JP2002020111A - Porous powder and method for producing the same - Google Patents

Porous powder and method for producing the same

Info

Publication number
JP2002020111A
JP2002020111A JP2000197265A JP2000197265A JP2002020111A JP 2002020111 A JP2002020111 A JP 2002020111A JP 2000197265 A JP2000197265 A JP 2000197265A JP 2000197265 A JP2000197265 A JP 2000197265A JP 2002020111 A JP2002020111 A JP 2002020111A
Authority
JP
Japan
Prior art keywords
silica gel
powder
average particle
crystal phase
porous powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000197265A
Other languages
Japanese (ja)
Inventor
Noriaki Hamada
紀彰 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000197265A priority Critical patent/JP2002020111A/en
Publication of JP2002020111A publication Critical patent/JP2002020111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in the conventional case that amorphous silica gel is converted to cristofalite by heat-treatment and is not crystallized to quarts. SOLUTION: A Zn compound is added to silica gel of 0.1-20 μm average particle diameter by 0.5-20 wt.% (expressed in terms of ZnO) and this mixture is heat-treated at 900-1,100 deg.C to obtain the objective porous powder of <=20 μm average particle diameter based on SiO2, containing >=0.5 wt.% (expressed in terms of oxide) Zn and having a principal crystal phase comprising quartz as well as internal pores of <=15 μm average pore size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリカゲルを原料
とし結晶相を制御された多孔質粉末とその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous powder having a controlled crystal phase using silica gel as a raw material and a method for producing the same.

【0002】[0002]

【従来技術】従来、ゾルゲル法により製造されたシリカ
ゲルは大きな比表面積と空隙を有することから乾燥剤や
ガスクロマトグラフィ装置の吸着剤、触媒担体、濾過剤
として用いられている。また、さらに機能性を付与する
手法として様々な金属、金属酸化物を複合もしくは担持
する手法が特開平10−72210等で提案されてい
る。実用化されているシリカゲルは比表面積、空隙率等
の違いはあっても基本的に非晶質である。これらのシリ
カゲル多孔体は熱処理を加えることで比表面積や空隙率
が変化する。具体的には熱処理により比表面積は小さく
なり、空隙率もまた小さくなる傾向にある。このような
性質を利用して熱処理を加えることで所望の特性を有す
るシリカゲル多孔体を得ることができる。
2. Description of the Related Art Conventionally, silica gel produced by a sol-gel method has been used as a desiccant, an adsorbent for a gas chromatography device, a catalyst carrier, and a filtering agent because of its large specific surface area and voids. Further, as a technique for further imparting functionality, a technique of compounding or supporting various metals and metal oxides has been proposed in JP-A-10-72210 or the like. Silica gel that has been put into practical use is basically amorphous, despite differences in specific surface area, porosity, and the like. The specific surface area and porosity of these porous silica gel materials are changed by heat treatment. Specifically, the heat treatment tends to reduce the specific surface area and the porosity. By applying a heat treatment utilizing such properties, a porous silica gel having desired characteristics can be obtained.

【0003】[0003]

【発明が解決しようとする課題】シリカゲルは安価で様
々な用途に用いられ非常に有用な材料であるが、熱履歴
が加わることで結晶化が起こり特性が変化することがあ
った。そのために様々な特性が変化し問題となってい
る。例えば、クリストバライトに結晶化した場合には熱
膨張係数が熱処理前の3倍以上になり、また、250℃
近傍に変極点を有することから使用上の様々な問題が発
生する。特に半導体素子収納用の配線基板の原料として
用いる場合には、基板中にクリストバライトを含む場
合、プリント基板表面に半導体素子収納用配線基板を半
田などによって実装する場合に、250℃以上の温度履
歴を経るために冷却時に接合部に急激な熱膨張の変化に
よる応力が集中し断線に至るという問題がある。
Although silica gel is inexpensive and is a very useful material used for various applications, crystallization may occur due to the addition of heat history, and the characteristics may change. For this reason, various characteristics change and pose a problem. For example, when crystallized into cristobalite, the coefficient of thermal expansion becomes three times or more of that before heat treatment, and 250 ° C.
The use of the inflection point in the vicinity causes various problems in use. In particular, when used as a raw material of a wiring board for housing semiconductor elements, when cristobalite is contained in the board, and when the wiring board for housing semiconductor elements is mounted on a printed circuit board surface by soldering or the like, a temperature history of 250 ° C. or more is obtained. Therefore, there is a problem that stress due to a sudden change in thermal expansion is concentrated on the joint portion during cooling, leading to disconnection.

【0004】また、近年、実装形態が、ボール状端子を
用いたBGAや、CSPといった表面実装型へと変化し
ていることから半導体収納用配線基板の熱膨張係数をプ
リント基板に近づけようという試みがなされている(特
開平8−279574号、特開平8−330690号参
照)。
In recent years, the mounting form has been changed to a surface mounting type such as a BGA or a CSP using ball terminals, so that an attempt has been made to bring the thermal expansion coefficient of a wiring board for semiconductor storage closer to that of a printed circuit board. (See JP-A-8-279574 and JP-A-8-330690).

【0005】この様な用途に対してはシリカ系の結晶の
なかでも、熱膨張の変極点が実装温度粋外にあるクオー
ツが最適で高熱膨張化と実装信頼性の向上を図ることが
できる。
[0005] Quartz whose inflection point of thermal expansion is outside the mounting temperature is optimal among silica-based crystals for such applications, and high thermal expansion and improvement in mounting reliability can be achieved.

【0006】しかしながら、非晶質であるシリカゲルを
半導体収納用配線基板の製造温度粋で処理するとクリス
トバライトに結晶化してしまい、実装信頼性が充分向上
しないという問題が発生する。
[0006] However, if amorphous silica gel is treated at a temperature suitable for manufacturing a wiring board for semiconductor storage, it is crystallized into cristobalite, which causes a problem that the mounting reliability is not sufficiently improved.

【0007】一方、半導体素子搭載配線基板において
は、その絶縁基板としての低誘電率化が望まれている
が、従来よりセラミック製の基板材料の比誘電率がせい
ぜい5程度であって、5以下の低誘電率化を達成するこ
とは難しいものであった。そこで、最近では、セラミッ
クス中に比誘電率が最も低い気孔を導入して基板全体の
比誘電率を低下させることも提案されている。
On the other hand, in a wiring board mounted with a semiconductor element, it is desired to lower the dielectric constant as an insulating substrate. However, the relative dielectric constant of a ceramic substrate material has been conventionally at most about 5 and less than 5 or less. It has been difficult to achieve a low dielectric constant. Therefore, recently, it has been proposed to introduce pores having the lowest relative permittivity into ceramics to lower the relative permittivity of the entire substrate.

【0008】従って、本発明によれば、微細な気孔を有
し、低誘電率化用の骨材などに有用で、しかも熱膨張係
数が安定した特性を有する結晶性の高い多孔質粉末と、
その製造方法を提供することを目的とするものである。
Therefore, according to the present invention, a highly crystalline porous powder having fine pores, useful as an aggregate for lowering the dielectric constant, and having a stable thermal expansion coefficient,
It is an object of the present invention to provide a method of manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記問題
点に対して検討を重ねた結果、特定の大きさのシリカゲ
ルに対して、ZnOを所定の割合で担持させて、熱処理
を行なうことによって結晶相がクォーツとなる多孔質粉
末を得ることができることを見いだした。
Means for Solving the Problems The inventors of the present invention have repeatedly studied the above problems, and as a result, have carried out a heat treatment by supporting ZnO at a predetermined ratio on silica gel of a specific size. As a result, it has been found that a porous powder having a crystal phase of quartz can be obtained.

【0010】即ち、本発明の多孔質粉末は、SiO2
主成分とし、Znを酸化物換算で0.5重量%以上含有
し、平均粒径が20μm以下で、内部に平均15μm以
下の細孔を有するとともに、主結晶相がクオーツからな
ることを特徴とするものであり、かかる多孔質粉末の製
造方法としては、平均粒径が0.1〜20μmのシリカ
ゲルに対して、Zn化合物をZnO換算で0.5重量%
添加した混合物を、900〜1100℃で熱処理するこ
とを特徴とするものである。
That is, the porous powder of the present invention contains SiO 2 as a main component, contains Zn in an amount of 0.5% by weight or more in terms of oxide, has an average particle size of 20 μm or less, and has an internal fine particle of 15 μm or less. It is characterized by having pores and a main crystal phase consisting of quartz. As a method for producing such a porous powder, a silica compound having an average particle size of 0.1 to 20 μm is prepared by adding a Zn compound to ZnO. 0.5% by weight in conversion
The mixture is heat-treated at 900 to 1100 ° C.

【0011】[0011]

【発明の実施の形態】本発明の多孔質粉体の製造方法に
ついて、以下に詳細に説明する。本発明の製造方法によ
れば、出発原料として、シリカゲルを用いる。このシリ
カゲルは、いわゆるゾルゲル法により作製されたもので
シリカを主成分とする非晶質の多孔体であればその製法
は問わない。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a porous powder of the present invention will be described in detail below. According to the production method of the present invention, silica gel is used as a starting material. This silica gel is produced by a so-called sol-gel method, and any production method can be used as long as it is an amorphous porous material containing silica as a main component.

【0012】但し、このシリカゲルの粉末の平均粒径は
0.1〜20μmであることが必要である。それは、平
均粒径が0.1μmよりも小さいとZn化合物が全ての
シリカゲル粒子に充分に担持されず、不均一となりアモ
ルファスやクリストバライトが生成しやすくなり、また
20μmよりも大きいと、最終的に得られる粉末が20
μmよりも大きくなり、目的に適合しない。
However, the average particle size of the silica gel powder must be 0.1 to 20 μm. When the average particle size is smaller than 0.1 μm, the Zn compound is not sufficiently supported on all the silica gel particles, and the compound becomes non-uniform, and amorphous or cristobalite is easily generated. 20 powders
It is larger than μm and does not fit the purpose.

【0013】次に、このシリカゲル粉末に対して、Zn
化合物をZnO換算で0.5重量%以上の割合で添加混
合する。このZn化合物の添加によってSiO2のクオ
ーツへの結晶化とともにクオーツ結晶の安定化を促進で
きる。従って、Zn化合物の含有量が0.5重量%より
も少ないと、上記の効果が得られない。
Next, with respect to this silica gel powder, Zn
The compound is added and mixed at a ratio of 0.5% by weight or more in terms of ZnO. By adding the Zn compound, crystallization of SiO 2 into quartz and stabilization of quartz crystals can be promoted. Therefore, if the content of the Zn compound is less than 0.5% by weight, the above effects cannot be obtained.

【0014】なお、Zn化合物量の上限は、特に定める
ものではないが、20重量%を超えて添加してもその効
果は変わらないために、20重量%以下であることが望
ましい。
The upper limit of the amount of the Zn compound is not particularly limited, but the effect is not changed even if it is added in excess of 20% by weight, so that it is preferably 20% by weight or less.

【0015】また、Zn化合物としては、ZnO、Zn
SO4、ZnS、Zn(CH3COO)2,Zn(NO3
2・6H2Oの群から選ばれる少なくとも1種が用いられ
る。これらのZn化合物は、平均粒径が0.5〜2μm
の粉末として添加することが望ましい。また、容易にイ
オン化し得る化合物においては、Znイオンを含む溶液
を作製し、シリカゲルを溶液中に混合し、乾燥させるこ
ともできる。
Further, ZnO, ZnO, Zn
SO 4 , ZnS, Zn (CH 3 COO) 2 , Zn (NO 3 )
At least one is used selected from 2 · 6H 2 O groups. These Zn compounds have an average particle size of 0.5 to 2 μm.
It is desirable to add it as a powder. In the case of a compound that can be easily ionized, a solution containing Zn ions can be prepared, silica gel can be mixed in the solution, and dried.

【0016】シリカゲル粉末に対して、Zn化合物を添
加した後、これらをボールミルなどの混合手段によって
均一に混合する。この際、適当な溶媒を用いるとより均
一な混合体が得られる。また、この時、混合手段からの
不純物の混入がないように、できるだけ有機系のボール
や容器を用い、熱処理によって分解除去できることが望
ましい。
After the Zn compound is added to the silica gel powder, they are uniformly mixed by a mixing means such as a ball mill. At this time, a more uniform mixture can be obtained by using an appropriate solvent. At this time, it is desirable that organic balls or containers can be used as much as possible and decomposed and removed by heat treatment so that impurities from the mixing means are not mixed.

【0017】次に、上記の混合物を900〜1100℃
の温度で0.5〜10時間程度の熱処理を施す。この時
の温度が900℃よりも低いとクオーツへの結晶化が充
分に進行せずにアモルファス成分が多量に残存し、11
00℃よりも高いと粉体中の細孔が少なくなってしま
う。また、この熱処理時の雰囲気は、大気などの酸化性
雰囲気でも、窒素などの非酸化性雰囲気、あるいはアル
ゴンなどの不活性雰囲気のいずれでもよい。
Next, the above mixture is heated at 900 to 1100 ° C.
At a temperature of 0.5 to 10 hours. If the temperature at this time is lower than 900 ° C., crystallization to quartz does not proceed sufficiently and a large amount of amorphous component remains, and
If the temperature is higher than 00 ° C., the number of pores in the powder decreases. The atmosphere for the heat treatment may be an oxidizing atmosphere such as the air, a non-oxidizing atmosphere such as nitrogen, or an inert atmosphere such as argon.

【0018】熱処理後に室温まで冷却した粉末は、適宜
粉砕して、平均粒径20μm以下にまで細かく粉砕する
ことができる。
The powder cooled to room temperature after the heat treatment can be appropriately pulverized and finely pulverized to an average particle size of 20 μm or less.

【0019】作製された粉体は、平均細孔径が15μm
以下、特に5μm以下、さらには1μm以下の微細な細
孔を有するとともに、結晶相としてはクオーツ結晶相か
らなる。また、本発明によれば、クリストバライトの析
出が実質的に認められないことも大きな特徴であって、
これによって熱膨張特性において、良好な安定した熱特
性を有する。
The prepared powder has an average pore diameter of 15 μm.
In the following, it has fine pores of 5 μm or less, especially 1 μm or less, and the crystal phase is a quartz crystal phase. Further, according to the present invention, a major feature is that cristobalite is not substantially precipitated.
Thereby, good and stable thermal characteristics are obtained in the thermal expansion characteristics.

【0020】そのために、本発明の多孔質粉体は、クオ
ーツ結晶相の性質を安定的に発揮することが必要とさ
れ、あるいは微細な気孔が要求されるあらゆる用途に適
用することができる。
For this purpose, the porous powder of the present invention can be applied to any application where it is necessary to exhibit the properties of a quartz crystal phase stably or where fine pores are required.

【0021】特に、半導体素子を搭載する配線基板にお
ける絶縁基板におけるガラス中に分散させるセラミック
フィラー成分として用いることによってクオーツによっ
て−150℃〜400℃において安定した熱膨張特性が
発揮できるとともに、気孔の分散によって低誘電率化を
図ることもできる。
In particular, by using as a ceramic filler component dispersed in glass of an insulating substrate in a wiring board on which a semiconductor element is mounted, a stable thermal expansion characteristic can be exhibited at -150 ° C. to 400 ° C. by quartz, and pores can be dispersed. Thereby, the dielectric constant can be reduced.

【0022】[0022]

【実施例】ゾルゲル法によって作製された平均粒径が1
5μmのシリカゲル粉末に対して、平均粒径が0.5〜
2μmの種々の金属酸化物を表1、2の比率で添加し
て、その混合物に、イソプロピルアルコールとともにウ
レタン樹脂ボールを用いて24時間混合処理した。
EXAMPLE The average particle size produced by the sol-gel method was 1
For a 5 μm silica gel powder, the average particle size is 0.5 to
Various metal oxides of 2 μm were added at the ratios shown in Tables 1 and 2, and the mixture was mixed with isopropyl alcohol using a urethane resin ball for 24 hours.

【0023】その後、この粉末を120℃で乾燥した
後、表1、2に示す温度にて大気中で10時間熱処理し
た後、放冷した。放冷後の粉末をボールミルによって軽
く解砕した。
Thereafter, the powder was dried at 120 ° C., heat-treated in the air at the temperatures shown in Tables 1 and 10 for 10 hours, and allowed to cool. The powder after cooling was lightly crushed by a ball mill.

【0024】得られた粉末に対して、レーザー沈降法に
よって平均粒径を測定するとともに、理学電機製RIN
T1400V型X線回折測定によって、結晶相を同定し
た。さらに上記の熱処理を5回繰り返した時の結晶相を
同様にして測定した。また、ポロシメータによって作製
された粉体における平均細孔径を測定した。結果は表
1、2に示した。
The average particle size of the obtained powder was measured by a laser sedimentation method.
The crystal phase was identified by T1400V type X-ray diffraction measurement. Further, the crystal phase when the above heat treatment was repeated five times was measured in the same manner. Further, the average pore diameter of the powder produced by the porosimeter was measured. The results are shown in Tables 1 and 2.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】金属酸化物を含有しない試料No.1〜4
はいずれも熱処理後にクリストバライトへと変化した。
また、金属酸化物としてB23を用いた場合には熱処理
後にクリストバライトに変化した。また、アルカリ土類
元素としてBaO、CaOを用いた場合にはほとんどア
モルファスのままであった。同様に金属酸化物としてZ
rO2を用いた場合にもアモルファスとなった。
Sample No. containing no metal oxide 1-4
All changed to cristobalite after heat treatment.
When B 2 O 3 was used as the metal oxide, it changed to cristobalite after the heat treatment. When BaO and CaO were used as alkaline earth elements, they remained almost amorphous. Similarly, as a metal oxide, Z
Even when rO 2 was used, it became amorphous.

【0028】これに対して、金属酸化物としてZnOを
0.5重量%以上含有する試料No.6〜9、11〜1
4、16〜19、21〜24では熱処理後の結晶相はク
オーツとなった。ただし、800℃での熱処理を行った
試料No.5〜9ではアモルファス成分が残留してお
り、繰り返し熱処理を行ったところ結晶の量が変化し
た。その他の試料ではアモルファス成分は残留しておら
ず、繰り返し熱処理を行っても結晶相の変化は認められ
なかった。
On the other hand, Sample No. containing ZnO as a metal oxide in an amount of 0.5% by weight or more was used. 6-9, 11-1
In 4, 16, 19 and 21 to 24, the crystal phase after the heat treatment became quartz. However, the sample No. which was subjected to the heat treatment at 800 ° C. In Nos. 5 to 9, the amorphous component remained, and the amount of crystals changed after repeated heat treatment. In other samples, no amorphous component remained, and no change in the crystal phase was observed even after repeated heat treatment.

【0029】金属酸化物の含有量が0.5重量%未満で
ある試料No.5、10、15、20は全て結晶相はク
リストバライトとなった。
Sample No. 1 having a metal oxide content of less than 0.5% by weight. In all of 5, 10, 15, and 20, the crystal phase was cristobalite.

【0030】以上の結果よりZn化合物を酸化物換算で
0.5重量%以上含有させ、さらに900℃以上の温度
粋で熱処理することで、熱処理後の結晶相をクォーツと
することが可能なことが明らかとなった。
From the above results, it is possible to make the crystal phase after the heat treatment quartz by adding 0.5% by weight or more of the Zn compound in terms of oxide and further heat-treating at a temperature of 900 ° C. or more. Became clear.

【0031】また、さらに得られた多孔体を熱サイクル
に投入したが熱サイクルの前後で結晶相に変化は認めら
れないことから熱的にも安定した粉末となっていること
が明らかである。
Further, the obtained porous body was put into a heat cycle, but no change was observed in the crystal phase before and after the heat cycle, so that it is clear that the powder was thermally stable.

【0032】[0032]

【発明の効果】以上詳述したように、本発明によれば、
シリカを主成分とする多孔質粉末にZnを含む化合物を
添加することによって結晶相がクオーツからなる結晶相
の安定した多孔質粉末を得ることができる。
As described in detail above, according to the present invention,
By adding a compound containing Zn to a porous powder containing silica as a main component, it is possible to obtain a porous powder having a crystalline phase with a stable crystal phase.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】SiO2を主成分とし、Znを酸化物換算
で0.5重量%以上含有し、平均粒径が20μm以下
で、内部に平均15μm以下の細孔を有するとともに、
主結晶相がクオーツからなることを特徴とする多孔質粉
末。
1. It contains SiO 2 as a main component, contains Zn in an amount of 0.5% by weight or more in terms of oxide, has an average particle diameter of 20 μm or less, and has pores having an average of 15 μm or less inside.
A porous powder, wherein the main crystal phase is made of quartz.
【請求項2】平均粒径が0.1〜20μmのシリカゲル
に対して、Zn化合物をZnO換算で0.5重量%以上
添加し、この混合物を900〜1100℃で熱処理する
ことを特徴とする多孔質粉末の製造方法。
2. The method according to claim 1, wherein a Zn compound is added to silica gel having an average particle size of 0.1 to 20 μm in an amount of 0.5% by weight or more in terms of ZnO, and the mixture is heat-treated at 900 to 1100 ° C. A method for producing a porous powder.
JP2000197265A 2000-06-29 2000-06-29 Porous powder and method for producing the same Pending JP2002020111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197265A JP2002020111A (en) 2000-06-29 2000-06-29 Porous powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197265A JP2002020111A (en) 2000-06-29 2000-06-29 Porous powder and method for producing the same

Publications (1)

Publication Number Publication Date
JP2002020111A true JP2002020111A (en) 2002-01-23

Family

ID=18695611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197265A Pending JP2002020111A (en) 2000-06-29 2000-06-29 Porous powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2002020111A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059056A (en) * 2009-12-14 2010-03-18 Sumitomo Chemical Co Ltd Method of manufacturing silica particle
WO2017188301A1 (en) * 2016-04-28 2017-11-02 株式会社アドマテックス Crystalline silica particle material and method for manufacturing same, slurry composition containing crystalline silica particle material, and resin composition containing crystalline silica particle material
TWI666246B (en) * 2017-04-10 2019-07-21 日商亞都瑪科技股份有限公司 Resin for resin composition, paste composition containing reed, and resin composition containing reed
KR20230011937A (en) 2020-05-20 2023-01-25 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Spherical crystalline silica particles and method for producing the same
US11613625B2 (en) 2017-04-10 2023-03-28 Admatechs Co., Ltd. Filler for resinous composition, filler-containing slurry composition and filler-containing resinous composition
KR20240119065A (en) 2021-12-13 2024-08-06 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Spherical crystalline silica particles and method for producing the same, and resin composite composition and resin composite containing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059056A (en) * 2009-12-14 2010-03-18 Sumitomo Chemical Co Ltd Method of manufacturing silica particle
WO2017188301A1 (en) * 2016-04-28 2017-11-02 株式会社アドマテックス Crystalline silica particle material and method for manufacturing same, slurry composition containing crystalline silica particle material, and resin composition containing crystalline silica particle material
JPWO2017188301A1 (en) * 2016-04-28 2018-08-30 株式会社アドマテックス Crystalline silica particle material, method for producing the same, slurry composition containing crystalline silica particle material, and resin composition containing crystalline silica particle material
KR20180105223A (en) * 2016-04-28 2018-09-27 가부시키가이샤 아도마텍쿠스 Crystal Silica Particle Material, Method of Manufacturing the Same, Crystal Silica Particle Material-Containing Slurry Composition, Crystal Silica Particle Material-Containing Resin Composition
TWI658989B (en) * 2016-04-28 2019-05-11 日商亞都瑪科技股份有限公司 Crystalline silicon dioxide particle material, method for manufacturing the same, slurry composition containing crystalline silicon dioxide particle material, and resin composition containing crystalline silicon dioxide particle material
KR101986062B1 (en) * 2016-04-28 2019-06-04 가부시키가이샤 아도마텍쿠스 Crystal Silica Particle Material, Method of Manufacturing the Same, Crystal Silica Particle Material-Containing Slurry Composition, Crystal Silica Particle Material-Containing Resin Composition
US10358354B2 (en) 2016-04-28 2019-07-23 Admatechs Co., Ltd. Crystalline silica particulate material and production process for the same as well as crystalline silica particulate material-containing slurry composition and crystalline silica particulate material-containing resinous composition
TWI666246B (en) * 2017-04-10 2019-07-21 日商亞都瑪科技股份有限公司 Resin for resin composition, paste composition containing reed, and resin composition containing reed
US11613625B2 (en) 2017-04-10 2023-03-28 Admatechs Co., Ltd. Filler for resinous composition, filler-containing slurry composition and filler-containing resinous composition
KR20230011937A (en) 2020-05-20 2023-01-25 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Spherical crystalline silica particles and method for producing the same
KR20240119065A (en) 2021-12-13 2024-08-06 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Spherical crystalline silica particles and method for producing the same, and resin composite composition and resin composite containing the same

Similar Documents

Publication Publication Date Title
Kobayashi et al. Low‐temperature fabrication of anorthite ceramics
WO2018010633A1 (en) Cbs-class ltcc material and manufacturing method thereof
JP5073064B2 (en) Low temperature co-fired ceramic powder and special raw materials and their use
US4528275A (en) Mullite-cordierite composite ceramic and method for preparation
KR20190017539A (en) Method of Preparing the Spherical Shape Aluminum Nitride Powder
Chaouchi et al. ZnTiO3 ceramic sintered at low temperature with glass phase addition for LTCC applications
CN115124340B (en) Medium low-loss low-temperature co-fired ceramic material and preparation method and application thereof
KR940006543B1 (en) Chemically stabilized cristobalite
JP2017178751A (en) Spherical ain particles and manufacturing method therefor
JP2002020111A (en) Porous powder and method for producing the same
CN112321164B (en) Calcium borosilicate glass powder-based composite ceramic powder and preparation process thereof
US5858893A (en) Ceramic composition with low dielectric constant and method of making same
JP2017178752A (en) Spherical ain particles, spherical ain filler and manufacturing method of spherical ain particles
JP2977070B2 (en) Aluminum nitride body and method of forming the same
JPH0616477A (en) Production of low-temperature sintering type ceramic for packaging of semiconductor device
CN111574213B (en) Low-dielectric-constant LTCC material and preparation method thereof
JP2002047007A (en) Porous particle and its manufacturing method
JPH07149539A (en) Glass-ceramic composite and its production
JP2566183B2 (en) Glass powder capable of producing a sintered glass ceramic containing hexagonal cordierite as the main crystal phase by crystallization
KR102711586B1 (en) MgO MATERIAL AND METHOD FOR MANUFACTURING THE SAME
KR102684210B1 (en) Method of Preparing the Spherical Shape Aluminum Nitride Powder
CN109467315B (en) InN-doped sodium-based glass and preparation method thereof
JP2710311B2 (en) Ceramic insulation material
JPS6153156A (en) Mulite beta-spodumene composite ceramic
JPH03218977A (en) Production of aluminum nitride sintered body