from biomass fly ash: Influence of temperature, composition, and porosity
CN106946537A (en) A kind of titanium gypsum high performance concrete building materials and preparation method thereof
JP2002020150A (en) Production process for antibacterial concrete and cement composition therefor
RU2408633C1 (en) Method of producing silica-containing binder
CN101081345A (en) Filter media and method for making same and filter element using said filter media
JP3792139B2 (en) Method for producing artificial zeolite
CN113321435A (en) Alkali-activated fluidized bed fly ash geopolymer and preparation method thereof
JPS62115B2 (en)
KR20110072778A (en) Paste composition for manufacturing artificial stone, method of manufacturing artificial stone using the paste composition and inoragnic binder artificial stone manufactured the method
RU2220928C1 (en) Raw meal and a method for manufacturing granulated heat-insulation material
JP3160851B2 (en) Method for converting coal ash containing high amounts of unburned carbon into zeolite-based material
KR102006574B1 (en) A water-based natural purification type kaolin ecological block immobilized by coating a composite useful microorganism for algae reduction and purification of water by removal of total phosphorus and total nitrogen and its method for manufacturing
RU2151121C1 (en) Raw material mixture and method of production of granulated heat-insulating material
RU2085489C1 (en) Method of liquid glass production
JP2000128520A (en) Production of imogolite
RU2220927C1 (en) Raw meal and a method for manufacturing granulated heat-insulation material
JP2002273103A (en) Artificial zeolite compounded flocculant and sewage treatment method using the same
JP3011213B1 (en) Manufacturing method of allophane